
How efficient are creatures with time-shuffled behaviors?

Patrick Ediger Rolf Hoffmann

Mathias Halbach

TU Darmstadt, FB Informatik, FG Rechnerarchitektur

Hochschulstraße 10, D-64289 Darmstadt

{ediger, hoffmann, halbach}@ra.informatik.tu-darmstadt.de

Abstract: The task of the creatures in the “creatures’ exploration problem” is to visit
all empty cells in an environment with a minimum number of steps. We have analyzed
this multi agent problem with time-shuffled algorithms (behaviors) in the cellular au-
tomata model. Ten different “uniform” (non-time-shuffled) algorithms with good per-
formance from former investigations were used alternating in time. We designed three
time-shuffling types differing in the way how the algorithms are interweaved. New
metrics were defined for such a multi agent system, like the absolute and relative effi-
ciency. The efficiency relates the work of an agent system to the work of a reference
system. A reference system is such a system that can solve the problem with the low-
est number of creatures with uniform or time-shuffled algorithms. Some time-shuffled
systems reached high efficiency rates, but the most efficient system was a uniform one
with 32 creatures. Among the most efficient successful systems the uniform ones are
dominant. Shuffling algorithms resulted in better success rates for one creature. But
this is not always the case for more than one creature.

1 Introduction

The general goal of our project is to optimize the cooperative behavior of moving creatures

in order to fulfill a certain global task in an artificial environment. A creature (another term:

agent) behaves according to an algorithm which is stored in the creature.

We distinguish uniform and time-shuffled systems of creatures. A uniform system com-

prises creatures with one uniform behavior (algorithm) only whilst a time-shuffled system

comprises creatures with generation-wise alternating behaviors. The goal of this inves-

tigation was to find out for the creatures’ exploration problem (explained below), which

algorithms “harmonize” best, meaning which combinations of algorithms with how many

creatures are the most efficient. Different measures for efficiency were defined and used

to compare the different systems. When we are speaking about efficiency you may think

of cost (e. g., Euros) which you have to pay in total for the involved creatures to fulfill the

task.

We are modeling the behavior by a finite state machine (Sec. 2). In the past we have tried

to find out the best algorithm for one creature by enumeration. The number of state ma-

chines which can be coded using a state table is M = (#s#y)(#s#x) where n = #s

93



is the number of states, #x is the number of different input states and #y is the num-

ber of different output actions. Note that M increases dramatically, especially with #s,

which makes it very difficult or even impossible to check the quality of all algorithms by

enumeration in reasonable time. By hardware support (FPGA technology) we were able

to simulate and evaluate all 1212 6-state algorithms (including algorithms with less than

6 states and including redundant ones) for a test set of 5 initial configurations [HHB06].

The 10 best algorithms (with respect to percentage of visited cells) were used in further

investigations to evaluate the robustness (using additional 21 environments) and the effi-

ciency of k > 1 creatures. It turned out that more than one creature may solve the problem

with less cost than a single one [HH07]. In our investigation we have concentrated on

time-shuffled systems using the previously found algorithms. This time we are using 16

new environments compared to the environments used before. Now we use a field of fixed

size 35 × 35 with a fixed number of obstacles (129). Thereby we are able to place the

creatures at the beginning in regular formations and the number of obstacles becomes a

constant which simplifies the analysis.

We have already started experiments using metaheuristics to optimize the algorithms. We

are optimistic to find agent algorithms for more complex agent problems and we will use a

cluster of FPGAs for that purpose to exploit the inherent parallelism in the metaheuristics.

Our current results also give a partial answer to the question: If algorithms are combined,

what are the expectation rates for good or bad combinations of them?

Modeling the behavior with a state machine with a restricted number of states and eval-

uation by enumerations was also undertaken in SOS [MSPPU02]. Additional work was

done by these authors using genetic algorithms. The creatures’ exploration problem based

on our model was further investigated in [DL06]. Randomness was added which led to a

higher degree of success. Our research in general is related to works like: Evolving op-

timal rules for cellular automata (CA) [Sip97, ST99], finding out the center of gravity by

marching pixels [FKSL07, FS05, KMF07], evolving hardware [US06], using evolutionary

algorithms and metaheuristics [Alb05].

The remainder of this paper is organized as follows. Sec. 2 describes how the problem

is modeled in the CA model. Sec. 3 describes how well only uniform creatures under

varying the environment solve the problem. Sec. 4 describes how efficient creatures with

time-shuffled behavior can solve the problem.

2 CA model for the creatures’ exploration problem

The problem is the following: p creatures are moving around in an environment that con-

sists of empty cells and obstacle cells in order to visit all reachable empty cells in the

shortest time. Creatures cannot move on obstacle cells, and only one creature can be lo-

cated on an empty cell at the same time. Creatures can look forward one cell ahead which

is in its moving direction. The creatures may perform four different actions: R (turn right

only), L (turn left only), Rm (move forward and simultaneously turn right), Lm (move

forward and simultaneously turn left).

94



If the “front cell” (the cell ahead) is not free, because it is an obstacle cell, another creature

stands on it, or a collision conflict is anticipated, the action R or L is performed. In all

other cases the action Lm or Rm is performed (Fig. 1). The detection of anticipated

conflicts is realized by an arbitration signal from the destination cell. Each creature sends

a request to its front cell, which sends back a grant signal if only one creature has sent a

request [HHB06].

creature in one
out of two
directions

obstacle or
creature

irrelevant

(a1) if (obstacle or creature) then turn (L/R)

(a2) if (anticipated conflict) then turn (L/R)

(b) if not((a1) or (a2)) then move and turn (Lm/Rm)

Figure 1: The conditions for the moving creatures’ rules

The modeling of the behavior was done by implementing the rules with a state machine

considered as a Mealy automaton with inputs (m, s), next state s and output d (Fig. 2).

An algorithm is defined by the contents of a state table assigned to the state machine. We

are coding an algorithm into a string representation or a simplified string representation by

concatenating the contents line by line to a string or a corresponding number, e. g.,

1L2L0L4R5R3R-3Lm1Rm5Lm0Rm4Lm2Rm string representation

= 1L2L0L4R5R3R-3L1R5L0R4L2R simplified string representation

The state table can be represented more clearly as a state graph (Fig. 2). If the state

machine uses n states, we call such an algorithm n-state algorithm. If the automaton is

considered as a Moore automaton instead of a Mealy automaton, the number of states will

be the product n × #r, where #r is the number of possible directions (4 in our case).

3 Uniform systems with one creature

In preceding investigations [HHB06] we could discover and evaluate the best 6-state al-

gorithms for one creature by the aid of special hardware. The behavior of all relevant

algorithms was simulated and evaluated for 26 initial test configurations (they are differ-

ent from the ones we are using here). The following 10 best algorithms were ranked using

a dominance relation with the criteria (1.) success, (2.) coverage and (3.) speed:

95



1 L
2 L

0 L

4 R

5 R

3 R
3 Lm

1 Rm

5 Lm

0 Rm
4 Lm

2 Rm

0 0
0 1

0 2

0 3

0 4

0 5
1 0

1 1

1 2

1 3

1 4
1 5

s r

v

m(a)

Lm

L

R

Rm

0 2

1

3 5

4

L

L

R R

LmLm

RmRm

Lm

L

R

Rm

0 2

1

3 5

4

L

L

R R

LmLm

RmRm

(b)s control state

r direction

v(r,d) new direction
m creature can move

L/R turn left/R if (m=1)

Lm/Rm turn left/R and move if (m=0)

d

s'
T

a
b

le
N

o
tF

re
e

T
a
b

le
F

re
e

Figure 2: A state machine (a) models a creature’s behavior. Corresponding 6-state algorithm (b)

1. G: 1L2L0L4R5R3R-3L1R5L0R4L2R 6. E: 1R2L0R4L5L3L-3R4R5R0L1L2R

2. B: 1R2R0R4L5L3L-3R1L5R0L4R2L 7. F: 1R2L0L4R5R3R-3L4L5L0R1L2R

3. C: 1R2R0R4L5L3L-3R4R2L0L1L5R 8. H: 1L2L3R4L2R0L-2L4L0R3L5L4R

4. A: 0R2R3R4L5L1L-1R5R4R0L2L3L 9. I: 1L2L3L4L2R0L-2L4L0R3R5L4R

5. D: 1R2R3R1L5L1L-1R0L2L4R3L1L 10. J: 1R2R3R0R4L5L-4R5R3L2L0L1L

The following definitions and metrics are used:

• k := number of creatures

• R := number of empty cells

• g := generation (time steps)

• r(g): = number of visited cells in generation g
• rmax := the maximum number of cells which can be visited for g → ∞
• gmax := the first generation in which rmax is achieved

• e := rmax/R[%], the coverage or exploration rate, i. e. visited cells
all empty cells

• speed := R/gmax (only defined for successful algorithms)

• step rate := 1/speed (the number of cells visited in one generation)

In order to find time-shuffled algorithms that are robust against changes of the environ-

ments, we have created a set of I = 16 environments which all contain 129 obstacle cells

(Fig. 3). Then the algorithms A to J were simulated on them with one creature. The results

show that none of the algorithms is capable of solving every environment successfully

(Tab. 1). The best algorithms with respect to these environments are the algorithms B,

G and J. Algorithm B has a mean speed (for k = 1 creature, see definition in Sec. 4)

of 16.12% for the successful environments. The highest reachable mean speed would be

100% (visiting one new empty cell in each step). The mean step rate, which is the recipro-

cal of the mean speed, is 5.31 (every 5.31 steps an empty cell is visited). We can interpret

the mean step rate as work or cost which has to be paid for a creature to visit a cell (e. g.,

5.31C per empty cell to visit, or to “clean” one “square meter”, if you think of cleaning a

room). Fig. 4 shows an example how algorithms may behave in principle. Algorithm B is

successful for the environments 6, 10 and 16 and the speed is comparable (around 960 /

5400). Algorithm J is not successful for the environments 6 and 10.

96



manually

designed

symmetrical

(Env0 – Env3)

manually

designed

asymmetrical

(Env4 – Env9)

6 times randomly

generated (Env10 –

Env15)

Figure 3: The 16 environments with 35 × 35 cells, manually designed or randomly generated. Each
environment comprises R = 960 empty cells and 129 obstacles.

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000 6000

V
is

it
e
d

C
e
lls

r

Generations g

Algorithm B

R
Env6

Env10
Env16

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000 6000

V
is

it
e
d

C
e
lls

r

Generations g

Algorithm J

R
Env6

Env10
Env16

Figure 4: Curves showing the number of visited cells r(g) (generations g on the x-axis, visited cells
r on the y-axis) for the algorithms B and J for the environments Env6, Env10 and Env16. R = 960.

4 Multi creature and time-shuffled systems

In [HH07, HH06] we have evaluated that increasing the number of creatures can lead to

synergy effects, i. e., the uniform creatures can work more efficiently together than by their

own. 1 to 64 creatures were arranged on the cellular field symmetrically side by side at the

borders (Fig. 5). The same distribution was used for the following investigation.

In order to investigate the performance of time-shuffled systems (multi agent system with

time-shuffled algorithms), we have simulated all pairs (X, Y ) of the former best single

algorithms (A to J) on all 16 environments (Fig. 3) whereas the uniform pairs (X, X) are

included for comparison. We used three different modes of time-shuffling the different

algorithms (Fig. 6):

• common (c), each creature works with both algorithms alternating them generation-

97



A
lg

o
ri

th
m

S
u

c
c
e
s
s

E
n

v
0

S
u

c
c
e
s
s

E
n

v
1

S
u

c
c
e
s
s

E
n

v
2

S
u

c
c
e
s
s

E
n

v
3

S
u

c
c
e
s
s

E
n

v
4

S
u

c
c
e
s
s

E
n

v
5

S
u

c
c
e
s
s

E
n

v
6

S
u

c
c
e
s
s

E
n

v
7

S
u

c
c
e
s
s

E
n

v
8

S
u

c
c
e
s
s

E
n

v
9

S
u

c
c
e
s
s

E
n

v
1
0

S
u

c
c
e
s
s

E
n

v
1
1

S
u

c
c
e
s
s

E
n

v
1
2

S
u

c
c
e
s
s

E
n

v
1
3

S
u

c
c
e
s
s

E
n

v
1
4

S
u

c
c
e
s
s

E
n

v
1
5

T
=

N
o

.
S

u
c
c
e
s
s
fu

l

to
ta

l
v
is

it
in

g

p
e
rc

e
n

ta
g

e

m
e
a
n

g
_
m

a
x

(s
u

c
c
e
s
s
fu

l)

m
e
a
n

r_
m

a
x

m
e
a
n

s
p

e
e
d

(s
u

c
c
e
s
s
fu

l)

m
e
a
n

s
te

p
ra

te

B O O O O X O X X X O O X O X X O 7 88,74% 5956 852 16,12% 5,31

G O O O O X O X X X O O X O X X O 7 87,32% 5998 838 16,01% 5,10

J O O O O O X O X O X X O X X X O 7 85,89% 6813 825 14,09% 5,78

C X O O O X O X X O O O O O X X O 6 86,92% 5626 834 17,06% 4,86

E O O O O O X O X O X O O O X O O 4 83,42% 6664 801 14,41% 5,20

A O O X X O O O O O O O O O O O X 3 82,38% 14297 791 6,71% 8,32

F O O O O O O O O O X O O O X O O 2 73,08% 6405 702 14,99% 4,60

D O O O O O O O O O O O O O O O O 0 47,55% - 456 - 2,96

H O O O O O O O O O O O O O O O O 0 36,20% - 348 - 4,69

I O O O O O O O O O O O O O O O O 0 36,20% - 348 - 4,75

Table 1: Results of the simulation of one creature. The values are averaged over all environments,
respectively over the T successfully visited environments in the case of “mean gmax” and “mean
speed”. An X in the columns “Success Envn” indicates that the environment was successfully
solved, an O that it was not.

1 Creature: only at upper border
2 Creatures: at upper and lower border
4 Creatures: 1 at all borders
8 Creatures: 2 at all borders
12 Creatures: 3 at all borders
16 Creatures: 4 at all borders
28 Creatures: 7 at all borders
32 Creatures: 8 at all borders
60 Creatures: 15 at all borders
64 Creatures: 16 at all borders

Figure 5: The arrangement of creatures in a multi creature system.

wise (odd/even). But it has only one common state s which is shared by the algo-

rithms.

• simultaneous (s), each creature works with both algorithms simultaneously. Each of

the algorithm has its own state (sx, sy). The output is taken alternating from X/Y
for t = 0/1. Both states are updated in each generation.

• alternate (a), an individual state is used for each algorithm. For t = 0 the output is

taken from X and only the state sx is updated. For t = 1 the output is taken from Y
and only the state sy is updated.

The shuffling modes c and s are identical for all “pairs” (X, X). In that case they are in

fact uniform systems.

One creature time-shuffled. The results (Tab. 2) show that one creature with time-

shuffling can solve more environments successfully than the uniform systems. With the

alternate shuffling up to 12 environments can be solved (B, J), 11 with the simultaneous

variant (A, G) and the best pair with the common time-shuffling is (G, F ).

98



s

t

m

t

X

Y

d

common (c)

d
sX

m

t

X

Y

sY

simultaneous (s)

sX

t

m

t

X

Y

d

ce
sY

alternate (a)

Figure 6: Types of time-shuffling of creature state machines. X is the first algorithm, Y the second.
t = 0/1 is a function of the generation counter and controls the outputs and in the cases c and a also
the state transition. ce (clock enable) is a signal that enables the state transition.

A
lg

o
ri

th
m

X

A
lg

o
ri

th
m

Y

S
h

u
ff

li
n

g

S
1

S
2

S
3

S
4

S
6

S
7

S
8

S
9

S
1

0

S
1

1

S
1

2

S
1

3

S
1

4

S
1

5

S
1

6

S
1

7

T
=

N
o

.

S
u

c
c

e
s

s
fu

l

to
ta

l
v

is
it

in
g

p
e

rc
e

n
ta

g
e

m
e

a
n

s
p

e
e

d

(s
u

c
c

e
s

s
fu

l)

G F c X O O O X O O O X O X O X X X X 8 85,44% 9,51%

E C c X O O O X O O O X O X X X X O X 8 82,50% 9,61%

C B c O O O O X O X O X X X O X O X X 8 71,50% 11,54%

A G s O X O X X X X O X O X O X X X X 11 96,33% 3,82%

J B s O X O O X O X O O X X O X X X X 9 92,42% 5,07%

B J s O X O O X O X O X X X O X X O X 9 85,61% 6,01%

B J a X X X O X O X O X O X X X X X X 12 85,84% 5,79%

B A a X O O X X O X O X X X X X O X X 11 99,38% 4,48%

C A a X X O X X O X X X O X X X O X O 11 95,24% 4,90%

Table 2: The three pairs of algorithms for each kind of shuffling that have the most successes (1.) and
the highest total visiting percentage (2.) with one creature. The overall most successful algorithm
pairs are shown in bold letters.

In the following we will denote a system in the way XYp-k, where XY is the pair of algo-

rithms, k the number of agents and p the mode of time-shuffling (optional). E. g., ABa-8

is a system with 8 creatures using an alternate time-shuffling of the algorithms (A,B).

Successful systems, depending on the number of creatures. By increasing the number

of creatures the success rate also increases (Tab. 3). At least 8 creatures are necessary to

visit successfully all environments. The systems J-8 and nine other time-shuffled systems

with 8 creatures are successful. With 64 creatures 9 out of 10 uniform systems (B-64 to

J-64) and 58 out of 280 time-shuffled systems are successful. In total 41/100 uniform and

185/2800 time-shuffled systems are successful for all 16 environments.

Metrics for time-shuffled systems with more than one creature. To be able to evaluate

and compare time-shuffled systems (including uniform systems) with a different number

of creatures we have defined additional metrics:

99



NO. OF SUCCESSFUL NO. OF SUCCESSFUL SYSTEMS / NO. OF COMBINATIONS

CREATURES (UNIFORM ONLY)
(TIME-SHUFFLED)

c+s+a common (c) simultaneous (s) alternate (a)

1 - 0/280 0/90 0/90 0/100

2 - 0/280 0/90 0/90 0/100

4 - 0/280 0/90 0/90 0/100

8 J 9/280 1/90 3/90 5/100

12 B,C,J 9/280 1/90 5/90 3/100

16 B,C,E,G,J 16/280 2/90 7/90 7/100

28 B,C,D,E,I,J 25/280 6/90 8/90 11/100

32 C,D,E,F,G,H,I,J 23/280 7/90 6/90 10/100

60 B,C,D,E,F,G,H,I,J 45/280 12/90 14/90 19/100

64 B,C,D,E,F,G,H,I,J 58/280 13/90 20/90 24/100

total 41/100 185/2800 43/900 63/900 79/1000

Table 3: Percentage of algorithm pairs that solve successfully all 16 environments

• mean speed per creature = ms(k) =
rmax,i

k· gmax,i

. The speed ms(k) is an average

over all environments i and is related to one creature. This measure expresses how

fast a creature can visit a cell on average (maximum is 100%). This measure should

not be used if any environment can not be successfully visited because then the mean

speed might be believed higher than reasonable.

• mean normalized work = mw(k) =
k· gmax,i

rmax,i

= 1
ms(k) . This value represents the

work which is necessary, or the costs one has to pay for one creature to visit a cell.

• relative efficiency = ms(XY -k)
ms(XY -kmin) . First a reference system XY-kmin has to be found

which can solve the problem with the lowest number kmin of creatures. The relative

efficiency relates the mean speed of the system XY-k to the mean speed of the ref-

erence system XY-kmin. This measure compares the costs of the reference system

XY-kmin with the cost of the system XY-k. If the relative efficiency is higher than

one, the work can be done cheaper with the system XY-k. Two similar measures can

be defined if the uniform reference system X-kmin or the uniform reference system

Y-kmin is chosen instead of XY-kmin.

• absolute efficiency = ms(XY -k)
ms(UV -kmin) . In distinction to the relative efficiency another

reference algorithm pair is used. The reference is the fastest of any algorithm pair

UV (including the uniform “pairs” UU) which can solve the problem with a min-

imum number of creatures. A similar measure can be defined if the fastest of any

uniform reference systems U-kmin is chosen instead of UV-kmin.

The efficiency measures are only defined if a kmin exists and if the system XY-k solves all

16 environments successfully. We have assumed for the reference algorithm the common

time-shuffling mode because it is the least complex (only one state register).

The fastest systems. In the following evaluations we will only take into account those

systems that were successful on all environments. The system BCc-64 is the fastest, need-

100



ing only 218 generations on average to solve the problem (Tab. 4). 8 of the 10 fastest pairs

are uniform systems.

N
o

.
o

f

C
re

a
tu

re
s

(k
)

A
lg

o
ri

th
m

X

A
lg

o
ri

th
m

Y

S
h

u
ff

li
n

g

m
e
a
n

g
_
m

a
x

m
e
a
n

s
p

e
e
d

p
e
r

c
re

a
tu

re

m
e
a
n

n
o

rm
a
li

z
e
d

w
o

rk

a
b

s
o

lu
te

e
ff

ic
ie

n
c
y

c
o

m
p

a
re

d

to
J
8

64 B C c 218 6,89% 14,51 € 1,038

60 J J u 224 7,13% 14,03 € 1,073

60 B C c 233 6,86% 14,58 € 1,033

60 G G u 245 6,52% 15,34 € 0,982

64 J J u 257 5,83% 17,15 € 0,878

60 C C u 257 6,22% 16,09 € 0,936

64 B B u 261 5,76% 17,38 € 0,867

60 B B u 276 5,80% 17,25 € 0,873

64 C C u 285 5,27% 18,99 € 0,793

64 G G u 314 4,78% 20,92 € 0,720

Table 4: The 10 absolute fastest systems (sorted ascending by “mean gmax”) which solve all 16
environments. “u” in shuffling means that these are actually uniform systems.

The most efficient systems. When looking at Tab. 5 you will notice that the most efficient

(absolute efficiency) system J-32 is uniform with the efficiency of 1.184. Furthermore

7 of the top ten (absolute efficiency) are uniform. The reference system is J-8 for all

the systems. The three time-shuffled systems with efficiencies higher than one are BCc-

28/64/60. We can conclude that only common time-shuffling led to efficiencies higher

than one but not in an amount that was expected when we had started this investigation.

Time-shuffled systems with one creature behaved much better than uniform systems with

one creature, but it cannot be deduced that time-shuffled systems always behave better

than uniform systems.

Considering only successful systems, 7 out of 41 uniform systems and 3 out of 185 time-

shuffled systems reach an absolute efficiency higher than one. These results give a hint on

what will happen when good agents are randomly combined through time-shuffling, e. g.,

during genetic methods: only a low percentage will be better than their “parents”.

Tab. 5 includes also values for the relative efficiencies which can get higher than the abso-

lute efficiencies, e. g., the relative efficiency of BCc-28 compared to B-12 is 1.881.

We have also counted the different types of conflicts (Tab. 5): (a) static obstacle is on

the front cell, (b) another creature is on the front cell (dynamic obstacle), (c) anticipated

conflicts (2, 3 or 4 creatures want to visit the same cell). At the moment it is not clear,

whether there is a significant relation between the efficiency and the types and frequency

of the conflicts.

The overproportionate gain of efficiency for parallel systems with more than one creature

can be interpreted as “synergy”. We presume this effect is due to many reasons, like: Crea-

tures react individually to their local environment and can be in different states, additional

communication implicitely exists by the conflict anticipation mechanism and creatures can

start at different positions which can be an advantage.

101



N
o

.
o

f
C

re
a
tu

re
s

(k
)

A
lg

o
ri

th
m

X

A
lg

o
ri

th
m

Y

S
h

u
ff

li
n

g

m
e
a
n

g
_
m

a
x

m
e
a
n

s
p

e
e
d

p
e
r

c
re

a
tu

re

m
e
a
n

n
o

rm
a
li

z
e
d

w
o

rk

m
e
a
n

c
o

n
fl

ic
ts

(c
)

m
e
a
n

c
o

n
fl

ic
ts

(b
)

m
e
a
n

c
o

n
fl

ic
ts

(a
)

m
e
a
n

c
o

n
fl

ic
ts

p
e
r

c
re

a
tu

re

c
o

n
fl

ic
ts

p
e
r

v
is

it

re
la

ti
v
e

e
ff

ic
ie

n
c
y

(u
n

if
o

rm
X

)

re
la

ti
v
e

e
ff

ic
ie

n
c
y

(u
n

if
o

rm
Y

)

a
b

s
o

lu
te

e
ff

ic
ie

n
c
y

c
o

m
p

a
re

d
to

J
-8

re
a
lt

iv
e

e
ff

ic
ie

n
c
y

(c
o

m
m

o
n

X
Y

)

k
_
m

in
X

k
_
m

in
Y

k
_
m

in
X

Y

32 J J u 382 7,86% 12,72 € 8 7 60 74 0,08 1,184 1,184 1,184 3,113 8 8 8

28 B C c 437 7,85% 12,74 € 11 6 70 88 0,09 1,881 1,527 1,182 4,697 12 12 28

16 J J u 768 7,81% 12,80 € 8 6 126 140 0,15 1,176 1,176 1,176 3,092 8 8 8

28 B B u 456 7,52% 13,30 € 9 8 68 84 0,09 1,803 1,803 1,132 4,044 12 12 12

12 J J u 1069 7,48% 13,36 € 8 7 155 170 0,18 1,127 1,127 1,127 2,963 8 8 8

28 J J u 463 7,41% 13,49 € 8 8 69 86 0,09 1,116 1,116 1,116 2,934 8 8 8

28 C C u 475 7,22% 13,85 € 9 8 72 90 0,09 1,404 1,404 1,087 1,664 12 12 12

60 J J u 224 7,13% 14,03 € 9 10 35 54 0,06 1,073 1,073 1,073 2,822 8 8 8

64 B C c 218 6,89% 14,51 € 10 9 35 54 0,06 1,652 1,341 1,038 4,126 12 12 28

60 B C c 233 6,86% 14,58 € 9 10 36 55 0,06 1,644 1,334 1,033 4,105 12 12 28

8 J J u 1807 6,64% 15,06 € 10 6 262 278 0,29 1,000 1,000 1,000 2,629 8 8 8

Table 5: The top 10 most absolute efficient (lowest total costs) non-uniform systems. Constraint: all
algorithm pairs are successful in all 16 environments (visiting percentage = 100%). “u” in shuffling
means that these are actually uniform systems.

5 Conclusion

The creatures’ exploration problem was investigated in the CA model for multiple crea-

tures using time-shuffled combinations of 10 algorithms (behaviors). These algorithms had

shown a good performance in former investigations. The analysis was performed for 16

new environments of size 35 × 35 and 129 obstacles each. New metrics have been defined

for such multi creature systems, especially the mean speed, the relative efficiency (compar-

ing the work of a system with an algorithmic similar system using the minimum number of

creatures which can solve the problem), and the absolute efficiency (comparing the work

of a system with an algorithmic potentially different system using the minimum number

of creatures which can solve the problem). A single creature is not successful for all en-

vironments. One time-shuffled creature was more successful but still could not visit all

environments successfully. The problem could only be solved using at least 8 creatures for

the uniform system J-8 and nine other time-shuffled systems. 185 time-shuffled systems

out of all 2800 time-shuffled combinations were successful. The overall fastest system is

the time-shuffled system BJc-64, but it is not the most efficient. The most efficient system

is uniform: J-32. It turned out that the system BCc-28 (28 creatures, algorithms B and

C, time-shuffled with a common state) is 18% more efficient than the uniform reference

system J-8. Under the top ten most efficient systems are 3 time-shuffled and 7 uniform

ones.

Our future work is directed to investigate other methods of time-shuffling or of combin-

ing different algorithms. It is also promising to compare creatures which are different in

space (non-uniform), study the relation between conflicts and efficiency, and optimizing

the behavior through heuristics.

102



References

[Alb05] Enrique Alba. Parallel Metaheuristics: A New Class of Algorithms. John Wiley &
Sons, NJ, USA, August 2005.

[DL06] Bruno N. Di Stefano and Anna T. Lawniczak. Autonomous Roving Object’s Coverage
of its Universe. In CCECE, pages 1591–1594. IEEE, 2006.

[FKSL07] Dietmar Fey, Marcus Komann, Frank Schurz, and Andreas Loos. An Organic Com-
puting architecture for visual microprocessors based on Marching Pixels. In ISCAS,
pages 2686–2689. IEEE, 2007.

[FS05] Dietmar Fey and Daniel Schmidt. Marching-pixels: a new organic computing
paradigm for smart sensor processor arrays. In Nader Bagherzadeh, Mateo Valero,
and Alex Ramı́rez, editors, Conf. Computing Frontiers, pages 1–9. ACM, 2005.

[HH06] Rolf Hoffmann and Mathias Halbach. Are Several Creatures More Efficient Than a
Single One? In Samira El Yacoubi, Bastien Chopard, and Stefania Bandini, editors,
ACRI, volume 4173 of Lecture Notes in Computer Science, pages 707–711. Springer,
2006.

[HH07] Mathias Halbach and Rolf Hoffmann. Solving the Exploration’s Problem with Sev-
eral Creatures More Efficiently. In Roberto Moreno-Dı́az, Franz Pichler, and Alexis
Quesada-Arencibia, editors, EUROCAST, volume 4739 of Lecture Notes in Computer
Science, pages 596–603. Springer, 2007.

[HHB06] Mathias Halbach, Rolf Hoffmann, and Lars Both. Optimal 6-State Algorithms for the
Behavior of Several Moving Creatures. In Samira El Yacoubi, Bastien Chopard, and
Stefania Bandini, editors, ACRI, volume 4173 of Lecture Notes in Computer Science,
pages 571–581. Springer, 2006.

[KMF07] Marcus Komann, Andreas Mainka, and Dietmar Fey. Comparison of Evolving Uni-
form, Non-uniform Cellular Automaton, and Genetic Programming for Centroid De-
tection with Hardware Agents. In Victor E. Malyshkin, editor, PaCT, volume 4671 of
Lecture Notes in Computer Science, pages 432–441. Springer, 2007.

[MSPPU02] Bertrand Mesot, Eduardo Sanchez, Carlos-Andres Peña, and Andres Perez-Uribe.
SOS++: Finding Smart Behaviors Using Learning and Evolution. In R. Standish,
M. Bedau, and H. Abbass, editors, Artificial Life VIII: The 8th International Confer-
ence on Artificial Life, pages 264–273, Cambridge, Massachusetts, 2002. MIT Press.

[Sip97] Moshe Sipper. Evolution of Parallel Cellular Machines, The Cellular Programming
Approach, volume 1194 of Lecture Notes in Computer Science. Springer, 1997.

[ST99] Moshe Sipper and Marco Tomassini. Computation in artificially evolved, non-uniform
cellular automata. Theor. Comput. Sci., 217(1):81–98, 1999.

[US06] Andres Upegui and Eduardo Sanchez. On-chip and on-line self-reconfigurable adapt-
able platform: the non-uniform cellular automata case. In IPDPS. IEEE, 2006.

103




