
Andreas Oberweis, Ralf Reussner (Hrsg.): Modellierung 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 157

A Software Product Line of Feature Modeling Notations

and Cross-Tree Constraint Languages

Christoph Seidl1, Tim Winkelmann1, Ina Schaefer1

Abstract: A Software Product Line (SPL) encompasses a set of closely related software systems
in terms of common and variable functionality. On a conceptual level, the entirety of all valid
configurations may be captured in a variability model such as a feature model with additional cross-
tree constraints. Even though variability models are essential for specifying configuration knowledge,
various notations for feature models and cross-tree constraints exist, which increases implementation
effort when having to realize new tools for a different language. In this paper, we provide remedy
to this problem by introducing an SPL to generate different variants of feature modeling notations
and cross-tree constraint languages. We base our approach on the state of the art in various works
and surveys on feature modeling to create a family of feature modeling notations with similar
expressiveness as the original approaches. For our findings, we provide both conceptual configuration
knowledge as well as a generative model-based realization. We further demonstrate the feasibility of
our approach by generating feature modeling notations similar to those of various publications.

1 Introduction

A Software Product Line (SPL) encompasses a set of closely related software systems in

terms of common and variable functionality. On a conceptual level, configuration knowledge

may be captured in a variability model to describe configuration rules for all valid products.

The most commonly used type of variability models are feature models [Ka90], which

arrange features as configurable units along a tree-structured decomposition hierarchy.

Commonly, language constructs are used to represent optional and mandatory features as

well as alternative-groups allowing selection of exactly one feature and or-groups permitting

selection of one or more features. Furthermore, cross-tree constraints [Ba05] may be used

to further restrain configuration options.

Ever since the original introduction of feature models [Ka90], a great number of ex-

tensions has been made to the original notation to address various needs, such as at-

tributes for features with finite and infinite domains [Cz02, CHE05, KOD10], cardinal-

ities for groups and individual features [Ri02, CHE05, ME08, SSA14a] or configurable

feature versions [SSA14a, SSA14c]. Likewise, languages for cross-tree constraints may

be represented by different means using various subsets of propositional logic [Ba05]

or the OCL [CE00, Cz02] (Object Constraint Language) as well as textual formula-

tions [Ba05, KOD10] and graphical representation as additional edges in the feature

model [HSVM00, SLW12]. Through these extensions for feature models and cross-tree

constraints, a wide variety of different concerns of configuration problems can be addressed.

1 Software Engineering Institute, Technische Universität Braunschweig, E-Mail:

{c.seidl,t.winkelmann,i.schaefer}@tu-bs.de

158 Christoph Seidl, Tim Winkelmann, Ina Schaefer

However, the cluttering of different languages also entails problems in practice as, e.g.,

implementation effort is increased when having to realize new tools for a different language,

which results in hampered progress and, presumably, less robust software.

Despite the differences in the various languages for feature models and cross-tree constraints,

the languages encompass a significant level of commonality. In this paper, we exploit this

fact to make a first step towards solving the aforementioned problems by devising an SPL

to generate feature modeling notations and cross-tree constraint languages with a selected

set of language constructs. We bootstrap feature modeling to conceptually capture the

configuration knowledge of the software family. We further use SPL techniques to allow

configuration of various different concrete languages for feature models and cross-tree

constraints. We supply both theoretical background as to the capabilities of the different

language constructs as well as technical realizations of the different concrete languages

through generative model-based development.

With these contributions, it is possible to derive variants of feature modeling notations and

cross-tree constraint languages that are similar to those of existing approaches and to treat

them with procedures common in SPL engineering (e.g., family-based analyses). Further-

more, new combinations of feature modeling language constructs may yield previously

non-existing notations to address the individual characteristics of specific use cases. In the

future, this approach may be used to support data exchange between different notations by

transforming one notation of a source system to an (at least) equally expressive notation

with different characteristics of a target system.

The rest of this paper is structured as follows: Section 2 provides the criteria we used to

select feature modeling notations we consider for our SPL. Section 3 analyzes 23 individual

approaches from the state of the art in feature modeling (including constraint languages) as

well as 4 surveys on feature modeling notations and categorizes the respective approaches

by a number of distinctive characteristics. Section 4 presents our family of feature models

and constraint languages that subsumes all of the analyzed approaches in expressiveness and

even allows creation of previously non-existent notations. Section 5 demonstrates feasibility

of our work by first applying the implementation of the presented feature modeling family

to generate multiple variants with different expressiveness and then recreating the available

examples of the inspected approaches. Finally, Section 6 closes with a conclusion and an

outlook to future work.

2 Considered Work

A large number of similar yet different feature modeling notations exists which address

a wide variety of different concerns. Developers have to find the right tool with the right

notation for their respective SPL project. To help developers in making a conscious deci-

sion, an overview of existing notations and their dependencies is needed. As the different

characteristics of feature modeling notations can themselves be represented as features

and the dependencies can be expressed using constraints, we create an SPL that covers the

variability of the inspected modeling notations. For this purpose, we define a family of fea-

ture modeling notations including cross-tree constraint languages to express dependencies

A SPL of Feature Modeling Notations and Cross-Tree Constraint Languages 159

between the elements of a feature model. However, we do not claim completeness with

regard to expressiveness or other properties such as succinctness or naturalness [SHT06] for

all feature modeling notations. Nevertheless, we do cover a wide range of approaches used

in practice [Ka90, Ka98, GFA98, HSVM00, vGBS01, Ri02, EBB05, CE00, Cz02, CHE04,

BTRC05] as well as specific special-purpose extensions [ME08, SLW12, KSS13, SSA14a].

To select suitable feature modeling notations to analyze as basis for the presented software

family, we applied the following criteria for selection: First, we included those feature mod-

eling notations that have a particular high impact on further development. For this purpose,

we considered all approaches included in Kang’s keynote presentation from VaMoS’10

on 20 years of feature modeling [Ka10] as they are fundamental for many further feature

modeling notations [Ka90, Ka98, GFA98, HSVM00, vGBS01, Ri02, EBB05, CE00, Cz02,

CHE04, BTRC05]. We further included surveys that analyze state of the art in feature mod-

eling [Jé12, BSRC10, SHT06, CHE04] to determine relevant feature modeling approaches.

Second, we included approaches that are representative for various special-purpose exten-

sions [ME08, SLW12, KSS13, SSA14a] in feature modeling. Third, we included textual

variability languages, such as TVL [CBH11], Familiar [Ac13] and Clafer [BCW11], which

can be represented with a meta-model similar to feature models. For work from the last 10

years, we mainly considered those extensions that explicitly provide a meta-model or

grammar for their language and that introduce new concepts to feature models.

Existing surveys on feature modeling notations have presented contributions that are

closely related to our work: Schobbens et al. [SHT06] also analyzed a great number

of the high impact feature modeling notations in a formal way. During their analyses,

they devised a language called Varied Feature Diagrams (VFD) [Sc07]. For VFD, they

used expressive and succinct elements of feature modeling notations to build a combined

modeling notation. That notation is as expressive and succinct as the other analyzed

notations. Their approach is different from ours as we generate variants of feature modeling

notations with capabilities tailored to the respective intended use instead of creating one

monolithic notation for all use cases. Dhungana et al. [Dh13] allow the use of various

different variability modeling notations and transform them into a uniform notion of

configuration options. Hence, their approach is practical for the configuration process of

different employed variability modeling notations where ours aims towards the modeling

process. Hubaux et al. [HTH13] analyzed feature diagram languages with regard to

separation and composition of concerns. They identified important concerns and purposes

of feature diagram languages, how they are separated and composed in existing SPL

approaches and other characteristics. Different notations we discuss in this paper have

a direct impact on separation and composition of SPLs. Jézéquel [Jé12] surveys several

modeling notations and explores the combination of these notations with artifacts in the

product generation process. Lichter et al. [Li03] compare a number of feature modeling

notations with a focus on the process and required input to make a particular feature

modeling notation useful. While they acknowledge large commonalities but also differences

of notations, they do not build an SPL to create different variants of feature modeling

notations. Eichelberger and Schmid [ES13, ES14] present an analysis of textual variability

languages. They provide an overview of the commonalities and differences of the notations

160 Christoph Seidl, Tim Winkelmann, Ina Schaefer

in order to provide information on the evolution of textual variability modeling languages

and identifying common weaknesses for future research.

We improve over the mentioned literature reviews [Jé12, Li03, BSRC10, Ka10, Sc07] by

not just listing and discussing different characteristics of feature modeling notations but by

further presenting an SPL and a model-based realization to generate individual variants.

The idea of our work is that the provided SPL can be used to create variants for representing

configuration knowledge in a notation tailored to the concrete use case. However, at present,

proofs for semantic equivalence of arbitrary variants are outside the scope of the paper.

In the future, appropriate tools should be generated, such as an editor that supports the

respective notations. As basis for this SPL, we selected 23 different feature modeling

notations we analyze for distinct characteristics in the next section.

3 Analysis

Using the criteria presented in Section 2, we determined 23 different approaches for

feature modeling notations and constraint languages to analyze regarding their common and

distinctive characteristics as basis for a software family. Table 1 summarizes our findings

and the following sections elaborate on characteristics of the analyzed approaches regarding

notational concepts of the employed feature modeling and constraint languages.

3.1 Feature Modeling Notations

In the upper part of Table 1, we provide information on different language constructs

provided by the examined approaches, which are explained in the following.

Mandatory Features represent commonalities that have to be included in a configuration

if their parent feature is selected. All examined approaches support this language construct.

Optional Features represent variabilities that may or may not be included in a configuration.

All examined approaches support this language construct.

Feature Cardinality specifies a minimum and maximum number for how often a feature

may be selected as [m..n]. When using 1 as maximum cardinality [Cz02, CHE04, Ri02,

ME08, SLW12, SSA14a], feature cardinality may be perceived as alternative to the explicit

variation type for mandatory features (i.e., [1..1]) and optional features (i.e., [0..1]). Fur-

thermore, Czarnecki et al. [Cz02, CHE04] use feature cardinalities to be able to represent

multiple instances (e.g., [2..5]) of one and the same feature as cloned features by allowing

maximum cardinalities greater than 1.

Attributes are named variables of features [Ri02, Cz02, CHE04, BTRC05] that refine

configuration options so that, besides selection of features, concrete values for attributes

may be chosen. Czarnecki et al. [Cz02, CHE04] and Benavides et al. [BTRC05] assign a

specific type to the attributes, which specifies permissible values. In the literature, types of

attributes are typically categorized into discrete (finite or infinite) and continuous domains.

A SPL of Feature Modeling Notations and Cross-Tree Constraint Languages 161

Feature Versions include variability in time in feature models [SSA14a, ME08]. Mitschke

et al. [ME08] support two versions per feature representing the state of the feature model’s

structure and its associated implementation but do not allow using them as configurable

units. Seidl et al. [SSA14a, SSA14c] allow specification of multiple feature versions with

interdependencies to make feature versions a configurable unit. Configurable versions may

not adequately be represented using attributes as their relation cannot be specified properly.

Layers of feature models provide a separation of concerns for different sources of variability.

Kang et al. [Ka98] use layers for Capability, Operating Environment, Domain Technology

and Implementation Technique. Each layer may contain a set of separate feature models

with relations to feature models of other layers. This increases the reuse of feature models

and supports scalability.

External Features allow referencing of features that are defined in other feature mod-

els [vGBS01]. For example, this may be used in combination with layers of feature models

when referencing features of other feature models [BCW11, Ab10, CBH11, Ro11, Ac13].

Binding Times specify at which time a feature may be or has to be configured. Typical

binding times are at compile time or run time [GFA98, vGBS01, B3]. Griss et al. [GFA98]

use attributes in the features to describe the binding time. Van Gurp et al. [vGBS01] use a

label on the connector between features to distinguish the binding time.

Resource Mapping allows association of various resources with the features in a feature

model [SLW12, KSS13, Th11]. Schroeter et al. [SLW12] provide a mapping of features

to views, which show only selective parts of a feature model for different stakeholders of

the feature model. Kowal et al. [KSS13] map priorities for the configuration and specific

hardware to the features.

Alternative-Groups allow selection of exactly one of the contained features, which makes

them mutually exclusive. All examined approaches support this language construct.

Or-Groups allow selection of at least one of the contained features. With the exception of

Kang et al. [Ka90], all examined approaches support this language construct.

Group Cardinality specifies the minimum and maximum number of selectable features in

that group as [m..n]. Hence, it may be perceived as an alternative to the explicit variation

type of groups as alternative-groups (i.e., [1..1]) and or-groups (i.e., [0..n] for groups with n

members) [Ri02, CHE04, SLW12, SSA14a]. In contrast to the explicit variation types,

group cardinality supports further restrictions on selections in a group (e.g., [2..5]).

Multiple Groups describe the possibility that a feature can have more than one child group,

e.g., a feature that has two alternative-groups. Many notations do not explicitly state whether

they support multiple groups or not. Czarnecki and Eisenecker [CE00] appear to be the first

who explicitly support multiple groups.

1
6

2
C

h
risto

p
h

S
eid

l,
T

im
W

in
k
elm

an
n

,
In

a
S

ch
aefer

K
a
n
g
e
t
a
l.
1
9
9
0
[K
C
H
+
9
0
]

K
a
n
g
e
t
a
l.
1
9
9
8
[K
K
L
+
9
8
]

G
ri
s
s
e
t
a
l.
1
9
9
8
[G
FA
9
8
]

H
e
in
e
t
a
l.
2
0
0
0
[H
S
V
M
0
0
]

C
z
a
rn
e
c
k
i
e
t
a
l.
2
0
0
0
[C
E
0
0
]

V
a
n
G
u
rp
e
t
a
l.
2
0
0
1
[v
G
B
S
0
1
]

R
ie
b
is
c
h
e
t
a
l.
2
0
0
2
[R
B
S
P
0
2
]

C
z
a
rn
e
c
k
i
e
t
a
l.
2
0
0
2
[C
B
U
E
0
2
]

C
z
a
rn
e
c
k
i
e
t
a
l.
2
0
0
4
[C
H
E
0
4
]

B
a
to
ry
2
0
0
5
[B
a
t0
5
]

E
ri
k
s
s
o
n
e
t
a
l.
2
0
0
5
[E
B
B
0
5
]

B
e
n
a
v
id
e
s
e
t
a
l.
2
0
0
5
[B
T
R
C
0
5
]

S
c
h
o
b
b
e
n
s
e
t
a
l.
2
0
0
7
[S
H
T
B
0
7
]

M
it
s
c
h
k
e
e
t
a
l.
2
0
0
8
[M
E
0
8
]

B
ą
k
e
t
a
l.
2
0
1
1
[B
C
W
1
1
]

A
b
e
le
e
t
a
l.
2
0
1
0
[A
P
S
+
1
0
]

C
la
s
s
e
n
e
t
a
l.
2
0
1
1
[C
B
H
1
1
]

T
h
ü
m
e
t
a
l.
2
0
1
1
[T
K
E
S
1
1
]

R
o
s
e
n
m
ü
ll
e
r
e
t
a
l.
2
0
1
1
[R
S
T
S
1
1
]

S
c
h
ro
e
te
r
e
t
a
l.
2
0
1
2
[S
LW
1
2
]

K
o
w
a
l
e
t
a
l.
2
0
1
3
[K
S
S
1
3
]

A
c
h
e
r
e
t
a
l.
2
0
1
3
[A
C
L
F
1
3
]

S
e
id
l
e
t
a
l.
2
0
1
4
[S
S
A
1
4
a
]

Feature
Modeling
Notation

Mandatory Features +

Optional Features +

Feature Cardinality - - - - - - o + + - - - + o + + + - - o - - o

Attributes - - + - - - o + + - - + - - + + + - - - - - -

Feature Versions - - - - - - - - - - - - - o - - - - - - - - +

Layers - + - - - - - - - - - - - - + + + + + - - + -

External Features - - - - - + - - - - - - - - + + + - + - - + (+)

Binding Times - - + - - + - - - - - - - - - - - - - - - + -

Resource Mapping - - - - - - - - - - - - - - - - - + - + + - -

Alternative-Groups +

Or-Groups - +

Group Cardinality - - - - - - + - + - - - + + + + + - - + - - +

Multiple Groups (-) (-) (-) (-) + + + + + - (+) + (-) (-) + + (-) - + (-) (-) (-) +

Constraint
Language

Expressiveness R R R R O R O O - P R - P R P+ P P+ P P R P P P+

Representation T T G G T G G,T T - T G - T T T G,T T T T G T T T

R: Requires/Excludes, O: OCL, P: Propositional Logic, T: Textual, G: Graphical

Table 1: Distinctive characteristics of the inspected feature modeling notations.

A SPL of Feature Modeling Notations and Cross-Tree Constraint Languages 163

3.2 Constraint Languages

The inspected feature modeling approaches utilize various constraint languages. They differ

in their expressiveness and their representation as presented in the bottom part of Table 1.

Expressiveness of constraint languages is determined by the employed formalism and its

utilized language constructs. For one, mere requires and excludes relations (R) may be

specified [Ka90, GFA98, HSVM00, vGBS01, EBB05, SLW12]. Furthermore, the OCL (O)

is used in some approaches [CE00, Cz02]. In addition, it is possible to utilize propositional

logic (P). Depending on the concrete work, different subsets of Boolean operators are uti-

lized to specify constraints over features [KSS13, SSA14a]. In addition, new language con-

structs are introduced for special purposes (P+), e.g., to compare attribute values [KOD10]

or to express constraints over feature versions [SSA14a].

Representation of constraints is either graphical or textual. With a graphical (G) represen-

tation, additional edges are added between two features to express requires or excludes

relationships [GFA98, HSVM00, vGBS01, EBB05, SLW12]. Textual representations (T)

may be employed for a wider range of formalism, such as requires and excludes relation-

ships [Ka90], OCL [CE00, Cz02] or subsets of propositional logic [KSS13, SSA14a]. In

the latter case, there is a further distinction on how Boolean operators are represented

as they may use logical symbols (e.g., ∧, ∨), a verbal representation (e.g., and, or) or a

representation known from various programming languages such as Java or C++ (e.g., &&,

||). In some cases [Ri02, Ab10], both a textual and a graphical representation of constraints

is provided.

4 Feature Modeling Family

From the results of the analysis in Section 3, we define a software family of feature modeling

notations and constraint languages, which subsumes the individual approaches examined in

Section 3. Furthermore, it is possible to generate variants with combinations of language

constructs that currently do not exist in the literature or in practice.

We use a feature model to describe all valid configurations of the family in terms of

configuration knowledge. Due to its size, the graphical representation of the feature model

is split up over multiple figures. Figure 1 shows an overview of the top-level features of the

family with FeatureModel describing the configuration options of the feature modeling

notation and ConstraintLanguage capturing the configuration options for the cross-tree

constraint language. Both these features are refined and described in detail in the following

sections.

Featurename

External Featurename

Mandatory Feature

Optional Feature

FeatureModelingFamily

FeatureModel ConstraintLanguage

Figure 1: Top-level features of the feature modeling family. FeatureModel and ConstraintLanguage are defined in Figure 2 and Figure 3, respectively.

164 Christoph Seidl, Tim Winkelmann, Ina Schaefer

4.1 Variability of Feature Modeling Notations

Figure 2 shows a refined view of the feature model branch describing configuration op-

tions for the various feature modeling notations. We modeled both Features and Groups

to be mandatory parts of each feature modeling notation. Features represent their type

by either using a FeatureCardinality (e.g., [1..1] for mandatory) or an explicit Fea-

tureVariationType (i.e., OptionalFeatures or MandatoryFeatures). When using

feature cardinalities, it is further possible to allow ClonedFeatures if a feature can be

instantiated multiple times. In addition, it is possible to explicitly allow UnlimitedFea-

tures by providing an unbounded maximum cardinality (using *) instead of an integer

value. As the latter case implicitly depends on cloned features being enabled, we introduced

constraint (1). Furthermore, it is possible to enable External to reference features defined

in a different feature model, e.g., to realize feature layers [Ka98]. Using Resources allows

association of features with arbitrary resources. Finally, enabling BindingTimes allows

assigning a binding time to a feature, e.g., compile time.

Legend

Mandatory/
Optional
Feature

Featurename

Or
Group

Alternative
Group

VersionBranching

Configurable

Versions

DomainType

Continuous

Infinite

Finite

Discrete

Attributes

FeatureCardinality

UnlimitedFeatures

ClonedFeatures

FeatureVariationType

MandatoryFeatures

OptionalFeatures

External

Features

BindingTimes

Resources

MultipleGroups

GroupCardinality UnlimitedGroups

GroupVariationType OrGroups

AlternativeGroups

AndGroups

Groups

FeatureModel

(1) UnlimitedFeatures -> ClonedFeatures
(2) VersionBranching -> Configurable

Figure 2: Feature model branch describing configuration options for feature modeling notations.

Furthermore, Attributes may be included in the feature model notation. Optionally,

attributes have a DomainType, which specifies the domain for an attribute as either Dis-

crete (e.g., enumerations, integer numbers or strings) or Continuous (e.g., floating point

numbers). A discrete domain type may further be either Finite (e.g., enumerations) or

Infinite (e.g., integer numbers or strings).

Additionally, it is possible to enable feature Versions to support variability in time. It

can be decided whether versions can be used as Configurable units (as in [SSA14a])

or not (as in [ME08]). Versions are arranged along a chronological development line that

is assumed to be linear unless VersionBranching is selected, which allows different

branches, which depends on configurable versions so that we introduced constraint (2).

A SPL of Feature Modeling Notations and Cross-Tree Constraint Languages 165

Similarly to features, groups represent their type either as GroupCardinality or as explicit

GroupVariationType. To subsume the expressiveness of the inspected approaches, it

would have been possible to model AlternativeGroups as a mandatory feature and

OrGroups as an optional feature. We decided to use an or-group instead to give more

liberty in variant derivation and also allow feature models that do not use alternative-

groups. When using group cardinalities, it is possible to enable UnlimitedGroups, which

permit an arbitrary number of features to be selected by providing an unbounded maximum

cardinality (using *) instead of an integer value. Generally, only a single group is allowed

as child of a feature unless MultipleGroups is selected.

4.2 Variability of Constraint Languages

Figure 3 shows a refined view of the feature model branch describing configuration options

of the various cross-tree constraint languages. We designed the feature model of con-

straint languages to support Propositional logic or OCL as well as textual and graphical

representations.

For propositional logic, various options for different language constructs exist (grouped by

their respective number of operands). A number of AtomicConstructs is provided: The

mandatory FeaturePresence checks whether a specified feature is part of a configuration.

AttributeRestrictions allow comparison of attribute values using various arithmetic

operators (LT (<), LEQ (≤), GEQ (≥) and GT (>)), string operators (SUBS as substring

comparison) or those used in both contexts (EQ (=) and NEQ (-=)).

Optionally, VersionRestrictions [SSA14a] may be selected with VersionRangeRe-

strictions allowing dependence on an interval of versions, RelativeVersionRestric-

tions specifying a valid set of versions in relation to a given version and Condition-

alVersionRestrictions allowing evaluation of the former constructs for configurable

versions only if their respective containing feature is present in a configuration. As restric-

tions for attributes and versions may only be specified if the respective elements are part of

the notation, constraints (3) and (4) were added.

The sole child of UnaryConstructs is the feature Not (¬A) as logical negation, which

may be deselected by not selecting its parent. Furthermore, various BinaryConstructs

are provided as known from Boolean algebra:

• Or: A∨B (logical or)

• And: A∧B (logical and)

• Xor: (A⊕B)≡ ((A∧¬B)∨ (¬A∧B))

• Implies: (A → B)≡ (¬A∨B)1

• Equivalent: (A ≡ B)≡ ((A → B)∧ (B → A))

• Excludes: (A excludes B)≡ ¬(A∧B)

1 We did not define a Requires feature as it is semantically equivalent to the already existing Implies.

166 Christoph Seidl, Tim Winkelmann, Ina Schaefer

Legend

Mandatory/
Optional
Feature

Featurename

Or
Group

Alternative
Group

NotUnaryConstructs

Excludes

Equivalent

Implies

Xor

And

Or

BinaryConstructs

FeaturePresence

AttributeRestrictions

LEQ

LT

EQ

LT

GEQ

NEQ

SUBS

GT

VersionRestrictions

AtomicConstructs

Graphical

Programming

Verbal

Representation

Propositional

OCL

ConstraintLanguage

(3) AttributeRestrictions-> Attribues
(4) VersionRestrictions-> Configurable
(5) Graphical-> (¬Not ˄ ¬Or ˄ ¬And ˄ ¬Xor ˄ ¬Equivalent)

Relative
VersionRestrictions

Conditional
VersionRestrictions

VersionRange
Restrictions

Figure 3: Feature model branch describing configuration options for cross-tree constraint languages.

The expressiveness of the constraint language may differ with the selection of supported

constructs: For example, both selections {Or, Not} and {Implies, Excludes} result in a

language that is complete with regard to Boolean logic. In contrast, when only selecting Not

as construct, the expressiveness of the resulting cross-tree constraint language is severely

limited.

It is possible to choose different representations for these constructs (Representation) as

either textual or graphical: With a Verbal representation, textual literal names are used for

constructs (e.g., and, or). With a Programming representation, textual operands similar to

those used in Java or C++ are used (e.g., &&, ||)2. Alternatively, it is also possible to choose

a Graphical representation where constraints are added as additional edges between

features to the visual representation of the feature model. This type of representation is

only capable of visualizing implications and exclusions so that constraint (5) was added

to exclude all other constructs when the graphical representation is selected. The type

2 With the implementation of the feature modeling family in mind, we did not include a constraint representation

that uses logical operators from Boolean logic (e.g., ∧, ∨) as those symbols cannot be typed on a keyboard.

A SPL of Feature Modeling Notations and Cross-Tree Constraint Languages 167

of representation for constraints is further relevant for a generation of variants because a

textual representation requires a grammar for the language to be supplied (see Section 5).

5 Case Study

To demonstrate the feasibility of our approach, we performed a case study using the

presented family of feature modeling notations and constraint languages.3 For this purpose,

we provide a prototypical model-based realization of the aforementioned family of feature

models and constraint languages in the form of an SPL as depicted in Figure 2 and Figure 3.

This SPL may be used to generate variants of the underlying meta-models and grammars

for individual feature model notations and cross-tree constraint languages regarding the

described configuration options. Within the case study, we are particularly interested in

answering two research questions:

RQ1 Is it possible to derive meta-models for feature models and constraint languages that

are as expressive as the approaches analyzed in Section 3?

RQ2 Does the family of feature modeling notations support derivation of notations that

have not been devised before?

We employ the transformational variability realization mechanism delta modeling [Sc10]

to generate different variants of the family. In delta modeling, a base variant of a system is

transformed to a target variant by applying a number of delta modules that each specify a

set of coherent transformations defined as sequence of delta operations. A delta language

provides the delta operations available to alter a source language by adding, modifying and

removing elements. A variant is derived by selecting a valid subset of delta modules (e.g.,

using a feature model with a mapping to delta modules) and applying the delta modules in

a suitable order to generate the intended target variant by transforming the base variant.

As base variant for the parts of the software family regarding the feature model and the

constraint language based on propositional logic, we use the meta-models for Hyper Feature

Models and their version-aware constraint language as used in our previous work [SSA14a,

SSA14c], which provide language constructs as described by the last column of Table 1.

Figure 4 depicts a representative excerpt of the base meta-model for feature models defined

using Ecore4 of the Eclipse Modeling Framework (EMF). Similarly, the base meta-model

for constraint languages in propositional logic is also defined in EMF Ecore but further uses

a concrete syntax to define a textual language using the tool EMFText5. For OCL, we use

the meta-model and textual representation provided by the DresdenOCL toolkit6, which is

again based on EMF Ecore.

To make these artifacts subject to variability in delta modeling, we defined delta languages

for both Ecore meta-models and concrete syntax files of EMFText using the delta language

3 https://fusionforge.zih.tu-dresden.de/projects/snowflake
4 http://eclipse.org/emf
5 http://emftext.org
6 http://dresden-ocl.org

168 Christoph Seidl, Tim Winkelmann, Ina Schaefer

*
supersedingVersions

supersededVersion

0..1

*versions

SVersion

- number : EString

SCardinalityBasedElement

- minCardinality : EInt
- maxCardinality : EInt
- UNLIMITED_CARDINALITY : EInt

SGroupArtifact

artifacts*

+ isAnd() : EBoolean
+ isAlternative() : EBoolean
+ isOr() : EBoolean

SGroup

groups

*

SFeature

- name : EString

+ isOptional() : EBoolean
+ isMandatory() : EBoolean

root

SFeatureModel

Figure 4: Excerpt from the base variant for the Ecore meta-model of the feature model family.

generation framework DeltaEcore7 [SSA14b]. We further defined 58 delta modules that

realize changes to accommodate for the different language constructs of the feature model

and constraint language families when generating variants. We assigned delta modules to

(combinations of) features of Figure 2 and Figure 3 so that variants can be generated by

selecting a valid configuration of features, determining the respective delta modules and

applying them in an automatically determined suitable order.

We defined configurations to represent the distinctive characteristics of each analyzed

work by selecting features from our family of feature modeling notations that reflect

the entries in each column of Table 1. We used these configurations to generate a vari-

ant for each inspected work consisting of the meta-models for the feature model and its

constraint language as well as the concrete syntax file of the textual constraint language

(if applicable). We inspected the generated variants for conformance with the selected

configurations as well as their expressiveness with regard to the included distinctive char-

acteristics. We used the generated variants of the meta-model and the constraint language

to recreate the examples presented in each of the analyzed works8. Figure 5 shows an

example of a variant of the meta-model for feature models for the configuration that con-

sists of the features FeatureModelingFamily, FeatureModel, Features, External,

FeatureVariationType, OptionalFeatures, MandatoryFeatures, Groups, Group-

VariationType, AlternativeGroups, OrGroups, AndGroups and MultipleGroups.

This variant resembles the notation used for the diagrams presented in Figure 1, Figure 2

and Figure 3.

SGroupArtifact

root

artifacts*

feature

SFeatureModel

- variationType : SGroupVariationType

+ isAnd() : EBoolean
+ isAlternative() : EBoolean
+ isOr() : EBoolean

SGroup

groups

*

SFeature

- name : EString
- variationType : SFeatureVariationType

+ isOptional() : EBoolean
+ isMandatory() : EBoolean

SExternalFeatureReference

«enumeration»
SFeatureVariationType

+ MANDATORY
+ OPTIONAL

«enumeration»
SGroupVariationType

+ AND
+ ALTERNATIVE
+ OR

Figure 5: Excerpt from an example variant for the Ecore meta-model of the feature model family resembling the feature model notation used for the diagrams of this paper.

7 http://deltaecore.org
8 For papers, we recreated all presented examples. However, [CE00] is a book with over 800 pages so that we

focused on creating a sample of all presented feature models.

A SPL of Feature Modeling Notations and Cross-Tree Constraint Languages 169

As a result of generating specifically tailored variants of feature model notations and cross-

tree constraint languages, the majority of concepts could be expressed directly by dedicated

language constructs. In addition, we used external features linking different feature models

to realize layers [Ka98]. However, we could not directly represent calculated attribute

values [BTRC05] but had to substitute constraints on the attributes demanding respective

values as a workaround. Finally, we had to create mock up models for the externally defined

resources (e.g., hardware, views) to realize resource mappings [SLW12, KSS13], which

are otherwise supplied along with a particular SPL. Using these techniques, we were able

to capture all information presented in the original work by employing a variant generated

from the feature modeling family. As a conclusion, we were able to answer RQ1 positively

as we could generate feature model notations and cross-tree constraint languages with

similar expressiveness as the inspected approaches with regard to the information available

in the respective publications.

In addition, we defined configurations for feature modeling notations that have a com-

bination of language constructs that, to our knowledge, did not exist, yet. For example,

we derived the variant for the feature models presented as diagrams in this paper, which

includes multiple groups and external features (as presented in Figure 5). Furthermore, we

generated previously non-existent variants, such as a variant with cardinality-based features

as well as binding times and resource mappings for features. As a result, we were able to

answer RQ2 positively.

6 Conclusion

In this paper, we presented a family of feature modeling notations and constraint languages

that encompasses various similar, yet different notations in order to generate specifically

tailored variants of feature model and cross-tree constraint notations. As basis, we analyzed

state of the art in feature modeling notations and classified 23 approaches by the notational

concepts they offer. From these findings, we assembled conceptual configuration knowledge

within feature models for a family of feature modeling notations and cross-tree constraint

languages. We provided a model-based realization of this family and used it in a case

study to demonstrate feasibility of our approach by generating variants with expressiveness

similar to the analyzed approaches as well as previously non-existent notations. Using

our work, it is possible to bootstrap SPL techniques to use them on feature models and

their constraint languages to generate variants of feature model and cross-tree constraint

notations according to a particular selection of language constructs. This is beneficial

when depending on a notation with specific capabilities and may further be useful when

transforming configuration knowledge specified in different feature modeling notations, ana-

lyzing configuration options of various different feature models or integrating configuration

knowledge from various sources with different notations.

In our future work, we will extend the provided SPL with variability of analyses techniques,

possible graphical representations, the generation of adequate tools for the variants as well

as support for different SPL implementation techniques. A configuration of this feature

modeling notation may determine which solvers (e.g., SAT, BDD, CSP) can be used, which

170 Christoph Seidl, Tim Winkelmann, Ina Schaefer

analysis techniques are available and also which other dependencies need to be considered

for an implementation (e.g., if a chosen feature modeling notation restricts the choice for

an SPL implementation techniques). Additionally, we will analyze effects of transforming

models conforming to one variant of the feature model family to conform to another variant

by substituting language constructs. As far as feasible, we will provide an implementation

based on model transformation to allow data exchange between different variants of the

family for feature modeling notations.

Acknowledgments

This work was partially supported by the DFG (German Research Foundation) under grants

SCHA1635/2-1 and SCHA1635/4-1 and by the European Commission within the project

HyVar (grant agreement H2020-644298).

References

[Ab10] Abele, Andreas; Papadopoulos, Yiannis; Servat, David; Törngren, Martin; Weber,
Matthias: The CVM Framework-A Prototype Tool for Compositional Variability Man-
agement. VaMoS, 10:101–105, 2010.

[Ac13] Acher, Mathieu; Collet, Philippe; Lahire, Philippe; France, Robert B.: FAMILIAR:
A Domain-specific Language for Large Scale Management of Feature Models. Sci.
Comput. Program., 78(6):657–681, June 2013.

[B3] Bürdek, Johannes; Lity, Sascha; Lochau, Malte; Berens, Markus; Goltz, Ursula; Schürr,
Andy: Staged Configuration of Dynamic Software Product Lines with Complex Binding
Time Constraints. In: Proceedings of the Eighth International Workshop on Variability
Modelling of Software-Intensive Systems. VaMoS ’14, 2013.

[Ba05] Batory, D.: Feature Models, Grammars, and Propositional Formulas. Software Product
Lines, 2005.

[BCW11] Bak, Kacper; Czarnecki, Krzysztof; Wasowski, Andrzej: Feature and Meta-models in
Clafer: Mixed, Specialized, and Coupled. In: Proceedings of the Third International
Conference on Software Language Engineering. SLE’10, Springer-Verlag, Berlin,
Heidelberg, pp. 102–122, 2011.

[BSRC10] Benavides, David; Segura, Sergio; Ruiz-Cortés, Antonio: Automated Analysis of Feature
Models 20 Years Later: A Literature Review. Information Systems, 2010.

[BTRC05] Benavides, David; Trinidad, Pablo; Ruiz-Cortés, Antonio: Automated Reasoning on
Feature Models. In: Proceedings of the 17th International Conference on Advanced
Information Systems Engineering. CAiSE’05. Springer, 2005.

[CBH11] Classen, Andreas; Boucher, Quentin; Heymans, Patrick: A Text-based Approach to
Feature Modelling: Syntax and Semantics of TVL. Science of Computer Programming,
2011.

[CE00] Czarnecki, Krzysztof; Eisenecker, Ulrich W.: Generative Programming: Methods, Tools,
and Applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
2000.

A SPL of Feature Modeling Notations and Cross-Tree Constraint Languages 171

[CHE04] Czarnecki, Krzysztof; Helsen, Simon; Eisenecker, Ulrich: Staged Configuration Using
Feature Models. In (Nord, RobertL., ed.): Software Product Lines, volume 3154 of
Lecture Notes in Computer Science, pp. 266–283. Springer Berlin Heidelberg, 2004.

[CHE05] Czarnecki, Krzysztof; Helsen, Simon; Eisenecker, Ulrich: Formalizing Cardinality-
Based Feature Models and their Specialization. In: Software Process: Improvement and
Practice. 2005.

[Cz02] Czarnecki, Krzysztof; Bednasch, Thomas; Unger, Peter; Eisenecker, Ulrich: Generative
Programming for Embedded Software: An Industrial Experience Report. In (Batory,
Don; Consel, Charles; Taha, Walid, eds): Generative Programming and Component
Engineering, Lecture Notes in Computer Science. Springer, 2002.

[Dh13] Dhungana, Deepak; Seichter, Dominik; Botterweck, Goetz; Rabiser, Rick; Grünbacher,
Paul; Benavides, David; Galindo, José A.: Integrating Heterogeneous Variability Model-
ing Approaches with Invar. In: Proceedings of the Seventh International Workshop on
Variability Modelling of Software-intensive Systems. VaMoS ’13, 2013.

[EBB05] Eriksson, Magnus; Börstler, Jürgen; Borg, Kjell: The PLUSS Approach - Domain
Modeling with Features, Use Cases and Use Case Realizations. In (Obbink, Henk;
Pohl, Klaus, eds): Software Product Lines, volume 3714 of Lecture Notes in Computer
Science, pp. 33–44. Springer Berlin Heidelberg, 2005.

[ES13] Eichelberger, Holger; Schmid, Klaus: A Systematic Analysis of Textual Variability
Modeling Languages. In: Proceedings of the 17th International Software Product Line
Conference. SPLC ’13, ACM, New York, NY, USA, pp. 12–21, 2013.

[ES14] Eichelberger, Holger; Schmid, Klaus: Mapping the design-space of textual variability
modeling languages: a refined analysis. International Journal on Software Tools for
Technology Transfer, pp. 1–26, 2014.

[GFA98] Griss, M. L.; Favaro, J.; Alessandro, M. d’: Integrating Feature Modeling with the RSEB.
In: Proceedings of the 5th International Conference on Software Reuse. ICSR ’98, IEEE
Computer Society, Washington, DC, USA, 1998.

[HSVM00] Hein, Andreas; Schlick, Michael; Vinga-Martins, Renato: Applying Feature Models in
Industrial Settings. In: Proceedings of the First Conference on Software Product Lines:
Experience and Research Directions. Kluwer Academic Publishers, 2000.

[HTH13] Hubaux, Arnaud; Tun, Thein Than; Heymans, Patrick: Separation of Concerns in Feature
Diagram Languages: A Systematic Survey. ACM Comput. Surv., 45(4):51:1–51:23,
August 2013.

[Jé12] Jézéquel, Jean-Marc: Model-Driven Engineering for Software Product Lines. ISRN
Software Engineering, 2012.

[Ka90] Kang, K. C.; Cohen, S. G.; Hess, J. A.; Novak, W. E.; Peterson, A. S.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical report, Carnegie-Mellon Univer-
sity SEI, 1990.

[Ka98] Kang, Kyo C.; Kim, Sajoong; Lee, Jaejoon; Kim, Kijoo; Shin, Euiseob; Huh, Moonhang:
FORM: A Feature-Oriented Reuse Method with Domain-specific Reference Architec-
tures. Ann. Softw. Eng., 5:143–168, January 1998.

[Ka10] Kang, Kyo: , FODA: Twenty Years of Perspective on Feature Modeling. Keynote at
the 4th International Workshop on Variability Modelling of Software-Intensive Systems,
2010.

172 Christoph Seidl, Tim Winkelmann, Ina Schaefer

[KOD10] Karataş, Ahmet Serkan; Oǧuztüzün, Halit; Doǧru, Ali: Global Constraints on Feature
Models. In: Proceedings of the 16th International Conference on Principles and Practice
of Constraint Programming, CP’10, pp. 537–551. Springer-Verlag, Berlin, Heidelberg,
2010.

[KSS13] Kowal, Matthias; Schulze, Sandro; Schaefer, Ina: Towards Efficient SPL Testing by
Variant Reduction. In: Proceedings of the 4th International Workshop on Variability &
Composition. VariComp ’13, ACM, New York, NY, USA, pp. 1–6, 2013.

[Li03] Lichter, Horst; von der Maßen, Thomas; Nyßen, Alexander; Weiler, Thomas: Vergleich
von Ansätzen zur Feature Modellierung bei der Softwareproduktlinienentwicklung.
Technical Report AIB-2003-07, Department of Computer Science, RWTH Aachen, July
2003.

[ME08] Mitschke, R.; Eichberg, M.: Supporting the Evolution of Software Product Lines. In:
ECMDA Traceability Workshop. ECMA-TW, 2008.

[Ri02] Riebisch, M.; Böllert, K.; Streitferdt, D.; Philippow, I.: Extending Feature Diagrams
with UML Multiplicities. In: 6th World Conference on Integrated Design & Process
Technology (IDPT2002). June 2002.

[Ro11] Rosenmüller, Marko; Siegmund, Norbert; Thüm, Thomas; Saake, Gunter: Multi-
dimensional Variability Modeling. In: Proceedings of the 5th Workshop on Variability
Modeling of Software-Intensive Systems. VaMoS ’11, ACM, New York, NY, USA, pp.
11–20, 2011.

[Sc07] Schobbens, Pierre-Yves; Heymans, Patrick; Trigaux, Jean-Christophe; Bontemps, Yves:
Generic Semantics of Feature Diagrams. Comput. Netw., 51(2):456–479, February 2007.

[Sc10] Schaefer, Ina; Bettini, Lorenzo; Bono, Viviana; Damiani, Ferruccio; Tanzarella, Nico:
Delta-Oriented Programming of Software Product Lines. In: Software Product Lines:
Going Beyond, pp. 77–91. Springer, 2010.

[SHT06] Schobbens, Pierre-Yves; Heymans, Patrick; Trigaux, Jean-Christophe: Feature Diagrams:
A Survey and a Formal Semantics. In: Proceedings of the 14th IEEE International
Requirements Engineering Conference. RE ’06, IEEE, Washington, DC, USA, pp.
136–145, 2006.

[SLW12] Schroeter, Julia; Lochau, Malte; Winkelmann, Tim: Multi-Perspectives on Feature Mod-
els. In: Model Driven Engineering Languages and Systems. Springer Berlin Heidelberg,
2012.

[SSA14a] Seidl, Christoph; Schaefer, Ina; Aßmann, Uwe: Capturing Variability in Space and Time
with Hyper Feature Models. In: Proceedings of the 8th International Workshop on
Variability Modelling of Software-intensive Systems (VaMoS). VaMoS’14, 2014.

[SSA14b] Seidl, Christoph; Schaefer, Ina; Aßmann, Uwe: DeltaEcore-A Model-Based Delta Lan-
guage Generation Framework. In: Modellierung. Modellierung’14, 2014.

[SSA14c] Seidl, Christoph; Schaefer, Ina; Aßmann, Uwe: Integrated Management of Variability in
Space and Time in Software Families. In: Proceedings of the 18th International Software
Product Line Conference (SPLC). SPLC’14, 2014.

[Th11] Thüm, T.; Kästner, C.; Erdweg, S.; Siegmund, N.: Abstract Features in Feature Modeling.
In: 15th International Software Product Line Conference (SPLC). 2011.

[vGBS01] van Gurp, J.; Bosch, J.; Svahnberg, M.: On the Notion of Variability in Software Product
Lines. In: Proceedings of the Conference on Software Architecture. 2001.

