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Abstract: On the internet, you őnd numerous images like screenshots where secret parts are hidden
with irreversible redaction techniques like pixelation or blurring. In this paper, we propose a system
that recovers information from redacted text in raster graphics using a composition of a Convolutional
Neural Network (CNN), a Recurrent Neural Network (RNN) using Long short-term memory (LSTM)
and a Connectionist Temporal Classiőcation (CTC) layer to output the most probable character
sequence. We furthermore show that our model operates in an automated pipeline, performs on blurred
images without modiőcation and is even able to compensate JPEG quality loss. Finally, our test results
indicate that a generic neural network can be trained successfully to assist the recovery of pixelized or
blurred information on screenshots or high-quality photos.
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1 Introduction

On different platforms on the internet, users utilize images like screenshots to explain

complex issues or just to make things clear. In some cases, however, those screenshots

contain credentials like usernames, addresses or even passwords that the uploaders do not

want to share with everyone else. This is where redaction techniques like pixelation or

blurring come into play, to keep the credentials secret.

Image manipulation tools like GIMP provide functions to redact information in photos or

screenshots conveniently. From a security point of view, pixelation of data is oftenly less

secure than uploaders think, as shown in previous work by Garske; Noack [GN22].

In this paper we analyze the redaction quality of Gaussian Blur and investigate whether

it delivers similar weak results than pixelation or can keep the redacted data secret.

Our working hypothesis is that Gaussian Blur performs even less secure than pixelation.

Although pixelation and blurring are both lossy functions, blurring makes intense use of

local redundancy which probably makes it easier to extract remaining information.

We contribute a generic anti-redaction system consisting of a preprocessor and a set of

neural networks that is able to extract information from redacted image snippets. Our system
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provides the user with the most probable character sequence of the redacted data while

using a Convolutional Neural Network (CNN), a Recurrent Neural Network (RNN) with

Long short-term memory (LSTM) and a Connectionist Temporal Classiőcation (CTC) layer

in its backend. Through the use of a preprocessor, our system is resilient to JPEG quality

loss. Additionally, this paper contributes a security comparison between pixelation and

Gaussian Blur for different pixel block sizes and blurring radii.

The organization of this paper is as follows: Section 2 deals with related and previous

work on the topic of recovering information from redacted images. We give an overview

about the Gaussian Blur technique in Section 3. Section 4 introduces our approach to gain

information from pixelized character sequences using a system of neural networks. In

Section 5, we demonstrate how accurate our solution is. Finally, Section 7 concludes this

paper and provides an outlook.

2 Related Work

In the literature, several methods for recovering redacted information have been discussed.

The recovering algorithms can either be classiőed by their target, e.g. faces, license plates

or text images or by their technique, e.g. brute-force or neural network approaches.

One big research őeld deals with deblurring of objects in images and videos. Blurring can

occur inadvertently as a result of camera shaking, that is why the motivations for related

work are multifaceted and not only privacy related. Xu et al. [Xu17], for example, use

generative adversarial networks (GAN) with novel training losses for deblurring faces and

text in images. In addition to it, they compare several alternative methods and state that they

achieve better results for őner details. Menon et al. [Me20] contribute the PULSE algorithm

enabling reliable reconstruction of pixelized faces in images using GANs and Latent Space

Exploration. Their system enables users to output realistic images in high-resolution. Our

approach differs from GAN approaches as we do not aim for an improved image but predict

the underlying text sequence.

A forensic use case for the recovery of text in images arises from low-resolution images of

CCTV. Kaiser et al. [Ka21] evaluated opportunities for text recovering from license plates,

especially from low-quality JPEG images. They also incorporate neural networks in their

work.

Machine Learning is not necessarily required for such tasks: Cavedon et al. [CFV11] studied

possibilities for full reconstruction of pixelized parts in videos. This is possible because

the redacted part under the pixelation mask moves in videos, hence disclosing additional

information that can be used for the reconstruction with a Maximum a Posteriori approach.

They tested out their solution by recovering license plates and faces, where they were able

to reveal information believed to be hidden.
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McPherson et al. [MSS16] investigate the inŕuence of deep learning techniques against

image obfuscation. They experiment with speciőc datasets like the MNIST digits and

demonstrate information recovery. Other than in our work, they do not focus on sequences

of characters.

Hill et al. [Hi16] take such character sequences into account whereby their model is based on

Hidden Markov Models (HMM) instead of neural networks. While their model is designed

for pixelized images, they propose an additional pixelation step for blurred images in order

to process them, too. This process differs from our work, because our model learns directly

from blurred images without another pixelation step.

3 Redaction using Blurring

Blurring is one of several methods to obfuscate text in images. As with pixelation, the goal

is to reduce information up to a point where no human can recognize the redacted text

without raising too much visual attention.
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Fig. 1: Blurring

Fig. 1 illustrates the process for creating the blurred image. In order to compute the color

value for a pixel on the position (𝑥, 𝑦) in the redacted image, the algorithm averages the

color values around the pixel (𝑥, 𝑦) in the preimage.

S𝑖 → S𝑜 : 𝑠𝑜 (𝑥, 𝑦)𝑚 =

𝑚−1∑︁
𝑢=0

𝑚−1∑︁
𝑣=0

𝑠𝑒 (𝑥 +
𝑚 − 1

2
− 𝑢, 𝑦 +

𝑚 − 1

2
− 𝑣) · ℎ(𝑢, 𝑣) (1)

The process can be summarized with e.g. Equation (1) (based on [Ni19, pp. 132 ff.]). Here,

the pixel values of an input image 𝑆𝑖 shall be mapped to an output image 𝑆𝑜. By selecting a

proper 𝑚 and kernel H with function ℎ(·, ·), the output image will appear blurred. H and 𝑚

depend on the selected technique. Fig. 1 shows a simple box blur where all eight pixels
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around a preimage pixel are averaged evenly, so that edges appear softer and contents will

be harder to read. Another very common technique is the Gaussian Blur with 𝑚 = 3 and

the following kernel H.

H =

1
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1 2 1

2 4 2

1 2 1

ª®®
¬

(2)

The color values of some pixels are taken more into account than others. To make an image

look blurrier, the radius and kernel size are increased accordingly. As the Gaussian Blur is

based on the two dimensional Gaussian distribution, the kernel matrix H can be calculated

with Equation (3).

𝐺 (𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−

𝑥
2+𝑦2

2𝜎2 (3)

After blurring, edges in the image appear smoother and contents are harder to read. This

property is often desired to reduce image noise and details. In practice, blurring is provided

by many implementations: image manipulation software like GIMP, ImageMagick or PIL

offer different őlters for image blurring.

4 Recovery of Redacted Information

The basic assumption for high-quality images is always the same: all redaction algorithms

behave deterministically, i.e. two identical inputs always result in the same output. If we

know the parameters for font family, font size, font weight or text color, we are able to

compile a database to determine which input could have been created a given output. A

naïve approach could incorporate a brute-force algorithm trying out all possibilities for

a particular output sequence. This, however, requires huge resources. Machine Learning

models can assist this process by predicting correct sequences for given blurred text images.

In order to do so, the required underlying model has to be őtted to a particular training set

which needs to match to the task.

Garske and Noack [GN22] create and demonstrate such an approach for pixelized images

using a generic pipeline which is not tied to a speciőc redaction technique. This paper

is based on that pipeline and neural network architecture (see Fig. 4 in Appendix). We

investigate whether this approach also works for images that are not redacted by pixelation

but by blurring.

The presented approach consists of two main components that aim to extract as much

information as possible about the underlying text of blurred images:
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1. A preprocessor that (a) converts pixelized images to grayscale and (b) aligns the

image to left and center, and crops it to a uniform height. This is an important step to

increase the accuracy of the following neural network.

2. A neural network including a CNN and RNN with the CTC loss function builds the

core of our approach.

The proposed system generates key candidates that restrict the search space in order to

optimize key recovery attacks.

4.1 Technical Remarks

The experiment is designed to approximate a real-world scenario as good as possible. With

our training pipeline, text can be synthesized, blurred and saved closely to a real world

sample like a screenshot that occurs with similar parameters and quality characteristics.

Furthermore, we focus on common passwords as training and test data to ensure that

our neural network performs well on redacted credentials. We use a standard wordlist

from the SecLists project by Miessler et al. [MHg21]. The selected wordlist is named

10-million-password-list-top-100000.txt and contains the őrst 100,000 entries of a

collection compiling the 10 million most used passwords, whereby we decided to only

use the top 40,000 entries for performance reasons. The entries of the wordlist involve

combinations of letters, numbers and special characters in one word.

In our redaction pipeline, text image synthesis is performed by the Python Pillow package

[LCC21]. We use GIMP and the PNG őle format with compression level 6, whereby level 1

has the best speed and level 9 the best compression rate. PNG is commonly used for lossless

storage of high-quality images like screenshots.

4.2 Methodology

Our goal is to further analyze the previous presented pipeline and model. We want to

investigate how a different redaction technique than pixelation and speciőc parameters like

a different őle format inŕuence the performance of the prediction. In our study, blurring

acts as the redaction technique and JPEG with its different quality levels as the őle format.

The pipeline is able to automate the whole training process with just a set of parameters like

font size or a particular wordlist. Other than some brute-force approaches, our model does

not build on pixel-level analysis but works on a more abstract level due to its neural network

backend. However, we want to determine whether the aforementioned neural network is able

to predict the correct letters and digits with conődence when dealing with blurred images.

For our experiments, we use GIMP 2.8.22 and the Gaussian Blur őlter. All 40,000 training
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samples, each with dimensions of 256 × 32 pixels, are combined together to a collage with

51200 × 6400 pixels. See Fig. 4 in Appendix for the exact model conőguration.

First, we analyze how the blur radius affects our results. Therefore we create a training set

for each blur radius, őt a model using our neural network architecture and evaluate it using

a test set. By setting the same seed for the random function, we ensure that the collages only

differ in their blur radius.

Secondly, we will conduct this experiment three times in order to examine the role of the

preprocessor. In the őrst pass, our preprocessor works as usual. The preprocessor aligns the

image using the previously mentioned algorithm and applies an additional Gaussian Blur

with radius 1 to remove noise, performed by the Python PIL library. In the second pass and

third pass, we disable components of the preprocessor, i.e. the images will not be aligned

and/or blurred. In each case the preprocessor measures the width of the text because this is

necessary for the CTC layer of our neural network model.

5 Results

Like described in subsection 4.2, we analyze every radius three times: with full preprocessing

(FPP), preprocessing without aligning and blurring (NAB = no aligning and blurring) and

preprocessing without blurring but with aligning (NB = no blurring). Table 1 shows the

Label Error Rate (LER) and the Sequence Error Rate (SER) for different blurring radii and

each preprocessor option. A blur radius 𝑚 means a radius with 𝑚 pixels horizontal and 𝑚

pixels vertically, or 𝑚 × 𝑚 pixels. As additional experiment, table 2 shows the LER and

SER for different JPEG quality levels when a blur radius of 10 × 10 pixels is used.

In order to evaluate the effectiveness, two established metrics are used: the Label Error Rate

(LER) as already proposed by Graves et al. [Gr06] and the Sequence Error Rate (SER) by

Soullard et al. [SRP19]. Both metrics are also used in [GN22]. The Label Error Rate (LER)

metric measures the mean normalized edit distances between classiőcations and preimage

labels and is deőned as follows:

𝐿𝐸𝑅(ℎ, 𝑆′) =
1

|𝑆′ |

∑︁
(x,z∈𝑆′ )

𝐸𝐷 (ℎ(x), z)

|z|
(4)

whereby the LER is computed for a temporal classiőer ℎ (i.e. the model) and a given test

set 𝑆′ that is disjoint from the training set 𝑆. 𝑥 stands for the input sequences and 𝑧 for

corresponding labels. Both are compared with the edit distance function 𝐸𝐷 (·, ·) which

is the number of characters that must be changed to make the input sequence equal to the

corresponding label. The Sequence Error Rate (SER) is the percentage of predictions in the

test set that are not completely correct.

You can see example images of a random character sequences after the different preprocessing

steps in Table 3. For every blur radius, a training set is created based on the different
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Radius
LER SER

FPP NAB NB NAB FPP NB

2 17.73 % 29.99 % 34.20 % 64.06 % 53.91 % 84.38 %

3 19.98 % 88.66 % 25.90 % 100.00 % 62.11 % 71.48 %

4 12.22 % 55.52 % 28.54 % 94.92 % 46.09 % 64.84 %

5 18.24 % 20.04 % 36.36 % 63.28 % 53.13 % 72.27 %

6 33.60 % 49.20 % 32.54 % 86.72 % 73.44 % 75.39 %

7 51.95 % 34.27 % 28.67 % 76.17 % 92.58 % 66.02 %

8 28.97 % 79.24 % 61.22 % 100.00 % 68.75 % 95.70 %

9 60.50 % 31.35 % 46.92 % 76.17 % 96.48 % 90.23 %

10 50.97 % 74.88 % 37.17 % 100.00 % 94.53 % 83.98 %

11 47.88 % 37.76 % 43.09 % 82.42 % 94.14 % 89.06 %

12 56.12 % 52.06 % 61.29 % 96.88 % 97.66 % 97.66 %

13 55.20 % 61.38 % 53.34 % 100.00 % 94.92 % 92.97 %

14 54.27 % 42.06 % 59.01 % 87.89 % 95.70 % 98.05 %

15 58.33 % 34.63 % 53.93 % 81.64 % 98.05 % 96.48 %

16 40.41 % 56.12 % 47.62 % 95.31 % 83.98 % 90.23 %

20 46.74 % 55.65 % 54.21 % 96.48 % 88.28 % 97.66 %

24 55.72 % 57.69 % 50.67 % 98.44 % 98.83 % 95.70 %

32 57.12 % 62.16 % 63.04 % 98.44 % 98.83 % 100.00 %

Tab. 1: Error rate of the proposed depixelation system, see Fig. 2 and Fig. 3 for chart illustration and

Tab. 3 for training set examples.

JPEG Quality Level LER SER

100 32.84% 75.00%

50 29.73% 69.14%

10 38.38% 81.64%

Tab. 2: JPEG Quality Loss Experiment with a blurring radius of 10 × 10 pixels

conőgurations described in subsection 4.2. Note that the scale of the input image does

not change. This becomes clear in the NAB column where no alignment is performed.

When increasing the blur radius, the blurred area takes more space on the canvas, especially

towards the borders. The visualization component (preview) of our preprocessors with

activated alignment scales the images up and shows a centered view so that it looks like the

images would have different lengths which is not the fact.

6 Discussion

In our experiment, we analyze whether a Machine Learning model and corresponding

pipeline for retrieving data from redacted images can be used for blurred images as well.

The paper from Garske and Noack [GN22] demonstrates this on pixelized images only.
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Radius FPP NAB NB Best LER

2 17.73 % (FPP)

3 19.98 % (FPP)

4 12.22 % (FPP)

5 18.24 % (FPP)

6 32.54 % (NB)

7 28.67 % (NB)

8 28.97 % (FPP)

9 31.35 % (NAB)

10 37.17 % (NB)

11 37.76 % (NAB)

12 52.06 % (NAB)

13 53.34 % (NB)

14 42.06 % (NAB)

15 34.63 % (NAB)

16 40.41 % (FPP)

20 46.74 % (FPP)

24 50.67 % (NB)

32 57.12 % (FPP)

Tab. 3: Examples for each blur radius in the different test passes

Our test results indicate that it is actually possible to train such a network on blurred images.

Naturally, when the blur radius rises, the LER and SER will rise, too. However, the network

can still recover information even if a human has trouble to decipher the image. We assume

a blur radius of 10 pixels as the limit up to where a human can still recognize all characters

without problems.

When considering pixelation and blurring, the question arises how they relate to each other.

Tab. 4 provides a visual aid for comparing some block sizes of pixelized texts and blur radii

of blurred texts. It becomes clear that users need a higher blur radius in order to achieve a

comparable visual redaction level as with pixelation.

When comparing the LERs for both anti-redaction techniques (e.g. 32x32 px), we can see

that our initial working hypothesis is conőrmed. Retrieving data from a blurred text works

at least as accurate as for pixelized text. That means blurring has in the best case the same

security as pixelation, rather a little bit less. Note that [GN22] use a slightly different dataset

than it is used in this experiment: for performance reasons, only 40,000 instead of 100,000

unique passwords are used as a wordlist for the training. Additionally, we anticipate that

each model is trained for those parameters (font size, etc.) that are also used for the test

images.
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Block Size Example Image LER Blur Radius Example Image LER

2 × 2 2.99 % 2 × 2 17.73 %

3 × 3 16.00 % 5 × 5 18.24 %

4 × 4 20.47 % 7 × 7 28.67 %

5 × 5 36.17 % 9 × 9 31.35 %

6 × 6 28.92 % 10 × 10 37.17 %

7 × 7 41.17 % 12 × 12 52.06 %

8 × 8 49.93 % 14 × 14 42.06 %

16 × 16 61.09 % 20 × 20 46.74 %

32 × 32 69.25 % 32 × 32 57.12 %

Tab. 4: Visual aid for the comparison of pixelized and blurred images. Block sizes and blur radii are

optically őtted. The examples for pixelized images are taken from [GN22].

7 Conclusion and Future Work

In this paper, we analyze the privacy of blurring whereby our research especially focuses on

the obfuscation of credentials like passwords. We show that a neural networks can not only

be used for recovering information from pixelized images but also from blurred images.

We point out that higher blur radii are required to enable comparable results regarding

pixelation. If investigators are able to guess parameters like font family or font size, they

can run a dictionary-like attack to create a model that can reconstruct redacted parts in e.g.

publicly available images. Besides, it turned out that our pipeline and model are able to

handle JPEG quality loss with only slightly increased error rates.

There is still room for improvement: the current architecture and preprocessor can be further

examined to improve the LER and SER metrics and thus the results. In addition to it, the

inŕuence of other parameters like different font families can be investigated. Moreover,

aspects of transfer learning remain open: the model can be extended in a way to transfer the

knowledge from speciőc parameters to applications with more generic parameters. By doing

so, one model could support different font sizes or even a variety of redaction techniques

without the need for retraining every time.
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A Additional Information
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Fig. 2: Label error rates (LER) in relation to the blurring radius
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Fig. 3: Sequence error rates (SER) in relation to the blurring radius
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