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Abstract: Mass spectrometry is an important technique for chemical profiling and is
a major tool in proteomics, a discipline interested in large-scale studies of proteins ex-
pressed by an organism. In this paper we propose using a sparse coding algorithm for
classification of mass spectrometry serum protein profiles of colorectal cancer patients
and healthy individuals following the so-called self-taught learning approach. Being
applied to the dataset of 112 spectra of length 4731 bins, the sparse coding algorithm
represents each of them by means of less then ten prototype spectra. The classifica-
tion of spectra is done as in our previous study on the same dataset [ADM*09], using
Support Vector Machines evaluated by means of the double cross-validation. How-
ever, the classifiers take as input not discrete wavelet coefficients but the sparse coding
coefficients. Comparing the classification results with reference results, we show that
providing the same total recognition rate, the sparse coding-based procedure leads to
higher generalization performance. Moreover, we propose using the sparse coding co-
efficients for clustering of mass spectra and demonstrate that this approach allows one
to highlight differences between the cancer spectra.

1 Introduction

Mass spectrometry (MS) is an important technique for chemical profiling and is a major
tool in proteomics, a discipline interested in large-scale studies of proteins expressed by an
organism. In medicine, MS-based proteomics contributes to clinical research by identifi-
cation of biomarker proteins related to a disease, e.g. produced by a tumor tissue or by the
immune system in response to a disease. Since 2002, when it was first proposed to clas-
sify cancer patients and healthy individuals based on MS protein profiles, researchers have
shown an increased interest in application of mass spectrometry for biomarker detection.

Given a sample of blood, urine or serum, an MS instrument produces a high dimensional
histogram-like spectrum. The peaks of the spectrum express chemical compounds with
high concentrations. The spectra for different groups of subjects are collected (e.g. cancer
patients and control individuals groups) and a quality of classification is studied. If a
successful classification is possible, one is interested in interpreting peaks which are used
in the classification and in identifying proteins corresponding to those peaks.

In [ADM™'09], we investigated the use of Discrete Wavelet Transformation (DWT) to-
gether with Support Vector Machines (SVM) for classification of spectra of colorectal
cancer patients and healthy individuals. First, we calculated wavelet coefficients for each
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spectrum. Then statistically different coefficients were classified using SVM. Along with
standard DWT we exploited APPDWT (“approximation DWT”), a modified DWT where
only approximation coefficients were used. The classification results proved that this type
of DWT outperforms the standard DWT. APPDWT can be interpreted as dictionary repre-
sentation of a spectrum, where the dictionary is constructed by translating and shifting a
wavelet scaling function.

Recently, [LBRNO6] introduced a sparse coding (SC) algorithm which, given a set of vec-
tors, learns in an unsupervised manner a sparse basis for optimal linear representation of
the original vectors. Note that the basis can be overcomplete and its elements are not neces-
sarily orthonormal, i.e., formally speaking, it is not a basis but a dictionary. In [ASKS09]
we demonstrated that being applied to MS data, the SC algorithm allows one to pick
class-relevant peaks. For this aim, we improved the original SC algorithm replacing [; -
regularization with an elastic-net regularization (combination of /;- and lo-regularization
terms), for more details see [ASKS09] and [AKLT09].

Later, [RBL1T07] proposed using the SC algorithm for classification, calling their approach
“self-taught learning” as features used in classification are learned from the data. In this
paper we follow this approach, classifying mass spectra of colorectal cancer patients and
healthy individuals. The improved version [AKL'09] of the SC algorithm is used. For
the classification the same scheme as in [ADM™09] is applied, but instead of DWT (AP-
PDWT) coefficients we exploit the coefficients of the basis learned using the SC algorithm.

Our procedure of classification of mass spectra is as follows. First, given a set of spectra
of different classes, we apply the SC algorithm producing a set of few basis vectors and
a matrix of coefficients representing each original spectrum in the basis learned. We call
each basis vector a prototype spectrum. Use of SC coefficients for MS data processing is
promising because peaks of different width can be extracted. In the ideal case, any peak or
combination of peaks which take place in sufficiently many spectra and represents a sizable
contribution to a large portion of the dataset, will be represented using a SC coefficient.
For each original spectrum we build a feature vector consisting of its coefficients. Second,
the feature vectors are classified using SVM where the evaluation is done by mean of the
double cross-validation, for more details see [ADM™09].

In Section 2 we concisely describe the data investigated, as well as the sparse coding
algorithm and the classification scheme used. In Section 3.1 we present the results of SC
algorithm. Then, in Section 3.2, we show the classification results and compare them with
the reference results of [ADM™09]. Moreover, in Section 3.3 we provide a closer look at
the SC results and propose clustering the spectra based on the SC coefficients. Section 4
concludes the paper.
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2 Methods
2.1 Mass spectrometry data

The dataset used in this paper consists of matrix-assisted laser desorption ionization time-
of-flight (MALDI-TOF) serum protein profiles of colorectal cancer patients and healthy
individuals, first published in [ANMO™06]. Colorectal cancer is one of the most com-
mon malignancies and remains a principal cause of cancer-related morbidity and mortal-
ity. Diagnosing colorectal cancer still requires a sensitive test relaying on easily accessible
body fluids, like serum. After a preprocessing of spectra and outliers removal, described
in [ADMT09], we have 64 cancer and 48 control spectra of length 16331 points cover-
ing an mz (mass-over-charge) domain of 960-11163 Da.! For this paper we took only a
part of the whole mz domain, namely 1100-3000 Da, which contains the most significant
peaks for the cancer discrimination according to [INMO™'06] and [ADM™09]. A part of
a spectrum in this domain consists of 4731 points. The final data is shown in Fig. 1
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Figure 1: 64 cancer (with numbers 1-64) and 48 control mass spectrometry protein profiles.

2.2 Improved Sparse Coding algorithm with elastic-net regularization

For each original spectrum the SC algorithm calculates its coefficients in a basis expansion,
where the basis vectors are learned from the data as follows.

We suppose that the dataset consists of R spectra of length L which belong to D classes
(D < R) each characterized by common peaks at the same positions and with similar
heights. Given a matrix X € RZ*% with spectra in columns, the improved SC algorithm
with an elastic-net regularization term represents each spectrum (a column of X)) in a self-

IThe data is available at http: //www.math.uni-bremen.de/~theodore/MALDIDWT.
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taught sparse basis solving the following optimization problem:
min 3 [|X —BS|[z +a X2, ISl + 5 X 11851 (1)
BS 2 F 3 1Palle ™3 225 112511
subject to |\B]-||2 <9, (2)
with respect to a matrix B € RE*Z of basis vectors and a matrix S € REXF of the
corresponding coefficients, where ||| is the matrix Frobenius norm, ||-|| is the vector [; -
norm, and ||-|| is the standard euclidean norm; S; and B; denote the j-th column of S and

B, respectively. The hyperparameters of the optimization problem are the /; -regularization
parameter «, lo-regularization parameter 5 and the boundary on the basis vectors norm +.

The minimization problem (1) is solved in two steps. First, we learn the coefficients S
keeping the basis fixed using the Feature Sign Search (FSS) algorithm minimizing (1) for a
fixed B, then for the learned coefficients we optimize the basis B using the Lagrange dual.
For more details, see [LBRNO6]. For motivation of using the elastic-net regularization
instead of the original [ -regularization, see [AKLT09] and [ASKS09].

Finally, for each column X; of X we have its sparse representation in the basis B with
only a few basis vectors B; (j € T) corresponding to non-zero rows .5; with indices 7.

2.3 Classification using Support Vector Machines with double cross-validation

After the SC algorithm produced a matrix B of basis vectors and a matrix S of coefficients,
we classified the spectra where for each spectrum its coefficients (that is j-th column
S; of S for j-th spectrum) are used as features. The classification was performed using
Support Vector Machine (SVM) of type C-SVM with the gaussian kernel with two-level
grid search for the hyperparameters o (the width of the gaussian kernel) and C' (the C-
SVM regularization parameter). The tested values are 2-42:16 (a grid with values from
274 to 216 with a step 22) for o and 274212 for C' at the first grid search level and 27 1:1:!1
for both o and C' at the second level of grid search used for refinement. The simultaneous
parameters selection and classifiers assessment was done by means of the double cross-
validation (double CV) with the leave-one-out cross-validation (i.e. 112-fold) used for the
outer loop and 10-fold cross-validation used for the inner loop, again as in [ADM'09]. In
this setting, the i-th step of the double CV scheme consists of two stages: (1) the choice
of hyperparameters is done using 10-fold CV on all but the -th spectrum optimizing CV
recognition rate (the ratio of spectra correctly classified in CV), (2) a classifier with the
chosen hyperparameters is trained using all but the ¢-th spectrum and applied to the ¢-th
spectrum excluded at the first.

The following characteristics were calculated after the outer loop classification: total
recognition rate or TRR (the ratio of correctly classified spectra), specificity, and sensitiv-
ity. Moreover, following [BST99] and [ADM™09], we considered the number of support
vectors (SV) as a measure of generalization performance of classifiers. The values of these
characteristics have been compared with corresponding values reported in [ADM™09],
where the same dataset is used (except for the mz-domain as explained in section 2.1).
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3 Results
3.1 Sparse coding representation

We applied to the matrix X € R4371x112 with spectra in columns the improved SC algo-
rithm with an elastic-net penalty term with different values of parameters o (from 5 to 100
with a step 5) and ~y (from 500 to 2500 with a step 500). The used value of the parameter
corresponding to the l-penalty was 3 = 10710, which was selected as small as possible,
as recommended in [AKL109].

For each pair of parameters («, ) we calculated the matrices B and S of basis vectors and
corresponding coefficients. Recall that only basis vectors with indices Z corresponding to
non-zero rows of the coefficients matrix S are considered. In the following we refer to the
computed basis vectors as the prototype spectra because each original spectrum is a linear
combination of the basis vectors with weights equal to the corresponding coefficients.
Fig. 2 shows the numbers of prototype spectra (sizes of 7) for all pairs of o and 7. As
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Figure 2: The numbers of prototype spectra for all pairs of o and -y considered.

can be seen from Fig. 2, for all parameters considered a spectrum can be represented by
only a small number of prototype spectra (from 2 to 10). Once, for @ = 45 and ¢ = 1000,
only one prototype spectrum is produced. Interestingly, though it is natural to expect that
the number of prototype spectra increases as « decreases (because « is a multiplier of the
sparsity term), this effect can be hardly observed.

In the following we consider the results of the SC algorithm for « = 10 and v = 1000
selected as producing the best classification results (presented later in Section 3.2). Fig. 3
shows the five prototype spectra computed for these parameters. Fig. 4 depicts the non-
zero rows of the matrix S (each row is normalized to have values from zero to one). One
can visually observe that the 4-th and 5-th rows highly discriminate cancer (the first 64)
and control (the last 48) spectra since their values are visually grouped into two clusters:
corresponding to spectra with numbers 1-64 and 65-112. To confirm this observation
and to evaluate the separation efficiency of the produced coefficients, we plot a Principal
Components Analysis (PCA) score plot, see Fig. 4 which shows clear though not ideal
separation between two classes. Here PCA is used only for visualization. In next section
we present close to perfect classification results achieved using SVM. A PCA score plots
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scores of the second principal component against scores of the first principal component
and is often used for visualization of high-dimensional data. Fig. 4 demonstrates that the
computed coefficients after a linear PCA-transformation allows one to clearly separate
the groups of cancer and control individuals. This confirms the potential of using sparse
coding coefficients for classifying cancer and control spectra.
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Figure 3: Prototype spectra (self-taught basis vectors) corresponding to non-zero coefficients ex-
tracted for a = 10, v = 1000, shifted in intensity for better visualization.

Graph of PCA scores of the coefficients for a=10, y=1000
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Figure 4: Left: non-zero coefficients (the matrix S) used for representation of original spectra in the
basis depicted on Fig. 3; right: a score plot showing the data (as usual, mean-corrected) projection
onto the first two principal components.

3.2 Classification results

For each pair of the sparse coding parameters « and -, we applied the SVM classification
where the SVM hyperparameters selection and the classifiers assessment is done using the
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o
5 10 15 20 25 30 35

500 | 94.64 93.75 9375 90.18 8839 90.18 90.18

1000 | 92.86 97.32 91.07 87.50 89.29 89.29 91.07

v 1500 | 90.18 91.07 90.18 89.29 90.18 89.29 90.18

2000 | 92.86 9643 94.64 91.07 87.50 91.07 91.07

1500 | 93.75 91.07 87.50 9554 9196 9286 91.07

Table 1: Total recognition rates for different o and v for SVM classifiers using sparse coding coef-
ficients, calculated through the double cross-validation. The best value (97.32%) is shown in bold.

double cross-validation, as described in Section 2.3 and, more detailed, in [ADM™*09].
The computed total recognition rates for all pairs of o and v as well as the numbers of
support vectors used are shown in Fig. 5.
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Figure 5: Classification results for different pairs of a and « for SVM classifiers using sparse coding
coefficients, calculated using the double cross-validation. Left: Total recognition rates; right: mean
numbers of support vectors.

First, the achieved TRRs are quite high in comparison with the reference results. The
best TRR is higher than the results of classification using the reduced-rank Linear Dis-
criminant Analysis also evaluated using the double CV (92.6%) reported by [ANMO™'06]
and is as hight as the results of the same classification procedure but applied on the DWT
coefficients (97.3%) reported by [ADMT09].

Although results presented in Fig. 5 are quite variable, there is a noticeable trend of de-
creasing TRR and increasing the mean number of SV (as « increases) that is better demon-
strated by the plots of per-a maximal TRRs and per-a minimal mean number of SVs. For
this reason, we showed in Table 1 and Table 2 the values of TRRs and the mean num-
bers of SV only for the first considered values of o (from 5 to 35). The best TRR is
achieved for « = 10 and v = 1000 and is equal to 97.3% which is as high as reported
by [ADMT09] where DWT coefficients instead of sparse coding coefficients are exploited.
The corresponding values of sensitivity and specificity are 96.9% and 97.9%, respectively.
The most striking result to emerge from Table 2 is that the same classification efficiency
is achieved using only 17 support vectors (corresponding to 15% of a training dataset of
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@
5 10 15 20 25 30 35
500 | 16.8 18.6 235 371 334 296 412
1000 | 17.9 166 272 422 369 374 426
v 1500 | 28.0 203 203 272 284 541 448
2000 | 182 159 149 28.6 30.1 314 415
1500 | 20.2 28.1 202 858 158 17.2 387

Table 2: Mean numbers of SVM support vectors for different pairs of v and  for SVM classifiers
using sparse coding coefficients, calculated by means of the double cross-validation (the size of a
training dataset is 111).

size 111) vs. 43 reported for the DWT-SVM procedure. It seems possible that the low
numbers of the SV are due to the low number of features used in classification (less than
10 according to Fig. 2 vs. 300-600 for DWT and 1500-7000 for APPDWT as reported
in [ADMT09]).

As discussed in [ADM™09], the number of support vectors is a proxy-measure of general-
ization performance of the classifiers. Any significant improvement of the generalization
performance is very important in mass spectrometry-based proteomics, since the results
should be reproducible when the data is prepared using different protocols, measured in
different laboratories and in different conditions. All this leads to additional non-reducible
variability in data and imposes high demands on the generalization performance of the
exploited classifiers. From this point of view, the achieved advantage in the number of
support vectors seems to be relevant and significant.

3.3 Closer look at the prototype spectra and sparse coding coefficients

Let us consider the 4-th and 5-th prototype spectra, see Fig. 6, since as conducted by
means of visual inspection, their coefficients are the most discriminative between cancer
and control groups. This choice is partially confirmed by the following fact. Considering
the values of loadings of the first principal component (a direction of the largest variance)
which are 0.1 (for the first prototype spectrum), -0.1 (second), -0.0 (third), -0.4 (fourth), -
0.9 (fifth), we see that the 4-th and 5-th prototype spectra have the largest loadings, i.e. the
largest contributions into a direction of the highest variance. Fig. 6 shows the scaled
cancer and control mean spectra as well. The cancer (control) mean spectrum is manually
attributed to the 4-th (5-th) prototype spectrum.

Fig. 6 shows that the prototype spectra are very similar to the per-class means spectra
although they are extracted in an unsupervised manner, i.e. not using the labels of spectra.

It is interesting to compare Fig. 6 with Fig. 4a of [ADM™09] showing the biomarker pat-
terns reconstructed by the 1784 most discriminative APPDWT coefficients. In the region
of 1100-2400 Da the prototype patterns are very similar to the biomarker patterns which
is not surprising since they are similar to the per-class mean spectra. At the same time,
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Prototype spectra (self-taught basis vectors) for a=10, y=1000
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Figure 6: Forth and fifth prototype spectra (self-taught basis vectors) for o = 10, v = 1000 (shifted
in intensity for better visualization) as well as the scaled cancer and control mean spectra.

note that the DWT biomarker patterns contain only a part of peaks presented in the mean
spectra, which is especially noticeable in the region of 2400-3000 Da. This highlights the
difference between local properties of wavelets and global (throughout the whole spectrum
length) nature of the self-taught basis vectors.

An advantage of the self-taught sparse coding basis as compared to an APPDWT-induced
dictionary is that it is learned in an unsupervised manner. Thus, the coefficients can be used
not only for classification but also clustering of the spectra. For demonstration, we per-
formed clustering of the spectra using High Dimensional Discriminant Analysis [BGS07].
The clusters number was set to 10 but the procedure automatically reduced it to 7; the used
model is [a;;b;Q;d;]; the scree-test threshold is 0.2, for explanations see [BGSO07].

Example results of spectra clustering using the sparse coding coefficients
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Figure 7: Example results of clustering of spectra using the sparse coding coefficients (o« = 10,
= 1000): number of a cluster assigned to a spectrum against the spectrum number. A dash line is
plotted for better visualization and separates cancer (spectra 1-64) from control (65-112) spectra.

Although Fig. 7 is shown mostly to demonstrate the potential of using sparse coding coef-
ficients for spectra clustering, it is surprising to see that the control spectra are attributed
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only to two clusters. At the same time, the cancer spectra are not so homogeneous and
form five clusters that probably indicates the difference in protein profiles of the cancer
samples due to several tumor stages used in the measurements or other factors. A special
investigation of these results is required which is out of scope of this paper.

4 Conclusions

In this paper we proved the potential of the sparse coding classification scheme proposed
by [RBLT07] using the improved sparse coding algorithm of [AKL™09] for applications
in mass spectrometry. The combination of SC and SVM demonstrated the same accu-
racy as DWT-SVM procedure [ADM™T09] but with a significantly higher generalization
performance measured by the number of support vectors. We demonstrate that the SC
coefficients can be used not only for classification but also for clustering of the spectra.

Acknowledgements. The author thanks Stefan Schiffler for his implementation of the Fea-
ture Sign Search algorithm.
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