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Abstract: Network calculus is a deterministic queuing theory that has gained increas-
ing attention in recent time. Founded on min-plus algebra it resorts to intuitive con-
volution formulae for efficient concatenation of servers and derivation of related per-
formance bounds. Yet, the pessimistic worst-case analysis of deterministic network
calculus gave rise to probabilistic counterparts that aim at utilizing the smoothing ef-
fects of statistical multiplexing by allowing for certain violation probabilities. Related
theories are, however, significantly more complicated and still subject to research. To
advance theory this paper evolves server models for probabilistic network calculus that
are based on moment generating functions to efficiently utilize statistical multiplexing
and the independence of flows.

1 Introduction

Network calculus [3, 7] is a min-plus system theory that facilitates the efficient derivation
of performance guarantees for single servers and owing to a fundamental concatenation
theorem also for networks. These service guarantees comprise deterministic delay, back-
log, and output bounds. However, the conservative analysis of network calculus generally
considers the worst-case and thus tends to overestimate resource requirements.

In current research this pessimistic view is relaxed by permitting bounds to be exceeded
with certain usually small violation probabilities. Thereby the statistical gain obtained
from multiplexing independent flows can be utilized efficiently to improve resource uti-
lization. The issue of statistical multiplexing has gained significant attention, for example
within the theory of effective bandwidth [3, 6], where moment generating functions of
traffic arrivals are applied beneficially.

Using the Chernoff bound related traffic models have been adopted in the pioneering work
on stochastic (o, p)-calculus [2] which is continued in [3] and introduced to the framework
of network calculus in [1] where the notable concept of effective envelopes is devised.
The relation to the theory of effective bandwidth is elaborated in [8]. Recently, a general
network calculus with moment generating functions was derived in [5], where this work
evolves corresponding server models.
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2 Preliminaries

In the context of network calculus flows are described by cumulative arrival functions
F(t), where F(t) is the amount of data seen in an interval [0, ¢] witht € N = {0,1,2,... }.
Thus, F'(0) = 0 and F(¢) is increasing, that is F'(t) > F(s) forallt > s and s > 0.

In contrast to known deterministic network calculus [3, 7] we use a definition of arrival
and service curves at a given local time instance u as proposed in [5].

Definition 1 (Local Arrival and Service Curves). Consider an increasing stochastic se-
quence F'(t) which describes the cumulative arrival function of a traffic flow. Then A, ()
is a local arrival curve at time v if for all ¢ > 0 and any u > ¢

Au(t) > F(u) — F(u—t).

Assume the sequence F'(¢) is input to a network element and F”(¢) is the respective output.
Then B, (t) is a local service curve at time u if for any u > ¢.

F'(u) > tei[r(l)f ][F(u — 1)+ Bu(t)].

)

Note that the definition of local service curve corresponds to the concept of dynamic server
with time varying capacity in [3]. However, in this work the dependence on the local time
instance v is eliminated by assuming stationarity such that the index u can be dropped [5].

The probabilistic network calculus in [5] builds on moment generating functions of traffic
arrivals and offered service as defined below.

Definition 2 (Moment Generating Function). The moment generating function of a
stochastic sequence A(t) is defined for any 6 as

Ma(0,t) = EePAD = i eP{a = A(t)}.

a=—0Q

We define the conjugate moment generating function of a stochastic sequence B (t) for
any 0 as M g(0,t) = Mp(—0,t).

Corollary 3 (Addition and Multiplication of Constants). For addition and multiplica-
tion of constants cy respective cs it follows for all 0 that

M61+62A(0at) = 6616MA(0297t)’
MCI+C2B(9,t) = G_CIQMB(CQQ,t).

Corollary 4 (Addition of Independent Stochastic Sequences). It follows for the sum
respective difference of independent stochastic sequences A(t) and B(t) for all 0 that

MA+B (97 t) =My (97 t)MB(Gv t)a

Mayp(0,t) = Ma(0,t)Mp(0,1),
Ma_p(0,t) = M4(0,t)Mp(0,1),
Ma_p(0,1) ) Mp(6,1).

Il
5
— S
—~
>



Corollary 5 (Infimum and Supremum of Stochastic Sequences). For the infimum re-
spective supremum of two stochastic sequences A(t) and B(t) it follows for 0 > 0 that

Minf[A,B] (9, t) S lnf[MA (9, t)7 MB (07 t)]7
Msup[A,B] (9, t) < lnf[MA(97 t)7 MB (97 t)]

3 Probabilistic Server Models

Starting from a general scheduling discipline we derive probabilistic models for priority
scheduling (PS), generalized processor sharing (GPS) and first-in first-out (FIFO) schedul-
ing for n concurrent flows shown in Fig. 1. We use the convention that 4, j, k € [0, n].
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Figure 1: Priority scheduling, generalized processor sharing, and first-in first-out server models.

General Scheduling Discipline If the arbitration between flows is unknown the follow-
ing result, which is conservative for most scheduling disciplines, can be derived [7].

Lemma 6 (General Scheduling Discipline). Consider n flows that traverse a network
element with local service curve B, (t). Assume that the flows are upper constrained by
local arrival curves A, j(t). Then, a local service curve offered to flow i is given by

B,.i(t) = sup [0, Bu(t) =Y Au, (t)} :

J#i

Proof. Let Fj(t) and Fj(t) be the cumulative arrival functions of the flows as they are
input to respective output from the network element. With the definition of local service
curves, the rule for multiplexing, and since F;(t) > Fj(t) for all j and all £ > 0 we have:

3tef0ul: > Fju) > Fj(u—t)+ Bu(t)
J J
=3t e (0,u]: F/(u) > Fi(u—t)+ By(t) = > (Fj(u) — F;(u—t))
J#i
With Def. 1 the proof is complete. The lower bound of zero is fulfilled trivially. O
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Corollary 7 (General Scheduling Discipline). Consider the scenario in Lem. 6. Assume
the offered service is stationary and has conjugate moment generating function M (0, t)
and the traffic arrivals are stationary and have moment generating functions M, (0,1).
Under the assumption of independence the conjugate moment generating function of the
service that is offered to flow i is upper bounded for 0 > 0 according to

Mg, (0,t) < inf {1%3(9, t) ] Ma, @, t)} .
J#i

Priority Scheduling A priority scheduler serves queues which are ordered by decreas-
ing priority, such that a higher label represents a lower priority. Each time the scheduler
chooses the earliest arrival from the queue with the highest priority that is non-empty.
Under the discrete time model we assume that preemption can take place at any time
instance. The impacts of variable length packets and non-preemptive scheduling are ad-
dressed in [3, 7]. For the service offered to flow i it follows immediately from the prioriti-
zation that

i—1

Bus(t) =510 0.B,(0) = 3 (0|

s S
I
= O

Mg, (0,t) < inf {I,MB(GJ) Moy, (9,1&)}

j=0

<
Il

Generalized Processor Sharing In case of generalized processor sharing [9] a weight
¢; is assigned to each of the n traffic classes, where traffic class ¢ receives a share of
®i/ Y Or of the available service if all of the n queues are backlogged. If any class
7 uses less than the assigned service, the remaining service is distributed among the
other classes according to the respective weights. The theoretical concept of general-
ized processor sharing relies on a fluid flow model, whereas extensions for packet-by-
packet scheduling are provided for example in [3, 7]. The following model provides
a conservative approximation which is best for the homogeneous case where the terms
Mp(¢;/ > ¢x0,t)Ma,(6,t) do not or only marginally depend on j.

Bui(t) 2 sup s Bult), But) = 3 A1)
i
Mg, (0,t) < inf {MB(Z%G,t),MB(e,t) HMAj (9,t)}
J#i

FIFO Aggregate Scheduling A parameterized family of service curves with parameter
7 > 0 is presented in [4] for flows that are served as an aggregate in first-in first-out
order. If the order is unknown 7 = 0 applies and the general scheduling discipline is
recovered. Using the definitions of local arrival and service curves the following result can
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be obtained in the same line as the derivation for the deterministic case in [7], where the
indicator function 1 _; is one if the argument is true and zero otherwise.

4

Bu,i(t) = sup [0, Bu(t) — Z Aufnj (t — T):| 1[t>7-],
JFi

V5, (0,1) < mf[l,mw,t) T M, 0,0 - ﬂ} L) + Lz,
Jj#i

Conclusions

A variety of efficient models for statistical multiplexing of independent flows are known,
for example from the theory of effective bandwidth. In this paper we derived per-flow ser-
vice curves which constitute the basis for a system theoretic view on networks of queues
that features the analysis of flows after de-multiplexing, an issue that is not well under-
stood, yet. While traffic models that are based on moment generating functions are known
for a variety of types of flows, we advance theory by providing corresponding models for
a number of widely-used scheduling disciplines which enables the probabilistic analysis
of network elements beyond simple, for example constant rate, servers.
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