
Measuring the Quality of System Specifications in Use Case

Driven Approaches

Alexander Rauh1, Wolfgang Golubski2, Stefan Queins3

Abstract: One of the biggest challenges of a requirements analyst is to generate and provide a
high-quality system specification in order to support other disciplines during system development.
Today, there are only few mechanisms to measure the quality of requirements with less effort for
the analyst. The following paper describes a meta-modeling and model-to-model transformation
approach to formally evaluate different quality characteristics of system specifications like
consistency and completeness in use case driven requirements analysis processes with less effort
for the requirements analyst. Therefore, the mentioned concept integrates the information
contained in different representations of requirements into a common requirements model and
analyzes quality characteristics of the specification in two steps. In the first step, every
representation within the specification will be evaluated separately according to predefined
representation specific rules. In the second step after requirements integration, algorithms analyze
the quality of the integrated information and calculate the overall characteristics of the
specification.

Keywords: Requirements Quality, Specification Quality, Requirements Modeling, Meta-
Modeling, Model-to-Model Transformation

1 Introduction

In systems engineering the system specifications are foundations for nearly every kind of
discipline during development and after sales [Wa15]. Design, architecture and
implementation transform the requirements of the specification into a set of components
to realize the system and satisfy the needs of the customers. Testing and verification
check the developed system against the system specification and ensure that the quality
of the system fits the expectations. Additionally, during after sales the requirements of
the system support the maintenance discipline to understand and improve the system’s
realization. In the context of this paper the term system addresses software systems as
well as more technical systems consisting of software, mechanic and electric parts like
cars.

For every purpose mentioned above high-quality requirements according to the
characteristics listed in IEEE29148:2011 [IE11] have to be collected during

1 University of Applied Sciences Zwickau, Dr.-Friedrichs-Ring 2a, 08056 Zwickau, alexander.rauh@fh-

zwickau.de
2 University of Applied Sciences Zwickau, Dr.-Friedrichs-Ring 2a, 08056 Zwickau, wolfgang.golubski@fh-

zwickau.de
3 SOPHIST GmbH, Vordere Cramergasse 13, 90478 Nuremberg, stefan.queins@sophist.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 151

https://creativecommons.org/licenses/by-sa/4.0/

requirements elicitation. Especially, in case that these requirements will be used as direct
input for source code generation as mentioned in [Sm15] or if simulating the system
under consideration before development as explained in [Po12]. At the moment, there
are only a few approaches which aim at the assurance of the quality of system
specifications. Furthermore, these approaches do not provide any mechanisms to
evaluate this quality by numbers, need high effort to calculate some numbers or only
evaluate some samples of a specification instead of the overall quality.

The concept discussed in this paper explains how to formally measure different quality
characteristics of system specifications for a use case driven requirements analysis
process using common notations for requirements documentation. In addition to the
measurements this approach provides the sources of the defects in the documented
requirements.

Following this introduction, there is a section to discuss some related works and already
known approaches to measure the quality of requirements. The third section describes a
concept and a process for requirements integration in order to measure the quality of
system specifications. After that, there is a discussion of already existing quality
characteristics of requirements and requirements specifications. Furthermore,
interdependencies between the characteristics are explained. The fifth section describes
the quality measurement process during requirements integration which checks a
specification against defined requirements modeling and documentation rules. After an
example to show the results of measuring the quality of a specification, the benefits of
this approach will be explained. In the last section, there are some open issues which
may be relevant for further researches.

2 Related Works

There are different approaches which provide to measure the quality of a system
specification or support the requirements analyst to document a consistent and ideally
complete set of requirements.

The first related approach described in [Go11] analyzes consistency and completeness of
a specification via trace relations between the requirements. Therefore, the requirements
analyst has to identify interdependency between the requirements and has to traces them
manually. A tool evaluates the types of the relations and reports contradictions. To
manage the trace relations defines [Go11] a meta-model for requirements which is
similar to the meta-model of the Requirements Interchange Format (ReqIF) [OM16].
The approach mentioned in [Go11] evaluates only the quality of the trace relations
between requirements but does not formally analyze the quality of the requirements
content.

Another tool [Fa01] evaluates the quality of requirements in natural language. This tool
analyzes the textual requirements for keywords and assigns quality attributes to these

152 Alexander Rauh, Wolfgang Golubski, Stefan Queins

keywords. The quality attributes differ from the quality characteristics defined by IEEE
29148:2011 [IE11] and aim at defects in the language of the requirement sentence. For
example, undefined multiplicities and vague terms are reported as defects. The tool in
[Fa01] only supports textual requirements. Other representation types for requirements
documentation like UML cannot be used for analysis purposes.

A fourth similar approach defined by [Da93] also evaluates the quality of textual
requirements according to predefined attributes but does not provide an algorithm to
measure these attributes formally. The concept only explains techniques for
requirements analyst to evaluate the quality attributes manually. Disadvantage of the
approach described in [Da93] is the very high effort for the analyst. Additionally, only
textual requirements can be used for quality analysis.

Some other approaches consider less common representation types to evaluate the
quality system specifications. Furthermore, these approaches do not provide possibilities
to add more common representations.

For example, [Kr09] analyzes the consistency of requirements by capturing textually
requirements, creating a UML use case model from these requirements manually and
converting these models into a problem ontology. The consistency of this problem
ontology is evaluated via reasoning and is matched to a domain ontology representing
the domain knowledge related to the system’s domain to discover further contradictions.
UML use case models support only abstract views onto a system. For the detailed view
onto the system’s functionality other UML diagram types like activity diagrams or state
charts have to be used, but are not supported by[Kr09].

A last similar approach described in [He96] applies algorithms for consistency checks to
the formal Software Cost Reduction (SCR) tabular notation, but does not support more
common requirements representation types like UML or textual requirements. Thereby,
before applying this approach onto a specification, the requirements analyst has to
transform a common system specification into the SCR notation and has to spend a lot of
additional effort.

Approaches which use formal representation types of requirements like VHDL,
MATLAB Simulink or different temporal logics are not discussed in this paper. These
representation types are used in very specific domains but are usually not used for
common system specifications.

3 Requirements Integration Concept for Quality Measurements

The idea to measure the quality of a system specification is to integrate information
contained in the requirements into a common database and to evaluate the overall quality
of this information. Thereby, representation specific information is encapsulated and the
quality of the content described by requirements will be evaluated. Although today’s
requirements management tools provide mechanisms to store different views as

Measuring the Quality of System SpeciĄcations in Use Case Driven Approaches 153

described by [Kr95] or [Cz15] onto the system under consideration in a common model
are the information within these views only loosely coupled. Interrelations are often
simple references which the requirements analyst has to create and manage manually.
Additionally, the tools do not check whether there is a relation in between the content of
the referenced parts or not. Hence, the idea is to extract the information of these several
views and to integrate it in a common requirements model which includes formal
relations between the information. Once integrated, algorithms can evaluate this
requirements model according to predefined rules which address several quality issues of
the overall system specification like consistency and completeness.

This mentioned integration is realized via a meta-modeling and model-to-model
transformation concept. Therefore, the concept is divided into a representation layer, an
interpretation layer and an integration layer. Every layer contains at least one meta-
model and one or more instances of these meta-models. In between these layers model-
to-model transformations are applied.

The first layer is the representation layer which contains the system specification use for
requirements integration purposes. In the context of this approach such a system
specification is a set of different models which store the requirements for the system
under consideration. These models are instances of common meta-models used for
requirements documentation like the UML meta-model and its several diagram types or
template-based textual requirements. Notation or representation type of requirements
may be used as synonym for the meta-models of the representation layer.

The interpretation layer consists of representation type specific interpretation meta-
models and one instance of each of these meta-models. In contrast to the UML there is
one dedicated interpretation meta-model for the common UML diagram types for
requirements documentation. The idea of the interpretation layer is to evaluate the
quality, especially the syntactic correctness, of each view onto the system under
consideration separately before requirements integration. Thereby, the requirements
analyst gets feedback to the quality of each view and has the possibility to adjust the
requirements before an overall quality evaluation. For example, this layer allows
evaluating the use case view onto the system independent of the system’s information
model where the terms, used in the use cases, are defined.

The third layer is the integration layer consisting of a function-oriented meta-model for
requirements and one instance of this meta-model which contains the integrated
information of the different views onto the system under consideration. Algorithms
evaluate the overall quality of the system specification according to this meta-model, to
the representation specific and the comprehensive modeling rules. Function-oriented
means that this meta-model only defines the structure of information and terms of
functional requirements including the quality of service requirements of these functions.
Organizational requirements related to the development process or project constraints
like time and budget as mentioned in [Dö11] are not part of this meta-model. The
function-oriented meta-model of the integration layer was already described and

154 Alexander Rauh, Wolfgang Golubski, Stefan Queins

published in [Ra17] and is not explained in the context of this paper. Fig. 1 shows these
layers and their interrelations including the most significant terms.

Fig. 1: Layer concept for requirements integration

In order to formally calculate the quality of the system specification several rules define
how to use the different notations for requirements documentation. On the one hand,
there are representation specific rules which address the usage of model elements within
one view e.g. how to name a use case. Violations against these rules will be checked
during transformation of the models in the representation layer into the models of the
interpretation layer when applying the Interpretation Rule Set. For each violated rule, a
so-called defect will be created. These representation specific defects are used to
calculate quality characteristics for each view separately. On the other hand, there are
representation comprehensive rules that aim at the interrelations of information in
between the different views. After requirements integration algorithms check the
integrated information according to these comprehensive rules and generate also defects
in case of rule violations. Furthermore, the overall quality characteristics of the system
specification will be measured. Fig. 2 gives an overview on the single steps of the
requirements integration process which was described within this section. For each step,
the stereotypes show the actor who performs this action.

Measuring the Quality of System SpeciĄcations in Use Case Driven Approaches 155

Fig. 2: Process for requirements integration and quality measurement

Depending on the requirements analysis process and the guideline for requirements
documentation in a specific development project it may be necessary to adjust the meta-
models of the interpretation layer and the predefined requirements documentation rules
in order to apply this concept. The fifth section shows some examples for representation
specific and comprehensive documentation rules and shows a related interpretation
meta-model derived from the use case driven requirements analysis process according to
[Cz15].

4 Characteristics of Requirements and System Specifications

In order to define the term quality in a more precise way, this section discusses several
characteristics of requirements and sets of requirements. The standard IEEE 29148:2011
serves as foundation for the discussion. First of all, [IE11] differs between characteristics
for single requirements and requirements documents. Single requirements have to be:

• Necessary

• Implementation Free

• Unambiguous

• Consistent

• Complete

• Singular

156 Alexander Rauh, Wolfgang Golubski, Stefan Queins

• Feasible

• Traceable

• Verifiable

Some definitions of the characteristics listed above refer not only a single requirement
but also consider the context of this requirement. For example, consistency means that
the requirement is free of conflicts to other requirements [IE11]. Similar to consistency
states the definition of completeness that the requirement does not need further
refinements [IE11]. In the context of a system specification it is impossible to determine
completeness without analyzing the requirements context which means other
requirements addressing the same subject. In addition to the quality characteristics for
single requirements IEEE 29148:2011 defines the following criteria for sets of
requirements:

• Complete

• Consistent

• Affordable

• Bounded

In order measure the quality of a system specification, a separation between single
requirements and a set of requirements is not necessary. Therefore, quality
characteristics in the context of this approach always refer to a set of requirements and
defects within the requirements have influence onto one or more of these characteristics.

One goal of the concept mentioned in this paper is to evaluate the quality of a system
specification automatically using algorithms. But a few of the previously listed
characteristic cannot be checked by a tool but only by the requirements analyst himself.
For example, it is not possible to determine feasibility and affordability of requirements
without knowledge and experience from similar development projects. Additionally, one
essential characteristic is missing which provides the foundation for automatic quality
checks by algorithms. To apply algorithms onto requirements these requirements have to
be syntactically correct. IEEE 29148:2011 only defines semantic correctness as a task to
be established during requirements analysis and maintenance. Semantic correctness
means that the requirements express the intentions of the stakeholders [IE11].

In addition to this mentioned dependency, there are further interrelations between the
quality characteristics. Inconsistency leads to the issue that completeness and necessity
cannot be determined by algorithms. For example, if there is an actor with no
associations to any use case within the use case view onto the system under
consideration this actor might be not necessary or the use case view is incomplete due to
a missing association. Whether this defect addresses necessity or completeness depends
on the solution of the analyst to solve this defect. Algorithms are not able to make this
decision.

Measuring the Quality of System SpeciĄcations in Use Case Driven Approaches 157

Unambiguity has interrelations to consistency, necessity and completeness. As defined
by IEEE 29148:2011 means unambiguity that there are no possibilities for different
interpretations of information. Inconsistency, incompleteness and violations of necessity
cause such possibilities for interpretation.

The concept described in this paper supports the measurement of correctness,
completeness, consistency, unambiguity and necessity.

5 Rule-based Quality Measurement of Requirements

The quality of a system specification is measured according to predefined requirements
documentation rules. Each documentation rule has assigned at least one of the quality
characteristics listed in the previous section. Rule violations lead to defects which
decrease the assigned characteristics.

For the application of this concept onto a system specification for validation purpose the
rules for requirements documentation, the related interpretation meta-models and the
required transformations were defined for the use case driven requirements analysis
process according to [Cz15]. The snippets below show two different rules for
requirements documentation including the assigned quality characteristics to give an idea
of these rules. The first rule is representation specific and addresses the documentation
of use cases. The second rule is comprehensive and addresses and interrelation between
use cases and the information model of the system’s domain.

Rule 1 addresses the naming of use case. The requirements analysis process in [Cz15]
recommends that the name of a use case should consist of a process and an object of the
system’s domain. UML does not even constrain the naming [OM15]. The rule above
provides the option to add an adjective between the verb for the process and the noun for
the object. This adjective could be used to add further information to the object like a
state of this object. For example, a use case could be named like “archive existing user
profile”. In order to simplify the implementation of this rule, a name of a use case could
only consist of two or three tokens. The first token is the verb which defines the process.
If the name contains three tokens, the second token is a state and third is the object of the
domain. Domain objects which consist of more than one token will be named in camel
case e.g. “UserProfile”. For further researches, this simplification could be eliminated by
the integration of a natural language processing (NLP) tool like [Bj10]. This tool would
also provide mechanisms to categorize the types of the words and to analyze the
grammar of natural language parts in the representation models.

Rule 1: Names of UML Use Cases follow the structure <verb> [adjective] <noun>.

Assigned quality characteristics: Correctness

Criticality: high

158 Alexander Rauh, Wolfgang Golubski, Stefan Queins

As mentioned before, there is at least one quality characteristic of the previous section
assigned to each of the requirements documentation rules. If such a documentation rule
is violated, the related quality characteristic will be decreased. For example, in case that
the name of a use case violates rule 1, the correctness of system specification is affected.

The criticality of the modeling rules classifies the impact of a rule violation onto the
further requirements integration process. High criticality means that the related
representation model element cannot be integrated into the integration model. Low
criticality violations have no effects onto the requirements integration but cause also a
loss in the requirements quality.

Rule 2 is a comprehensive modeling rule which addresses the usage of interrelations
between UML use case diagrams and UML class diagrams for information modeling.
The nouns in the names of use cases represent objects of the system’s domain and
thereby should be part of the information model. Consistency and completeness will be
decreased, if rule 2 is violated. The impact of such a violation onto the requirements
integration process is low.

In addition to these kinds of modeling rules, the mentioned requirements integration
concept provides interpretation meta-models for the representation types required for a
use case driven requirements analysis process according to [Cz15]. Fig. 3 shows the
interpretation meta-model for UML use case diagrams. This meta-model is derived from
eight use case specific requirements documentation rules.

Rule 2: The noun in the name of a use case is defined as a class within the
information model of the system specification.

Related representations: UML Use Case Diagram, UML Class Diagram

Assigned quality characteristics: Consistency, Completeness

Criticality: low

Measuring the Quality of System SpeciĄcations in Use Case Driven Approaches 159

Fig. 3: Interpretation meta-model for UML use case diagrams

The core element of this meta-model is the Use Case, which represents functionality of
the assigned System at high level of abstraction. In order to provide fault tolerance
during instantiation of the use case interpretation model, the cardinalities of the relations
between Use Case and System and Use Case and Actor according to the definition of use
cases in [Ja92] are loosened from obligatory to optional.

In contrast to the UML, which defines the name of a use case as a non-empty string
[OM15], the meta-model shown in Fig. 3 encapsulates the name of a use case as the
separate class Use Case Term. Furthermore, the use case term and its parts depicts
documentation rule 1 which defines the structure of the names of use cases.

Includes- and extends-associations of the use cases are simplified in the interpretation
meta-model compared to the UML meta-model. The details of include- and extend-
associations between use cases have to be documented in the control flows of the
dedicated use cases. These control flows are parts of the activity of the system
specification. Hence, there is no need to store further details for include- and extend-
associations of use case diagrams within the interpretation model. The Defect will be
used to store violations of use case specific requirements documentation rules. Such a
defect persists the rule which was violated and the criticality of the violation in order to
give the requirements analyst advises for editing the use case model.

Further interpretation meta-models for UML class diagrams, state charts and activity
diagrams as well as the interpretation meta-models for glossary entries, functional and
non-functional textual requirements will be presented later during researches due to the
limited space in this paper.

Overall to measure the quality of system specifications there are 27 representation
specific documentation rules, 13 comprehensive documentation rules and interpretation
meta-models for:

160 Alexander Rauh, Wolfgang Golubski, Stefan Queins

• UML Use case diagrams

• UML Activity diagrams

• UML State Charts

• UML Class diagrams and glossary entries

• Template-based textual functional requirements

• Template-based textual non-functional requirements

The representation specific documentation rules are included in the Interpretation Rule
Sets shown in Fig. 1 and the Integration Rule Set contains the comprehensive
documentation rules. Tab. 1 lists the count of representation specific and comprehensive
rules including the count of related quality characteristics.

Completeness Correctness Consistency Unambiguity Necessity

Use Case Diagrams 8 1 7 1 4 2
Activity Diagrams 4 3 4 0 2 0
Class Diagrams 2 0 2 0 1 0
Glossary Entries 4 1 1 2 2 0
State Charts 3 0 3 0 0 0
Textual functional
requirements

3 0 3 1 1 0

Textual non-functional
requirements

3 0 3 1 0 0

Representation
Comprehensive

13 10 13 13 0 0

Affected Quality CharacteristicsAddressed

Representation Type

Rule

Count

Tab. 1: Representation specific and comprehensive modeling rules and quality characteristics

These meta-models are implemented using Eclipse EMF. The model-to-model
transformations are realized using a combination of the ATLAS Transformation
Language (ATL) and Java. The transformation rule sets are implemented in ATL. Java
was used to coordinate the transformation steps and to analyze the defects within the
interpretation layer and the integration layer in order to calculate the numbers for the
quality characteristics.

6 Example for Integration Results

In order to explain the possibilities and results of the approach mentioned in the previous
sections, the integration concept was applied onto the following two simple diagrams of
a system specification of an online shop. The representation specific defects and the
comprehensive defects of the specification are explained. Fig. 4 shows a use case
diagram on the left and an information model on the right which were integrated.
Additionally, there are two activity diagrams for “create CustomerAccount” and “buy

Measuring the Quality of System SpeciĄcations in Use Case Driven Approaches 161

Article” within the specification which will be referenced to explain the integration
results.

Fig. 4: Use cases and information model of an online shop

Tab. 2 shows the defects which were generated during instantiation of the interpretation
model for the use case diagram in Fig. 4.

ID Element Defect Related Quality Characteristics Criticality

1 Payment Incorrect name of use case Correctness high

2 display OrderHistory missing association to any
actor

Correctness, unambiguity low

3 delete existing
CustomerAccount

missing association to any
actor

Correctness, unambiguity low

4 Shop Administrator missing association to any use
case

Correctness, unambiguity low

Tab. 2: Defects in the use case interpretation model

The first defect is the result of violated rule 1 which is explained in the previous section
in detail. The name of the use case “Payment” does not consists of a verb and a noun but
only contains a nominalization. This syntactic incorrectness leads to a high criticality of
the first defect because the related use case cannot be instantiated within the
interpretation model and, thereby, will be ignored in the further integration process.

The second and the third row address the violation of a documentation rule derived from
the definition of use cases according to [Ja92]. Both use cases do not have an association
to any actor and, thereby, may not be of value. Besides the impact onto the correctness
of the use cases lead both defects to an ambiguity. The defect related use cases may be
documented incomplete or they may be unnecessary. The requirements integration could
be performed for both use cases. Hence, the criticality of the defects in the second and
third row is evaluated as low.

The defect in the fourth row addresses the “Shop Administrator” without an association
to any use case. The violation is similar to the previously explained missing associations.
It has also an impact onto the correctness and the unambiguity of the specification but
the requirements integration could be performed.

162 Alexander Rauh, Wolfgang Golubski, Stefan Queins

The class diagram on the left in Fig. 4 does not violate any representation specific
documentation rules. After the instantiation of the interpretation models for the use cases
and the information model the requirements analyst could edit the defects listed in Tab. 2
or the requirements integration could proceed. Tab. 3 shows the representation
comprehensive defects after integration of the diagrams in Fig. 4.

ID Element Defect Related Quality Characteristics Criticality

1 display OrderHistory noun OrderHistory is not part of the
information model

Consistency, Completeness low

2 display OrderHistory activity "display OrderHistory" is
missing

Consistency, Completeness low

3 ship Order activity "ship Order" is missing Consistency, Completeness low
4 offer Article activity "offer article" is missing Consistency, Completeness low
5 delete existing

CustomerAccount
activity "delete existing
CustomerAccount" is missing

Consistency, Completeness low

6 buy Article control flow of activity "buy Article"
does not contain call-behavior of activity
"display OrderHistory"

Correctness, Consistency low

Tab. 3: Representation comprehensive defects of the integrated requirements

The first defect is the result of a violation of rule two of the previous section. It aims at
the interrelation between the nouns in the names of use cases and the classes in the
information model. As shown in Fig. 4 exists no class “OrderHistory” within the
information model. Consistency is decreased because of the contradictions between the
different views and completeness is impacted due to obvious missing information.

The defects in rows two to five address the missing refinements of the use cases. Each
use case has to be refined by one activity which defines the single steps of the control
flow when executing the related use case. These three defects have also lead to
inconsistencies as well as incompleteness of the specification.

The last row shows a violation of a documentation rule which aims at the semantic of
includes-associations between use cases and their influence onto the control flows of
these use cases. The activity of the included use case has to be part in the activity of the
including use case as a call-behavior action. Due to the missing activity of “display
OrderHistory” shown in the second defect, there is no possibility to add such a call-
behavior action within the control flow of “buy Article”. The contradiction between the
use case view and the activity view of these use cases is obviously an inconsistency. The
correctness of the specification is also affected because of the wrong documentation of
the includes-association. The six defects in Tab. 3 have a low criticality. They do not
prevent the requirements integration.

7 Benefits

This approach provides mechanisms to formally measure the quality of systems
specifications created during use case driven analysis process according to [Cz15] and
reports the defects to the requirements analyst. There are two different kinds of

Measuring the Quality of System SpeciĄcations in Use Case Driven Approaches 163

measurements. On the one hand, the quality of each view onto the system is calculated
separately. Thereby, the requirements analyst can focus and improve one dedicated view.
On the other hand, the requirements integration provides to check the overall quality of
the requirements in all views. Especially, the interrelations between the dedicated views
onto system are hard to be checked manually and take a very high effort. The mentioned
concept supports to check these interrelations automatically with less effort.

Regarding the identified defects of a system specification, the requirements analyst can
decide which of these defects he wants to fix. Thereby, the level of the quality of a
specification can be adjusted to the projects needs and constraints. For example, the level
of quality for a specification for safety critical systems (e.g. cars or airplanes) has to be
quite higher than for less safety critical systems (e.g. business software).

The process to measure the quality of a system specification is very lightweight, which
allows the requirements analyst to apply the concept in different kinds of projects. For
example, the concept can be applied iterative in agile development processes as well as
in more traditional processes when reaching milestones.

8 Conclusion & further Researches

The concept mentioned in this paper measures the quality of system specifications
according to predefined requirements modeling rules. For each rule, there is at least one
quality characteristic assigned, which will be decreased if the related rule is violated.
The modeling rules are classified in representation specific and representation
comprehensive rules. The representation specific rules are checked during instantiation
of the interpretation models when applying the Interpretation Rule Set onto the
representation models. After that, the requirements analyst has the possibility to fix
violations before the interpretation models will be integrated. After requirements
integration, the representation comprehensive rules including the interrelations between
the different views onto the systems are analyzed and the overall quality of the system
specification is calculated.

For further researches, the definition of metrics for specifications might be interesting.
These metrics could be calculated from the numbers of rule violations per type of model
element in the requirements models. Thereby, the maturity of a system specification
could be determined periodically during the requirements analysis process.

In order to eliminate simplifications of the natural language parts in the representation
models, the integration of natural language processing tools to analyze parts of the
natural language in the requirements models seems to be necessary. Thereby, the
modeling rules for naming model elements like use case and activities could be more
flexible and would provide an additional benefit.

The example section lists the result when applying the described concept onto a small

164 Alexander Rauh, Wolfgang Golubski, Stefan Queins

system specification which consists of four diagrams with some interrelations. For
further validation purposes, the application of this approach onto larger specifications or
even during a requirements analysis process is necessary. Thereby, the integration results
can be verified and compared to each other and issues of the current concept could
become transparent.

References

[Bj10] Björkelund, Anders; Bohnet, Bernd; Hafdell, Love; Nugues, Pierre (2010): A High-
performance Syntactic and Semantic Dependency Parser. In: Proceedings of the 23rd
International Conference on Computational Linguistics: Demonstrations. Stroudsburg,
PA, USA: Association for Computational Linguistics (COLING ’10), S. 33–36. Online
available http://dl.acm.org/citation.cfm?id=1944284.1944293.

[Cz15] Cziharz, Thorsten; Hruschka, Peter; Queins, Stefan; Weyer, Thorsten (2015):
Handbook of Requirements Modeling IREB Standard. Version 1.1. Online available
https://www.ireb.org/content/downloads/17-handbook-cpre-advanced-level-
requirements-modeling/ireb_cpre_handbook_requirements-modeling_advanced-level-
v1.1.pdf.

[Da93] Davis, A.; Overmyer, S.; Jordan, K.; Caruso, J.; Dandashi, F.; Dinh, A. et al. (1993):
Identifying and measuring quality in a software requirements specification. In: [1993]
First International Software Metrics Symposium. Baltimore, MD, USA, 21-22 May
1993, S. 141–152.

[Dö11] Dörr, Jörg (2011): Elicitation of a complete set of non-functional requirements.
Stuttgart: Fraunhofer-Verl (PhD theses in experimental software engineering, 34).

[Fa01] Fabbrini, Fabrizio; Fusani, Mario; Gnesi, Stefania; Lami, Giuseppe (2001): An
automatic quality evaluation for natural language requirements. In: Proceedings of the
Seventh International Workshop on Requirements Engineering: Foundation for
Software Quality REFSQ, Bd. 1, S. 4–5. Online available
http://fmt.isti.cnr.it/WEBPAPER/P11RESFQ01.pdf.

[Go11] Goknil, Arda; Kurtev, Ivan; van den Berg, Klaas; Veldhuis, Jan-Willem (2011):
Semantics of trace relations in requirements models for consistency checking and
inferencing. In: Softw Syst Model 10 (1), S. 31–54.

[He96] Heitmeyer, Constance L.; Jeffords, Ralph D.; Labaw, Bruce G. (1996): Automated
consistency checking of requirements specifications. In: ACM Trans. Softw. Eng.
Methodol. 5 (3), S. 231–261.

[IE11] Institute of Electrical and Electronics Engineers. 2011: Systems and software
engineering -- Life cycle processes --Requirements engineering.

[Ja92] Jacobson, Ivar (1992): Object-oriented software engineering: A use case driven
approach. [New York] and Wokingham and Eng and Reading and Mass: ACM Press
and Addison-Wesley Pub.

[Kr09] Kroha, Petr; Janetzko, Robert; Labra, José Emilio (2009): Ontologies in Checking for
Inconsistency of Requirements Specification. In: Third International Conference on
Advances in Semantic Processing (SEMAPRO). Sliema, Malta, S. 32–37.

Measuring the Quality of System SpeciĄcations in Use Case Driven Approaches 165

[Kr95] Kruchten, Philippe (1995): The 4+1 View Model of Architecture: IEEE Software.

[OM15] Object Management Group, Inc. (2015): Unified Modeling Language. Version 2.5.
Online available http://www.omg.org/spec/UML/.

[OM16] Object Management Group, Inc. (2016): Requirements Interchange Format™
(ReqIF™). Version 1.2. Online available http://www.omg.org/spec/ReqIF/1.2.

[Po12] Pohl, Klaus; Achatz, Reinhold; Hönninger, Harald; Broy, Manfred (2012): Model-
based engineering of embedded systems: The SPES 2020 methodology. Berlin and
New York: Springer.

[Ra17] Rauh, Alexander; Golubski, Wolfgang; Queins, Stefan (2017): A requirements meta-
model to integrate information for the definition of system services. In: 2017 IEEE
Symposium on Service-Oriented System Engineering: IEEE / Institute of Electrical
and Electronics Engineers Incorporated.

[Sm15] Śmiałek, Michał; Nowakowski, Wiktor (2015): From Requirements to Java in a Snap.
Model-Driven Requirements Engineering in Practice. Cham: Springer International
Publishing (EBL-Schweitzer).

[Wa15] Walden, David D.; Roedler, Garry J.; Forsberg, Kevin; Hamelin, R. Douglas; Shortell,
Thomas M. (2015): Systems engineering handbook: A guide for system life cycle
processes and activities. 4th edition.

166 Alexander Rauh, Wolfgang Golubski, Stefan Queins

