
AutoStudio: A Generic Web Application for Transforming

Dataflow Programs into Action

Nikhil-Kishor Rane, Omran Saleh

Technische Universität Ilmenau, Ilmenau, Germany

{first.last}@tu-ilmenau.de

Abstract:
In this paper, a user-friendly, interactive, and easy-to-use web-based application,

is introduced. “AutoStudio” is a generic application where the users can generate
dataflow programs for different dataflow languages, such as PipeFlow and Pig, using a
drag and drop functionality. Using this application, the users can assemble the opera-
tors that comprise a particular program without being an expert in the target language
and without his/her awareness of its operators and constructs. Therefore, the rapid
development can be achieved. Our application also provides additional functionalities
which makes it a “One-Stop-App” such as compiling, saving, executing, and checking
the status of the generated dataflow programs.

1 Introduction

In today’s world, an increasing amount of data is becoming obtainable over the internet.

With the growth of systems focusing on the data processing, there is always a requirement

of devising innovative ways of processing more data in less time, i.e., the big data chal-

lenge. Recently, several platforms have been developed to address this challenge. Typ-

ically, some of these platforms, e.g., PipeFlow [SBS15] and Pig1, provide a declarative

interface in the form of dataflow specifications where the processing steps are described

by programs or scripts formulated as a sequence of statements. Each statement declares

an operator which defines a specific task for manipulating the data, i.e., tuples. The flow

of data is illustrated as lines or pipes between the operators. By using the output pipe of

one operator as input pipe of another operator, a dataflow graph is formed.

However, the user currently has to manually perform all tasks of creating the dataflow

script, editing, and compiling. Though, several text-based plug-in editors have been devel-

oped, e.g., pig-eclipse2 and pig-mode3 which are dedicated only for Pig4 language, these

editors focus mainly on syntax highlighting, code completion, and indentation. Namely,

if the user needs to create and edit a particular dataflow script then he/she should be well

versed with the syntax and programming constructs of the language. Therefore, no rapid

development is possible as user needs to proceed by writing each programming statements

1http://pig.apache.org
2https://code.google.com/p/pig-eclipse/
3https://github.com/motus/pig-mode
4PipeFlow did not have any editor

655



correctly. Additionally, in these conventional approaches, concurrency is not supported

and many users will not be able to simultaneously use the application. Moreover, the user

also needs to manually check the status of programs in execution, which becomes cum-

bersome as the number of programs increases. This manual approach could lead to time

and effort wastage if any errors or misconfigurations occur. These limitations motivated us

to design a generic application to automate the whole process of generating and executing

different dataflow languages; and as a result, AutoStudio was implemented.

2 AutoStudio System

The platform that we envision should be used by different people and organizations. It

needs to be deployed only once and each user can access the application, create, and ex-

ecute different dataflow scripts, such as PipeFlow and Pig, remotely from any location.

With the advent of Internet, web application development has gained popularity. Web

applications, presently, started substituting desktop applications for reasons of portability

and usability. Thus, we have developed the AutoStudio. It is a very user friendly, in-

teractive, and easy to use web application to run cross-platform using HTML5, Draw2D

touch5, and node.js6. It also relies heavily on JavaScript Object Notation (JSON) for data

exchange and pre-compiled templates “hogan.js”7. AutoStudio’s services and components

are mentioned in Sect. 3 and Sect. 4, respectively. To perform any task, a user has to login

to AutoStudio with a user ID and password. Once the user is successfully logged in, the

user’s home page is displayed with a list of apps and flow-designs sorted in the order they

were last accessed as shown in Figure 1. This is the point where the workflow begins.

Below is a brief description of the terms which make up AutoStudio.

Applications or “Apps”: App is AutoStudio’s terminology of referring to the design part

of a workflow. An app defines a set of operators, connection types, properties, parameters,

etc., which have pre-defined semantics. The semantics are later applied to a flow-design to

transform it into a target language script. For instance, the apps which focus on PipeFlow

and Pig scripts are PipeStudio and PigStudio, respectively.

Flow-design: The diagram a user creates in AutoStudio which is later transformed into

a script is known as a flow-design. A flow-design corresponds to a specific app having

pre-defined semantics. AutoStudio allows CRUD8 operations on a flow-design and stores

it primarily as JSON on the server. However, it can also be exported in JSON, SVG or

PNG formats from AutoStudio at the click of a button.

Workflow: The point at which a user launches an app and starts creating a flow-design to

the point when it actually executes on the server is called as workflow.

5http://www.draw2d.org/draw2d/index.html
6http://www.nodejs.org
7http://twitter.github.io/hogan.js/
8Create, read, update, and delete

656



Figure 1: AutoStudio home page Figure 2: AutoStudio dashboard

3 AutoStudio Services

AutoStudio application provides several functionalities which makes it a “One-Stop-App”

to handle the complete workflow. It enables users to leverage the emerging dataflow lan-

guages graphically via a collection of operators which could be “dragged and dropped”

onto a drawing canvas (as in Figure 2). These operators are represented by icons. The user

can assemble the operators in order to create a dataflow graph for a particular language

in a logical way and visually show how they are related, and from this graph, equivalent

script can be generated. This makes the user to be not aware of the language syntax and

its constructs. Based upon the user’s selection of apps from the home page, the right op-

erators will be shown. By clicking on the operator icon, a pop-up window appears to let

the user specify the parameters of operators, which are required. Moreover, the user can

display the help contents for each operator. Besides these functionalities, the application

also has a feature of script execution via calling the respective engine and displaying script

execution result instantly and in real-time as well as emailing the user when the execution

is complete. The application provides the options of saving the generated scripts or flow-

designs for future reference, loading the saved script, and executing it whenever required.

Adding new operators: AutoStudio relies on JSON data for construction of its apps.

Each app in our application is modeled in a single JSON file. Therefore, adding an opera-

tor, connection type or a container involves only adding the required {key:value} pairs in

the app’s JSON file. In our example of PipeStudio, this file is called pipestudio.json.

Adding new apps: Since our application is designed to be generic, a few components

are needed in order to add a new app (currently, these components can be added manually,

later, an interface can be used to configure the new app). These components are as follows:

1. JSON file: contains all configurations of operators, connection types, and containers.

2. Resources: all the required resources for the app like images, properties dialogs, etc.

3. Database: a database entry is required to make AutoStudio aware of this new app.

The flow-designs created using AutoStudio are stored in separate database collections.

Hence, each app has its own collection which provides flexibility to apps to handle their

flow-designs as per requirement. 4. Parser: to parse Draw2D touch output into a target

language. For instance, in PipeStudio, the parser parses the output into PipeFlow language.

5. Executor: a shell script or command to run the parsed dataflow script.

657



4 AutoStudio Components

AutoStudio prominently uses open source softwares and frameworks. It should work out of

the box in any modern browser on any platform supporting HTML5. The components are

divided into two parts. The first part is the client side which uses HTML5, JavaScript, Cas-

cading Style Sheets (CSS), jQuery (and helping libraries), twitter bootstrap, and hogan.js.

Mostly, they are used for building the graphical user interface, performing Ajax requests,

file uploading and downloading, etc. AutoStudio extensively uses pre-compiled hogan

templates where the data returned from the server is simply passed to these templates for

quick rendering. In addition, Draw2D touch is used to enable creation of diagram applica-

tions in a browser by creating and manipulating operators and connections.

The second part is the server side which consists of the node.js web server and a database.

The logic on the server side is completely implemented using node.js and its supporting

modules. The event-driven, non-blocking I/O model of node.js makes it fast, light-weight,

and efficient. It is greatly suitable for data-intensive real-time applications. Several node.js

modules are used. Nconf is used as an object-store for easy storage and retrieval of config-

uration properties for AutoStudio, its apps, parsers, etc. Nodemailer is used to send emails

from node.js. Our application uses this module to send notifications to registered email IDs

when the execution of a flow-design is complete. Socket.io is a real-time framework server

for node.js and used extensively to send real-time stats to the client when a flow-design

is in execution. On the database side, the most popular No-SQL database MongoDB is

used. It is an open source, JSON-style document oriented, and supports conventional as

well as additional properties for data-intensive applications. It is used to store and retrieve

the users and the saved flow-designs information.

5 Demonstration

During the demo session we will bring a computer running our application and demon-

strate its capabilities, ease-of-use, generics, and supported-services as above-mentioned

by employing real examples. The presenter will show how the users can navigate through

different apps in AutoStudio. He will create different dataflow programs for different lan-

guages by dragging and dropping the operators. Furthermore, he will compile and execute

these scripts by using our application. Thus, the audience can see real-time results and

check the status of the running programs. Additional functionalities also will be shown

such as saving and loading the scripts as well as emailing the user when the execution is

complete. Moreover, the presenter will demonstrate how to extend any of the available

apps, e.g., using PigStudio or PipeStudio as backend, and add new operators on-the-fly.

References

[SBS15] Omran Saleh, Heiko Betz, and Kai-Uwe Sattler. Partitioning for Scalable Complex Event
Processing on Data Streams. In New Trends in Database and Information Systems II,
pages 185±197. 2015.

658


