
Integrated Revision and Variation Control for Evolving
Model-Driven Software Product Lines1

Felix Schwägerl2, Bernhard Westfechtel3

Abstract: Software engineering projects are faced with abstraction, which is achieved by software
models, historical evolution, which is addressed by revision control, and variability, which is managed
with the help of software product line engineering. Addressing these phenomena by separate tools
ignores obvious overlaps and therefore fails at exploiting synergies between revision and variation
control for models. In this article, we present a conceptual framework for integrated revision and
variation control of model-driven software projects and its implementation in the tool SuperMod.

Keywords: Model-Driven Software Engineering; Revision Control; Variation Control

1 Background

This work is concerned with the integration of three disciplines of software engineering:
In model-driven software engineering, software systems are developed from high-level
models that are analyzed, simulated, or transformed into source code. Software product line
engineering denotes a systematic reuse process that supports the efficient development of
instances of a product line from a set of shared artifacts. Software conĄguration management
is the discipline of managing the evolution of complex software systems; in particular, it
includes version control for software engineering artifacts such as models and source code.

To some extent, model-driven software engineering, software product line engineering,
and software conĄguration management have been evolving independently: Model-driven
software engineering focuses on models and model transformations without considering
evolution in time and space. Software product line engineering addresses evolution in
space only, primarily dealing with source code. Software conĄguration management is
concerned with evolution in time, focusing on Ąle-based artifacts. Partial integration of
these disciplines has been studied. For example, model version control deals with historical
evolution of models, and model-driven software product line engineering applies product
line engineering to model- rather than code-based artifacts.

1 This paper is an extended abstract of [SW19].
2 Universität Bayreuth, Lehrstuhl für Angewandte Informatik 1, Universitätsstraße 30, 95440 Bayreuth, Germany

felix.schwaegerl@uni-bayreuth.de
3 Universität Bayreuth, Lehrstuhl für Angewandte Informatik 1, Universitätsstraße 30, 95440 Bayreuth, Germany

bernhard.westfechtel@uni-bayreuth.de

cba doi:10.18420/SE2020_40

Michael Felderer (Hrsg.): SE 2020,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 133

https://creativecommons.org/licenses/by-sa/4.0/
mailto:felix.schwaegerl@uni-bayreuth.de
mailto:bernhard.westfechtel@uni-bayreuth.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2020_40


2 Conceptual Framework

In our work, we developed a conceptual framework for managing evolving software product
lines. This framework is based on earlier work on a uniform version model for the domain of
software conĄguration management [WMC01] and distinguishes between different layers of
abstraction. The base layer provides generic support for versioning of artifacts of arbitrary
types. Versioned artifacts are represented as superimposition of versioned elements. As
in conditional compilation or annotative approaches to software product line engineering,
versioned elements are decorated with visibilities, i.e., expressions that determine the
versions in which an element is included. Version rules are used to constrain the combination
of truth values that may be assigned to the variables occurring in visibilities.

On top of the base layer, user-level models for revision and variation control are realized. Here,
familiar abstractions from software product line engineering and software conĄguration
management are reused. Revision control (evolution in time) is supported by revision graphs.
Each revision denotes an immutable snapshot of a software product line. For variation
control (evolution in space), feature models are provided. Feature models are versioned in
time; domain artifacts (models and source code) evolve in both time and space.

3 Tool Support

Based on the conceptual framework described above, we developed SuperMod (Su-
perimposition of Models), a tool for managing evolving model-driven software product lines.
The tool maintains repositories of versioned artifacts such as feature models, domain models,
and source code. Furthermore, SuperMod offers operations such as check-out and commit
to populate workspaces and record changes performed in the workspaces, respectively.

While the check-out/commit cycle was inspired by classical version control tools known
from software conĄguration management, SuperMod differs considerably from version
control tools with respect to variation control. On check-out, the user selects a revision Ąrst
and then proceeds by selecting a variant. Thus, the workspace is populated with a unique
product version. Both the feature model and the domain artifacts may be changed in the
workspace. On commit, the set of variants is determined which are affected by the changes
performed in the workspace. Altogether, this approach is called dynamic Ąltered editing.

Bibliography
[SW19] Schwägerl, Felix; Westfechtel, Bernhard: Integrated revision and variation control for evolv-

ing model-driven software product lines. Software and Systems Modeling, 18(6):3373Ű
3420, December 2019.

[WMC01] Westfechtel, Bernhard; Munch, Bjørn P.; Conradi, Reidar: A Layered Architecture for
Uniform Version Management. IEEE Transactions on Software Engineering, 27(12):1111Ű
1133, 2001.

134 Felix Schwägerl, Bernhard Westfechtel


