High Performance Multigrid on Current Large Scale
Parallel Computers

Tobias Gradl, Ulrich Riide

Lehrstuhl fiir Systemsimulation
Friedrich-Alexander-Universitit Erlangen-Niirnberg
Cauerstr. 6
D-91058 Erlangen
tobias.gradl @informatik.uni-erlangen.de
ulrich.ruede @informatik.uni-erlangen.de

Abstract: Making multigrid algorithms run efficiently on large parallel computers is
a challenge. Without clever data structures the communication overhead will lead to
an unacceptable performance drop when using thousands of processors. We show that
with a good implementation it is possible to solve a linear system with 10*" unknowns
in about 1.5 minutes on almost 10,000 processors. The data structures also allow for
efficient adaptive mesh refinement, opening a wide range of applications to our solver.

1 Introduction

In the most recent TOP-500 list, published in November 2007, HLRB II at the Leibniz
Computing Center of the Bavarian Academy of Sciences is ranked at position 15 for solv-
ing a linear system with 1.58 million unknowns at a rate of 56.5 Teraflops in the Linpack
benchmark. However, this impressive result is of little direct value for scientific appli-
cations. There are few real life problems that could profit from the solution of a general
dense system of equations of such a size. The test problem reported in this article is a finite
element discretization on tetrahedral 3D finite elements for a linear, scalar, elliptic partial
differential equation (PDE) in 3D, as it could be used as a building block in numerous
more advanced applications. We have selected this problem, since it has a wide range of
applications, and also, because it is an excellent test example for any high performance
computer architecture. Our tests on HLRB II show that this computer is well suited and
yields high performance also for this type of application.

HLRB II, an SGI-Altix system, went into operation in September 2006 with 4096 pro-
cessors and an aggregate main memory of 17.5 Terabytes (“phase 17). In April 2007, the
system was upgraded to 9728 cores and 39 Terabytes of main memory (“phase 2”). In
particular in terms of available main memory, it is currently one of the largest computers
in the world. Though HLRB 1I is a general purpose supercomputer, it is especially well
suited for finite element problems, since it has a large main memory and a high bandwidth.

With our article we would like to demonstrate the extraordinary power of today’s comput-

37

Figure 1: Regular refinement example for a two-dimensional input grid. Beginning with the input
grid on the left, each successive level of refinement creates a new grid that has a larger number of
interior points with structured couplings.

ers for solving finite element problems, but also which algorithmic choices and implemen-
tation techniques are necessary to exploit these systems to their full potential.

2 Hierarchical Hybrid Grids

In this article we focus on multigrid algorithms [BHMOO, TOSO01], since these provide
mathematically the most efficient solvers for systems originating from elliptic PDEs. Since
multigrid algorithms rely on using a hierarchy of coarser grids, clever data structures must
be used and the parallel implementation must be designed carefully so that the communi-
cation overhead remains minimal. This is not easy, but our results below will demonstrate
excellent performance on solving linear systems with up to 3 x 10!! unknowns and for up
to almost 10,000 processors.

HHG (“Hierarchical Hybrid Grids””) [BGHR06, BHRO5] is a framework for the multigrid
solution for finite element (FE) problems. FE methods are often preferred for solving ellip-
tic PDEzs, since they permit flexible, unstructured meshes. Among the multigrid methods,
algebraic multigrid [Mei06] also supports unstructured grids automatically. Geometric
multigrid, in contrast, relies on a given hierarchy of nested grids. On the other hand,
geometric multigrid achieves a significantly higher performance in terms of unknowns
computed per second than algebraic multigrid.

HHG is designed to close this gap between FE flexibility and geometric multigrid perfor-
mance by using a compromise between structured and unstructured grids: a coarse input
FE mesh is organized into the grid primitives vertices, edges, faces, and volumes that are
then refined in a structured way, as indicated in fig 1. This approach preserves the flex-
ibility of unstructured meshes, while the regular internal structure allows for an efficient
implementation on current computer architectures, especially on parallel computers.

The grid decomposition into the primitives allows each group of primitive to be treated
separately during the discretization and solver phases of the simulation, so that the struc-
ture of the grid can be exploited. For example, instead of explicitly assembling a global
stiffness matrix for the finite element discretization element by element, we can define it
implicitly using stencils. If the material parameters are constant within an element, the
stencil for each element primitive is constant for all unknowns interior to it for a given

38

level of refinement. Then, of course, only one stencil has to be stored in memory for each
level of that element, which is the main reason for HHG’s memory efficiency and high
execution speed.

3 Parallelization

To exploit high end computers, the programs must be parallelized using message passing.
For an overview of parallel multigrid algorithms see [HKMRO06] The HHG framework is
an ideal starting point for this, since the mesh partitioning can be essentially accomplished
on the level of the coarse input grid, that is, with a grid size that can still be handled
efficiently by standard mesh partitioning software like Metis'. In order to avoid excessive
latency, the algorithmic details and the communication must be designed carefully. The
multigrid solver uses a Gauf3-Seidel smoother that traverses the grid points in the order
of the primitives of the coarse input mesh: first, all vertices are smoothed, then all edges,
and so on. During the update of any such group, no parallel communication is performed.
Instead, data needed in the same iteration by neighbors of higher dimension is sent after
the update of a group in one large message per communication partner; data needed by
neighbors of lower dimension in the next iteration can even be gathered from all groups
and sent altogether at the end of the iteration (see fig 2).

This procedure minimizes the number of messages that have to be sent, and thus greatly
reduces communication latency. At the same time, it guarantees an important prerequisite
of the Gaul3-Seidel algorithm: because primitives within a group are never connected to
each other directly, but only to primitives of other groups, all neighbors’ most recent values
are already available when a grid point is updated. For example, faces are only connected
to other faces via vertices, edges or volumes, no communication is necessary during the
smoothing of the faces. This strategy only goes wrong near the corners of triangles, where
edges directly depend on each other (see fig 3). Here the values from the previous iteration
are used, giving the smoother Jacobi characteristics at the affected points. Numerically,
this leads to only a slight deterioration of the convergence rates, but the gain in execution
time more than outweighs this effect.

4 World record in linear system solving

In our largest computation to date, we have used 9170 cores of HLRB II and HHG to solve
a finite element problem with 307 billion unknowns in 93 seconds run time. We believe
that this is the largest finite element system that has been solved to date. Additionally, we
point out that the absolute times to solution are still fast enough to leave room for using
this solver as a building block in e. g. a time stepping scheme.

The results in Table 1 show the results of a scaling experiment from 4 to 9170 compute

http://glaros.dtc.umn.edu/gkhome/views/metis

39

Figure 2: HHG grouping of communication Figure 3: HHG communication and ig-
nored dependencies

vol | fac

v
e) - Qe

edg vert

vertj— —i» fac A§§

- 1= o v

cte - —T—»&iﬁﬁ

cores. The amount of memory per core is kept constant and the problem size is chosen to
fill as much of the available memory as possible, which is commonly referred to as weak
scaling experiment. If the program were perfectly scalable, the time per V cycle would
stay constant throughout the table, because the ratio of problem size (i. e. workload) ver-
sus number of cores (i. e. compute power) stays constant. Near perfect scaling is seen as
measure of the quality of an algorithm and its implementation. For HLRB 1I in installa-
tion phase 2, the computation time increases by only 20% when scaling from 4 to 9170
cores. This is still not perfect but in our view acceptable, especially when compared to
other algorithms and especially in terms of the absolute compute time. Note that perfect
scalability is the more difficult to achieve the faster a code is. The shorter the time spent
in actual calculations is, the larger is the fraction of the time spent in communication, and
the more pronounced are the communication overheads introduced by the scaling.

Phase 1 of HLRB II used single-core processors, providing every core with its own mem-
ory and network interface. The dual-core configuration of phase 2 provides less band-
width per core, since two cores must now share an interface. Additionally, a part of the
installation is now configured as so-called “high density partitions” where two dual-core
processors share one interface, which means there is even less bandwidth available per
core. Benchmark results including these high density partitions are marked with an aster-
isk in table 1. HHG is highly sensitive to the available memory bandwidth. The timings
for 64, 504, and 2040 cores show that the dual-core processors of phase 2 account for ap-
proximately 39% deterioration in runtime compared to phase 1; compare this to the 20%
of efficiency lost through scaling over the whole computer. The same effect is observed
when switching between the regular and the high density partitions of phase 2. While one
V cycle takes only 6.33 s on 6120 cores of the regular partitions, on the high density parti-
tions the runtime is already 7.06 s on just 128 cores but then increases only slightly further
to 7.75 s for our largest runs.

40

Table 1: Scaleup results for HHG. With a convergence rate of 0.3, 12 'V cycles are necessary to
reduce the starting residual by a factor of 10~°. The entries marked with * correspond to runs on (or
including) high density partitions with reduced memory bandwidth per core.

Processors # Unknowns Time per V cycle (s) Time to solution (s)

Phase 1 Phase 2 Phase 1 Phase 2

4 134.2 3.16 6.38 * 37.9 76.6 *

8 268.4 3.27 6.67 * 39.3 80.0 *

16 536.9 3.35 6.75 * 40.3 81.0 *

32 1073.7 3.38 6.80 * 40.6 81.6 *
64 2147.5 3.53 4.93 42.3 59.2

128 4295.0 3.60 7.06 * 43.2 84.7 *

252 8455.7 3.87 7.39 * 46.4 88.7 *
504 16911.4 3.96 5.44 47.6 65.3
2040 68451.0 4.92 5.60 59.0 67.2

3825 128 345.7 6.90 82.8

4080 136902.1 5.68 68.2
6120 205353.1 6.33 76.0

8152 273535.7 7.43 * 89.2 *

9170 307 694.1 7.75 * 93.0 *

5 Parallel Adaptive Grid Refinement

The paradigm of splitting the grid into its primitives (vertices, edges, faces, and volumes)
and the technique of regular refinement also prove valuable when implementing adaptivity.
Our remarks on this topic divide the refinement methods into two groups, those which
create conforming grids, and those which do not. For an exact definition of the term
conforming grid see [Riid93b]; in short it means that all grid nodes lie only at the ends
of edges and at the boundaries of faces. Techniques like red-green refinement [BSW83]
create conforming grids and are widely used, because they are numerically unproblematic.
The other group of techniques creates non-conforming grids with hanging nodes which
are often considered numerically unpleasant. Yet the implementation of such a technique
is especially straightforward in HHG, that is why we show how to treat the hanging nodes
correctly so they do not pose a problem.

For more details we refer to an introductory article about multigrid on adaptively refined
grids, with many links to related work, by Bastian and Wieners [BW06]. A paper by Lang
and Wittum describes the building blocks of a parallel adaptive multigrid solver in detail
[LWO5].

41

Figure 4: Grid originating from Figure 5: Two quadrilaterals, the left one with one level of
two triangles, the lower one refined refinement. For evaluating the stencil at vertex V, the values
once, the upper one refined twice. at the grid points G and H have to be interpolated.

The hanging nodes are encircled.

5.1 Refinement with Hanging Nodes

In HHG, adaptive refinement can simply be achieved by allowing the coarse grid elements
to be refined to different levels, with the effect of having a non-conforming grid with
hanging nodes at the interfaces between elements. Figure 4 shows a non-conforming grid
consisting of two triangles refined to different levels.

In HHG, a grid primitive is always refined to the finest level of all adjacent primitives of
higher dimension. This ensures that the primitives of highest dimension (faces in 2D, vol-
umes in 3D), comprising the largest part of the unknowns, are all surrounded by primitives
with at least the same refinement level. Thus, they do not need any special care and can be
treated without performance penalties.

An interface primitive sitting between two primitives with different levels of refinement
(vertex V in fig 5) sets up its stencils just as if all adjacent primitives were refined to the
finest level, with the effect that some grid points referred to by the stencils do not exist
(points G and H in fig 5). These points are interpolated from points on the finest available
level on their primitives. The interpolation rules—crucial for the numerical stability of
the algorithm—can be derived easily by interpreting the problem from the viewpoint of
hierarchical bases (see e. g. [Riid93a]), with the hierarchical surplus defined to be zero on
the non-existent levels.

5.2 Red-Green Refinement

The two basic rules used in red-green refinement are shown in fig 6 and explained in detail
in [BSW83]. The red rule is identical to the one we use in our regular refinements (cf.
fig 1): a triangle, for example, is refined into four new triangles by connecting its edge
midpoints with new edges.. The resulting hanging nodes are taken care of by applying

42

Figure 6: The middle tri- Figure 7: Red-green refinement of an already regularly refined

angle is red-refined and in- mesh. (a) The initial mesh consists of four triangles, each refined
duces green refinement in regularly two times. (b) Red refinement in the upper right triangle
the other elements. induces green refinement in the upper and lower left triangles.

(a) (b)

the green rule to each affected neighboring element: the element is split into two or more
new elements by connecting the hanging node with one or more of the element’s already
existing corner nodes.

Red-green refinement can also be applied to already regularly refined elements as they
occur in HHG, which is illustrated in fig 7. The refinement can—and should—be applied
at the level of the coarse input grid. Then, thanks to the small number of elements in the
input grid, its application is very cheap, and all the tools developed for these methods can
be used. Furthermore, the regular internal grid structure of the input elements, responsible
for HHG’s high performance, is not harmed.

The upper right triangle in fig 7 with three interior points is split into four new triangles
with three interior points each, doubling the grid resolution in this region. The structured
interiors after refinement can be initialized in a natural and efficient way from the struc-
tured interiors before refinement. Some of the new grid points have the same location as
old grid points, values at these points are simply inherited from the old grid. The values
at the grid points in between are obtained by linear interpolation. The same applies to the
neighboring triangles that have to be green-refined.

43

5.3 Combining Both Approaches

While each of the methods can alone be used to implement adaptive refinement, we pose
that combining both results in additional advantages. Being able to do red-green refine-
ment as well as structured refinement with varying levels, we can trade the advantages and
disadvantages of both methods to obtain an optimal compromise between adaptivity and
performance.

If there are not many geometrical features that have to be resolved in the domain, the initial
HHG mesh can be very coarse. If it turns out during the solution process that the mesh
has to be refined in some area, one or more of the very large coarse grid elements have to
be refined regularly, leading to a fine mesh resolution also in areas where it is not needed.
The solution to this problem is to red-green-refine the initial coarse mesh.

A disadvantage of red-green refinement is that it does not necessarily preserve the element
type. A green refinement step turns a quadrilateral element into triangles (cf. fig 6). So, if
purely quadrilateral/hexahedral meshes are desired, red-green refinement cannot be used.

One of the goals when setting up a simulation for HHG is to have as few coarse grid
elements as possible, because then the structured areas are large and can be treated with
high performance. Refinement with hanging nodes creates less coarse grid elements than
red-green refinement and should thus be used whenever possible.

6 Conclusions and Outlook

The HHG framework and HLRB II have been used to solve a finite element problem of
world-record size. HHG draws its power from using a multigrid solver that is especially
designed and carefully optimized for current, massively parallel high performance archi-
tectures. The SGI Altix architecture is found to be well-suited for large scale iterative FE
solvers. While the parallel scalability is already good, there is still room for improvement
which we will exploit by further optimizing the communication patterns. The future will
also bring comparative studies on other architectures, for example the IBM BlueGene.
Adaptive refinement will enable us to conquer a wider range of applications than before.

Acknowledgments

We would like to point out that it was Benjamin K. Bergen who brought the idea of HHG
to life within his Ph.D. thesis [Ber06]. The initial phase of the project was funded by
the KONWIHR supercomputing research consortium?. The ongoing research on HHG is
funded by the international doctorate program “Identification, Optimization and Control

with Applications in Modern Technologies” within the Elite Network of Bavaria®.

http://konwihr.in.tum.de/
Shttp://www2.am.uni-erlangen.de/elitenetzwerk-optimierung

44

References

[Ber06]

[BGHRO6]

[BHMOO]

[BHROS]

[BSW83]

[BW06]

[HKMRO6]

[LWO5]

[Mei06]

[Riid93a]

[Riid93b]

[TOSO1]

B. Bergen. Hierarchical Hybrid Grids: Data Structures and Core Algorithms for Effi-
cient Finite Element Simulations on Supercomputers, volume 14 of Advances in Simu-
lation. SCS Europe, July 2006.

B. Bergen, T. Gradl, F. Hiilsemann, and U. Riide. A Massively Parallel Multigrid
Method for Finite Elements. Computing in Science & Engineering, 8:56—-62, November
2006.

W.L. Briggs, V.E. Henson, and S.F. McCormick. A Multigrid Tutorial. SIAM, 2.
edition, 2000.

B. Bergen, F. Hiilsemann, and U. Riide. Is 1.7 x 10'° Unknowns the Largest Finite
Element System that Can Be Solved Today? In SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 5. IEEE Computer Society, 2005.

R.E. Bank, A.H. Sherman, and A. Weiser. Some refinement algorithms and data struc-
tures for regular local mesh refinement. In R. Stepleman et al., editors, Scientific Com-
puting, Applications of Mathematics and Computing to the Physical Sciences, Volume I.
IMACS, North-Holland, 1983.

P. Bastian and C. Wieners. Multigrid Methods on Adaptively Refined Grids. Computing
in Science & Engineering, 8:44-54, November 2006.

F. Hiilsemann, M. Kowarschik, M. Mohr, and U. Riide. Parallel geometric Multigrid. In
A.M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, volume 51 of Lecture Notes in Computational Science
and Engineering, pages 165-208. Springer, 2006.

S. Lang and G. Wittum. Large-scale density-driven flow simulations using parallel
unstructured Grid adaptation and local multigrid methods. Concurrency and Computa-
tion: Practice and Experience, 17:1415-1440, September 2005.

U. Meier Yang. Parallel Algebraic Multigrid Methods — High Performance Precondi-
tioners. In A.M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differ-
ential Equations on Parallel Computers, volume 51 of Lecture Notes in Computational
Science and Engineering, pages 209-236. Springer, 2006.

U. Riide. Fully Adaptive Multigrid Methods. SIAM Journal on Numerical Analysis,
30(1):230-248, February 1993.

U. Riide. Mathematical and Computational Techniques for Multilevel Adaptive Meth-
ods, volume 13 of Frontiers in Applied Mathematics. SIAM, 1993.

U. Trottenberg, C. Oosterlee, and A. Schiiller. Multigrid. Academic Press, 2001.

45

