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Deep Learning in palynology 

A use case for automated visual classification of pollen grains from honey samples 

Philipp Viertel1 and Matthias König1 

Abstract: In this work, we will show a use case for visual pollen classification from honey samples. 
We discuss the current state of the art in pollen analysis, highlight the importance of data quantity 
and quality, and elaborate on how to transfer promising Deep Learning methods to the analysis of 
honey samples. A first experiment with a public data set is shown as well as samples from our work-
in-progress data set. Our recommendations and methods show which steps are necessary in order to 
successfully deploy an automated pollen analysis solution for honey products. 
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1 Introduction 

Deep Learning (DL) is a promising technology that offers a large field of applications. 
The field of palynology, the study and analysis of pollen grains, is an area that can greatly 
benefit from this technology. Palynology plays an important role for various disciplines, 
such as climate research, geology, allergy studies, and especially honey production. The 
study of the latter is also called melissopalynology. 

A serious problem for beekeepers concerns the labelling of honey products. Beekeepers 
usually have to use generic names, such as summer honey, to label their produce. Due to 
the fact that honey yield can come from a large variety of plant sources it is necessary to 
identify the leading pollen, if one wants to label the honey by its majority pollen source. 
This procedure is offered by specialised laboratories and institutes which charge a fee; 
however, since most beekeepers are avocational, these services are usually not used, also 
due to the fact that it has to be done frequently for each honey yield. The high fees are 
justifiable, however, due to the nature of its process. A pollen perpetration sample has to 
be created by dilution and followed by centrifugation followed by a highly trained 
palynologist identifying the pollen grains visually and counting them. One gram of honey 
contains between 2,000 and 1 million pollen grains which can stem from more than 100 
different plants. This entire process is very time-consuming, labour-intensive, and costly. 
To determine a honey product, e.g. canola honey, at least 80 % of the pollen have to come 
from canola. The required numbers vary from honey to honey. 
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To address this issue, we worked with local beekeepers from the district of Minden-
Lübbecke, to identify the issues that occur with local beekeeping and identifying and 
classifying the origin of their honey produce. We developed a use case that shows the 
individual steps that are necessary in order to make the application of DL models feasible 
in such scenarios. 

2 Related Work 

The need and the benefits of an automated pollen recognition system were described as 
early as in 1996 [SF96]. Stillman and Flenley mention the time-consuming process of 
extraction and identification by manual preparation and analysis. The time of such an 
analysis is estimated with 2 to 10 hours. The authors identify specific requirements for 
applicable solutions, such as increased speed, objectivity, and determination. With the 
advent of Machine Learning (ML), the requirements for automated pollen classification 
can be met. The majority of methods for a visual pollen classification task can be put into 
two categories: ML methods that require a manual definition of the features that describe 
pollen classes distinctively. Features can be derived from morphological features [Ha18] 
or based on colour or texture features. Although a large number of defined features exist, 
as shown in [Re15], it still requires work and the result is more static than the second 
option; the DL approach, which works similarly to a black box principle. A deep neural 
network finds the determinative features and patterns in the pollen on its own. Only the 
hyper parameters of the network itself and the training process as such are adjustable. 
Theoretically, such methods can operate with an infinite number of new pollen classes. 

The largest obstacle is the absence of quality data sets. Most research is done on 
proprietary data sets that the researchers created or obtained themselves. This is 
problematic in multiple ways: it is difficult to validate the work of the authors and to 
compare different methods with each other since they are trained and evaluated on 
differing data sets. Therefore, it is not possible to make general statements about the 
performance and quality of the proposed methods, especially in its applicability. The data 
sets POLEN23E [Go16], by Duller et al. [Du99], and POLLEN13K [Ba20] are available 
and make up some of the exceptions. POLEN23E e.g. contains 805 images from 23 pollen 
classes, with a minimum resolution of 250x250 for each RGB image. The original authors 
of [Go16] use a Support Vector Machine (SVM) method and features based on colour, 
shape, and texture. An accuracy2 of 64 % was achieved. [SA18] used the same data set, 
however with a Convolutional Neural Network (CNN) and a Linear Discriminant 
Classifier and achieved an accuracy of 97 %. Similar results, also using CNNs, but with 
proprietary data sets, were achieved in [SHA20] (97.86 %) and [Kh18] (95.9 %). But 
again, these methods use different data as well as different numbers of pollen. 
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3 Method 

3.1 Data requirements and acquisition 

The largest problem, as already indicated in the introduction as well as in the related work, 
is the absence of freely available data. In order to train a DL model it is necessary to have 
a large number of images with specific qualitative standards. As of 2020, such data sets 
are sparse, as they are largely proprietary. POLEN23E e.g. fulfils the criteria, but it cannot 
be used in Germany, since the flora is specific to the Brazilian Savannah. Therefore, it is 
necessary to create a training data set that includes the common native species for the 
region, in which the application is intended to be deployed in. For this purpose, we worked 

together with local beekeepers from the Minden-Lübbecke region. A set of specific 
requirements have to be met to create images that can be used in a DL model: 

 The images have to be captured with a light microscope (LM) and at a magnification 
of at least 320 X to 1000 X (in accordance with the German DIN 10760). 

 Pollen have a spheroid shape, i.e. ellipsoids with two semi-diameters. This means 
that pollen are 3D objects and can therefore appear differently under the LM, 
depending on their position. It is necessary to obtain a large variety of positions and 
foci of the pollen grains to assure a high generalisation effect. 

 Pollen grains are best visible when isolated. However, pollen usually do not come 
in this ideal state. When pollen grains are cramped together in groups, adding liquids 
such as water on the object slide can disperse the pollen grains. It is important to 
consider the harmomegathic effect, i.e. the change of shape of the pollen when in a 
hydrated state. 

Fig. 1 Left: six different pollen classes from our work-in-progress data set. From left to right: 
Solidago canadensis, Tanacetum vulgare, Alnus glutinosa, Sinapis arvensis, Symphyotrichum 

novae-angliae, Helianthus annuus. Right: example of a pollen extraction from honey via 
sedimentation at 400 X magnification. 
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 Each individual pollen grain has to be labelled, this is done manually, however, 
segmentation or detection algorithms can support this process if required. 

Our own data set is work in progress, as shown in Figure 1. The data is collected from 
typical plants that grow in the area and are commonly found in honey yields. 

3.2 Deep Learning model 

If an adequate number of training images is acquired, the Machine Learning method has 
to be selected. Although not the only ones possible, but the most promising, DL methods 
achieve high accuracies in classifying pollen correctly. For visual tasks, CNNs are used. 
In our own experiments, we utilized the POLEN23 data set in order to validate the results. 
The data set contains 23 different pollen classes of which we removed 5 images per class 
for testing. The remaining images were randomly split into 80 % training data and 20 % 
validation data. The model achieved a validation accuracy of 96 %. When tested on 
isolated random samples (without cross-validation, in order to ensure real-life conditions) 
78 % were achieved. For this test we used a pre-trained ResNet-101 architecture [He16] 
with transfer learning.  

When tested on our own data (see Figure 1) with five classes (alnus glutinosa, helianthus 
annuus, solidago canadensis, symphyotrichum novae-angliae and tanacetum vulgare) and 
25 images per class (80-20 split) we achieved a validation accuracy of 84 % and when 
tested on three random samples per class we achieved a classification accuracy of 80 %. 
All of the pollen samples were correctly classified, except helianthus annuus. The random 
samples contained grains that were not as illuminated as the training data, therefore, the 
characteristic spike-like features on the exine surface are not visible3. 

The final decision from the network output can also be supported by an expert system that 
includes knowledge about e.g. the current season or the frequency of occurrence of certain 
pollen in the local area, so that an informed decision can be made in the case of uncertain 
classification results. 

Figure 2 illustrates all the necessary steps that our proposed solution requires. It is common 
practice, due to the complexity of DL models, to orientate oneself around best practices, 
in this regard, to models and networks that have proven to yield best results in the category 
of object detection and classification, e.g. the ResNet architecture, since the results from 
these areas are usually performed on uniform and standardized data sets. 

                                                           
3 This shows that individual features, such as shape, are not enough to determine the class correctly. However, 

in this case, the classification can be corrected by adding more data to the training set. 



 
Deep Learning in palynology 335 

 

 

Fig. 2: Workflow for a DL solution to honey pollen analysis, from data acquisition to actual 
deployment, where images of honey pollen samples are analysed 

4 Conclusion 

This work showed that DL methods make it possible to classify pollen samples with high 
accuracy. This applicability can be used to classify pollen quantities in honey samples, 
given that an adequate number of images of local pollen types is available. Our own 
experiments showed that it is possible to recreate high accuracy pollen classification 
results and possibly transfer them to our case of application. For that purpose, the creation 
of a local data set for the area of Minden-Lübbecke is in progress, of which we showed 
some examples. The data acquisition process is of critical importance, since most DL 
methods work only as well as their training input. 

5 Future Work 

The pollen collection for the creation of a local data set is still in progress. Quality 
standards have been set and when enough data is acquired, labelling and training of various 
state of the art DL networks to evaluate the highest performance will be performed. Work 
on an autonomous, light-weight hardware solution for pollen analysis, that is intended to 
take an object slide with a prepared pollen sample and perform the methods described in 
this work, is also in progress. We believe that in the future our proposed method can help 
to increase the speed and reduce the costs of manual pollen analysis performed in 
laboratories and institutes or even allow beekeepers to perform their own analysis, when 
the DIN requirements are met. 

 
  



 

336 Philipp Viertel and Matthias König 

 

References 

[SF96]  Stillman, E. C.; Flenley, J. R.: The needs and prospects for automation in palynology. 
In: Quaternary Science Reviews, vol. 15, no. 1, pp. 1–5, 1996. 

[Re15] Redondo, R. et.al.: Pollen segmentation and feature evaluation for automatic 
classification in bright-field microscopy. In: Computers and Electronics in Agriculture, 
vol. 110, pp. 56–69, 2015. 

[Du99]  Duller, A. et.al.: A pollen image database for evaluation of automated identification 
systems. In: Quaternary Newsletter, vol. 89, pp. 4–9, 1999. 

[Go16]  Gonçalves, A. B. et.al.: Feature Extraction and Machine Learning for the Classification 
of Brazilian Savannah Pollen Grains. In: PLOS ONE, vol. 11, no. 6, 2016. 

[Ba20]  Battiato, S. et.al.: Detection and Classification of Pollen Grain Microscope Images. In: 
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 
(CVPRW), pp. 4220–4227, 2020. 

[SA18]  Sevillano, V.; Aznarte, J. L.: Improving classification of pollen grain images of the 
POLEN23E dataset through three different applications of deep learning convolutional 
neural networks. In: PLOS ONE, vol. 13, no. 9, 2018. 

[SHA20]  Sevillano, V.; Holt, K.; Aznarte, J. L.: Precise automatic classification of 46 different 
pollen types with convolutional neural networks. In: PLOS ONE, vol. 15, no. 6, 2020. 

[Kh18]  Khanzhina, N. et.al.: Pollen grain recognition using convolutional neural network. In: 
ESANN European Symposium on Artificial Neural Networks, Computational 
Intelligence and Machine Learning, pp. 409-414, 2018. 

[Ha18]  Halbritter, H. et.al.: Illustrated Pollen Terminology. 2nd ed., Springer International, 2018. 

[He16]  He, K. et.al.: Deep Residual Learning for Image Recognition. In: IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016. 


