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Evaluation of CNN architectures for gait recognition based

on optical flow maps

F.M. Castroi , M.J. Mar1 ı́n-Jimenez i,´ 2 N. Guil ,aS. Lopez-Tapia ,1 ´ 3 N. Pérez de la Blanca 3

Abstract: This work targets people identification in video based on the way they walk (i.e.gait)
by using deep learning architectures. We explore the use of convolutional neural networks (CNN)
for learning high-level descriptors from low-level motion features (i.e.optical flow components). The
low number of training samples for each subject and the use of a test set containing subjects different
from the training ones makes the search of a good CNN architecture a challenging task. We carry out
a thorough experimental evaluation deploying and analyzing four distinct CNN models with different
depth but similar complexity. We show that even the simplest CNN models greatly improve the
results using shallow classifiers. All our experiments have been carried out on the challenging TUM-
GAID dataset, which contains people in different covariate scenarios (i.e.clothing, shoes, bags).
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1 Introduction
The goal of gait recognition is to identify people by the way they walk. This type of

biometric approach is considered non-invasive, since it is performed at a distance, and

does not require the cooperation of the subject that has to be identified, in contrast to

other methods as iris- or fingerprint-based approaches. Gait recognition has application in

the context of video surveillance, ranging from control access in restricted areas to early

detection of persons of interest as, for example, v.i.p. customers in a bank office.

In last years, great effort has been put into the problem of people identification based on

gait patterns [Hu04]. However, previous approaches have mostly used hand-crafted fea-

tures for representing the human gait [BD09, HB06, Ca17], which do not easily adapt to

diverse datasets, due to the specificity of the hand-crafted descriptors obtained for each

dataset. Therefore, we propose an end-to-end approach based on convolutional neural net-

works that given low-level optical flow maps, directly extracted from video frames (see

Fig. 1), is able to learn and extract higher-level features suitable for representing human

gait: gait signature. In addition, we also present a fair comparative between four models

based on three of the most popular kinds of CNN architectures used in computer vision

tasks: LeNet [LB95], VGG [SZ14] and ResNet [He16]. The contribution of this paper is

twofold: (i) a set of CNN models for gait recognition using optical flow; and, (ii) a thor-

ough experimental study to validate the proposed models on the standard TUM-GAID

dataset for gait identification, obtaining state-of-the-art results.

The rest of the paper is organized as follows. We continue by reviewing the related work.

Then, Sec. 2 explains our four different models for learning gait signatures and identifying
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Fig. 1: Pipeline for gait recognition. a) The input is a sequence of RGB video frames. b) Optical

flow is computed along the sequence. c) Optical flow subsequences are passed through the CNN to

obtain gait signatures. e) Classification of the extracted gait signatures. Note: positive flows are in

pink and negative flows in blue. (Best viewed in colour).

people. Sec. 3 contains the experiments and results. Finally, we present the conclusions

and future work in Sec. 4.

1.1 Related work

Traditionally, deep learning approaches based on Convolutional Neural Networks (CNN)

have been used in image-based tasks with great success [KSH12]. In the last years, deep

architectures for video have appeared, specially focused on action recognition, where the

inputs of the CNN are subsequences of stacked frames. In [SZ14], Simonyan and Zisser-

man proposed to use as input to a CNN a volume obtained as the concatenation of frames

with two channels that contain the optical flow in the x-axis and y-axis respectively. To

normalize the size of the inputs, they split the original sequences into subsequences of

10 frames, considering each subsample independently. A natural modification is presented

by Ji et al. [Ji13], where a 3D convolutional network is developed to capture temporal

information from multiple frames. Then, Tran et al. [Tr15] propose a new 3D network

which uses raw videos as input, instead of preprocessed inputs. Recently, a new approach

has been developed by He et al. [He16]. They propose a new kind of CNN which has

a large number of layers and residual connections to avoid the vanishing gradient prob-

lem. Although several papers can be found for the task of human action recognition using

deep learning techniques, it is hard to find such type of approaches applied to the problem

of gait recognition. In [HC13], Hossain and Chetty propose the use of Restricted Boltz-

mann Machines to extract gait features from binary silhouettes, but a very small probe

set (i.e.only ten different subjects) was used for validating their approach. A more recent

work, [WHW15], uses a random set of binary silhouettes from a sequence to train a CNN

that accumulates the calculated features to achieve a global representation of the dataset.

In [AM15], raw 2D GEI are employed to train a simple CNN for gait recognition. A more

complex work is presented in [GB15] where GEI are used to train an ensemble of CNN and

This work has been funded under projects TIC-1692 (Junta de Andalucı́a) and TIN2016-75279-P (Spanish

Ministry of Science and Tech.). The GPU Titan X Pascal used for this research was donated by NVIDIA.
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Fig. 2: Proposed CNN models for gait signature extraction. a) 2D-CNN: linear CNN with four

2D convolutions, two fully connected layers and a softmax classifier. b) 3D-CNN: four 3D convo-

lutions, two fully connected layers and a softmax classifier. c) ResNet-A: residual CNN with a 2D

convolution, four residual blocks, an average pooling layer and a final softmax classifier. d) ResNet-

B: extended version of ResNet-A. Note that before the first block of each kind (ResB 1, 2, 3, 4),

there is an adapter convolution to resize the input image to the size of the next block.

a Multilayer Perceptron is employed as classifier. In [Wu17], given two GEI descriptors,

they learn a metric to decide whether both descriptors belong to the same subject or not.

All those previous CNN-based approaches propose precomputed GEI descriptors as input

features. In contrast, our approach builds a spatio-temporal volume of optical flow [SZ14]

as input to a CNN specially designed for gait recognition, what will allow the CNN to

learn characteristic gait patterns directly from the source, i.e.the motion.

2 Proposed approach
In this section we describe our proposed framework to address the problem of gait recog-

nition using CNN. The proposed pipeline is represented in Fig. 1: (i) compute optical flow

(OF) along the whole sequence; (ii) build up a data cuboid from consecutive OF maps; (iii)

feed the different CNNs with an OF cuboid to extract the gait signature; and, (iv) using the

gait signature, decide the subject identity.

2.1 Input data

The use of optical flow (OF) as input data for action representation in video with CNN

has already shown excellent results [SZ14]. Nevertheless human action is represented by

a wide, and usually well defined, set of local motions. In our case, the set of motions

differentiating one gait style from another is much more subtle and local.

Let Ft be an OF map computed at time t and, therefore, Ft(x,y,c) be the value of the OF

vector component c located at coordinates (x,y), where c can be either the horizontal or

vertical component of the corresponding OF vector. The input data IL for the CNN are

cuboids built by stacking L consecutive OF maps Ft , where IL(x,y,2k−1) and IL(x,y,2k)
corresponds to the value of the horizontal and vertical OF components located at spatial

position (x,y) and time k, respectively, ranging k in the interval [1,L].

Since original video sequences have different temporal length, and CNN requires a fixed

size input, we extract subsequences of L frames from the full-length sequences.

2.2 CNN architectures for gait signature extraction

We have selected three of the architectures that most frequently appear in the bibliography

and produce state-of-the-art results in different topics (e.g.action recognition, object detec-

tion, etc). The proposed architectures are: (i) the LeNet architecture [LB95], adapted to a
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model named (2D-CNN), which is the most common architecture; (ii) the VGG architec-

ture [SZ14], adapted to use 3D convolutions on optical flow inputs and named (3D-CNN),

which is specially designed to capture information in video sequences; and, (iii) two CNN

models with residual units (named ResNet [He16]), used to experiment with deeper mod-

els on this task, as the network depth has been recently pointed out as one the most relevant

factors to achieve the state of the art in many tasks [KSH12].

To carry out a fair comparison, three of the four models have been designed to have a

similar number of parameters, where the 2D-CNN model has been taken as a reference

(i.e.∼ 18.5M). This choice allows us to carry out a comparative study which is independent

of the network capacity. Due to the particular design of the fourth one, it has a different

number of parameters.

We describe below the four models compared in the experimental section (Sec. 3):

2D-CNN (16 layers): This CNN is composed of the sequence of layers shown in Fig. 2.a).

All convolutional layers use a ReLU function and all conv blocks contain a max-

pooling operation.

3D-CNN (16 layers): As optical flow has two components and the CNN uses temporal

kernels, the network is split into two branches: x-flow and y-flow. Therefore, each

branch contains half of the total filters. Then, this CNN is composed of the sequence

of layers shown in Fig. 2.b). Note that ‘concat’ layer concatenates both branches (x-

flow and y-flow) into a single one. All convolutional layers use a ReLU function and

all conv blocks contain max-pooling.

ResNet-A (167 layers): This CNN is composed of the sequence of layers and residual

blocks (a sequence of two convolutions of size 3×3 and a sum layer, as defined in

[He16]) shown in Fig. 2.c). As our model follows the indications defined in [He16],

we only describe the main blocks. Note that all convolutional layers use the rectifi-

cation (ReLU) activation function and batch normalization.

ResNet-B (268 layers): This CNN is an extended version of ResNet-A, composed of the

sequence of layers and residual blocks shown in Fig. 2.d). Note that all convolu-

tional layers use the parametric rectification (PReLU) [He15] activation function,

local response normalization (LRN) and batch normalization. The use of PReLU is

specially useful in our case as optical flow has negative components which contain

important information about motion. Therefore, the network uses more information

and the gradients are more powerful, avoiding the vanishing gradient problem.

2.3 Training details

For models 2D-CNN, 3D-CNN and ResNet-A, during training, the weights are learnt using

mini-batch stochastic descent algorithm with momentum equal to 0.9. We set weight decay

to 5 ·10−4 and dropout to 0.4 (2D-CNN and 3D-CNN). The learning rate is initially set to

10−2 and divided by 10 when the validation error gets stuck. At each epoch, a mini-batch

of 150 samples is constructed by random selection over a balanced training set (i.e.almost

same proportion of samples per class).

As ResNet-B has some peculiarities, training parameters must be adapted. In this case,

mini batches of size 64 are used. The learning rate policy follows a triangular scheme that
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consists of varying the learning rate between a minimum and a maximum value following a

triangular pattern with the training iterations. The triangular learning rate parameters range

from 0.003 to 0.015 during 4 epochs. The model was trained with a total of 24 epochs.

Finally, dropout is used before each fully connected layer with a value of 0.1. Also weight

decay regularization with value 0.0005 was imposed. Note that all hyperparameters have

been cross-validated and only the best ones are presented in this paper.

3 Experiments and results
3.1 Dataset
TUM-GAID [Ho14] contains 305 subjects walking on four different conditions: normal

walking (N), carrying a backpack (B), wearing coating shoes (S) and elapsed time (TN,

TB, TS). We follow the standard experimental protocol defined by the authors of the

dataset [Ho14]. Therefore, we use 100 subjects as training set, 50 different subjects as

validation set and 155 different subjects as test set – note that it is distinguished between

‘subject partitions’ and ‘sequence partitions’, i.e., for each subject, training, validation and

test sequences are available. As we have different subjects between training and testing, it

is needed to fine-tune the model with four training sequences of normal walking of the test

subject partition. Note that the sequences used for fine-tuning are not used during testing.

For testing, we use six sequences that have never been seen before by our model according

to the partitions defined in [Ho14].

3.2 Implementation details
All videos are resized to a common resolution of 80× 60 pixels, keeping the original as-

pect ratio of the video frames. Given the resized video sequences, we compute dense OF on

pairs of frames by using the method of Farneback [Fa03] implemented in OpenCV library.

In parallel, people are located in a rough manner along the video sequences by background

subtraction [KB02]. Then, we crop the video frames to remove part of the background, ob-

taining video frames of 60× 60 pixels (full height is kept) and to align the subsequences

(people are x-located in the middle of the central frame). Finally, from the cropped OF

maps, we build subsequences of 25 frames by stacking OF maps with an overlap of Θ%

frames. As this dataset is relatively small, we need to choose an intermediate overlapping

rate value that allows to obtain training samples with enough variability between them. In

our case, we empirically choose Θ = 80%, that is, to build a new subsequence, we use 20

frames of the previous subsequence and 5 new frames. For most state-of-the-start datasets,

25 frames cover almost one complete gait cycle, as stated by other authors [BD09]. There-

fore, each OF volume has size 60×60×50.

To increase the amount of training samples we add mirror sequences and apply spatial

displacements of ±5 pixels per axis, obtaining a total of 8 new samples from each original

one. Then, mirror sequences are computed, obtaining about 270k training samples. Note

that in Sec. 2.1, we split the whole video sequence into overlapping subsequences of a

fixed length, and those subsequences are classified independently. Therefore, in order to

derive a final identity for the whole sequence, we multiply the probabilities returned by

the Softmax layer for all subsequences of the same sequence. Before feeding each sample

into the CNN, the mean value of the whole training dataset is subtracted.

We ran our experiments on a PC with 32 cores at 2.2 GHz, 256 GB of RAM and a GPU

NVIDIA Titan X Pascal, with MatConvNet library [VL15] running on Matlab 2016a for

Ubuntu 14.04 and Caffe [Ji14] library for ResNet-B.
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Fig. 3: Model comparison in terms of identification accuracy. Results grouped per scenario: nor-

mal ‘N’, backpacks ‘B’, shoes ‘S’ and temporal cases ‘Tx’. Group ‘G.Avg’ corresponds to global

average on the six scenarios.

3.3 Experimental results

After splitting the training sequences (of the training subjects) into subsequences, we got

a training set composed of 269352 samples used for learning the filters; and a second

training set composed of 108522 samples for training the softmax layer from the subset of

test subjects. Test sequences are never used for training or validation of the model.

Fig. 3 offers a visual comparison of the results obtained with each of the four tested archi-

tectures grouped per scenario type. In terms of scenario type, note that the temporal ones

(Tx) are the most challenging, as there exists a large change in subject appearance with

regard to the non-temporal cases where the filters of the networks were trained.

To put our results in context, Tab. 1 contains the state-of-the-art and the comparison be-

tween the four different models (rows ‘2D-CNN’, ‘3D-CNN’, ‘ResNet-A’ and ‘ResNet-

B’). We have applied the PFM descriptor [Ca17] on resized videos of 80×60 to obtain a

fair comparison. Comparing the CNN results with the state-of-the-art , 2D-CNN achieves

on average the best results for the non-temporal scenarios. For the temporal cases, 3D-

CNN obtains the best results. On global average (column ‘G.Avg’), ResNet-B sets a new

state-of-the-art with an accuracy 0.2% better than the rest of CNNs and 6.1% better than

the best handcrafted method. Note that CNNs use an input 16 times lower than the rest of

the compared methods.

4 Discussion and Conclusions
The relevance of the complexity in CNN architectures, when applied to the gait recogni-

tion task, has been analysed through a comparative study of four models (from three deep

architectures) and its comparison to results from methods based on handcrafted features.

The first conclusion is that in this task, as in many others, the deep CNN architectures

overcome shallow and handcrafted methods. This fact points out the importance of the

architecture depth to extract relevant features. The second conclusion is that the four deep

models achieve similar results in the non-temporal scenario, but in the temporal one the

differences are more significant. The filters used by the 3D-CNN model make the differ-

ence in the temporal scenario. The standard convolutional architectures obtain the best

results on the non-temporal and temporal scenarios as its design is focused on the main
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Method N B S Avg TN TB TS Avg G. Avg

6
4
0
×

4
8
0

GEI [Ho14] 99.4 27.1 52.6 59.7 44.0 6.0 9.0 19.7 56.0

SEIM [WBR14] 99.0 18.4 96.1 71.2 15.6 3.1 28.1 15.6 66.6

GVI [WBR14] 99.0 47.7 94.5 80.4 62.5 15.6 62.5 46.9 77.3

SVIM [WBR14] 98.4 64.2 91.6 84.7 65.6 31.3 50.0 49.0 81.4

RSM [GL13] 100 79.0 97.0 92.0 58.0 38.0 57.0 51.3 88.2

8
0
×

6
0

PFM [Ca17] 75.8 70.3 32.3 59.5 50.0 40.6 25.0 38.5 57.5

2D-CNN 99.4 97.7 96.1 97.7 56.3 43.8 59.4 53.2 93.5

3D-CNN 98.7 97.1 94.5 96.7 71.9 68.9 65.6 68.8 94.1

ResNet-A 98.4 92.6 91.6 94.2 59.4 56.3 62.5 59.4 90.9

ResNet-B 99.0 95.5 97.4 97.3 65.6 62.5 68.8 65.6 94.3

Tab. 1: State-of-the-art on TUM GAID. Percentage of correct recognition on TUM-GAID for

diverse methods published in the literature. Bottom rows correspond to our proposal, where instead

of using video frames at 640× 480, a resolution of 80× 60 is used. Each column corresponds to

either a different scenario or average on scenarios (i.e.Avg, G.Avg ). Best results are marked in bold.

variations of the signal, spatial in 2D-CNN and temporal in 3D-CNN. Regarding the two

ResNet models there are many differences between them in terms of design (see Fig.2)

and training parameters. The ResNet-B model is a much more deeper architecture need-

ing of PReLU activations and adaptive learning rate to obtain a good optimum. A final

fully connected layer with dropout was added as well. Nevertheless and despite all these

improvements, an increment of only 3.4 points in score is obtained w.r.t. ResNet-A. This

result shows that the addition of residual layers although allows to fit deeper models, needs

of a good learning rate policy to obtain a good optimum. The ResNet architecture achieves

the overall best results when it is properly fitted. Our results reinforce, for the gait recogni-

tion task, the empirical finding of other works that indicates that architectures with enough

depth are needed in order to obtain high classification accuracy. In addition, the use of ap-

propriate activation functions has also shown to be a very relevant choice on this task. Fo-

cusing on the training speed, independently of the number of parameters, 3D-CNN needs

more training time, followed by 2D-CNN and ResNet which is the fastest one.

As future work, we plan to extend our study to identify the kind of architectures more

suitable to combine motion with appearance (i.e.RGB data), applying them to more gait

datasets in which optical flow can be computed – this would allow us to perform transfer

learning between networks trained on different data.

References

[AM15] Alotaibi, M.; Mahmood, A.: Improved Gait recognition based on specialized deep con-
volutional neural networks. In: AIPR Workshop. pp. 1–7, 2015.

[BD09] Barnich, Olivier; Droogenbroeck, Marc Van: Frontal-view gait recognition by intra- and
inter-frame rectangle size distribution. Patt. Recogn. Letters, 30(10):893 – 901, 2009.
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