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Abstract: The main contribution of this paper is a novel approach for fast searching
in huge structural databases like the PDB. The data structure is based on an adap-
tion of the generalized suffix tree and relies on an translation- and rotation-invariant
representation of the protein backbone.

The method was evaluated by applying structural queries to the PDB and com-
paring the results to the established tool SPASM. Our experiments show that the new
method reduces the query time by orders of magnitude while producing comparable
results.
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1 Introduction

In recent years, major progress has been made in methods to determine protein structure
experimentally. As a consequence, the Protein Data Bank (PDB) [BWF+00] today holds
more than 26,000 structures and continues to grow by almost 90 structures per week. This
offers unprecedented possibilities to join knowledge from different proteins, or to project
knowledge to novel proteins - if similarities among proteins can be identified efficiently.
Proven and efficient methods based on the (amino acid-) sequence of the proteins exist, yet
an urgent interest in methods for structural comparison remains for several reasons: struc-
tural similarities provide better clues about the function of a protein than sequence sim-
ilarities since the function of a protein is largely determined by its 3-dimensional shape.
Furthermore, structure is known to be better preserved than sequence, and hence may re-
veal evolutionary or functional relationships even if a similarity among the sequences is no
longer detectable. Finally, structural analysis may aid our understanding of the principles
of protein folding and architecture.
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However, existing methods are mostly based on exhaustive search and pairwise compar-
ison of structures. As a consequence, their query time scales at least linearly with the
number of structures to be searched. Due to the almost exponential growth in the number
of structures in protein databases, this is considered unsatisfactory.

These facts underline the need for efficient methods that enable researchers to search
protein databases for structurally similar proteins. Questions that should be addressed
by such methods include: How can we search all (exact/approximate) occurrences of a
(sub)structure in a database? How can we find the database entries that share a largest
common substructure with a given structure? Are there frequently occurring substructures
in the database, and what do they look like? We will show that it is possible to answer
these questions in an appropriate way for the case of a protein structure database, if the
entries are preprocessed to build a structural index.

2 Related Work

Protein Searching In order to make pairwise comparisons practical for larger databases,
classical methods likeDALI [HS94],VAST [GMB96] or CE [SB98] use a two-phase ap-
proach. In the first (’filter’) phase, a set of candidate proteins is generated. A variety
of strategies exist for this phase including the alignment of secondary structure elements
(SSEs), distance matrices, feature profiles, or combinations of the methods. In the follow-
ing refinement phase the set of reported positives is constructed, for example by identify-
ing matchingCα atoms and computing RMSD values between the query and all candidate
structures. Due to the quickly increasing size of structure databases, newer approaches
further trade off precision for speed.TopScan[Ma00] takes SSEs as the basic elements of
the search.ProtDex2 [AT04] speeds up the filtering phase by using indexing data struc-
tures to rapidly select structures that are similar to the query according to precomputed
feature vectors.

The approaches described above share some common drawbacks. The candidate selection
in the filter phase sacrifices accuracy for speed by relying on abstractions like distance
matrices, SSE topology or feature vectors. Additionally heuristics are often employed to
ignore unlikely database entries. Yet the methods of the refinement phase generally remain
very expensive, restricting the filter phase to a small candidate set. As a consequence
the user is left with the choice of accepting a very slow response to his query or greatly
increasing the risk of pruning true positives in the filter phase. Furthermore, by relying
on such features as SSEs, areas of high local similarity (functional motifs) may remain
unidentified. This is most unfortunate since the functional motifs determine a protein’s
function to a large degree.

SPASM[Kl99] is one of the few programs to specialize in finding functional motifs. It is
a two phase method, based on inter-molecule distance matrices, and is used as a reference
to our approach in this work.
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Motif Detection The detection of frequent structural motifs has been investigated us-
ing graph-theoretic abstractions (e.g. clique detection, see [SVPS95, KMR72, KLW96,
KL97]), Geometric Hashing [LNW01] or a combination of both approaches [WKHK03].

Chew et al. [CHKK99] present an approach that is capable of computing common geomet-
ric substructures of only two molecules, but most interestingly the paper also addresses the
problem of detecting common domains, i.e. larger substructures where proximity in space
does not coincide with continuousness along the polypeptide chain. Another interesting
point is the use of alternative backbone representation that is based on the virtual-bond
vectors between consecutiveα-carbon atoms.

A detailed survey on different aspects of structure comparison and patterns is given by
Eidhammer, Jonassen, and Taylor [EJT99].

3 The Polypeptide Angle Suffix Tree (PAST)

Protein Structure Since the focus of this application is on proteins, we take advantage
of their linear composition from the residues. Polypeptides are composed of amino acids
that are chained together by peptide bonds. The pure information about the sequence of
amino acids is called the primary structure. The so-called secondary structure elements
are formed by regularities of the backbone conformations.

Several connected secondary structure elements may build a more or less complex super-
secondary structure or(structural) motif. One example is the Zinc finger motif which is
used for testing the query capabilities of our approach. See Branden and Tooze [BT99] for
further information on protein structure.

To describe the three-dimensional conformation of a polypeptide chain, the torsion angles
ϕ, ψ, andω are used. They are advantageous compared to absolute positions of the back-
bone atoms because of their invariance to translation and rotation of the molecule in the
actual coordinate system. These so-called dihedral angles are defined by the torsion of two
bonds (AB andCD) around another bond (BC) or more formally by the angle between
the planes defined byABC andBCD.

Sinceω most often equals180◦, it is ignored in our approach in order to save memory.
Thus the three-dimensional structure of the protein can be reduced to its most significant
parameters by describing the backbone as a sequence of the torsion angles near theCα-
atoms (ϕi andψi). Also tested was a variant where the backbone is represented by the
τ -angles, that measure the torsion of the virtual bonds between consecutiveCα atoms.

Suffix Trees Suffix Trees are data structures that efficiently solve the problem of search-
ing all occurrences of a patternP in a textT . After the suffix tree forT is constructed
in a preprocessing step, the complexity of the search procedure no longer depends on the
length ofT and is linear in the lengthm of P if one is only interested in the first occur-
rence. If all occurrences have to be found, the complexity increases toO(m+ k) wherek
denotes the number of occurrences ofP in T .
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Weiner (1973) and McCreight (1976) presented algorithms for the linear time construction
of suffix trees. An algorithm proposed by Ukkonen [Uk95] is able to work online, i.e. to
iteratively compute the suffix tree for a growing text. For an excellent review of these
algorithms refer to Giegerich and Kurtz [GK97].

Suffix trees can easily be extended to the case where more than one text (i.e. a set of
sequences) has to be considered. TheseGeneralized Suffix Treescan be used as indexing
structures for databases. Further information on suffix trees and related structures can be
found in Gusfield [Gu97].

Construction of the PAST For the initial construction of our indexing data structure, an
extension of Ukkonen’s algorithm to generalized suffix trees is used. We iterate through
all entries of the structure database, i.e. we inspect every entry of the PDB and compute
for all polypeptide sequences the corresponding dihedral torsion angles from the peptides’
backbone atoms. These angles are encoded into an alphabetΣ (e.g. represented by the
characters with ASCII code from1 to |Σ|) by discretizing in intervals of size360◦/|Σ|.
An advantage of this data structure is that an easy update of the index is possible if new
entries are added to the database. Since an online algorithm is used, it is not necessary to
process all entries again. Only the angles for the new entries must be calculated and the
respective sequences added to the suffix tree.

Exact Matching Exact searching of a structure can easily be done by computing the di-
hedral torsion angles and coding them into characters analogously to the method described
above (clearly the same interval encoding as in the construction of the PAST must be ap-
plied). An exact structure search can be performed by simply using the regular suffix tree
search method that starts at the root and looks for appropriate children until the search
string ends or does not fit any child of the current node.

The search procedure can easily be modified to compute the longest prefix ofP that occurs
in T (by searching until no further matching character is found). If the search follows the
suffix link each time after the breakup, this can even be extended to compute the longest
segment of patternP that occurs as subsequence somewhere in the database.

To determine what the longest common substructure of two or more database entries looks
like, we simply traverse the whole tree while keeping track of the current depth. In each
node we check whether the number of occurrences is greater than a given threshold, and
we keep the node with maximum depth.

The search method in its original form has a linear time complexity, but on the other hand
we are facing the following problem: although the corresponding torsion angles of two
structures are very similar, the encoding might be different due to the discretization bound-
ary. Therefore these angles would be encoded by different characters, and the respective
angle sequences would not match despite their geometrical similarity. This brings us to a
more flexible way of searching but also to an increase in the computational complexity.
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Approximate Matching Approximate sequence matching is concerned with the ques-
tion of whether there exist similar, but not necessarily equal, occurrences in the database.
The respective similarity / distance measure is often defined by the Hamming or the edit
distance, which has been investigated in the context of suffix trees by Ukkonen [Uk93] and
by Hunt et al. [HAI02]. For our problem, their distance or similarity measures are not suit-
able, because we only want to allow substitutions for codes of neighboring angle intervals
(i.e. interval codes that differ at most byδ from the search character). The pair of charac-
ters that encode for the angles5◦ and175◦ has a much greater distance than the pairs that
encode for5◦ and−5◦ or 175◦ and−175◦. Note that the charactersx1, x|Σ| ∈ Σ represent
very similar angles, because−180◦ is the same as180◦. However, choosing intervals of
backbone angles already implements a certain error tolerance.

As previously mentioned, the worst case time complexity of the approximate search is
much worse than the exact search complexity because it might be exponential in the length
of the search pattern. One possible solution to this problem would be to limit the number
of mismatches. However in practice, processing these queries is also very fast without this
restriction (see experiments in section 4). This may be explained by the fact that the suffix
tree is sparse compared to the sequence space, which means that the average branching
factor of the nodes decreases with increasing depth within the suffix tree. For the case of
an equidistant partition of the angle space and assuming equal frequencies of the coding
characters, the average trie search complexity has been investigated by Maaß [Ma04].
Although these assumptions do not hold in our case, the given asymptotic run time of
O(nlog|Σ|(2δ+1)) can be regarded as a rough estimate of the complexity of the approximate
search procedure.

The search procedure can easily be extended to search for patterns that define different
neighborhood ranges for each angle code, which is a very useful feature in practice since
some parts of the whole structure are more conserved or less flexible than others (e.g.
helices).

Another possibility to improve selectivity and sensitivity of the search is to compute a
consensus angle sequence of a set of related sequences. This can be used iteratively to
improve the query structure which yields better results with the same query parameters
because local deviations in the torsion angles of the search pattern are reduced. Due to the
periodic nature of angles, it is not allowed to simply compute an average value for a set of
angles. Therefore we estimate the consensus angle by calculating the center of gravity for
the representatives of the angles on the unit circle. If this point is different from the point
of origin, the respective angle of this vector can be regarded as a consensus or ’average’
angle. The length of the vector is a measure for the conformity of the angle set.

4 Experiments and Results

We tested the application of our method to all entries of the PDB. For more than 50,000
chains from roughly 25,000 PDB files, more than 24 million torsion angles of the backbone
atoms were calculated, then encoded with an interval size of15◦, and finally added to the
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PAST. Parsing all files of the PDB (unpacked more than 15 GB) and computing the torsion
angles for the polypeptide chains takes about 1 hour on a 1 GHz PC and results in a file
containing a sequence of angles for each PDB entry. Please keep in mind that this step
has to be performed only once. After this preprocessing step, the character encoding for
a selected alphabet size and the computation of the generalized suffix tree itself takes less
than 5 minutes.

We performed several searches and compared the results to PROSITE [SCH+02] pattern /
profile matches and entries of SCOP [MBHC95] families. Due to space limitations, only a
small example can be shown here that demonstrates the power of the method. The results
are shown in the tables (columns marked with±δ show the hits for a search with maximum
toleranceδ). Table 1 compares the matches of a search for zinc fingers of the CCHC type
using different search tolerances. The search pattern (i.e. coded angle sequence) was taken
from PDB entry 1MFS (chain A, 26 angles from the residues 15–28).

Most of the PROSITE / SCOP group members are found. The missing entries have in-
sertions compared to the search pattern. This problem can be solved by allowing parts of
flexible length in the search sequence of angle codes (like it is done for amino acid se-
quence patterns, e.g. in PROSITE). This could significantly increase the search time, but
since traversing the whole PAST takes only a few minutes, this would be no real problem
in practice.

A search with a wholeα-chain of a hemoglobin molecule (chain A of PDB entry 1A3N)
was also conducted (detailed data not shown because of the large number of hits). Due to
the length of the search pattern a very high selectivity (no false positives even in the case
of a tolerance of±9) was observed.

For the C2H2 zinc finger type taken from PDB entry 1A1F (chain A, 46 angles from
the residues 135–158) a similar search was performed and compared to the results of a
respective search by SPASM (Cα atoms only, AA independent). Compared to the results
of PAST with a search tolerance of±4, the SPASM-based search missed many occurences
while PAST did not find 1 hit identified by SPASM. Alternatively, SPASM can be used to
search for fixed residues at certain positions (which leads to more hits), but this wouldn’t
be a sequence-independent search anymore. However, the search time of SPASM lies
always between several minutes and roughly one hour while PAST completes all queries
within seconds.

An overview of search results together with the running times for different settings of the
neighborhood ranges is shown in Table 3.

5 Conclusions and Future Work

The method of discretizing the backbone angles and putting the respective character en-
coding into a generalized suffix tree has proven to be a very fast solution for answering
structural queries on huge databases. Remarkably the reduction of the complex three-
dimensional structure of a protein to a simple sequence of torsion angle codes preserves
enough structural information to yield very selective and sensitive query results. Even
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PDB code Chain Pos. Sequence ±2 ±4 ±6
1mfs 13 VKCFNCGKEGHIAKNCR

√ √ √

1a1t A 13 VKCFNCGKEGHIAKNCR
√ √

A 34 KGCWKCGKEGHQMKDCT
√ √

1a6b B 24 DQCAYCKEKGHWAKDCP
1aaf 13 IK CFNCGKEGHIAKNCR

√ √

34 RGCWKCGKEGHQMKDCT
√ √

1bj6 A 13 VKCFNCGKEGHTARNCR
√ √

A 34 KGCWKCGKEGHQMKDCT
√ √

1cl4 A 51 GLCPRCKRGKHWANECK
1dsq A 29 PVCFSCGKTGHIKRDCK

√

1dsv A 56 GLCPRCKKGYHWKSECK
1esk A 13 VKCFNCGKEGHTARNCR

√ √

A 34 KGCWKCGKEGHQMKDCT
1f6u A 13 VKCFNCGKEGHIAKNCR

√ √

A 34 KGCWKCGKEGHQMKDCT
√ √ √

1hvn E 1 VKCFNCGKEGHIARNCR
√ √ √

1hvo E 1 VKCFNCGKEGHIARNCR
√ √

1mfs 13 VKCFNCGKEGHIAKNCR
√ √ √

34 KGCWKCGKEGHQMKDCT
√ √

1nc8 7 IR CWNCGKEGHSARQCR
√ √

1ncp C 22 KGCWKCGKEGHQMKDCT
N 1 VKCFNCGKEGHTARNCR

2znf 1 VKCFNCGKEGHIARNCR
√

Table 1: Hits from the search for zinc fingers of the CCHC type.

with short (angle) sequences and wide neighborhood ranges (±6=̂195◦) almost no false
positives were observed. (see table 3). Also, a rather sharp boundary (regarding the search
range) was observed in the case where many false positives occur. A possible interpreta-
tion is that the discretization interval of15◦ is more restrictive than necessary and could
be increased to a much higher value without worsening the selectivity. However, choos-
ing a relatively small interval size and accepting a bigger number of neighboring search
intervals minimizes the effect of discretization errors.

The queries of approximate matching show, as expected, an increasing running time. But
even for a large search interval (neighborhood) the respective times for searching the whole
PDB are in the order of seconds which is orders of magnitudes faster than the computation
time of other approaches.

Identification of New Frequent Motifs If we want to search for frequently occur-
ring three-dimensional substructures (structural motifs), we simply have to define a lower
bound for the length of the sequence and a lower bound for the number of occurrences.
Then we traverse the whole tree and grab all nodes that match the conditions. This is
also very fast because the complete suffix tree of the whole PDB can be held in the main
memory.

A problem appears during the frequent motif search because of the many occurrences of
the typical secondary structure elements (helices and strands). These are found in many
variations and must be filtered out to find really interesting new motifs.

In general the three-dimensional structure for proteins is more conserved than the sequence
of amino acids. Thus we hope to find larger matching substructures with the conformation
based approach described here than by using classical methods for sequence comparison.
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PDB code Chain Pos. PAST(±4) SPASM
1a1f A 135

√ √

1a1f A 135,163
√ √

1a1g A 135,163
√ √

1a1h A 135,163
√ √

1a1i A 135,163
√ √

1a1j A 135,163
√ √

1a1k A 135,163
√ √

1a1l A 135,163
√ √

1aay A 135,163
√ √

1ard 104
√ √

1are 104
√ √

1bbo 2
√

1f2i G 1135
√

H 2135
√

I 3135
√

J 4135
√

K 5135
√

L 6135
√

1fu9 A 9
√

1fv5 A 9
√

1g2d C 135,163
√ √

F 235,263
√

1g2f C 135,163
√ √

F 235,263
√

1jk1 A 135,163
√ √

1jk2 A 135,163
√ √

1jn7 A 9
√

1kls A 3
√

1llm C,D 204,260
√

1m36 A 8
√

1mey C,F,G 5,33,61
√

1p47 A,B 135,163
√ √

1paa 132
√

1p7a A 10
√ √

1ubd C 325
√ √

1yui A 34
√

1yuj A 34
√

1zaa C 35,63
√

1znf
√

2adr A 159
√ √

2drp A,D 111,141
√

Table 2: Search results for zinc fingers of the C2H2 type computed by PAST and SPASM.
As false positives PAST found the following entries: 1ghs, 1nm2, 1mla and 1qu9.

Search tolerance ±0 ±1 ±2 ±3 ±4 ±5 ±6 ±7
Interval size 15◦ 45◦ 75◦ 105◦ 135◦ 165◦ 195◦ 225◦

True pos. 1 13 32 46 61 68 68 68
1a1f False pos. 4 7 7 9 9

Time [s] < 1 < 1 < 1 < 1 1 2 3 4
True pos. 1 1 3 7 12 16 18 22

1mfs False pos. 4 29
Time [s] < 1 < 1 < 1 < 1 1 1 2 3
True pos. 1 17 87 120 132 135 138 144

1a3n False pos. 0
Time [s] < 1 < 1 < 1 1 2 4 5 6

Table 3: The number of true and false positives and the query time for the structure searches with
different tolerances.
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Aside from the implementation of the above mentioned flexibility for varying lengths and
acceptable deviations in the query sequence, a possible starting point to achieve improve-
ments in sensitivity and selectivity is the adaption of the angle intervals, for instance in
correspondence with dense and sparse regions of the Ramachandran plot. Another ap-
proach could be to combine the search results for two or more structural motifs (that are
non-consecutive along the chain) to find conserved domains.

Currently, PAST is evaluated as a fast search tool for structural similarities in the process
of drug design in a research cooperation with ALTANA Pharma.
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