
“proceedings” — 2015/7/27 — 18:40 — page 411 — #423

Towards Collaboration on Accessible

UML Models

Stephan Seifermann, Henning Groenda

Software Engineering, FZI Research Center for Information Technology, Karlsruhe

Abstract

The Unified Modeling Language (UML) is one of the most used software description languages. Its

graphical syntax, however, impedes visually impaired people from taking part in discussions. Editors

for textual and graphical UML syntaxes exist but lack advanced support for collaborative editing. In

this paper, we describe our plans on implementing a collaborative editing environment consisting of an

accessible textual UML editor with state-of-the-art user support and consistency preservation

mechanisms for real-time collaboration. We present our ideas to discuss their completeness or identify

additional accessibility features. An industrial software engineering team that includes visually

impaired engineers will evaluate our results continuously.

1 Introduction

Models are well known in the software engineering domain. They are used to model the

structure, behavior, or interaction in a software system. The most commonly used modeling

language is the Unified Modeling Language (UML) (OMG 2011). Users of other domains

have picked up the modeling approach as well. They often use the UML or languages based

on the UML such as EAST-ADL (EAST-ADL Association 2013) or AUTOSAR

(AUTOSAR Development Corp. 2013) in the automotive or SysML (OMG 2012) in the

systems engineering domain. Commonly, users read and edit models using graphical

representations.

Graphical representations provide a good overview of a system and improve

comprehensibility. Unfortunately, these representations are not accessible for visually

impaired people. Human assistants often bridge the gap and translate the model into a textual

representation, which is accessible. This process takes time and impedes real-time

collaboration scenarios. Additionally, it is error-prone on updates and personnel-intensive.

There are approaches on textual representations of UML with limited coverage of the

implemented UML diagram types. They usually do not provide feature-rich, accessible

A. Weisbecker, M. Burmester & A. Schmidt (Hrsg.): Mensch und Computer 2015
Workshopband, Stuttgart: Oldenbourg Wissenschaftsverlag, 2015, S. 411-417.

“proceedings” — 2015/7/27 — 18:40 — page 412 — #424

Towards Collaboration on Accessible UML Models 2

editors, which are necessary for effective interaction with the model. The transfer between

graphical and textual representation is often limited to one direction ignoring the changes on

the other side. This prohibits collaborative editing.

In this paper, we present our realization approach of an accessible UML editor that enables

the collaboration on UML models in an accessible way. The accessibility will be achieved by

a textual syntax, and versatile assistive reading and editing capabilities. Model

synchronization mechanisms enable collaboration. The implementation will be based upon

the commonly used Eclipse integrated development environment (IDE), which’s core parts

are accessible (Eclipse 2013). Our results will be published as open source on GitHub

(Cooperate Project Team 2015). We present our approach in order to discuss the

completeness and gather ideas for additional accessibility features.

The remainder of this paper is structured as follows: Section 2 presents our approach for

accessible interaction via a feature-rich textual UML editor. In Section 3, we describe the

collaborative editing support via model synchronization. Section 4 discusses related work. In

Section 5, we conclude and outline future work.

2 Accessible Interaction with UML Models

Reading and editing requires interaction. UML defines an abstract syntax and a graphical

concrete syntax. An abstract syntax describes what information a model contains and how it

is stored. A concrete syntax describes how the information is presented to users. An example

is provided in Figure 1. We address accessibility by providing a concrete syntax mapping

from model elements to structured text. An assistive editor complements the syntax. The

following shows why a textual representation is accessible and discusses the implementation

of necessary editor features for accessible interaction.

Figure 1 Representation of a Java method in concrete Java and abstract JaMoPP (Heidenreich, et al. 2009) syntax

Existing accessibility tools such as screen readers or braille displays can access textual

syntax. We complement this by mapping domain-specific abbreviations, e.g. structured text,

to special audio outputs for screen readers. Existing textual concrete syntaxes are limited in

at least one of the categories: completeness, comprehensibility, or accessibility. For instance,

miming graphical elements such as arrows with a minus and a greater symbol affects

accessibility. The XML Metadata Interchange (XMI) serialization of UML models is another

412 Stephan Seifermann, Henning Groenda

“proceedings” — 2015/7/27 — 18:40 — page 413 — #425

Towards Collaboration on Accessible UML Models 3

inaccessible syntax: It is complete but it is not meant to be editable for humans because of

the verbose XML syntax. An accessible textual concrete syntax must be concise, and allow

omission of information. The latter is important to support common UML usage in

discussions, in which information such as types of attributes is omitted or deferred. We plan

to compare twelve existing syntaxes, determine best and worst practices, and create a new

accessible syntax. Half of them are mentioned in related work.

An editor must support two use cases, which are not disjoint but have different focuses:

modeling from scratch and modifying an – at least partially – existing model. When

modeling from scratch, the user focuses rather on creating than on modifying a model. We

identified three major assistive features that have a considerable impact on efficient

accessible editing: code completion, accessible error reporting and refactoring support.

Code completion provides keywords and identifiers of elements that are syntactically

allowed at the current cursor position. Thereby, users do not have to know and type the exact

name of keywords or elements, which increases efficiency and leads to syntactically correct

models. Human-readable references instead of technical identifiers such as randomly

generated unique identifiers ease the understanding and memorization. Groupings of the

code completion suggestions make suggestions more accessible in case of a large list because

it is not necessary to read not-intended entries. The exact grouping depends on the UML

diagram type and on the context.

Real-time error reporting allows fast fixing of issues and prohibits subsequent errors. The

Eclipse IDE already provides an error view and mechanisms to show errors in text editors.

We reuse this feature but improve the accessibility: If an error is detected, a non-intrusive

audio notification will be issued in addition to the usual Eclipse mechanisms. The user can

ignore this notification or can listen to the full error message via a shortcut. Shortcuts also

simplify the navigation between error view and the corresponding model part. Additionally,

the errors are separated into syntactic and semantical errors. Semantic errors are violated

constraints. The separation is indicated in the error description and the audio feedback.

Refactorings allow the fast execution of common edit operations. The editor for the concrete

textual syntax supports existing general refactorings such as renaming of identifiers as well

as modeling-specific refactorings such as changes on a method’s signature. Besides the

provided refactorings, custom refactorings will be possible via extension mechanisms.

When modifying an existing model, the user spends more time on reading and

understanding. Navigation and customization of the current view heavily support this. The

editor will provide adjusted features of the Eclipse IDE to achieve this. For instance, links

from model elements to their declaration allow fast navigation as known from programming

language editors. We envision a modeling-specific search. Instead of type selection, the

search executes predefined common queries such as finding all classes that implement a

selected interface in a class diagram. These queries are accessible via context menus and a

search dialogue. In addition to searches, commonly used jumping shortcuts such as jumping

to a base class are available in context menus. Focused reading is also supported by reducing

visible information using folding techniques. Shortcuts allow to fold and unfold information

at the current position and indicate availability of these operations via audio feedback.

Towards Collaboration on Accessible UML Models 413

“proceedings” — 2015/7/27 — 18:40 — page 414 — #426

Towards Collaboration on Accessible UML Models 4

3 Collaborative Editing of UML Models

The UML is often used during discussions to communicate problems or develop ideas in a

collaborative and iterative way. Graphical representations exclude visually impaired people.

Using the concrete textual syntax proposed in the last section solves this problem only if a)

every team member is familiar with it, and b) the changes are synchronized between all team

members. In this section, we describe how our editor solves both of these problems.

We address a) by providing consistency preservation between concrete syntaxes. Each team

member can choose the syntax freely. There are two fundamental approaches to keep

concrete syntaxes consistent: synchronization, and a common model (see Figure 2).

Figure 2 Methods for keeping concrete syntaxes consistent

On the meta level, the concrete syntaxes T and G are based on the abstract syntax M and M+

respectively. M+ extends M and allows storing layout information for model elements.

The common model approach shown on the right side circumvents inconsistencies by simply

using the same model M+
5 as data source for all concrete syntaxes. This model contains all

information across concrete syntaxes and is directly edited via so-called projectional editors

ET
3 and EG

3. The editor(s) can use the syntax definition G and T even at the same time.

Projectional editors ensure consistency by grammar-based editing. They limit free text

editing by providing templates and predefined edit operations in case of complex changes.

The synchronization approach shown in the rest of Figure 2 keeps separate models for every

concrete syntax editor and synchronizes changes between them. Textual editors E1
T E2

T using

a parsing and serializing approach can be used alongside with graphical editors E1
G E2

G using

grammar-based editing. The synchronization requires a considerable effort for defining the

mapping between M1, M2, M3, M4, M5, and M+
5. We favor this approach because of less

E1
T E1

G E2
G

M1 M3 M4

M5

sync

sync

Parsing

E2
T

M2

Serializing

Grammar-

based

Editing

ET
3 EG

3

M+
5

sync

Parsing

Serializing

Grammar-

based

Editing

sync

M
+

M

T G

Abstract Syntax

Concrete Syntax

Meta Level

Instance Level

uses

E

M

G

T

Editor

Graphical

Textual

Model

414 Stephan Seifermann, Henning Groenda

“proceedings” — 2015/7/27 — 18:40 — page 415 — #427

Towards Collaboration on Accessible UML Models 5

editing restrictions, and reusability of existing (graphical) editors. The synchronization will

be based on a bijective mapping function for model and layout elements to prohibit

information loss and ensure completeness. Layout information between different concrete

syntaxes cannot be mapped as indicated by missing arrows between E2
T and E1

G in Figure 2.

Enabling concurrent real-time editing addresses b). All team members can use their own

favorite (accessible) editors. We plan to build on the synchronization framework ModelBus

(Fraunhofer FOKUS 2014), which already covers the synchronization of graphical layout

information. We plan to use the Eclipse Shared Editing project (The Eclipse Foundation

2007) for textual layout synchronization. The synchronization will take place after every

complete change automatically. A change is complete if the syntax is valid after editing. In

case of concurrent editing conflicts on the same elements, a standard resolution strategy such

as last commit wins will be applied. Additionally, we plan to integrate the modeling

environment Enterprise Architect1, which is often used in industry, via the same

synchronization mechanism.

A major problem for visually impaired people is tracing synchronized changes from other

team members. To make collaborative editing accessible, our editor provides a list of

incoming changes that is updated automatically in real-time. A non-intrusive audio

notification indicates a new entry. Shortcuts provide the navigation between the change list

and affected model locations. The change list contains a comprehensive textual.

4 Related Work

There are two common approaches to make UML models accessible: Textual editors and

haptic approaches. Textual editors pass the information to assistive techniques such as screen

readers and braille displays. Haptic approaches use special devices to make graphical

information touchable or combine navigation devices with audio output.

PlantUML (PlantUML 2015) aims for generating graphical diagrams from textual

descriptions. It supports a wide range of diagrams and is already used to make the UML

accessible by users of the BlindUML user group (BlindUML 2015). The examined Netbeans

editor supports syntax highlighting but does not provide linking between elements, or text

completion. Mixing model and layout information slows down comprehension.

Syntaxes that meme programming languages such as TextUML (Chaves 2015), Umple

(Lethbridge 2014), or UMLGraph (Spinellis 2003) are developer-oriented. The editor

support, however, is poor compared to common programming editors: Neither UMLGraph,

nor yUML (Harris 2015) have dedicated editors. None of the remaining editors provides

linking. Additionally, the Umple editor does not provide text completion.

1 http://www.sparxsystems.eu/enterprisearchitect/newedition/

Towards Collaboration on Accessible UML Models 415

“proceedings” — 2015/7/27 — 18:40 — page 416 — #428

Towards Collaboration on Accessible UML Models 6

Earl Grey (Mazanec and Macek 2012) provides a syntax for class, sequence, and state

diagrams with an editor that supports syntax highlighting, linking, code completion, and

folding. Its syntax and editor are optimized for sighted people. The editor has no special

features for accessibility such as audio output. It does not support synchronization and

collaborative editing. This holds true for all other editors as well except for Umple.

TeDuB (Horstmann, et al. 2004) is a haptic approach and allows navigating through the

hierarchical representation of UML class, use case, sequence, and state diagrams via

joystick. Editing is not supported and the representation of the hierarchy cannot be adjusted.

Metatla, et.al. (Metatla, et al. 2012) use a similar approach enabling collaborative editing.

Unfortunately, the accessible hierarchical representation in the public available prototype

could not be activated.

Tactile displays provide a haptic representation of graphical information. Loitsch and Weber

(Loitsch and Weber 2012) stated that resolution and size constraints severely limit the

displayable amount of information compared to graphics. Editing is not yet supported.

5 Conclusion

This paper showed our plans on implementing an accessible editing environment for UML

models. Section 2 showed that a textual concrete syntax integrated in a state-of-the-art editor

allows the accessible interaction with UML models. The editor’s following features need

adjustments for accessibility: Text completion, real-time error reporting, and modeling-

specific refactorings will support the modeling from scratch. Linking, outline views,

predefined common queries, and folding will support modifying existing models.

Section 3 sketched the intended support for collaborative editing of UML models in teams.

We showed alternatives and opted for a solution based on a distributed editing environment

consisting of multiple synchronized editor instances. The synchronization between textual

and graphical editors allows free tool selection for each team member based on their specific

needs. The presented accessibility features such as change histories, or audio notifications

will specifically support visually impaired people.

Our next step is the detailed evaluation of the twelve existing textual syntaxes for UML with

respect to accessibility impediments. In parallel, we will survey language workbenches that

support implementing the features mentioned in the previous sections. The most promising

workbench is used for the implementation of the sketched solution. In the midterm, the

synchronization mechanisms between graphical and textual editors will be implemented.

Acknowledgements

This work is funded by the German Federal Ministry of Labour and Social Affairs under

grant 01KM141108.

416 Stephan Seifermann, Henning Groenda

“proceedings” — 2015/7/27 — 18:40 — page 417 — #429

Towards Collaboration on Accessible UML Models 7

References

AUTOSAR Development Corp. AUTOSAR - Automotive Open System Architecture v4.2. 2013.

http://www.autosar.org/specifications/release-42/ (accessed June 9, 2014).

BlindUML. BlindUML User Group. 2015. https://groups.yahoo.com/neo/groups/blinduml (accessed

June 09, 2015).

Chaves, R. TextUML Toolkit. 2015. http://abstratt.github.io/textuml/readme.html (accessed June 09,

2015).

Cooperate Project Team. Cooperate Project. 2015. https://github.com/Cooperate-Project.

EAST-ADL Association. EAST-ADL Domain Model Specification v2.1.12. 2013. http://www.east-

adl.info/Specification/V2.1.12/html (accessed June 9, 2015).

Eclipse. Accessibility. 2013. https://wiki.eclipse.org/Accessibility (accessed June 8, 2015).

Fraunhofer FOKUS. "ModelBus User Guide." 2014. https://www.modelbus.org.

Harris, T. Create UML diagrams online in seconds, no special tools needed. 2015. http://yuml.me

(accessed June 09, 2015).

Heidenreich, Florian, Jendrik Johannes, Mirko Seifert, and Christian Wende. JaMoPP: The Java Model

Parser and Printer. Technical Report, TU Dresden, 2009.

Horstmann, M., et al. "TeDUB: Automatic Interpretation and Presentation of Technical Diagrams."

CVHI'04. 2004.

Lethbridge, T. C. „Teaching modeling using Umple: Principles for the development of an effective

tool.“ CSEET'14. 2014. 23-28.

Loitsch, C., and G. Weber. "Viable Haptic UML for Blind People." ICCHP'12. Springer Berlin

Heidelberg, 2012. 509-516.

Mazanec, M., and O. Macek. "On General-purpose Textual Modeling Languages." DATESO'12.

CEUR-WS.org, 2012. 1-12.

Metatla, O., N. Bryan-Kinns, T: Stockman, and F. Martin. "Cross-modal Collaborative Interaction

Between Visually-impaired and Sighted Users in the Workplace." ICAD'12. Georgia Institute of

Technology, 2012. 164-171.

OMG. Systems Modeling Language (SysML) v1.3. 2012. http://www.omg.org/spec/SysML/1.3/.

—. Unified Modeling Language (UML) v2.4.1. 2011. http://www.omg.org/spec/UML/2.4.1/.

PlantUML. PlantUML. 2015. http://plantuml.sourceforge.net/ (accessed June 09, 2015).

Spinellis, D. "On the declarative specification of models." Software, IEEE, 2003: 96-95.

The Eclipse Foundation. RT Shared Editing. 2007. https://wiki.eclipse.org/RT_Shared_Editing

(accessed June 10, 2015).

Towards Collaboration on Accessible UML Models 417

