A Model Management Framework
for Maintaining Traceability Links

Thomas Beyhl, Regina Hebig and Holger Giese
Hasso Plattner Institute for IT Systems Engineering at the University of Potsdam
Prof.-Dr.-Helmert-Street 2-3, 14482 Potsdam, Germany
{prename}.{surname } @hpi.uni-potsdam.de

Abstract: In MDE diverse modeling and model transformation languages are applied
to describe and derive the envisioned system. Traceability is a prerequisite for main-
taining consistency between different development artifacts. Thereby, the usefulness
of traceability links increases with their completeness and correctness. In practice,
automatic creation and maintenance of traceability links is required to be useful. This
is addressed by heuristic approaches that derive traceability information statically or
by model transformation technologies that provide traceability links as additional ex-
ecution result. However, the maintenance of traceability links for a set of diverse
languages and transformation technologies as combined in MDE is still a challenging
task. In this paper, we present a framework that provides and treats all traceability
information using the common format of hierarchical megamodels. Thereby, different
approaches for gaining traceability information can be combined. Information pro-
vided by transformation technologies is translated into this common format.

1 Introduction

In MDE diverse modeling and model transformation languages are applied to describe
and derive an envisioned system. Traceability is a prerequisite for maintaining consis-
tency between different development artifacts. Thereby, the usefulness of traceability links
increases with their completeness and correctness. In practice, a huge amount of develop-
ment artifacts is used to describe the envisioned system. Therefore, the manual creation
and maintenance of traceability links is not feasible and automatic creation and mainte-
nance of traceability links is required. This is addressed by heuristic approaches that derive
traceability information statically, e.g., [An02], or by model transformation technologies,
which provide traceability links as additional execution result, e.g. [Jo05]. Winkler et.
al [WP10] give a survey of traceability in requirements engineering and MDE. However,
the maintenance of traceability links for a set of diverse languages and transformation
technologies as combined in MDE is still a challenging task. First, many transformations
are performed manually or by transformation technologies, which provide no traceabil-
ity information. Second, the proprietary format of traceability links provided by different
transformation technologies prevents further treatment of this information for analysis of
the whole set of artifacts, e.g. for impact analysis or consistency checks. In the following,
we present a framework for maintaining traceability links that addresses the diversity of
modeling and model transformation languages in MDE. We developed the framework as

453

a basis of a set of research projects that build on traceability, e.g. a model transformation
composition framework [Sell], a framework extension for version control capabilities'
and a corresponding model management build server [SHG12]. Thereby, we address the
two challenges by allowing a combination of different traceability approaches for gaining
traceability information and by providing and treating all traceability information using
the common format of hierarchical megamodels.

2 Model Management Framework

Barbero et. al [BBOS] introduce the concept of megamodels. Such megamodels capture
models and relationships between models. Thus, megamodels are well suited for captur-
ing, providing and maintaining diverse models and traceability links between them. Hier-
archical megamodels combine high-level traceability models (megamodels) and low-level
traceability models (models containing fine-grained traceability links) [SNG10]. Thereby,
hierarchical dependencies between high-level and low-level modeling artifacts and be-
tween traceability links are defined. Thus, traceability information is combined into one
common traceability model. In our case, a hierarchical megamodel provides a logical view
of the local workspace by capturing representatives for artifacts (e.g. models, model ele-
ments, source code). The framework? presented here a) supports an easily extensible set of
modeling and model transformation languages, b) monitors artifact changes and updates
the set of representatives within the hierarchical megamodel concerning the development
artifacts in the local workspace, and c) gains and maintains traceability links automati-
cally, based on monitored development artifact changes, model transformation executions
and available traceability approaches.

Project Ex BT =0 MO Artilaes Typs View I - .!mmw—mﬂ— e i ﬂ
=% o 8 || *sMOMProject
e ok WA Pt * & MOMPraject ¥ fa NameMatchingRelation
i SOLUML * I bsckDiagram {hetp: |/ /de/hpi jsam/ib EN-'"'!"-HNFBPI-’-W!"
& model blockdiagram B= Block (hiip:| | fide/ hi/ sam fblockDi = MamebatchingPasameter
& model.cassdugram 1 WackDiagram (hetg:| [fde/hpi fsam ¥ S SOLIUML
&= Connectable (atp: /| de,hpsfsam)i 4l input BlockDiagram (hitp:| | de fhplfsam b
I Comnection (hitp / fde/balisamib b supor (UMLCIaseDiagram [Mep 1) /'da hpi
£ Element (hinp-/ | /e haifsam block " @l TCCOperation
£ S04 Pracesy (hitp |/ (cel bl fsamib # TCCParamats Tyothlapging (inpart)
5= SystemBiock (hatp:/ || dethpif samy| 4 TEC Paramster Typedlapping (outputh
|
@ NOM Proj = = [|| MOM Artilacs View T = 0|l MO Relation View 52 Er =0
ryeid L.! T?mn.::rmjﬂ 2Archd
- v [- fAeciure, TeCiure
VLT e— = '“‘C;E:;“l‘f:l‘ T i Caaet
H _project b eaSOL2UML 1159541749585
w [L) madel Blackdisgram s Sprver 7 Server
¥l Architecture
[l Clignt
[l Server

] connectiTa
& [model classdiagram

Figure 1: Views of the hierarchical megamodel

Uhttp://www.hpi.uni-potsdam.de/giese/gforge/mdelab/?page_id=108
Zhttp://www.hpi.uni-potsdam.de/giese/gforge/mdelab/?page_id=63

454

2.1 Type System

Information about physical artifacts, types, model operations and traceability links are
captured in a hierarchical megamodel. Development artifacts (e.g. models, model ele-
ments, code) in the local workspace are represented as artifacts within the hierarchical
megamodel. Correspondingly, all captured and retrieved traceability information is repre-
sented as relations. The framework includes an additional type layer, where metamodels
for used artifact types can be registered to improve the quality of the information in the
hierarchical megamodel. This type information is used to assign an artifact type to each
captured artifact. Thus, the framework can support arbitrary modeling languages. In ad-
dition, relation types can be specified to describe the signature of model operations and
traceability links (i.e. information about types of input and output artifacts of a relation).
To support an extensible set of model transformation languages a plug-in mechanism is
provided. Thereby, adapters can be plugged-in, which hide the model transformation tech-
nology internals. For example, we provide adapters to execute ATL? and Xpand* model
transformations. Adapters are used to trigger the execution of model transformations and
to retrieve traceability information about the execution. When executing a model transfor-
mation an executable relation is created within the hierarchical megamodel and the cor-
responding relation type is assigned. Traceability links are represented by non-executable
relations in the hierarchical megamodel, which connect input and output artifacts. Figure
1 depicts different views (artifact types, relation types, artifacts, relations) of the hierarchi-
cal megamodel. For example, the application of the model transformation SDL2U M L
and automatically created traceability links (e.g. C'lient2Client) are depicted.

2.2 Updating Artifact Representations

Development artifacts can be registered for being monitored by the framework. Changes
on these registered development artifacts are monitored and a notification mechanism pro-
vides change events when these monitored development artifacts change. Further, the
model transformation adapters may throw change events when model transformations lead
to a change, deletion or creation of models or model elements. Events are propagated to
the workspace builder, which is responsible to update the internal hierarchical megamodel
(i.e., create, update, or delete artifacts). Further, events are propagated to tools that base
on the framework.

2.3 Maintaining Traceability Information

Special kinds of the mentioned tools are traceability adapters, which enrich the hierar-
chical megamodel with statically derived traceability information implementing heuristic

3http://www.eclipse.org/atl/
“http://www.eclipse.org/modeling/m2t/?project=xpand

455

techniques. Furthermore, model transformations are directly triggered via our framework
using model transformation adapters. Thereby, the execution of model transformations
can be monitored in more detail. For example, also proprietary forms of traceability links
that are created during the execution of model transformations (at runtime), e.g. [Jo05],
can be translated to be stored in our hierarchical megamodel. We implemented different
technology-specific model transformation adapters. Thereby, we experienced how strong
the quality of retrievable traceability information and also the control over execution con-
figuration parameters depends on the model transformation technology. For example, it
turned out that the very flexible model transformation technology Jet’ is hard to control
and provides only little traceability information. For example, the question which tar-
get artifacts are generated cannot be answered before executing the model transformation.
This circumstance makes the integration of Jet into model transformation chains unfea-
sible. In contrast, the less flexible and more restricted model transformation technology
Xpand, allows better control and traceability information can easily be retrieved during the
execution of the model transformation. For all gained traceability information traceability
links (non-executable relations) are created within the hierarchical megamodel. Trace-
ability links may become incorrect when a model transformation was executed or artifacts
were changed manually. Based on the automated update of the hierarchical megamodel the
framework recognizes such situations and identifies the need to update or delete specific
traceability links as well. Traceability links retrieved by monitoring model transformation
executions are deleted (or marked as invalid), since they can only be restored when exe-
cuting the model transformation again. However, traceability adapters can directly update
all traceability links, which they had created.

3 Related Work

The AM3Core [BB0S8] provides a metamodel for megamodels that includes the concept
of models, relationships between models and chains of relationships. The Model Manage-
ment Tool Framework (MMTF) [Sa07] is an environment that enables different software
developers to work on different related parts of models and their relationships with the
help of a Model Interconnection Diagram (MID). However, both approaches are suitable
for automatically maintaining and combining traceability links.

4 Conclusion

We presented a framework for capturing and maintaining artifacts and traceability links
between them within a hierarchical megamodel. Thereby, we showed that different trace-
ability approaches can be combined to establish a chain of traceability links within model
transformation chains. In addition, we showed using the examples of ATL, Xpand, and Jet
that the framework can be extended to support different technologies and that traceability

Shttp://www.eclipse.org/modeling/m2t/?project=jet#jet

456

information can be extracted automatically. The traceability information stored within the
hierarchical megamodel and the events provided by the framework enable other tools to
use these traceability information. The framework was successfully applied in different
research projects. In future work, we focus on extending the set of model transformation
adapters, e.g. QVT Operational®.

Acknowledgement

The authors are grateful for the input of Andreas Seibel and the student assistants Henrik
Steudel, Dmitry Zakharov, Arian Treffer, Johannes Dyk and Manuel Hegner.

References

[An02]

[BBOg]

[Jo05]

[Sa07]

[SHG12]

[Sell]

[SNG10]

[WP10]

Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Ettore
Merlo. Recovering traceability links between code and documentation. /EEE Transac-
tions on Software Engineering, 28(10):970-983, 2002.

Mikaél Barbero and Jean Bézivin. Model driven management of complex systems:
Implementing the macroscope’s vision. [15th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems, pages 277-286, 2008.

Frederic Jouault. Loosely coupled traceability for ATL. In Proceedings of European
Conference on Model Driven Architecture workshop on traceability, pages 29-37, 2005.

Rick Salay, Marsha Chechik, Steve Easterbrook, Zinovy Diskin, Pete McCormick,
Shiva Nejati, Mehrdad Sabetzadeh, and Petcharat Viriyakattiyaporn. An Eclipse-based
tool framework for software model management. Proceedings of the 2007 OOPSLA
workshop on eclipse technology eXchange, pages 55-59, 2007.

Henrik Steudel, Regina Hebig, and Holger Giese. A Build Server for Model-Driven
Engineering. In 6th International Workshop on Multi-Paradigm Modeling (MPM 2012).
ACM, 2012.

Andreas Seibel, Regina Hebig, Stefan Neumann, and Holger Giese. A Dedicated Lan-
guage for Context Composition and Execution of True Black-Box Model Transforma-
tions. In 4th International Conference on Software Language Engineering (SLE 2011),
pages 19-39, Braga, 2011.

Andreas Seibel, Stefan Neumann, and Holger Giese. Dynamic hierarchical mega mod-
els: comprehensive traceability and its efficient maintenance. Software & Systems Mod-
eling, 9(4):493-528, September 2010.

Stefan Winkler and Jens von Pilgrim. A survey of traceability in requirements engi-
neering and model-driven development. Software & Systems Modeling, 9(4):529-565,
September 2010.

Ohttp://www.eclipse.org/projects/project.php?id=modeling. mmt.qvt-oml

457

