Michael Felderer (Hrsg.): SE 2020,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2020 169

Fostering Collaboration of Academia and Industry by Open
Source Software

David Baum! Pascal Kovacs? Richard Miiller?

Abstract: In 2017 and 2018 we released two of our research prototypes as open source. We explain
our motivation and concerns at that time and compare them with our actual experience. We also
describe how open source releases enabled collaboration with industrial partners. Finally, we show
how research projects can extend their funding through grants for open source software. We share our
experiences with the initiative Google Summer of Code and show how we overcame bureaucratical
hurdles and how our research has benefited from participating in this program.

Keywords: Open Source; Industry Collaboration; Technology Transfer

1 Introduction

For 12 years our research group Visual Software Analytics at Leipzig University has been
combining findings and methods from the fields of software analytics, software visualization,
data science, and empirical software engineering to extract, visualize, and analyze software-
related data. The majority of our work are basic research and empirical evaluation which are
usually not of direct interest to practitioners. However, we also develop software prototypes
which form the basis of our empirical evaluations. The research project is financed only to a
very small extent by third-party funds, but is driven primarily by budget funds and student
participation. Therefore, the team consists of only four researchers working part-time for the
project, two of them being university employees. The research is supported to some extent
by the Institute for Applied Informatics (InfAI), which is an affiliated institute of Leipzig
University to promote science and research in the areas of computer science and information
systems. Within the research group, we discussed for a long time whether an open source
release would be useful for us. Open soure releases have a strong tradition in computer
science. Nevertheless, the benefits for basic research projects are not always obvious. For
this reason, we would like to share our experiences with systems that we have published
as open source. We will briefly present Getaviz and jQAssistant Dashboard and discuss

! Leipzig University, Information Systems Institute, Grimmaische StraBe, 04109 Leipzig, Germany david.baum@
uni-leipzig.de

2 GISA GmbH, Consulting, Leipziger Chaussee 191A, 06112 Halle (Saale), Germany pascal.kovacs @gisa.de

3 Leipzig University, Information Systems Institute, Grimmaische StraBe, 04109 Leipzig, Germany rmueller@
wifa.uni-leipzig.de

©®® doi:10.18420/SE2020_52


https://creativecommons.org/licenses/by-sa/4.0/
david.baum@uni-leipzig.de
david.baum@uni-leipzig.de
pascal.kovacs@gisa.de
rmueller@wifa.uni-leipzig.de
rmueller@wifa.uni-leipzig.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2020_52

170 David Baum, Pascal Kovacs, Richard Miiller

advantages, disadvantages, and recommendations. Afterwards we will discuss opportunities
for funding open source software development beyond conventional third-party funding.

2 Getaviz

With Getaviz#4 users can solve software engineering problems visually by exploring software
artifacts. Getaviz visualizes the structure and runtime behavior of several programming
languages, i.e, Java, Ruby, C#, JavaScript, and ABAP. It can enrich these visualizations with
evolutionary information from git- and svn-repositories. Among other things it provides
proper visualizations and an interactive user interface for identifying and refactoring
architectural antipatterns, locating runtime bottlenecks, assessing software quality, and
tracking code changes across multiple versions. Getaviz provides a variety of two- and
three-dimensional visualizations, that can be explored via browser, HTC Vive, or Microsoft
HoloLens. You can find a selection of showcases on our websites. Getaviz includes an
evaluation server. Its main objective is to conduct empirical evaluations locally and remotely
in an efficient and reproducible way. The complete codebase has about 200.000 lines of
code in JavaScript, Java, and Ruby.

We did not develop Getaviz for a one-time research project. Instead, we planned from the
beginning to create a long-living system that is developed continuously and gets reused
across different research projects. Getaviz has been developed as closed source for about
ten years from 2007 — 2017. At this time it was used only internally and there was no
collaboration with industry so far, i.e., companies did not took part in the development of
Getaviz and they did not use Getaviz in practice. Occasionally, Getaviz was made available
to students, so that they could use it and extend it as part of their studies. Triggered by the
publication of our tool at the most important conference in our research field [Bal7], we
decided to release Getaviz as open source in this year. Doing this we pursued the following
objectives:

1. Improve visibility of Getaviz and of our work in general within the scientific
community

2. Simplify future collaboration with industry and other research groups

3. Facilitate reproducibility of empirical studies

However, there were also concerns about increased maintenance efforts, too many feature
requests, and outflow of ideas. We assumed that it is hard for projects like these to build
a large and lively community. So we did not expect any unpaid external contributors, i.e.,
people who contribute to open source in their leisure time since people prefer to contribute
to software they use by themselves. We were also aware that Getaviz is a research prototype

4 https://github.com/softvis-research/Getaviz
5http://home.uni-leipzig.de/svis/showcases/


https://github.com/softvis-research/Getaviz
http://home.uni-leipzig.de/svis/showcases/

Fostering Collaboration of Academia and Industry by Open Source Software 171

and hence not ready for production and it will not find suddenly hundreds or thousands
of users. Nevertheless, we decided to release Getaviz under Apache License 2.0. We also
discussed more restrictive and viral licenses such as GNU General Public License 3 (GPL3)
and even GNU Affero General Public License to ensure that modifications to the source
code will be published under the original license. However, companies often shy away from
this type of license. That is why we decided to use the more liberal Apache License 2.0
which is not viral, i.e., anyone can modify the source code without making the changes
available again as open source.

Until its release, we had to overcome some obstacles. Since many contributions came
from students as part of their theses, it was not clearly regulated how to publish this code.
Therefore we had to contact all students being involved formerly and ask for their permission,
which was a lot of work. Next, we had to review all used third-party libraries for their
licenses. As a consequence, we had to replace some libraries due to license incompatibility,
especially between Apache License 2.0 and GPL3. For this reason we have discarded the
version history and started with a new and clean repository. Finally, we released Getaviz 1.0
in November 2017 under Apache License 2.0.

In 2019 GISA GmbH?® and Visual Software Analytics started a joint initiative named “Visual
SAP Analytic Process” (VISAP) based on Getaviz. GISA is an IT full service provider with
focus on SAP systems for energy market, contracting authorities, and industrial as well
as service companies. The goal of VISAP is to improve quality assessment of customer
specific SAP code and to support the migration of custom code to the new SAP S/4AHANA
platform by using software visualizations. As part of VISAP, Getaviz is used to visualize
the custom code written in ABAP, the programming language of SAP systems, which is
extracted by an own tool for custom code life cycle management. Currently, GISA employs
four people who work part-time to develop VISAP and have already provided many new
features for Getaviz that will benefit everyone involved. These include numerous feature
improvements as well as improvements in robustness and maintainability, with only a few
functions of exclusive interest to GISA. Although the license used, Apache License 2.0, is
not viral and GISA is not legally obliged to play back its changes on Getaviz, they do. From
GISA’s point of view the open source nature of Getaviz is an advantage, because there are
no possible lock-in effects and a later usage as a commercial product is also possible.

Since Getaviz is a self-contained system, it is easy to deploy and provide running instances for
reviewers and other researchers. We have observed further positive side effects. Previously,
the number of installations was very limited and it was possible for us to monitor each
installation process personally and provide useful tips. Since this approach does not work
for users outside the research group, we had to revise the installation process as well as to
improve documentation. Therefore, the quality of our documentation and setup routine has
improved significantly since we released Getaviz as open source. The same applies to the
code itself. Getaviz has become more robust since it is used on more computers with different

6 http://www.gisa.de


http://www.gisa.de

172 David Baum, Pascal Kovacs, Richard Miiller

setups. We also got contributions from external users, but - so far - limited to a manageable
extent. In most cases these contributions have been bug reports and improvements of the
documentation. We also noticed an increased interest from students in contributing to
Getaviz as part of their studies, since they prefer to write code that is actually used.

3 jQAssistant Dashboard

Since 2017, our research group collaborates with BUSCHMAIS GbR?7, an IT consulting
company with focus on application integration, deployment, scalability, and persistence.
The company has developed jQOAssistant®, a quality assurance tool that is based on Neo4j°.
It scans software artifacts’ data, for example source code or test results, stores them as
graphs in a Neo4j database, and provides means to analyze the graph data. jQAssistant was
released in 2015 under GPL3 and has since formed a significant community.

Through this collaboration we have mutually benefited from each other. On the one hand,
BUSCHMALIS was looking for a way to visualize the software data extracted with jQAssistant.
On the other hand, our research group needed a unified data source for the visual analytics
tools.

Hence, we have developed a dashboard on top of jQAssistant together with a master student.
The jQAssistant Dashboard'© supports project leaders and software architects in decision-
making. It provides interactive views concerning architecture and dependencies as well as
resource, risk, and quality management. Due to our experience with Getaviz, we developed
the project as open source from the beginning. Therefore, we had not to consider subsequent
license agreements and incompatible libraries and the whole process was much smoother.
This successful collaboration resulted in a joint publication at VISSOFT 2018 [Miil8].
Even one year after finishing his master thesis, the student is still maintaining the project.
The dashboard will be integrated into regular jQAssistant releases in the near future.

Furthermore, we are developing scanner plugins for jQAssistant licensed under GPL3 to
support additional programming languages or data sources. Three plugins are particularly
worth mentioning here. The first plugin!! scans Java source code and was used to solve
a feature location challenge at SPLC 2019 [ME19]. The second plugin!? scans software
traces to support application performance monitoring and architecture discovery. It was
developed by a student as a seminar project and published at SSP 2019 [MF19]. The third
plugin!3 scans data from Jira!4. It was also developed by a student during Google Summer

7 https://www.buschmais.de

8 https://jqassistant.org

9 https://neo4j.com

10 https://github.com/softvis-research/jqa-dashboard

I https://github.com/softvis-research/jga-javasrc-plugin
12 https://github.com/softvis-research/jqa-kieker-plugin
13 https://github.com/softvis-research/jga-jira-plugin

14 https://www.atlassian.com/de/software/jira


https://www.buschmais.de
https://jqassistant.org
https://neo4j.com
https://github.com/softvis-research/jqa-dashboard
https://github.com/softvis-research/jqa-javasrc-plugin
https://github.com/softvis-research/jqa-kieker-plugin
https://github.com/softvis-research/jqa-jira-plugin
https://www.atlassian.com/de/software/jira

Fostering Collaboration of Academia and Industry by Open Source Software 173

of Code (GSoC) 2019. As the jQAssistant Dashboard and the scanner plugins!> are all open
source, we get feature requests, bug reports, and contributions from academia as well as
industry and our research can be easily replicated.

4 Open Source Funding

Another advantage of releasing research prototypes as open source is that additional funding
sources can be used which exclusively address open source projects, be they scientific or
not. Initiatives like GSoC!'®, Google Season of Docs (GSoD)!7, and Outreachy!® support
students who would like to start contributing to open source projects. Especially for projects
with limited budgets these initiatives are really attractive and a helpful complement to basic
funding. However, the application process is different from conventional third-party funding
and in our experience the organizational structure of universities is not designed for that.
This is because of legal issues, e.g., transfer of rights, but also because of inexperience
of the judicial department with US laws in general, which made it impossible for us to
participate as Leipzig University in GSoC. To overcome these bureaucratic hurdles we
applied for GSoC and GSoD under the umbrella of the InfAI and got accepted for GSoC in
2019. This means that we were able to award paid scholarships to students to further develop
our software. Many students from all over the world were interested in our scholarships
and applied for it. This is remarkable for such a small project given that our competitors
were well-known open source projects with large communities, such as Linux Foundation,
KDE, Mozilla, and many others. In our estimation, it is because Getaviz consists of a broad
and modern technological basis and the fact that people find software visualizations in
general fascinating. We have awarded two scholarships to international master students.
Both worked independently for several months on a project based on Getaviz or jQAssistant.
One student successfully completed his project and continued to contribute code afterwards.
However, studies show that most students take part in GSoC for work experience, career
building, and the stipends. Only a minority of the participants will actually become active
contributors afterwards [Si19]. Therefore, GSoC only contributes to the building of an
active and lively community to a limited extent. But even then open source funding and the
contributions so far are very valuable. Taking part in GSoC helped us to increase visibility,
to improve our documentation, and to increase the number of external contributions. And
last but not least, students also benefit from participating in such programs.

5 Conclusions

For our research group it has been very beneficial to release our software as open source
and we regret to have not done this earlier. Releasing our software as open source helped

15 https://softvis-research.github.io/jgassistant-plugins
16 https://summerofcode.withgoogle.com

17 https://developers.google.com/season-of-docs

18 https://www.outreachy.org


https://softvis-research.github.io/jqassistant-plugins
https://summerofcode.withgoogle.com
https://developers.google.com/season-of-docs
https://www.outreachy.org

174 David Baum, Pascal Kovacs, Richard Miiller

us to increase our visiblity, to provide reproducible software artifacts, and to collaborate
with industry. We were even able to expand our funding. Noteworthy, we were not able to
identify any negative effects so far.

Nevertheless, we have noticed that the process has its pitfalls and that many decisions have
to be taken. Therefore we would like to give the following recommendations.

1. Consider open source release as early as possible in the research process.

2. External transfer institutes can be helpful to overcome limitations of organizational
structures of universities and provide additional funding options.

3. Expect additional effort for documentation, code reviews, and support.

4. Limit your expectations with regards to community building.

We want to emphasize that these recommendations are based on our experience given our
specific scenario and should be applied to other projects with care.

Acknowledgments

We would like to thank all contributors to our open source systems, especially Stefan Bechert,
Matteo Fischer, Tino Mewes, Christina Sixtus, and Lisa Vogelsberg for their valuable and
significant contributions. We also thank Ulrich Eisenecker for his comments that greatly
improved the manuscript.

References

[Bal7] Baum, David; Schilbach, Jan; Kovacs, Pascal; Eisenecker, Ulrich; Miiller, Richard: GETAVIZ:
Generating Structural, Behavioral, and Evolutionary Views of Software Systems for Empirical
Evaluation. In: IEEE VISSOFT. 2017.

[ME19] Miiller, Richard; Eisenecker, Ulrich: A Graph-based Feature Location Approach Using Set
Theory: [Challenge Solution]. In: Proc. 23rd Int. Syst. Softw. Prod. Line Conf. - Vol. A.
SPLC ’19, ACM, New York, NY, USA, pp. 161-165, 2019.

[MF19] Miiller, Richard; Fischer, Matteo: Graph-Based Analysis and Visualization of Software
Traces. In: 10th Symp. Softw. Perform. Jt. Dev. Community Meet. Descartes/Kieker/Palladio.
Wiirzburg, Germany, 2019.

[Miil8] Miiller, Richard; Mahler, Dirk; Hunger, Michael; Nerche, Jens; Harrer, Markus: Towards an
Open Source Stack to Create a Unified Data Source for Software Analysis and Visualization.
In: Proc. 6th IEEE Work. Conf. Softw. Vis. IEEE, Madrid, Spain, 2018.

[Si19] Silva, Jefferson O; Wiese, Igor; German, Daniel M; Treude, Christoph; Gerosa, Marco A;
Steinmacher, Igor: Google Summer of Code: Student Motivations and Contributions. 2019.



