Multi-Language Refactoring with Dimensions of
Semantics-Preservation

Hagen Schink
Institute of Technical and Business Information Systems
Otto-von-Guericke-University
Magdeburg, Germany
hagen.schink @ gmail.com

Abstract: Today, software developers utilize different general-purpose (GPL) and
domain-specific languages (DSL) to implement multi-language software applications
(MLSA). MLSAs, thus, contain artifacts of different GPLs and DSLs, e.g., source-
code files and configurations. In a recent study we found that refactoring an artifact
can break artifact interaction and that interaction cannot be re-established by addi-
tional refactorings. In this paper we propose an approach that supports developers in
understanding and adapting changes to artifact interaction due to refactoring.

1 Introduction

Refactoring is a technique to modify a source-code’s structure while preserving the source-
code’s semantics [Fow99]. Originally, refactorings are defined for single programming
languages or paradigms. Thus, today refactorings exist for object-oriented and functional
programming languages, and relational databases [Fow99, LT08, Amb03].

Today developers use multiple general-purpose (GPL) and domain-specific languages
(DSL) in concert to implement software applications [SKL06, LLMMO06, CJ08, Vis08,
For08]. We call a software application implemented by means of different GPLs and
DSLs multi-language software application (MLSA). An MLSA includes artifacts of dif-
ferent types, i.e., artifacts of different GPLs and DSLs. Developers access (interact with)
different artifact types by means of application programming interfaces (API). We call
a refactoring considering different artifact types of an MLSA and their interaction a
multi-language refactoring (MLR). Current MLR implementations share the same idea:
If a single-language refactoring breaks interaction with other artifact types, apply single-
language refactorings to the interacting artifact types and, eventually, re-establish artifact
interaction [SKL06, MS12]. But, in general, we cannot assume that suitable refactorings
for all affected artifact types exist to re-establish the MLSAs semantics [SKSL11].

But what if no suitable single-language refactorings for interacting artifacts exist? Two
options may be considered: (1) revert the initial single-language refactoring or (2) man-
ually apply the necessary modifications to the interacting artifacts. These two options
are dissatisfying because (1) a refactoring cannot be successfully applied or (2) manual
modifications relying on a developer’s intuition are required to complete the refactoring.

571

Postal Code

(a) Original table layout (b) Table layout after Split Table refactoring

Telephone

Figure 1: The database schema (1a) before and (1b) after splitting the table Customer.

So, assuming that no suitable refactoring is available and a developer wants to complete a
refactoring, how can we support the developer’s refactoring effort in an MLSA?

In Section 2 we describe a use case for MLR. Section 3 describes a possible solution to
improve the situation for developers applying MLRs. The current state of our work and
our methodology is part of Section 4 before we present related work in Section 5 and
conclude our work.

2 Motivating Example - Database Interaction

In this section we discuss the effect of the Split Table Refactoring [AS06, p. 145] upon
C# code that accesses query results row by row using .Net’s DataReader object. Therefor,
we apply the Split Table Refactoring on the table Customer. Figure la shows table
Customer which, originally, contains two different information: the customer’s address
and contact person. But certain information may be misleading, e.g. it is not obvious
whether the attribute email belongs to the customer or the contact person. Thus, we
split the table to separate the different information from each other. Figure 1b shows the
resulting schema of the Split Table Refactoring. After refactoring the schema consists of
the tables Customer and Contact. Table Contact holds all attributes related to a
customer’s contact person. A customer may only have at most one contact person and a
contact person may takes care of zero or more customers. The C# application queries all
customers and prints the customer’s name and contact person details.

With a DataReader object we can access results of an SQL query row by row. Listing 1
outlines the basic usage of a DataReader. In Line 1 we create the DataReader object by
executing an SQL statement. In the following Lines 3 to 6, we access the columns of each
row of the result set by index.

After splitting table Customer the query in Listing 2 is no longer valid because the
attributes contact, telephone, and email are, then, attributes of table Contact.
At first sight this change is not obvious because the broken query will not become visible
until runtime. At runtime an error is thrown indicating that certain columns referenced in
the SQL query do not exist. When the developer becomes aware of the error, the developer
is forced to understand the implications of the relational schema refactoring for the SQL
statement in Listing 2 to be able to adapt the SQL statement accordingly. An option to
adapt the SQL statement 2 is by defining an appropriate join as shown in Listing 3.

572

Listing 1: Reading results of query shown in Listing 2.

// data processing...

1 |using (DbDataReader reader = cmd.ExecuteReader()) {
2 while (reader.Read()) {

3 string custName = reader.GetString(0);

4 string contName = reader.GetString(l);

5 string contTel = reader.GetString(2);

6 string conEmail = reader.GetString(3);

7

8

}

Listing 2: Query customer and contact information from the original table Customer.

1 | SELECT name, contact, telephone, email FROM Customer

Listing 3: Query customer and contact information from the refactored table Customer.

1 | SELECT name, contact, telephone, email FROM Customer
2 JOIN Contact ON (Customer.id_contact = Contact.id)

3 Improving MLR with Dimensions of Semantics-Preservation

Different APIs exist to interact with artifacts of different types. For instance, Section 2
shows one way of accessing a relational database from an object-oriented language. A
different approach is to utilize an object-relational mapper [SKSL11]. So, the complexity
of MLR involving relational database artifacts may range from rather simple SQL query
modifications in Section 2 to complex modifications involving different artifact types. In
general, we question the feasibility of tools for MLR as they exist for single-language
refactoring because of the diversity of programming languages and APIs. But the question
remains: How can we support developers in their MLR efforts?

Artifact interaction is realized through APIs, which in turn provide types and identifiers,
e.g., data-structures and functions. Hence, a modification to types and identifiers may
break artifact interaction. Our idea is to make these modifications to types and identifiers
visible to developers by extracting and comparing type and identifier states. Type and
identifier information are embedded in structures (e.g., tables, classes, procedures, and
methods) of different artifact types (e.g., relational databases and object-oriented source-
code). We call the different artifact types dimensions of semantics-preservation because
different artifact types may consist of different syntactic structures supporting different
refactorings and, thus, different kinds of semantics-preservaton. Then, it is a developers
decision to choose refactorings and modifications to adapt interacting artifacts to the new
type and identifier state.

Source code includes type and identifier expectations. In Listing 2, the query expects the
columns name, contact, telephone, and email to be part of table Customer. In
Listing 1, the code expects strings on the first four positions of the query result (Lines 3

573

Current State

Expectation

G =0T 300

Dimensions of
Semantics-Preservation

Figure 2: Comparison of types and identifiers extracted from interacting artifacts.

to 6). So, additionally, we may compare type and identifier expectations with the current
type and identifier state, as Figure 2 shows, to determine if artifact interaction is broken.

Our idea is to visualize type and identifier states of artifact types in an IDE. Modern IDEs
like Eclipse and Visual Studio already augment source code with a variety of information.
In particular, developers get detailed information when types mismatch or identifiers can-
not be resolved. But these information are only available for languages supported by the
IDE at hand. Artifacts not supported by the IDE do not benefit from detailed type and
identifier information. We argue that especially type and identifier information can help
developers to identify issues after refactoring an MLSA.

4 Methodology and Current State

Basically, our work is based on three main hypotheses: (1) In general, it is not feasible
to apply MLRs (semi-)automatically. (2) Only type and identifier information are neces-
sary to understand artifact interaction. (3) Visible information about type and identifier
modifications are sufficient to improve the usefulness of single-language refactoring in an
MLSA. Based on these assumptions, we first search the literature for an appropriate model
to describe and compare the type and identifier information of different artifact types. The
next step is to implement front-ends to fill the model with type and identifier information
from different artifacts. We plan to implement front-ends for Java and SQLite. Further-
more, we plan to integrate the model and front-ends into the Eclipse IDE as a prototypical
plug-in. With the prototype we, then, conduct experiments to investigate the practicability
and usefulness of our approach in regard to different use cases.

Currently, we investigate appropriate models to describe the type and identifier informa-
tion. Furthermore, we started to get into the details of Eclipse Plug-In development.

5 Related Work

In the following, we introduce existing approaches to MLR and discuss their strengths and
weaknesses.

The source-code meta-models FAMIX [TicO1], MOOSE [DLT00], and UML [VSMDO03]

574

model object-oriented languages. The idea is to use FAMIX, MOOSE, as well as UML
to generalize refactorings over a common meta-model. These approaches focus on object-
oriented languages, and, thus, may not able to abstract artifacts of MLSAs in general. An-
other meta-model based approach is implemented in the IDE X-Develop upon a Common
Meta-Model [SKLO6]. The authors evaluate a refactoring in X-Develop on an MLSA. But
the languages used in the MLSA can be compiled into a common base language, hence,
the languages share common properties and, therefore, belong to the same artifact type in
our understanding. Refactorings of other artifact types are not considered by the authors.

Some authors analyze and implement renaming for different artifact types [CJOS,
KKKSO08]. The authors show that MLR is possible for certain interactions (e.g. frame-
works and the corresponding configuration files). In a recent study, we analyzed and im-
plemented refactorings beyond renaming and showed that under certain conditions MLR
is not easy to automate [SKSL11].

Coupled Software Transformations or Co-transformations are modifications of different
interacting artifact types [Ldm04]. Some argue that a semantics-preserving transforma-
tion of a database schema leads to transformations that do not modify the functionality
of related applications [Cle09]. In a recent study, we applied both object-oriented and
database refactorings [SKSL11]. Although we applied semantic-preserving transforma-
tions, i.e., refactorings on Java source-code and a relational database, we found cases
where semantic-changing modifications are hardly avoidable.

In model-driven architecture (MDA), platform-specific models (PSM), e.g., classes in pro-
gramming languages and database schemas in database instances, are generated from a
high-level platform-independent model (PIM) [Ste08]. Our approach is different: First,
we consider interaction between PSMs. Our approach does not depend on a PIM. Second,
we consider refactorings in contrast to arbitrary transformations. Third, because we do
not want to support automatic MLR, we may consider artifact-specific concepts if they
influence interaction of artifact types.

6 Conclusion

The current idea of multi-language refactoring (MLR) requires that for each refactoring
that affects artifact interaction a corresponding refactoring exists to re-establish a broken
interaction. We argue that due to the plurality of available APIs this approach is hard to
realize. We propose to extract type and identifier information of interacting artifact types
and to make these information visible to developers, so developers are enabled to apply
modifications themselves after a single-language refactoring broke artifact interaction.

References

[Amb0O3] Scott Ambler. Agile Database Techniques: Effective Strategies for the Agile Software
Developer. John Wiley & Sons, Inc., New York, NY, USA, 2003.

575

[AS06]

[CJO8]

[Cle09]

[DLTO00]

[For08]

[Fow99]

[KKKSO08]

[LLMMO6]

[Lam04]

[LTO8]

[MS12]

[SKLO6]

[SKSL11]

[Ste08]

[TicO1]

[Vis08]

[VSMDO3]

Scott Ambler and Pramodkumar Sadalage. Refactoring Databases: Evolutionary
Database Design. Addison-Wesley Professional, 2006.

N. Chen and R. Johnson. Toward Refactoring in a Polyglot World: Extending Au-
tomated Refactoring Support across Java and XML. Workshop on Refactoring Tools,
pages 1-4, 2008.

Anthony Cleve. Program Analysis and Transformation for Data-Intensive System Evo-
lution. PhD thesis, University of Namur, 2009.

Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. MOOSE: An Extensi-
ble Language-Independent Environment for Reengineering Object-Oriented Systems.
CoSET, 2000.

N. Ford. The Productive Programmer. O’Reilly, 2008.

Martin Fowler. Refactoring: Improving the Design of existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

Martin Kempf, Reto Kleeb, Michael Klenk, and Peter Sommerlad. Cross Language
Refactoring for Eclipse plug-ins. OOPSLA, 2008.

Panos K. Linos, Whitney Lucas, Sig Myers, and Ezekiel Maier. A Metrics Tool for
Multi-Language Software. Undergraduate Research Conference, 2006.

R. Lammel. Coupled Software Transformations. Workshop on Software Evolution
Transformations, 2004.

Huiqing Li and Simon Thompson. Tool Support for Refactoring Functional Pro-
grams. Proceedings of the 2008 ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-based Program Manipulation, PEPM 2008, San Francisco, California,
USA, January 7-8, 2008, pages 199-203, 2008.

Philip Mayer and Andreas Schroeder. Cross-Language Code Analysis and Refactoring.
SCAM, pages 94-103, 2012.

Dennis Strein, Hans Kratz, and Welf Lowe. Cross-Language Program Analysis and
Refactoring. IEEE International Workshop on Source Code Analysis and Manipulation,
pages 207-216, 2006.

Hagen Schink, Martin Kuhlemann, Gunter Saake, and Ralf Laimmel. Hurdles in Multi-
Language Refactoring of Hibernate Applications. In Proceedings of the 6th Interna-
tional Conference on Software and Database Technologies, pages 129-134. SciTePress
- Science and and Technology Publications, 2011.

Perdita Stevens. Bidirectional model transformations in QVT: semantic issues and open
questions. Software & Systems Modeling, 9(1):7-20, December 2008.

Sander Tichelaar. Modeling Object-Oriented Software for Reverse Engineering and
Refactoring. PhD thesis, University of Berne, Switzerland, 2001.

J Visser. Coupled Transformation of Schemas, Documents, Queries, and Constraints.
Electronic Notes in Theoretical Computer Science, 200(3), 2008.

P. Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. Towards Automating
Source-Consistent UML Refactorings. UML, 2003.

576

