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Fighting Evasive Malware: How to Pass the Reverse Turing
Test By Utilizing a VMI-Based Human Interaction Simulator

Jan Gruber, Felix C. Freiling!

Abstract: Sandboxes are an indispensable tool in dynamic malware analysis today. However, modern
malware often employs sandbox-detection methods to exhibit non-malicious behavior within sandboxes
and therefore evade automatic analysis. One category of sandbox-detection techniques are reverse
Turing tests (RTTs) to determine the presence of a human operator. In order to pass these RTTs, we
propose a novel approach which builds upon virtual machine introspection (VMI) to automatically
reconstruct the graphical user interface, determine clickable buttons and inject human interface device
events via direct control of virtualized human interface devices in a stealthy way. We extend the
VMI-based open-source sandbox DRAKVUF with our approach and show that it successfully passes
RTTs commonly employed by malware in the wild to detect sandboxes.
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1 Introduction

To cope with the vast amount of new malware samples found in the wild, automated analysis
approaches are required to classify and triage the bulk of theses samples. One of the standard
techniques to perform this is automated dynamic malware analysis using sandboxes. A
sandbox is an isolated but closely monitored execution environment that tracks a program’s
system interactions and makes the resulting analysis available to further scrutiny.

Malware sandboxes were pioneered in Windows XP using a technique called API-hooking
to catch system calls [WHF07]. Following the successes of these automated techniques,
threat actors came up with a myriad of techniques to hinder or evade analyses [GLL14]. A
common strategy of malware today is to exhibit a “split personality” meaning to refrain
from the execution of its malicous payload if they were able to successfully detect that it
is running in a sandbox [Bal0]. The resulting arms race between attackers and defenders
initiated a trend of moving monitoring capabilities gradually deeper down the system stack
towards the hardware, culminating in the use of hypervisor hooks and other hardware-
assisted virtualization features like Two-Dimensional Paging [WHH13]. This has resulted
in sandboxes that are stealthy regarding ongoing monitoring [Le14].
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While being stealthy, hypervisor-based analysis environments are also rather involved.
Therefore, user-level sandbox approaches like the well-known and widely used open-
source sandbox Cuckoo? have remained popular. But they are restricted to user-level
malware [MK21] and can also be actively evaded with methods like unhooking, API
hammering and the direct use of system calls as shown by the project anticuckoo.? Therefore,
it is advisable to rely on introspection-based monitoring, in order to get reliable analysis
results. The open source project DRAKVUF# provides a powerful virtualization-based
agentless black-box binary analysis system, which is presently the only open-source VMI
framework that provides a frontend to function as full-fledged sandbox.>

1.1 Reverse Turing Tests

Apart from attempting to detect any (user-level) specific changes of an execution environment,
another highly effective class of sandbox detection approaches as described by Bulazel
and Yener [BY17] are reverse Turing tests (RTTs). The name is derived from the classical
Turing test, where a human attempts to distinguish between an actual person and a computer.
In this case, however, the malicious computer program tries to identify the presence of a
human, in order to determine which one of its split personalities to show. Thus, instead of
trying to detect technical changes of the execution environment, RTTs gather evidence of a
human user interacting with the system which regularly revolve around human interface
device (HID) events.

Generally, one can distinguish between three different ways in which RTTs can be performed:

(1) passively observe events related to human use (usually HID events, e.g., mouse
movement and keyboard input),

(2) demand active interaction (e.g., by presenting a dialog box or generating the
need to scroll down to the bottom of a window), and

(3) check signs of the usual “wear and tear” of human use in the system (e.g.,
clipboard content or recently opened files).

In order to remain stealthy, real-world malware commonly employs such observation
techniques with respect to HID events. Since providing meaningful interactions with a
running program automatically via the graphical user interface (GUI) is a difficult problem,
demands for active interactions appear effective and were recently observed in the wild as
well [HO20]. Therefore, we explore the utilization of VMI-based approaches to fool evasive
malwares demanding user interaction.

2 See https://www.honeynet.org/projects/active/cuckoo-sandbox/,

3 See https://github.com/therealdreg/anticuckoo, Commit 4ale7{2

4 See https://github.com/tklengyel/drakvuf

5 Maintained by CERT.pl, see https://github.com/CERT-Polska/drakvuf-sandbox and https://drakvuf
-sandbox.readthedocs.io/en/latest/, accessed on 04.11.2021
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1.2 Contributions

The paper presents a method that allows sandbox environments to pass the reverse Turing
test. We designed and implemented a proof-of-concept system based on the open source
binary analysis system DRAKVUF which reconstructs the GUI of an analysis guest running
a Windows 7 operating system by means of virtual machine introspection to find clickable
buttons.® The system then injects mouse clicks at those locations via the QEMU Monitor
Protocol in a targeted manner. This is a novel approach to imitate user behavior and a first
step in the direction of “meaningful interaction” with a running program, which can be
conceptually transferred to other operating systems as well. We evaluate the system and
show that it successfully passes all RTTs that are commonly deployed by malware in the
wild.”

1.3 Paper Outline

We summarize the design goals of our system in Section 2. Subsequently, Section 3 describes
its integration into the architecture of DRAKVUF and its building blocks as well as the
inner working of our proof-of-concept to simulate human-like behaviour. In Section 4,
we evaluate the efficacy of our implementation, before we summarize the paper, discuss
remaining challenges, and give directions for future work in Section 5.

Due to the limited extent of this paper, we give a brief overview of anti-sandbox techniques
in general and present several examples of RTTs in the appendix, which can be read
independently.

2 Design Goals

Our goal was to build a system that is able to simulate human interaction and thereby counter
reverse Turing tests, in order to support reliable sandbox-based dynamic analyses with low
false negative detection rate.

One approach of commercial sandbox suppliers is to enable the user to remotely control
the sandbox much like she would be sitting in front of a real machine after submitting her
program for analysis.® This approach, however, just shifts the RTT to another level without
solving the underlying problem. Although it leads to passing the RTTs reliably, it does not
scale at all. Since there is a need to address this issue, the well-known open-source sandbox

6 Our implementation has been published under the terms of version 2 of the GNU General Public License at
https://github.com/tklengyel/drakvuf/tree/master/src/plugins/hidsim, Commit bc7708b

7 The RTTs which implemented for the evaluation of the system have been added to the open-source test framework
pafish under the terms of version 3 of the GPL and can be found athttps: //github.com/a®rtega/pafish/pull/72,
Commit f68d74f

8 Refer to the online sandbox https://any.run/ for example
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Cuckoo® employs countermeasures to fool the malware in regard to passive as well as active
RTTs. This is accomplished by running a Python agent inside the guest VM that moves the
cursor to a random location every second and clicks the left mouse button. Furthermore,
it scans for windows and dialogs to automatically simulate the button clicking [Ral3] by
using API-functions, like SendMessageW and EnumWindows exposed by user32.d11, which
is accessed via Python’s ctypes-interface.’®© However, as mentioned above, agent-based
approaches like Cuckoo are inherently limited.

Our aim was to bring the capabilities to counter RTTs into a sandbox based on hypervisor
hooks. We chose the black-box malware analysis system DRAKVUF as the basis for our
system. Until now, its engine, which follows the paradigm of being absolutely stealthy [Le14],
did neither accomodate HID event emulation nor a mechanism to provide some kind of
meaningful interaction with the programs under test.

The upmost design goal for our solution was to stay absolutely transparent, following
DRAKVUPF’s overall maxime that no analysis-related code, regardless of kernel-level or
user-level, should run inside the analysis guest. At the same time, we aim for enhancing
the sandbox’s capabilities by a simulator of human behaviour to trick the malware into
revealing its malicious intent.

Based on the above design choices, a HID-emulation module had to be built and integrated,
which specifically sought to achieve the following tasks:

(a) Inject randomized HID events to pass passive RTTs,
(b) detect GUI updates and reconstruct GUI elements via VMI, and
(c) interact with dialogs.

3 Implementation

We now describe the most important aspects of the implementation of our prototype.

3.1 Integrating Into the DRAKVUF Architecture

DRAKVUEF is built on top of the Xen virtual machine monitor. It runs in the control domain
(dom0) and thereby makes use of direct memory access (DMA) through the LibVMI library,
which was pioneered by B.D. Payne [Pal2], to gain access to the state of the fully virtualized
Xen HVM (hardware virtual machine) guests, which are observed from the aforementioned
privileged domain [Lel4, p. 387], [LS20, p. 2].

9 See https://www.honeynet.org/projects/active/cuckoo-sandbox/,
10 See https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/data/analyzer/windows/modules/
auxiliary/human.py, Commit b26f88b
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Within the control domain, DRAKVUF utilizes hypervisor features to control virtualization
extensions provided by the CPU, such as the Extended Page Tables (EPT). While it relies
on several techniques to transfer control to the hypervisor (VMEXIT), the utilization of
breakpoint injection is the commonly used way to trap the execution. In order to do this, the
#BP instruction — INT3 with instruction opcode 8xCC — is written into the guest’s memory
and the CPU is configured to issue a VMEXIT, when breakpoints are executed. Xen, in turn,
is setup to forward those events to the control domain, where DRAKVUF is running, which
handles those events with previously configured callbacks [Lel4, p. 388]. For the case of
Windows guest systems, the code locations to inject INT3-instructions into, are determined
by the utilization of debug symbols provided by Microsoft, which are converted with the
memory forensics tool Volatility into a textual representation, in order to reliably infer the
physical addresses of various kernel datastructures and establish a map of those with the
help of the Kernel Processor Control Region at runtime [Le14, p. 389].

Another important capability utilized by DRAKVUF is Xen’s alt2pm feature, which allows
to create multiple EPTs and to switch between those at runtime [LS20, p. 3]. By restricting
EPT access permissions of pages, it is possible to stealthily trace memory accesses, because
EPT permission violations trap into the hypervisor, where the pages, which have been
manipulated by breakpoint injection, could be switched transparently and thus remain
hidden from Window’s patchguard or a malware scanning for INT3-instructions as well as
other modifications. This means, that the ongoing observation is not detectable from the
perspective of the monitored virtual machine [Lel6].

In addition to this core functionality, DRAKVUF houses a plugin architecture, which allows
for flexible extension by the capability of installing traps and event handlers per plugin. If
one of the expected events occurs in the VM, control is transferred to DRAKVUF running
in the control domain, where the list of handlers for this type of event is traversed, in order
to execute each subscribed handler [Ko18, pp. 112 f.].

3.2 The Human Interaction Simulator’s Architecture

To implement human-like simulation capabilities, we built upon DRAKVUF’s plugin
architecture and introduced a component called hidsim, whose lifecycle is controlled by
DRAKVUF’s “main loop”. The component is multi-threaded to a) inject HID events and
b) install an event handler to parse the memory on updates of the user interface, in order to
identify and extract GUI-related datastructures, as Figure 1 illustrates.
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Fig. 1: High-level overview of the implemented plugin.

3.2.1 Injection of Human Interface Device Events

Since Xen uses the QEMU device model, we could rely on the QEMU monitor protocol
(QMP)11, which allows applications to control a QEMU instance in a fine grained way by
sending JSON-commands, defined by the so-called QAPI, directly to its Unix domain socket.
Several of those commands allow the sending of HID events over a QMP-socket to a QEMU
instance, so that its handlers update the virtualized human interface devices accordingly.
From the analysis guest’s perspective, this is an approach which is fully transparent. By
doing so, the HID injection subcomponent is able to send either pre-recorded or randomized
HID events, like cursor updates or keystrokes, following a timer-based approach. However,
in order to achieve the indistinguishable illusion of a person sitting in front of the sandbox’s
alleged screen, the actual coordinates to click on have to be provided by a sub-component
which is responsible for the reconstruction of the GUI.

3.2.2 Reconstruction of the Graphical User Interface

At the start of the analysis of a Windows 7-guest, we set up a trap on the system call
NtUserShowWindow, which is exposed by win32k.sys — the kernel-mode portion of the
Windows GUI subsystem [RSI12, p. 50]. We accomplish this by locating the system call-
handler with the help of the GUI system service descriptor table,? which contains the array
of pointers for each system call-handler related to USER and GDI services implemented in
win32k.sys [RSI12, pp. 137 and 273]. Then, we insert a breakpoint, so that the plugin gets
notified about updates of the GUI without employing some kind of busy-waiting, so that a

11 See https://wiki.qemu.org/Documentation/QMP, accessed on 28.10.2021
12 Also called W32pServiceTable
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second thread can start to reconstruct the GUI based on the in-memory data structures with
the help of LibVMI and scan for clickable buttons.

This is done by identifying and iterating all interactive window stations and their desktops,
in order to retrieve the active instance of the session. Afterwards, all windows, which are
represented as tagWND-structs in memory to be specific, are traversed to build up a depth-
ordered list, which is done by following an algorithm pioneered by B. Dolan-Gavitt [Lil2a]."3
Since buttons are represented as tagWND-structs as well, potentially clickable buttons of
interest can then be determined by looking at the top # list elements and employing several
heuristics regarding size, class ID, visibility and textual content of the tagWnd-struct in
question. After having identified the top-most structure which fulfills the requirements, the
visible part of the area and its centroid are determined and passed to the injection thread,
where a corresponding HID command will be constructed and sent to the guest via QEMU’s
monitor protocol, so that the cursors will be moved smoothly to the given coordinates and
click on those. For implementation details, the interested reader might refer to the publicly
available source code.*

4 Evaluation

In order to evaluate the efficacy of our approach, we implemented test cases using the
Win32-API in C which perform several RTTs, which were briefly addressed in Section 1.1
and will be discussed in depth in Appendix A. With the aim to contribute to the open-source
community, we decided to extend the popular open-source framework pafish'> by those
tailored but nevertheless realistic tests. Pafish bundles a collection of several sandbox
detection techniques used by malware in the wild [Hul5] and has already been taken
up in other academic work [Yo16] but lacked most RTTs until now. The newly added
implementations were published as a patch and have been incorporated into pafish.1® We
decided to use these handcrafted implementations, which were derived from checks found
in real world malware samples, as presented in Appendix A at detail, instead of using
evasive samples themselves for practical reasons. By doing so, we gain quantifiability as
well as reproducibility. This is especially notable, because RTTs are often found in loaders,
whose sole task is to download the actual payload from malware distribution sites, which
are usually only available for a few days and would make it hard to determine, whether the
RTT was passed or not.

We compared our implementation'” with the popular open-source sandbox Cuckoo in
version 2.0.7 with its before mentioned auxiliary module called human.py using VirtualBox

13 See the originally implementation of Brendan Dolan-Gavitt in Volatility’s screenshot-plugin

14 See especially https://github.com/tklengyel/drakvuf/tree/master/src/plugins/hidsim/gui, commit
63fdbf6

15 See https://github.com/adrtega/pafish, building upon commit 62dad68.

16 Refer to https://github.com/a®rtega/pafish/pull/72 for our patched version of pafish which has been
integrated into version 0.6 in the meantime

17 Using https://github.com/tklengyel/drakvuf/tree/master/src/plugins/hidsim, commit bc7708b
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machinery by submitting the enhanced pafish executable for analysis. The generated log
files, where all failed tests are recorded, were extracted after each submission, in order to
determine the RTTs which failed. Both sandboxes run their analyses on 32-bit Windows 7
SP1-guests, which are still common for the use case of malware analysis. We performed the
analysis for exactly 60 seconds and used both systems with and without their respective
plugin that is responsible for the simulation of human interaction, in order to establish
causality between the tooling and the resulting observations. By performing three runs
each, in which we did not observe any ambiguities, we are certain that we have eliminated
fluctuations and inconsistencies. The results of this practical evaluation are depicted in
Table 1.

Tab. 1: Results of running the RTTs defined in the extended pafish in Cuckoo and DRAKVUF, both
with and without their respective human simulator plugin; The test cases correlate to the functions
implemented in rtt.c of our patched version of pafish.
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As a preliminary remark, we would like to mention that we did not compare analysis results,
but considered only the efficacy of human behaviour simulation. For a comparison of the
analysis capabilities, refer to [MK21].

Looking at the results, it is obvious that without any enhancements both Cuckoo and
DRAKVUF fail all tests except the one for mouse presence. When the simulators are
involved, the detection results change drastically. Our plugin passes all tests, whereas
Cuckoo’s auxiliary package failed the check for the cursor’s speed limit, since it randomly
places the cursor on the screen. In addition, it failed the plausibility check added to the
dialog confirmation, since it just uses SendWindowMessageW(. ..) to send a message of type
BM_CLICK to the dialog, without taking the current cursor position into account. However, as
a matter of fact, this is a made-up test, which has not been found in real world malware but
is an obvious approach to determine simulation.

18 Command: drakvuf -d $DOM_ID -r "$KR_JSON" -W "$WIN32K_JSON" -i $PID -e "$REMOTE_PAFISH" -c
"$REMOTE_CWD" -t $TIMEOUT -a regmon -a filetracer

1 Command as before with the following additional arguments: -a hidsim --hid-monitor-gui
--hid-random-clicks
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To summarize the evaluation, it is clearly shown, that our implementation passes all
implemented RTTs and delivers a performance which is even more effective than Cuckoo’s
auxiliary module, while it is not running any code inside the analysis guest — neither for
cursor movement nor for button identification. Therefore, we claim that the proof-of-concept
fulfills all of the design goals stated in Section 2.

5 Conclusion and Outlook

In the present paper, we reviewed reverse Turing tests (RTTs) as one class of evasion
techniques commonly employed by malware. We surveyed implementations found in real
world samples to motivate the need for appropriate countermeasures. Given the trend to
move the sandboxes’ monitoring measures deeper down the technology stack, we identified
the necessity to realize the simulation of a human’s presence without running any agent in
the monitored system itself. In order to put this need into practice, we extended the VMI-
based open-source sandbox DRAKVUF, which employs an absolutely stealthy monitoring
approach, by a plugin to simulate a human’s presence implementing a novel approach.
We utilized virtual machine introspection to monitor the analysis guest for updates of its
graphical user interface and to reconstruct the GUI-elements presented to the user, when
such an update was detected. By doing so and utilizing QEMU’s monitor protocol to control
the virtualized human interface devices, we were able to perform meaningful interactions
with the program under test to a certain extent, which was done by clicking on buttons
of dialogs popping up. We evaluated our approach by extending the open-source testing
tool called pafish by the RTTs found in malware samples and comparing the efficacy of
our implementation with the popular open-source sandbox Cuckoo. This showed, that in
regard to the simulation of human behaviour, our implementation is at least as effective as
Cuckoo’s agent-based approach, but does not rely on runnning any code inside the analysis
guest. Therefore, it is unsusceptible from this perspective.

Future work should try to enhance the meaningfulness of the simulated human behaviour,
in order to pass more sophisticated active RTTs which malware might employ in the future.
Another goal is to port our prototype to work with more recent operating systems, reconstruct
the GUI in a richer way and tackle the challenge of being able to determine elements drawn
by higher level GUI frameworks. Furthermore, a comparison between VMI-based and
machine vision-based approaches in regard to efficacy and performance seems to be of
interest. Obviously, passing the RTT in its generality remains an unsolved problem and will
be subject of further research. However, the presented proof-of-concept can at least deal
with several RTTs commonly employed by malware and trick it to reveal its harmful intent.
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A A Brief Survey of Reverse Turing Tests Found in Real World Malware

To address general interest, we now survey several reverse Turing tests found in the wild.
The appendix merely illustrates the technical mechanisms of RTTs and is not necessary to
understand the main part of the paper.

A.1 Passive Observation

A.1.1 A Test for Mouse Presence Found in a Malicious Document of ColdRiver

In its simplest form, an RTT might be to determine the availability of a mouse on the system.
This is illustrated by Listing 1, which shows a part of a VBA-macro code extracted from a
malicous document utilized by an APT actor called ColdRiver [Fo19]. There is a predicate,
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which ensures, that the base64-encoded payload is only fetched and decoded, if the check
for the presence of a mouse device succeeded beforehand.

1 Sub Document_Open()

2 <snip>

3 If Application.MouseAvailable Then

4 Set DM = CreateObject("Microsoft.XML" & "DOM")
5 Set EL = DM.createElement("t" & "mp")

6 EL.DataType = "bin.bas" & "e64"

7 <snip>

8 End Sub

List. 1: Passive reverse Turing test found in a VBA-macro of ColdRiver?!

A.1.2 A Test for Mouse Movement Found in IFSB/Gozi

A slighty more elaborated but nevertheless primitive example for a passive observation test
can be found in the leaked source code of the malware family /FSB/Gozi.

1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591

#ifdef _WAIT_USER_INPUT

do
{
ULONG Seed = AvGetCursorMovement();
Sleep(100);
if (!Seed)
{

Status = ERROR_BADKEY;
continue;

}

Status = CsDecryptSection(g_CurrentModule, Seed % 9);
} while(Status == ERROR_BADKEY);
#else
Status = CsDecryptSection(g_CurrentModule, 0);
#endif

List. 2: Passive reverse Turing test found in leaked source code of the malware family /FSB/Gozi;
taken from install.c, 1. 1574 —1. 1591.

As it is depicted in Listing 2, the malware does only decrypt and execute its malicious
payload, if cursor movements could be detected beforehand. This could be determined
by repeatedly calling the subroutine AvGetCursorMovement (), where the API-function
GetCursorPos(&Point) is used to calculate the delta to the previous result (Listing 3,

21 The macro was shortened and formatted for readability after its extraction via olevba from the malware sample
with MD5-hash 48320f502811645falf2f614bd8a385a.
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11. 204 ff.). If there is no such delta, the program will infinitely check for movement every
100 ms until termination (Listing 2, 1. 1575 ft.).

196 | #ifdef _WAIT_USER_INPUT

197

198 | // // Returns mouse cursor position relative to previously saved coordinates. //
199 | ULONG AvGetCursorMovement (VOID)

200 |{

201 POINT Point;

202 ULONG Movement = 0;

203

204 GetCursorPos (&Point) ;

205

206 if (g_Point.x && g_Point.y)

207 Movement = Point.x - g_Point.y + ((Point.y - g_Point.y) << 16);
208

209 g_Point.x = Point.x;

210 g_Point.y = Point.y;

211

212 return(Movement) ;

213 |3}

214

215 | #endif // _WAIT_USER_INPUT

List. 3: Calculation of cursor movement found in leaked source code of the malware family /FSB/Gozi;
taken from av.c, 1. 196 —1. 217.22

The above mentioned code snippets show original source code as it was written by the
author of IFSB/Gozi also known as Ursnif. They were taken from a leak of the malware in
version 2.13.24.1 provided by vx-underground.org.??

A.1.3 A Test for Mouse Clicks Found in UpClicker

In 2012, the trojan UpClicker, which delivered a remote access toolkit called Poison Ivy
at that time [Lil2b], was one of the first malware samples which checked for mouse
clicks. It utilized the API-function SetWindowsHookExA with the parameter 0xE standing for
WH_MOUSE_LL to catch mouse input events [SK12], as it is illustrated by the decompilation
in Listing 4, 1. 38. By doing so, an application-defined hook procedure is installed into a
hook chain, which is called every time a new mouse input event is about to be posted into a
thread input queue, so that it can effectively catch all of those.

36 |void FUN_00401000(void)
37 <snip>

22 As a side note: This seems to be implemented in a flawed but nevertheless working way, because coordinate axes
were mixed up, as the following expression taken from the code illustrates: Movement = Point.x - g_Point.y
+ ((Point.y - g_Point.y) << 16);.

23 See https://github.com/vxunderground/MalwareSourceCode/blob/main/Leaks/Win32/Win32.Gozi .rar, ac-
cessed 31.10.2021
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DAT_00406000 = SetWindowsHookExA(Oxe,FUN_004010b0®, (HINSTANCE)hmod, dwThreadId);
iVarl = GetMessageA((LPMSG)&local_e®, (HWND)0x0,0,0);
while (iVarl != @) {

TranslateMessage ((MSG *)&local_e0);

DispatchMessageA((MSG *)&local_e®);

iVarl = GetMessageA((LPMSG)&local_e®, (HWND)0x0,0,0);
}
UnhookWindowsHookEx (DAT_00406000) ;

/* WARNING: Subroutine does not return */
FUN_0040129d(0);
}

List. 4: Decompiled view on the installation of the mouse hook procedure found UpClicker.?+

The malware was dormant until the left mouse button was released after a click, which
was determined by checking the event type of each received message and comparing it
with the value 0x202 resembling (WM_LBUTTONUP), as it is shown in 1. 10 of the installed

C

allback-function presented in Listing 5. When this happened, the malware showed its real

personality and injected its malicious payload into another process (1. 12).

[l e N R N S

void FUN_004010b0(int param_1,int param_2,undefined4 param_3)
{
<snip>
if (param_1 == 0) {
if (param_2 == 0x200) { // WM_MOUSEMOVE
<snip>
}
else {
if (param_2 != 0x201) {
if (param_2 == 0x202) { // WM_LBUTTONUP
UnhookWindowsHookEx (DAT\_00406000) ;
FUN_004011700);
/* WARNING: Subroutine does not return */
FUN_0040129d(0) ;
}
goto LAB_004010£f9;
}

<snip>

List. 5: Decompiled view of the relevant part of the LowLevelMouseProc installed by UpClicker,
which inspects the mouse events.

Several variations of passive RTTs have been observed in the wild concerning movement
speed, movement patterns, clicking intervals or scrolling [CS20]. Some malware, for example,
used the API-Call GetAsyncKeyState to wait on multiple clicks, others would check the
cursor’s speed, and would not execute, if the mouse cursor traveled to quickly [VS14].

24

24

The sample has the MD5-Hash ce69dee5307d58db4e2a6fdbcb£87e9d; The decompilation of was done by Ghidra
in version 10
The decompiled code was shortened and formatted for readability
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A.2 Demand for Active Interaction

Since passive tests are relatively primitive and error-prone, malware author’s came up with
active reverse Turing tests, which utilize the graphical user interface to demand some kind
of (inter)action from an eventually present human operator. Those tests can often be found
in malicious documents sent by e-mail, whose sole purpose is to function as a first stage
loader to retrieve the actual payload from a malware distribution site (MDS).

One instance of this technique is presenting a dialog, which asks the user for the approval of
an alleged repair action after opening an Excel document. The according XLM-macro code
is presented in Listing 6. The return value of the dialog is used as a predicate, which acts as
an active reverse Turing test as line 3 illustrates. If, and only if, the user presses the button
labelled “OK?”, the content of the following cells is executed, which ultimately leads to an
obfuscated call of urlmon’s UrlDownloadToFileA in line 10, in order to retrieve the second
stage payload.

1 |auto_open: auto_open->Macro251!$A$1

2 | SHEET: Macro251, Macrosheet

3 | CELL:Al1 , =IF(ALERT("We found a problem with some content. Do you want to try to recover as
<— much as we can?",1.0),,CLOSE(TRUE))

4 | CELL:A2 , =GET.WORKSPACE(1.0)

5 | CELL:A3 , =IF(ISNUMBER(SEARCH("Windows",A2)),,CLOSE(TRUE))

6 | CELL:A4 , =GET.WORKSPACE(32.0)

7 | CELL:A5 , =IF(ISNUMBER(SEARCH("Office",A4)),,CLOSE(TRUE))

8 | CELL:A6 , =GET.WINDOW(1.0)

9 | CELL:A7 , =IF(ISNUMBER(SEARCH("Fax",A6)),,CLOSE(TRUE))

O |CELL:A8 , =IF(GET.WORKSPACE(19.0),CALL("ur"&C6,"UR"&C7&"nloa"&C8&"ileA","]1CCII",0.0,GET.
< NOTE(D8),GET.NOTE(E8),0.0,0.0),CLOSE(TRUE))

11 | CELL:A9 =WAIT(NOW()+"00:00:05")

12 | <snip>

13 | CELL:C6 , None , lmon

14 | CELL:C7 , None , LDow

15 |CELL:C8 , None , dToF

List. 6: Active reverse Turing test found in XLM-macro.?

However, showing dialogs — like in this rather recent campaign from 2020 — is not the only
instance of active Turing tests. Back in 2014, security analysts discovered an RTF-exploit,
that would only trigger after scrolling to the second page of the document, which is what
usually a curious human would do, but won’t happen in an automated sandbox [VS14].

25 Extracted with a tool called xlmdeobfuscator from the malicious document with MDS5-hash
50d518246¢2b61f5b427948f87a0aa24



