
Face Tracking using Optical Flow

Development of a Real-Time AdaBoost Cascade Face Tracker
1

Andreas Ranftl, Fernando Alonso-Fernandez, and Stefan Karlsson

Embedded and Intelligent Systems Research

Halmstad University

Kristian IV:s väg 3, 301 18 Halmstad, Sweden

æ¸à°æ¸�~V­ª§àÞ¸ª����­Þh {­ªÞÜæ¸��æ°�­­¶¸h ÜÞ°¸æ¸à¶�æ�¶¸­¶e

ÜÞ°¸æ¸àÞz}V���­Þ

Abstract. In this paper a novel face tracking approach is presented where opti-

cal flow information is incorporated into the Viola-Jones face detection algo-

rithm. In the original algorithm from Viola and Jones face detection is static as

information from previous frames is not considered. In contrast to the Viola-

Jones face detector and also to other known dynamic enhancements, the pro-

posed face tracker preserves information about near-positives. The algorithm

builds a likelihood map from the intermediate results of the Viola-Jones algo-

rithm which is extrapolated using optical flow. The objects get extracted from

the likelihood map using image segmentation techniques. All steps can be com-

puted very efficiently in real-time. The tracker is verified on the Boston Head

Tracking Database showing that the proposed algorithm outperforms the stand-

ard Viola-Jones face detector.

1 Introduction

Viola and Jones introduced a real-time face detector in 2001 [VJ01]. Face detection is

performed by applying a classifier on several windows within the image. The win-

dows vary in location and size in order to determine scale and position of the face

rather exactly [VJ01].

The Viola-Jones method has neither a way of incorporating temporal constraints nor

combining evidence from previous frames to aid the inference. In short, it is a fully

static algorithm. Apart from lacking temporal consistency, the cascade classifier also

lacks a way to save information about near-positives. Not only may face positions

behave erratically, but if a face becomes temporarily distorted so that the very last

part of the cascade fails, the detection fails abruptly. This paper investigates a way to

extend the Viola-Jones cascade classifier to achieve a likelihood map that is suited for

a form of belief propagation over time. For example, it is possible that a face is de-

tected after several likelihood map refreshes even if it does not pass all stages of the

cascaded classifier.

1 This paper follows a master thesis which was written within the double degree master program in Embed-

ded and Intelligent Systems of Salzburg University of Applied Sciences, Austria and Halmstad University,

Sweden.

39

The real-time optical flow enhanced AdaBoost cascade face tracker aims at calling

the Viola-Jones algorithm at every 20
th

frame. In the frames in between, face detec-

tion is done by processing the likelihood map, which is interpolated with optical flow

information.

2 Face Detection Performed by the Viola-Jones Algorithm

The algorithm developed by Viola and Jones is based on a cascade of classifiers using

Haar-like features, built up in an AdaBoost-based training process by both extracting

features from face images and non-face images. The algorithm achieves real-time

performance through the cascade structure of the classifiers. Each window constitutes

a hypothesis, which gets discarded as soon as a stage is not passed. Each classifier is

designed to cancel the evaluation of windows which contain no faces as soon as pos-

sible. If a window passes all classification stages it is considered to contain a face

[VJ01]. The method of Viola and Jones was improved by Lienhart et al. in 2002 by

introducing diagonal Haar-like feature sets [LKP03]. Multi-Block Local Binary Pat-

terns (MB-LBP) are the currently used type of features for classification and they are

also used in this work [ZH07]. The Viola-Jones algorithm does not preserve infor-

mation about near positives. Furthermore, it does not consider previously obtained

information.

3 Optical Flow Enhanced AdaBoost Cascade Face Tracker

When detecting faces within an image sequence with the Viola-Jones algorithm every

frame is handled separately. This means that the detection process, by shifting differ-

ent sized windows over the entire image and evaluating them, is done on every single

frame. As there is no temporal information taken into consideration, the resulting face

bounding boxes appear to be unstable. The boxes slightly change in size and position

although the face does not move, and on occasion the tracking is lost altogether for a

few intermediate frames. In order to overcome these problems the proposed algorithm

works with a likelihood map that saves information about near positives as well as

previously computed data.

3.1 Basic Ideas and Flow Chart of the Proposed Face Tracker

In order to track the faces, the algorithm follows the flow chart shown in Fig. 1. In

the initialization phase the program opens the video input, loads the cascade classifi-

ers and builds the initial likelihood map by utilizing the modified Viola-Jones algo-

rithm. A likelihood map is used due to the fact that it offers the possibility to recog-

nize an undetected face from the Viola-Jones algorithm after several refreshes.

Within the algorithm frame per frame is processed and optical flow computation is

done. The current likelihood map gets then warped with the results from optical flow.

The employment of optical flow prevents a face from being lost, as long as it has

passed a high number of classification stages when establishing or refreshing the like-

lihood map. Additionally, the size of the tracked face area does not change erratically.

40

If the frame obtained from the input is a refresh frame, a modified version of the Vio-

la-Jones algorithm is applied to it. There a temporary likelihood map is built which

influences the warped likelihood map by recursive filtering. For the purpose of ex-

tracting a face from the current frame, a binary likelihood map is created and then

segmenting is done by finding edges within the binary image.

Fig. 1. Flow chart of the developed algorithm.

3.2 Likelihood Map Setup

The likelihood map is built from the intermediate results of the Viola-Jones algorithm.

In particular, the number of stages of the classification cascade passed by each detec-

tion window is used to form it. This means that the likelihood provides for every pixel

a value that indicates the probability of being a face located at the respective position

in the original frame.

There are different ways of setting up a single 2-D likelihood map from the Viola-

Jones results. It is important to ensure that the possible maximum energy of each de-

tection window scale used in the Viola-Jones algorithm is the same. Otherwise differ-

ent scales would be weighted differently in the resulting likelihood map.

In order to utilize previously obtained information, a new likelihood map Lt at time t

is formed by recursive filtering, see (1). L describes the current likelihood map ob-

tained from the Viola-Jones algorithm and Li is the interpolated likelihood map at

same time t.

Lt = >- − �; ∗ L + � ∗ Li (1)

The computation time of building the likelihood map can be lowered by taking ad-

vantage of a reject level threshold. This means that only windows, which pass a cer-

tain number of stages of the cascaded classifier, contribute to the likelihood map.

Window Center Orientated Likelihood Map

One way of building a likelihood map is to add the result of each detection window to

the pixel in the likelihood map corresponding to the center pixel of the respective

41

window, see Fig. 2 for a 3 * 3 pixels example window. By doing so, information

about the size of the face is lost. The likelihood value for an odd sized window is

calculated by multiplying the number of passed stages by 4. Otherwise the influence

on the likelihood map of even and odd sized windows would not be equal.

As a window with even sized height and width has no single center pixel, the 2 * 2

pixels center is set to the rejection level value, see Fig. 2 for an example.

4

1 1

1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

Fig. 2. Principle of setting the likelihood value for an odd sized window (left) and for an even

sized window (middle left) when using the window center orientated likelihood map approach.

The windows on the right are examples for the area orientated approach. Every pixel of the

likelihood map corresponding to a detection window is set to the number of passed stages

(middle right). The very right example uses a shrinking factor of 0.5. Values represent the fac-

tor with which the number of passed stages of the respective detection window is multiplied.

As previously mentioned, every detection window is weighted the same in the likeli-

hood map. This requires us to compensate the step size caused by a scaling factor

used in the detection process. The compensation of the detection window scale is

done by weighting the counter of passed stages nlevels with the respective window

width wwindow, see (2) for an odd sized window.

Ln = LnX- + �9GTG9X ∗ 4 ∗ D7�(H&7 (2)

Window Area Orientated Likelihood Map
Another approach for building a likelihood map is to set every pixel of a detection

window to the corresponding Viola-Jones result and then adding all the windows up,

see Fig. 2. By doing so, we do not have to care about even or odd sized windows and

we do not have to care about weighting of results of different window sizes. Also the

information about the size of the face is preserved. It could be shown that there is

nearly no difference in computation time when using a reject level threshold of 15.

Compared to the original Viola-Jones implementation the likelihood map building

methods need 10% more computation time.

When setting the respective pixels in the likelihood map to the correct value, a shrink-

ing factor was introduced. This shrinking factor shrinks the area which should be set

to the Viola-Jones result. The principle of applying a shrinking factor is based on the

fact that detection windows are bigger than the faces outlined by them. When interpo-

lating the likelihood map with the flow map there are only motion vectors for the

pixels of the face. Therefore setting the whole window area to the respective Viola-

Jones result would lead to an inaccurate likelihood map after interpolating with opti-

cal flow results.

42

3.3 Face Extraction from the Likelihood Map

In order to differentiate between face-containing and non-face-containing regions of

the image a threshold is applied to the likelihood map. Note that the probabilities

which are represented by the pixel intensities of the likelihood map can vary even for

the same face region, depending on face detections within neighboring windows and

windows with different sizes that detect the same face.

Fig. 3. The left image is the original frame. The middle left image represents the generated

likelihood map. Different probabilities are shown by different gray shades. The high values for

the two faces can be observed clearly in the likelihood map. The image in the middle is the

binary likelihood map which is the result of applying a threshold of 65 to the original likelihood

map. The middle right image illustrates the segmented likelihood map and the very right image

shows the computed bounding boxes of the face tracker marked in the original frame.

In order to label the face regions uniquely and to visualize the outcome, edge detec-

tion is performed on the binary likelihood map. As the contours of the face regions

are known, the segmentation algorithm searches for the outer points. Each face region

in the likelihood map equals roughly a rectangle. The outer points are stretched by the

inverse of the shrinking factor s which was used for downscaling face-containing

windows when putting them into the likelihood map. By shrinking the windows with

a factor that is small enough, the face-containing regions do not overlap in the likeli-

hood map even when the faces are near to each other. The resizing is done by apply-

ing equations (3) and (4) where xface and yface represent the coordinates of the upper

left corner of the bounding box which is used to mark a face. The variables widthface

and heightface are the differences of the max and min values of x and y respectively.

AF�IG = A*�(+
7�HWℎ'��)

2
−

7�HWℎ'��)
2∗X

= A*�(−D�N�ℎF�IG ∗
J−X

2∗X
(3)

<F�IG = <*�(+
ℎG�EℎW'��)

2
−

ℎG�EℎW'��)
2∗X

= <*�(− ℎM��ℎ�F�IG ∗
J−X

2∗X
(4)

4 Tracking During Occlusion

Under certain circumstances the developed face tracking algorithm is able to track

faces during partial and complete occlusion. Given that the occlusion is encompassed

fast enough (e.g. a passing car) we can take advantage of the fact that the utilized

Farnebäck dense flow technique is invariant to very fast motion (see Fig. 4).

43

Fig. 4. The optical flow face tracker is able to track faces under partial occlusion (left) and also

under complete occlusion (right).

5 Results

The proposed face tracking algorithm was implemented in C++ utilizing the OpenCV

library in version 2.4.8.0 with activated parallelization. The face tracker was evaluat-

ed on the Boston Head Tracking Database [LSA00]. We used the 45 videos which

were recorded under uniform light conditions. Ground truth information was made

available through the UVAEYES annotations which represent the positions of the

eyes (see Fig. 5 as example) [VG09].

The method with which the presented approach is compared is the original Viola-

Jones face detector. For terms of comparison, the Viola-Jones method performs face

detection on every single frame. Within the developed optical flow face tracker, the

reject level threshold for accepting windows to contribute to the likelihood map was

set to 15. The shrinking factor was set to 1/3.

5.1 Measurement of Detection Rate and Accuracy

In order to measure the accuracy of the tracking algorithm the Euclidean distance of

the computed center point to the real center point of the face is calculated. The real

center point [x, y]
T

is computed by utilizing (5) and (6), which calculate the middle

point between the eyes (x1, y1 and x2, y2 respectively) and add 10 pixels in y direction

(origin is upper left corner of the image) for setting the coordinates of the face center.

This works quite well as there is not much difference in the sizes of faces.

A = AJ +
6U−6V
2

(5)

< = <J +
5U−5V
2

+ -/ (6)

The evaluated algorithms output a bounding box. The center of this bounding box is

set as the face center point. If the Euclidean distance of a center point computed by an

algorithm to the real center point is higher than 20 pixels, the detection is classified as

a false positive. If there is no detection, it is counted as a false negative.

If there are multiple detections, then all the distances are measured and the nearest

one is chosen as valid attempt as long as it is within the threshold defined above. The

other false detections cause the number of false positives to increase. If all detections

are outside the threshold circle, they are all added to the false positives count.

44

Fig. 5. Example frames (23, 92, 100, 150 and 188) of the video jam1.avi from the Boston Head

Tracking Database. The red dots indicate the ground truth positions of the eyes. The green dots

represent the computed face centers. The blue rectangles represent the face bounding boxes

returned by the optical flow face tracker. In frame 23 a refresh is done as also the Viola-Jones

bounding box (white) is visible.

5.2 Detection rate

The detection rate r is calculated by summing up the valid detections d within a video

and dividing the obtained sum by the number of frames nframes (see (7)).

� = J

('4��)3
∗ ∑ N�

('4��)3
�=J (7)

Fig. 6. Illustration of percentage of correctly detected face centers per video.

Taking all videos of the database into consideration the optical flow face tracker

shows a better detection rate. The average detection rate of all videos is 79.15% for

the optical flow face tracker and 73.71% for the Viola-Jones face detector. Fig. 6

shows the average detection rate per video of the Boston Head Tracking Database.

5.3 Accuracy and Robustness

When measuring the average accuracy of valid detections we observed that the Viola-

Jones algorithm (2.56 pixels offset) is on average in all videos more accurate than the

developed face tracker (5.99 pixels offset). It should be considered, however, that the

45

Viola-Jones method loses the face in several frames. These frames are not considered

in the computation of the average accuracy of the Viola-Jones algorithm. The average

offset in pixels is illustrated in Fig. 7.

Fig. 7. Average inaccuracy of the optical flow face tracker and the Viola-Jones algorithm.

On average the Viola-Jones algorithm outputs a higher amount of false detections. In

particular, the Viola-Jones algorithm returned on average 26 false detections per vid-

eo and the optical flow face tracker 18 false detections. This is caused by certain head

poses that make it impossible for Viola-Jones to detect the face due to the utilized

classifier which was trained with upright face images. Therefore these false detections

are mostly false negatives.

By design the optical flow face tracker will always detect a face as long as it was

initialized with one. If the Viola-Jones algorithm does not detect a face in the re-

freshment frame it is re-executed until it detects one. If Viola-Jones produces a false

negative no refresh on the likelihood map is done, which causes the optical flow face

tracker to become inaccurate and produce false positives with increasing time. If Vio-

la-Jones outputs a false positive, the error is propagated as this false detection is fol-

lowed by the face tracker. By increasing the threshold for segmentation of the likeli-

hood map, the false positive rate can be lowered. However, it is possible that the ac-

curacy gets worse. The Viola-Jones detector returned only a few false positives.

5.4 Stability

Erratic movements within the face tracking process are unpleasing as faces are only

moving relatively slow in practice. The stability is measured by taking the Euclidean

distance e between the face centers of two successive frames with valid detections

(see (8)). The distance e is a direct measure for the instability. Center points are con-

sidered as valid if their distance to ground truth is less than 20 pixels.

46

M = √>AW − AW−J;2 + ><W − <W−J;2 (8)

In general the optical flow face tracker shows less erratic movements. The average on

all videos equals 0.9 pixel for the optical flow face tracker and 1.5 pixels for the Vio-

la-Jones face detector. Fig. 8 shows the average instability per video in pixels.

Fig. 8. Average instability of both algorithms applied to all videos of the database.

5.5 Speed

The speed of the algorithms is measured in computation time in milliseconds. Com-

pared to the Optical Flow Face Tracker, the Viola-Jones algorithm needs less time for

computation. It has to be outlined that the average CPU usage is higher when execut-

ing the Viola-Jones algorithm. This is caused by the high parallelization of the

OpenCV implementation of the Viola-Jones method. In contrast, the computation of

the Farnebäck optical flow is mostly done by one core which causes the average CPU

usage to be low, but the computation time to be high. The optical flow computation

takes a majority of the computation time of the face tracking algorithm (in average

11.33 milliseconds). The rest of the computation time of the algorithm is much lower

(1.67 milliseconds) compared to the Viola-Jones algorithm (6 milliseconds).

The Viola-Jones algorithm and our algorithm have the same complexity due to being

the Viola-Jones algorithm a part of the proposed system. However, because the Viola-

Jones algorithm is called not at every frame, one can expect a constant factor of speed

increase. This speed increase is given by how often the likelihood map should be

updated.

47

6 Conclusion

We presented a novel real-time face tracker which utilizes a modified version of the

Viola-Jones algorithm for face detection. In contrast to a pure Viola-Jones face detec-

tor the developed approach calls a modified Viola-Jones method only at every 20th

frame for refreshing a likelihood map. The likelihood values within this map are de-

pendent on the numbers of classification stages which detection windows pass when

the classification is done.

In order to track the faces the likelihood map is interpolated with a flow map comput-

ed by the Farnebäck dense optical flow method. The resulting likelihood map of the

modified Viola-Jones algorithm contributes to the system’s likelihood map by recur-

sive filtering.

Compared to the original Viola-Jones implementation, the likelihood map approach

enables faces to be detected even when they do not pass all of the stages of the cas-

cade classifier. Due to the fact that the likelihood map is never discarded completely,

a region gets also a high value in the likelihood map if the respective window passes

for example 17, 18 or 19 stages within several executions of the modified Viola-Jones

method. Another advantage of the developed face tracker is that it can also track faces

under partial and complete occlusion.

The developed face tracking algorithm and the original Viola-Jones face detector

were evaluated on the Boston Head Tracking Database. The developed face tracker

achieved a higher detection rate than the Viola-Jones face detector. Furthermore, the

optical flow face tracker showed less erratic movements of detections.

The developed tracker relies on the Viola-Jones algorithm which means that an error

of Viola-Jones algorithm during initialization or refresh of the likelihood map gets

propagated. By utilizing also other methods for face detection this effect could be

minimized (e.g. execute a face detection method with a low computation time only on

the extracted face areas in order to check if the tracker has lost the faces or not).

Bibliography

[LKP03] Lienhart, R.; Kuranov A., Pisarevsky V.: Empirical Analysis of Detection
Cascades of Boosted Classifiers for Rapid Object Detection. In DAGM 25th
Pattern Recognition Symposium, 2003.

[LSA00] La Cascia M., Sclaroff S., Athitsos V.: Fast, Reliable Head Tracking under
Varying Illumination: An Approach Based on Registration of Texture-Mapped
3D Models. In IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2000.

[VG09] Valenti R., Gevers T.: Robustifying Eye Center Localization by Head Pose
Cues. In IEEE conference on Computer Vision and Pattern Recognition, 2009.

[VJ01] Viola P., Jones M.: Rapid Object Detection using a Boosted Cascade of Simple
Features. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2001.

[ZH07] Zhang, L. et al.: Face Detection Based on Multi-Block LBP Representation. In
ICB International Conference, 2007.

48

