Measuring the Quality of Approximated Clusterings

Hans-Peter Kriegel, Martin Pfeifle

University of Munich, Institute for Computer Science
http://www.dbs.informatik.uni-muenchen.de
{kriegel,pfeifle}@dbs.ifi.lmu.de

Abstract. Clustering has become an increasingly important task in modern applica-
tion domains. In many areas, e.g. when clustering complex objects, in distributed
clustering, or when clustering mobile objects, due to technical, security, or efficiency
reasons it is not possible to compute an “optimal” clustering. Recently a lot of re-
search has been done on efficiently computing approximated clusterings. Here, the
crucial question is, how much quality has to be sacrificed for the achieved gain in ef-
ficiency. In this paper, we present suitable quality measures allowing us to compare
approximated clusterings with reference clusterings. We first introduce a quality
measure for clusters based on the symmetric set difference. Using this distance func-
tion between single clusters, we introduce a quality measure based on the minimum
weight perfect matching of sets for comparing partitioning clusterings, as well as a
quality measure based on the degree-2 edit distance for comparing hierarchical clus-
terings.

1 Introduction

Knowledge Discovery in Databases (KDD) tries to identify valid, novel, potentially
useful, and ultimately understandable patterns in data. Although there exist many different
data mining algorithms which extract useful knowledge, many of them are not applicable
to large databases of complex objects due to efficiency problems. An important area where
this complexity problem is a strong handicap is that of clustering. Effective clustering al-
gorithms which are not efficient are almost as worthless as non-effective clustering algo-
rithms. Therefore, there have been various approaches for accelerating algorithms for com-
plex clusterings.

One very promising approach is approximated clustering. Instead of trying to compute
the expensive exact clustering structure, an approximated clustering is computed. The cru-
cial question is how is the quality of the resulting approximated clustering affected. Many
of the presented approaches in the literature try to justify the achieved efficiency boost by
a tailor-made quality measure demonstrating that the resulting clustering is “quite” similar
to an optimal one. In this paper, we suggest objective quality measures suitable for evalu-
ating the quality of all kinds of approximated clusterings, e.g. partitioning clusterings stem-
ming from distributed algorithms [JKP 04], clusterings of mobile objects [LHY 04], or ap-
proximated hierarchical clusterings based on data bubbles [ZS 03]. As we do not propose
anew effective and efficient data mining algorithm, we do not run into the risk of choosing
a “suitable” quality measure by means of which we can justify the “suitability” of our new
data mining algorithm. Instead, in this paper, we propose objective quality measures help-
ing to assess the merits of newly proposed approximated data mining algorithms.
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The remainder of this paper is organized as follows. In Section 2, we shortly sketch dif-
ferent application ranges of approximated clusterings. In Section 3, we present two simi-
larity measures allowing us to compare approximated and exact clusterings to each other.
We motivate the use of the symmetric set difference for measuring the similarity between
two single clusters. A partitioning clustering algorithm creates a set of clusters. Based on
the metric symmetric set difference reflecting the similarity between single clusters, we
propose a new distance measure for sets of clusters, i.e. for partitioning clusterings, which
is based on the minimum weight perfect matching of sets. This distance measure demon-
strates to be suitable for defining similarity between partitioning clusterings. In order to
measure the similarity between exact and approximated hierarchical clusterings, we intro-
duce a quality measure which is based on the degree-2 edit distance [ZWS 96]. We close this
paper in Section 4 with a short summary and a few remarks on future work.

2 Application Ranges of Approximated Clusterings

As many of the clustering algorithms presented in the literature [JMF 99] are very time
consuming, different approaches have been presented to accelerate them. Often this accel-
eration goes hand in hand with a decreasing quality. In other new emerging application ar-
eas it is, due to security or technical reasons, often not possible to construct a correct clus-
tering. Thus approximated clusterings aim at either accelerating clusterings or at opening
up new emerging application areas.

2.1 Accelerated Clusterings

We will now shortly present different approaches which compute an approximated clus-
tering due to efficiency reasons.

Sampling. The simplest approach is to use sampling and apply the expensive data min-
ing algorithms to a subset of the data space. Typically, if the sample size is large enough,
the result of the data mining method on the sample reflects the exact result well enough
[Ben 04].

Partitioning Approaches. The different variants of k-means [McQ 65] start with a ran-
dom partition and iteratively reassign the objects to certain cluster representatives until a
convergence criterion is met. For example, the iteration may stop when no objects are reas-
signed from one cluster representative to another one any more, or when an error criterion
ceases to decrease significantly, or after a certain number of iterations has been performed.
Another approach for accelerating density-based clustering algorithms is based on grid
cells [JMF 99].

Hierarchical Approaches. There also exist a variety of approximated hierarchical clus-
terings [PR 88]. For instance, there exist efficient approximated versions of hierarchical
clustering approaches for vector and non-vector data which are based on “data bubbles”
[GRG+ 99] [ZS 03]. These approaches augment suitable representatives with additional
aggregated information describing the area around the representatives.
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2.2 Emerging Clusterings

In our modern world, we have many different situations where it is not possible to ana-
lyze the available data once on one single computer. Examples for these emerging applica-
tion ranges are distributed clustering [JKP 04] and the clustering of mobile objects
[LHY 04]. Nevertheless, in both areas the users want to extract knowledge from the avail-
able data based on approximated clusterings.

Distributed Clusterings. Traditional KDD algorithms require full access to the data
which is going to be analyzed, i.e. the data has to be located at one single site. Nowadays,
large amounts of heterogeneous, complex data reside on different, independently working
computers which are connected to each other via local or wide area networks, e.g. distrib-
uted mobile networks, or sensor networks. The transmission of huge amounts of data from
one site to another central site is in some application areas almost impossible. In astronomy,
for instance, there exist several highly sophisticated space telescopes spread all over the
world. These telescopes gather data unceasingly. Each of them is able to collect 1GB of
data per hour [Ha 00] which can only, with great difficulty, be transmitted to a global site
to be analyzed centrally there. On the other hand, it is possible to analyze the data locally
where it has been generated and stored. Aggregated information of this locally analyzed
data can then be sent to a central site where the information of different local sites are com-
bined and analyzed. Obviously the quality of the resulting distributed clustering heavily de-
pends on the used algorithms for extracting aggregated information on the local sites and
for combining this information on a server site. In order to evaluate the effectiveness of the
used algorithms we need suitable quality measures for comparing distributed clusterings to
reference clusterings where all data is available on one central computer.

Clustering Moving Objects. Recently Han et. al. [LHY 04] proposed an algorithm for
clustering moving objects. Due to the advances in positioning technologies, the real time
information of moving objects becomes increasingly available imposing new challenges to
the database research community. The authors studied the problem of clustering moving
objects which allows to catch interesting pattern changes during the motion process. By
maintaining moving micro clusters it is possible to efficiently compute a clustering at any
given time instance with a “relatively high quality”.

In the following section, we will present quality measures which help to decide whether
the proposed data mining algorithms really produce “high quality” with respect to a given
reference clustering.

3 Similarity Measures for Clusterings

In the literature there exist some approaches for comparing partitioning [Mei 03]
[BL 04] and hierarchical [FM 83] clusterings to each other. All of these approaches do not
take noise objects into consideration which naturally occur when using density-based clus-
tering algorithms such as DBSCAN [EKSX 96] or OPTICS [ABKS 99]. The similarity
measures introduced in this paper are suitable for generally measuring the quality between
partitioning and hierarchical clusterings even if noise is considered. The quality of the ap-
proximated clustering is always measured with respect to a reference clustering which is
computed on the exact object representations.
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In Section 3.1, we formally introduce the notion of partitioning and hierarchical cluster-
ings. Both definitions rely on the notion of a “cluster”. Before discussing suitable similarity
distance functions, i.e. quality measures, for partitioning and hierarchical clusterings in
Section 3.3 and Section 3.4, we introduce a similarity measure suitable for comparing two
single clusters to each other in Section 3.2.

3.1 Modelling of Clusterings

Partitioning Clusterings. Partitioning clustering algorithms obtain a simple partition of the
database. This has advantages for extremely large data sets for which the typically more
expensive hierarchical algorithms may incur very high runtime costs. The resulting parti-
tioning clusterings can be described by a set of sets of data objects. Each clustering consists
of a set of clusters, where the clusters themselves are sets of objects from a database.

Definition 1 (cluster).

A cluster C is a non empty subset of objects from a database DB, i.e. C S DB and C # .

Definition 2 (partitioning clustering).

Let DB be a database of arbitrary objects. Furthermore, let Cy, ..., C, be pairwise disjoint
clustersof DB,ie. Vi, je 1,..,ni#j=C;N Cj= @ holds. Then, we call CLp ={Cy, ...,
C,} a partitioning clustering of DB.

Note that, for instance, the partitioning clustering algorithm k-means [McQ 65] assigns
each object to exactly one cluster. On the other hand, the density-based partitioning cluster-
ing algorithm DBSCAN assigns each object either to noise or to a cluster. Thus, due to the
handling of noise, we do not demand from a partitioning clustering CL,={C}, ..., C,} that
C, U ...u C,= DB holds (cf. Definition 2).

Hierarchical Clusterings. Hierarchical clustering algorithms produce a nested series of
partitions instead of the single, flat partition produced by partitioning methods. Often, the
result of such a clustering is represented in the form of a tree, called the dendrogram, that
iteratively splits the database into smaller and smaller subsets (until each subset contains
only one object). According to the approach presented in [SQL+ 03], dendrograms can eas-
ily be transformed into reachability plots which are 2D plots computed by the hierarchical
clustering algorithm OPTICS [ABKS 99]. By means of suitable cluster recognition algo-
rithms [ABKS 99][BKK+ 04][SQL+ 03] we can generate a hierarchical tree structure from
a reachability plot, where each tree node corresponds to one cluster.

Definition 3 (hierarchical clustering).

Let DB be a database of arbitrary objects. A hierarchical clustering is a tree t,,,,, where each
subtree ¢ represents a cluster C,, i.e. t = (C,, (¢, ...,t,))), and the n subtrees ; of ¢ represent
non-overlapping subsets C,, i.e. Vi,jel,...n:i#j=C,NC, =DAC,L..UC, cC,

i .
Furthermore, the root node ,,,, represents the complete database, i.e. C, = DB.

Again, as some hierarchical clustering algorithms take noise into consideration and
some not, we do not demand from the n subtrees #; of 1 = (C,, (¢, ....t,)) that C, U ... U G,
= C, holds.
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Figure 1: Symmetric Set Difference.

3.2 Similarity Measure for Clusters

As outlined in the last section, both partitioning and hierarchical clusterings consist of
flat clusters. In order to compare flat clusters to each other we need a suitable distance mea-
sure between sets of objects. One possible approach is to use distance measures as used for
constructing distance-based hierarchical clusterings, e.g. the distance measures used by
single-link, average-link or complete-link [JMF 99]. Although it is advisable to use such
distance measures for the construction of hierarchical clusterings, these measures are not
suitable when it comes to evaluating the quality of partitioning clusterings. Typically, users
are only interested in the clustering result which is a binary relation (ClusterID, ObjectID).
Note that Definition 2 exactly reflects this binary result set. Consequently, the similarity of
two clusters with respect to quality solely depends on the number of identical objects con-
tained in both clusters. Therefore, we propose to use the symmetric set difference as dis-
tance measure between two clusters (cf. Figure 1).

Definition 4 (symmetric set difference).
Let C, and C, be two clusters of a database DB. Then the symmetric set difference dy:
2PB  2PB 5 [0..IDBI] and the normalized symmetric set difference version d,"™™:
2DB 5 2PB _510..1] are defined as follows:

norm

~ 6 uGl-|e NGy
dy(C, Cy) = |CLUGCy|~|C;NCy| and d}

(€ &) = |Ciu Gy

We would like to state that both the unnormalized and the normalized symmetric set dif-
ference form a metric. Note that not every reasonable attempt at normalization results in a
metric. For instance, dividing by IC,| + |C,l instead of by IC, U C,l, fails to satisfy the tri-
angle inequality.

3.3 Similarity Measure for Partitioning Clusterings

In the last section, we introduced a metric distance measure suitable for measuring the
similarity between two clusters, i.e. between two sets of objects. In this section, we will
concentrate on the computation of a similarity measure suitable for measuring the quality
of an approximated clustering w.r.t. a reference clustering (cf. Figure 2). Thus, the crucial
question is what is a suitable distance measure between sets of sets. In the literature there
exist several approaches for comparing two sets S and 7 to each other. In [EM 97], the au-
thors survey the following distance functions, which are computable in polynomial time:
the Hausdorff distance, the sum of minimal distances, the (fair-)surjection distance and the
link distance. All of these approaches rely on the possibility to match several elements in
one set to just one element in the compared set which is questionable when comparing the
quality of an approximated clustering to a reference clustering.
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Figure 2: A reference clustering CI"/ and an approximated clustering CI”.

We will now introduce a metric distance function between a partitioning approximated
clustering and a reference clustering which is based on the minimal matching distance.

The Minimal Matching Distance. A distance measure on sets of complex objects that dem-
onstrates to be suitable for defining similarity between two partitioning clusterings is based
on the minimal weight perfect matching of sets. This well known graph problem can be ap-
plied here. Let us first introduce some notations.

Definition 5 (weighted complete bipartite graph).
A Graph G = (V, E) consists of a (finite) set of vertices Vand a setof edges EC VX V.
A weighted graph is a graph G = (V, E) together with a weight function w: E - IR. A
bipartite graphisa graph G = (XU Y, E) where XN Y = and E c X X Y. A bipartite
graph G = (XU Y, E) iscalled complete if E = XX Y.

Definition 6 (perfect matching).
Given a bipartite graph G = (X U Y, E) amatching of Xto Yis asetof edges M c E such
that no two edges in M share an end point, i.e.

V(xpyl)’ (xz,yz)e M: Xy =x2<:yl ="

A matching M of X to Y is maximal if there is no matching M’ of X to Y such that
IMI <IM1. A maximal matching M of X to Y is called a complete matching if
IM| = min{IX1,IY1}. In the case IX] = |Yl a complete matching is also called a perfect match-
ing.

Definition 7 (minimum weight perfect matching).

Let G = (XUY,E) be a weighted bipartite graph together with a weight function
w: E — IR . We call a perfect matching M, a minimum weight perfect matching, iff for any
other perfect matching M’, the following inequality holds:

wE s Y wy)

(x,y)e M (x,y)e M

In our application we build a complete bipartite graph G = (Cl U CI’, E) between two
clusterings Cland CI’. We set Cl := CIx {1} and CI’ := CI’x {2} to fulfill the property
ClNCl'= Q. The weight of each edge ((C;, 1),(C’;,2)) € CIX CU’ in this graph G is
defined by the distance d, (C;, C’)) introduced in the last section between the two clusters
C;e Cland C’; € CI’. A perfect matching is a subset M  C/x CI’ that connects each
cluster C; € CI to exactly one cluster C’; € CI’ and vice versa. A minimal weight perfect

J
matching is a matching with maximum cardinality and a minimum sum of weights of its
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edges. Since a perfect matching can only be found for sets of equal cardinality, it is neces-
sary to introduce weights for unmatched clusters when defining a distance measure be-
tween clusterings. The definition of the “minimal matching distance” is based on the defi-
nition of “permutated sets”.

Definition 8 (permutation of a set).
Let S be any finite set of arbitrary elements. Then 7 is a mapping that assigns s€ S a
unique number i € {1, ...,|S|}. This is denoted by m(S) = (s, ....5)5) . The set of all pos-
sible permutations of § is called T1(S) .

Definition 9 (minimal matching distance).
Let DB be a database and let dist:2"" x 2”% — IR be a distance function between two
clusters. Let CI= {C|, ..., C¢y} and CI’ = iC’l, ...y C’\cp} be two clusterings. We assume
w.l.o.g. ICll <ICI’|. Furthermore, let w: 2P IR be a weight function for the unmatched
clusters. Then the minimal matching distance d'"" :22"" x 22" 5 IR is defined as fol-
lows:

Te

dist,w n . &l " <A "
" (CLCDY= min | ldzst(Ci, Cry) + 2 ]w(Cn(i))
1= i= +

The weight function w: 2”% S IR provides the penalty given to every unassigned clus-
ter of the clustering having larger cardinality. Let us note that this minimal matching dis-
tance is a specialization of the netflow distance which is introduced in [RM 01]. Though it
was shown in [RM 01] that the netflow distance can be calculated in polynomial time, it is
not obvious how to achieve it. Since we are only interested in a minimal matching distance
it is sufficient to calculate a minimal weight perfect matching. Therefore, we propose to
apply the method introduced by Kuhn [Kuh 55] and Munkres [Mun 57] which has a cubic
runtime complexity w.r.t. the cardinality of the two clusterings, i.e. w.r.t. the number of
found clusters.

Furthermore, the authors in [RM 01] show that the netflow distance is a metric if the dis-
tance function dist is a metric and the weight function meets the following two conditions
for two clusters C, C' € 27 :

e w(C)>0
e w(C)+w(C)2dist(C, C")

Note that the symmetric set difference d, is a metric and can be used as underlying dis-
tance function dist for the minimal matching distance. Furthermore, the unnormalized

symmetric set difference allows us to define a meaningful weight function based on a dum-
my cluster.

Definition 10 (dummy cluster).
Let Vc2P? be a set of clusters, and let C, e 2PB\V be a “dummy” cluster. Then
we, i VIR we (€) = dy(C, Cy) denotes a family of weight functions based on a
dummy cluster.

A good choice of the dummy cluster C,, in our application is & since the empty set is
not included as an element in a clustering (cf. Definition 2), and, furthermore, each un-
matched cluster C is penalized with a value wy(C) = d, (C, &) equal to its cardinality ICI.
Thus the metric character of the minimal matching distance is satisfied. Furthermore, large
clusters which cannot be matched are penalized more than small clusters which is a desired
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property for an intuitive quality measure. Based on Definition 9, we can define our final
quality criterion. We compare the costs for transforming an approximated clustering CI”
into a reference clustering CI", to the costs piling up when transforming C~ first into @, i.e.
a clustering consisting of no clusters, and then transforming @ into CI' (cf. Figure 2).

Definition 11 (approximated partitioning clustering quality Q4pc)-
Let CI” be an approximated partitioning clustering and CI'/ the corresponding reference

clustering. The approximated partitioning clustering quality Q,,. (CI", CI'¥) is equal to 1 if
CI'Y = CI" = @ holds, else Q- (CI7, CI") is equal to

| a1, el
A", @) +d" (@, ')

Note that our quality measure Q,.is between 0 and 1. If CI” and CI"¥ are identical, Q 5
(CI7, CI'Yy = 1 holds. On the other hand, if the clusterings are not identical and the clusters
from the two  clusterings have no  objects in  common, ie.
Ve e el ve e cl” i CT ¢ = @ holds, 0, (CF, CI')is equal to 0.

J 1

3.4 Similarity Measure for Hierarchical Clusterings

In this section, we present a quality measure for approximated hierarchical clusterings. As
outlined in Section 3.1, a hierarchical clustering can be represented by a tree (cf.
Definition 3). In order to define a meaningful quality measure for approximated hierarchi-
cal clusterings, we need a suitable distance measure for describing the similarity between
two trees < and £~. Note that each node of the trees reflects a flat cluster, and the complete
trees represent the entire hierarchical clusterings.

A common and successfully applied approach to measure the similarity between two
trees is the degree-2 edit distance [ZWS 96]. It minimizes the number of edit operations
necessary to transform one tree into the other using three basic operations, namely the in-
sertion and deletion of a tree node and the change of a node label. Using these operations,
we can define the degree-2 edit distance between two trees.

Definition 12 (cost of an edit sequence).
An edit operation e is the insertion, deletion or relabeling of a node in a tree ¢. Each edit
operation e is assigned a non-negative cost c(e). The cost c(S) of a sequence of edit opera-
tions S=<{e,, ..., e, is defined as the sum of the cost of each edit operation, i.e.
c(S) = cle)+...+ c(e,).

Definition 13 (degree-2 edit distance).
The degree-2 edit distance is based on degree-2 edit sequences which consist only of in-
sertions or deletions of nodes n with degree(n) < 2, or of relabelings. Then, the degree-2
edit distance between two trees ¢ and ¢’, ED,(t, t’), is the minimum cost of all degree-2 edit
sequences that transform ¢ into ¢’ or vice versa:

ED,(t, t’) = min{c(S)| S is a degree-2 edit sequence transforming t into t’}.
It is important to note that the degree-2 edit distance is well defined. Two trees can al-

ways be transformed into each other using only degree-2 edit operations. This is true be-
cause it is possible to construct any tree using only degree-2 edit operations. As the same is
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true for the deletion of an entire tree, it is always possible to delete t completely and then
build ¢’ from scratch resulting in a distance value for this pair of trees. In [ZWS 96] Zhang,
Wang, and Shasha presented an algorithm which computes the degree-2 edit distance in
O(l¢ - |#] - D), where D denotes the maximum fanout of ¢ and ¢’, and Il and I#’| denote the
number of tree nodes of #and ¢’.

We propose to set the cost c(e) for each insert and delete operation e to 1. Furthermore,
we propose to use the normalized symmetric set difference d,"*™ as introduced in Defini-
tion 4 to weight the relabeling cost. Using the normalized version allows us to define a
well-balanced trade-off between the relabeling cost and the other edit operations, i.e. the
insert and delete operations. Based on these costs, we can define our final quality criterion.
We compare the costs for transforming an approximated hierarchical clustering CI~ mod-
elled by a tree 7~ into a reference clustering CI"¥ modelled by a tree ¢, to the costs piling
up when transforming 7~ first into an “empty” tree £, which does not represent any hierar-
chical clustering, and then transforming #* into #'¢/.

Definition 14 (approximated hierarchical clustering quality Q 4z).
Let # be a tree representing a hierarchical reference clustering CI"/, and " a tree consist-
ing of no nodes at all, representing an empty clustering. Furthermore, let £~ be a tree repre-
senting an approximated clustering CI". Then, the approximated hierarchical clustering
quality O,y 1s defined as follows:

= ref
= ED,(t ,t
Quuc(Cl™,Cl'y = 1- o )

ED,(t~ "y +ED, (", (')

As the degree-2 edit distance is a metric [ZWS 96], the approximated hierarchical clus-
tering quality Q 4y is between O and 1.

4 Conclusion

In this paper, we first motivated the need for objective distance measures allowing us to
evaluate the quality of approximated clusterings to reference clusterings. First, we intro-
duced a metric distance measure between single clusters based on the symmetric set differ-
ence. Two clusters are the more similar, the more objects they share. Next, we introduced
an approximated partitioning clustering quality measure based on the minimal weight per-
fect matching of sets. The resulting distance measure, i.e. the minimal matching distance,
tries to map each cluster of one clustering onto a unique cluster of the other clustering. The
unmatched clusters of the clustering with the higher cardinality are penalized by a suitable
weight function. By using the symmetric set difference as distance function between single
clusters, and the minimal matching distance as distance function between clusterings, i.e.
sets of clusters, we construct a meaningful quality measure for approximated partitioning
clusterings. Finally, we introduced a quality measure for hierarchical approximative clus-
terings, where the structural differences between the trees reflecting the hierarchical clus-
terings are measured by the degree-2 edit distance. The differences between two single
nodes, i.e. between two hierarchical clusters, are again measured by the symmetric set dif-
ference.

In our future work, we will use these quality measures for evaluating the effectiveness
of new approximated clustering algorithms.
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