
Script-based system for monitoring
client-side activity

Artur Kulpa, Jakub Swacha, Roman Budzowski
Uniwersytet Szczeci ski

Instytut Informatyki w Zarz dzaniu
ul. Mickiewicza 64, 71-101 Szczecin

arturro.q@gmail.com,
jakubs@uoo.univ.szczecin.pl,

romek@innotech.pl

Abstract

In this paper, a system for monitoring client-side activity is
described. The system is capable of monitoring a wide range of
user actions performed in web browser environment. Event logs
are sent to the web server for further processing. The described
system is completely script-driven on the client side, requiring no
additional software to be installed on the client system and
guaranteeing platform-independence. The website user has full
control over the monitoring and can disable it anytime.

1. Introduction

Gathering information on customer activity is a well established practice in
e-commerce. So-called clickstreams consisting of a list of active elements
clicked by website user during his session can be gathered and analyzed server-
side, unfolding a pattern in user’s preferences [Andersen 2000].

Another notion comes from the field of application usage study [Hilbert
2000]. In this case, any kind of trackable user-triggered event may be recorded,
and then processed in order to discover high-level actions, so that application
user interface may be rearranged by removing unused capabilities and making
frequent actions easier to be performed.

This is also useful in e-commerce, as it is obvious that a well-designed
website can generate much more profit than a badly designed one. But the record
of user actions at the fine level of detail also constitutes an important source of
information for operational customer relationship management. It provides the
sales force automation with a very precise description of customer behavior, and
the customer service and support with thorough description of circumstances
which led to posting an inquiry or a complaint.

574 BUSINESS INFORMATION SYSTEMS – BIS 2006

However, it requires a client-side monitoring as most of the low-level activity
does not have any impact on the server. In today’s world of malicious spyware,
web users are hardly willing to install any monitoring software.

Thereinafter, we shall present a monitoring system which enables tracking
many user actions that may be found useful in the study of improvement of
e-commerce web-site. The system does not require any additional software to be
installed on the client, as all the tracking code is included in the website itself in
the form of client-side scripts. Thus, a user has full knowledge on what is
monitored – as the script source code is unhidden – and can easily turn off the
monitoring just by changing web browser script-running options (though there is
a subtler way of doing that embedded in the system).

2. User activities worth investigating

A client-side monitoring system can track a lot more than a server-side one. Not
every user action can be traced even in the client system: eye movements and
uttering curses being good examples of untraceable events. However, there is
still a colossal amount of data which can be collected. For the sake of its
simplicity and resource saving, a monitoring system should limit its surveillance
to actions which record may be then found useful in practical purposes.

Such purposes are related either to system usability study or to customer
research. Hereunder, some of the most popular purposes are listed:
x feature usage reports: once known, the most frequently used features should

be made simpler to use, the unused features should be promoted (in case the
users do not know they exist), explained (if users do not know why or how to
use them), or removed (in case nobody really needs them); the simple element
clicking and keystroke recording is enough to satisfy this purpose

x feature usage pattern discovery: if some features are often used together, they
should be available in proximity, if some features are almost always used
together, they should be composed into one new feature; in addition to
standard click and keystroke events, actions like marking and clipboard
operations should also be tracked for this purpose

x usage error reports: these can be helpful in improving user interface by
rearranging the size and placement of visible elements, and renaming the
feature captions along with adding or improving the help/hint subsystem; the
basic actions of importance here are “do then undo” event patterns and also
clicking on inactive web page elements

x user history reports: knowing what an individual did in the past may be
helpful in personalizing the system for him/her, evaluating the customer’s
profitability, and – after discovering behavior patterns – grouping the users by
some criteria; some sort of identification is obviously necessary here –
whether user-oriented (long-term cookies and login data) or session-oriented
(temporary cookies)

SCRIPT-BASED SYSTEM FOR MONITORING CLIENT-SIDE ACTIVITY 575

x browsing reports: these can show which information actually interests the user
and which does not; although not a perfect measure, the time of stay on a page
could give some clues on that.

3. Monitoring systems nowadays

Tracking user actions for further analysis is almost necessary in order to develop
and deploy quality applications, standalone programs and web applications alike.
In case of web applications it may have form of client-side or server-side
monitoring.

The client-side monitoring of user actions requires either integration of
monitored application with monitoring system or installation of additional
program capable of recording user actions.

A good example of a client-side monitoring tool is WinTask application from
TaskWare [Taskware 2005]. This application is capable of recording mouse
movement and keystrokes. Every recorded sequence can be replayed later or
used to produce a report. WinTask can also automatically test applications,
measuring their performance in form of application response times, critical
points and generated network traffic.

Fenstermacher and Ginsburg [Fenstermacher 2002] took a different approach,
trying to monitor creating and accessing individual information, not individual
application, so that cross-application information flows could be exposed.

Monitoring of web applications is mostly done server-side. An outgoing
browser requests leave tracks in server logs. These logs can be then analyzed
using data-mining applications such as OpenSource Webalizer [Webalizer 2005]
which is a fast and free web server log file analysis program producing highly
detailed website usage reports (see Fig. 1 on the next page).

Client-side scripts can be integrated with monitored website to send
information about user and viewed page to a third party server, where it is stored
in a database. Existing client-side scripts are limited to tracking information
which could just as well be tracked using a server-side monitoring. They come
practical when a website owner does not have access to server log files or simply
wants to present reliable data to others. Such script-based traffic monitoring
services are offered, for instance, by gemius.pl [Gemius 2006], stat.pl [Stat.pl
2006], ShinyStat [ShinyStat 2006], OpenTracker [OpenTracker 2006] and many
other providers.

Fenstermacher and Ginsburg [Fenstermacher 2003] suggested client-side
monitoring framework for web browser activity. Although they described their
solution as unobtrusive to users, it is based on a Python program monitoring
Microsoft Internet Explorer using Component Object Model (COM) technology,
and therefore it requires installing additional software. Moreover, this makes it
possible only to monitor actions of clients using Windows operating system and
Internet Explorer browser.

576 BUSINESS INFORMATION SYSTEMS – BIS 2006

Figure 1. Webalizer – analysis example.

Although existing client-side scripts are limited to traffic monitoring, web
browser scripting environments nowadays are complex enough to monitor
practically every user action reported by web browser.

4. Sketch of the script-based system

The idea at the core of the script-based monitoring system is to let a web vendor
collect a detailed record of a user activity without necessity to install any
software on the client system.

Another desired feature is to let the monitoring system work with existing
web pages without having to alter them in a complicated way.

The system is a client-server solution, with a client being a web browser
capable of running scripts.

The main problem to deal with is obtaining necessary detailed information on
occurring events. This can be achieved using the Document Object Model
(DOM) [Robie 2004] implemented in most web browsers, although with minor
differences to the official standard.

SCRIPT-BASED SYSTEM FOR MONITORING CLIENT-SIDE ACTIVITY 577

In a DOM-compliant browser, every trackable user action leads to setting up
an Event class object whose properties contain information describing the action,
like the document element being the object of the action [Pfaffenberger 2004].

Every kind of DOM object available in browser is accessible using JavaScript
programming environment [Goodman 2004]. This language can also be used to
transmit the gathered event information to the server-side monitoring application.
The server application’s role is to receive the information from the client, pre-
process it and then store it in a database system for further usage.

As for the server-side technology, there are many candidates like PHP, JSP,
ASP or any programming language used via Common Gateway Interface (CGI).
PHP5 [Coggeshall 2004] has been chosen for the experimental system
implementation, as a solution which is effective, free, and popular among host
providers.

The website requires a WWW server to be published. The monitoring system
requires the server to be able to run server-side scripts. The experimental system
implementation uses Apache server [Laurie 2002], as it has huge capabilities and
perfectly cooperates with PHP5.

Data can be stored server-side in many ways. They can be saved as they
come, arranged into XML documents, or passed to a database system. The latter
solution makes the further processing of data much easier. Therefore, the
experimental system implementation uses PostgreSQL database system
[PostgreSQL 2005], because, once again, it is highly efficient, free, and easily
accessible using PHP5.

5. Script-based monitoring in detail

Script-based monitoring software is based on the Event class objects of the
Document Object Model (DOM) [Robie 2004]. As many as 25 event types (the
actual number may vary between different web browsers) can be registered:
x element-related events (onclick, onchange, onfocusin, onfocusout,

onselectstart, ondblclick and oncontextmenu),
x mouse events (onmouseover, onmouseout, onmousedown, onmousewheel and

onmouseup),
x drag&drop events (ondrag, ondragenter, ondrop, ondragend, ondragleave and

ondragstart),
x keyboard events (onkeydown, onkeyup and onkeypress),
x clipboard events (oncopy, onpaste and oncut),
x script (de-)initialization (onload, onunload).

The event-registering script (eventlog.js) is attached to the monitored HTML
page via the following inclusion into the HEAD element: <SCRIPT TYPE =
'text/javascript' SRC = '/eventlog.js' LANGUAGE = 'JavaScript'></SCRIPT>.

578 BUSINESS INFORMATION SYSTEMS – BIS 2006

The eventlog.js file must be placed in the root directory of the WWW server.
It is possible to automate the process of applying the monitoring script inclusion
for the entire website with an appropriate PHP script using regular expressions.

On document loading, the browser attaches the monitoring code to the
document’s BODY element. It is then activated for every of the aforementioned
events. Since then, every time an event is triggered after some user action, the
monitoring code is executed. This is possible thanks to the ‘bubbles’ mechanism,
by which in case of an event for any document element, its parent element is
notified as well. As the BODY element is the (grand-)parent of all the elements
in the document, no event can evade being registered.

The proposed system does not interfere in any way with existing scripts
(other tracking system or anything else), as the event handlers are not replaced -
they are only wrapped with the monitoring code. Therefore, there is no need to
alter the existing scripts in any way.

The information being registered by the monitoring system depends on the
kind of the event. Some parts of it are common for any kind of event:
x the document’s URL
x client-side date and time of the event
x kind of the event
x kind of the element which triggered the event
x NAME attribute value (provided it exists).

The remaining are either element type dependent:
x for INPUT elements: their type and value
x for A elements: their reference (HREF)
x for FORM elements: their action
x for other elements: first 20 characters of their content;

or event type dependent:
x for clipboard events: selection and clipboard contents
x for drag&drop events: selection contents
x for keyboard events: the keystroke
x for mouse events: mouse cursor coordinates.

The registered information is stored as text in the following format:
[information_type == content;;].

To provide user identification capability, a user/session registration
mechanism has been built into the monitoring system. When a user enters the
monitored website for the first time, two identification cookies are created. The
first cookie for the purpose of session identification is temporary, valid only until
the user leaves the website. The second cookie for the purpose of user
identification has validity period 30 days long, thus it allows to identify users
returning to the monitored website after a short period of time, but no longer than
one month. The values of these cookies are attached to every recorded event
information.

In case the client browser cleans cookies after leaving the website, it will not
be possible to identify the user returning to the site unless the website requires a

SCRIPT-BASED SYSTEM FOR MONITORING CLIENT-SIDE ACTIVITY 579

login. In case the client browser has the cookies completely turned off, it will not
be possible to continue the monitoring session when the user switches to another
page on the website, limiting the session to one web page. Notice that even in
this case the entire website monitoring session can usually be reconstructed later
from server-side logs containing user’s IP record.

The gathered information is sent to the monitoring server by setting up an
asynchronous request. In case of Microsoft Internet Explorer environment
'Msxml2.XMLHTTP' ActiveX object is used for this task, whereas in Mozilla
environment - 'XMLHttpRequest' object. Upon receipt of such request, the server
executes a recording script written in PHP language. This script attaches the
server-side date and time to the received event information and then stores it all
in a PostgreSQL database system.

Communicating with the monitoring server every time an event has been
triggered could noticeably slow down the browser and produce too much web
traffic. In order to overcome that, the event records are merged into packets. The
packet is only sent to the server when the number of stored events exceeds 20 or
on the document unload event (leaving the site by the user).

All the gathered data are sent to the monitoring server using the same protocol
as the remaining communication. Therefore, if the connection is secured, then
the monitoring reports are sent in encrypted format. There is no possibility of
sending the data from the client to anywhere outside the monitoring server
domain. The gathered data are as safe as the web server is.

For additional security, it is possible to turn off monitoring specific kinds of
events (e.g. clipboard operations) or gathering data on specific kinds of controls
(e.g. input password boxes). The user can also disable the monitoring for a single
web page or the entire website.

6. Test results

The described monitoring system was tested on two websites:
www.klubinformatyka.pl and www.konferencja.org (Fig. 2). The former is a
content delivery site, therefore user activity there is rather simple and
concentrated on a website navigation. The latter is the biggest Polish scientific
conference catalogue and search engine, allowing user to specify search criteria,
insert conferences into the catalogue and add a chosen conference to “My
conferences” private repository. User activity here is much more complex with
more types of actions being performed.

The monitoring scripts were installed on both websites with no special
adaptation.

During one-week survey the script-based monitoring system proved its
suitability in user activity tracking by managing to produce excellent detailed
event reports. Although the widest range of events was reported from Internet
Explorer, most important actions were also captured on FireFox (and all

580 BUSINESS INFORMATION SYSTEMS – BIS 2006

browsers based on Gecko engine), though lacking reporting of, for example,
clipboard-related events.

Figure 2. The www.konferencja.org main page.

The easy script configuration process with the capability of turning off or on
each type of reported events separately makes it possible to focus the survey on
selected features of the website.

In order to limit the impact of monitoring on the monitored system
performance and generated web traffic, the packet size should be small.

After one week of monitoring, gathered data allowed to estimate average
event description length and packet size (see Table 1). As the former amounted
to 385 bytes, 20 consecutive events resulted in a packet of 7.5 KB. This is not
much for high-speed Internet connections, and it can also be greatly diminished
by applying a fast data compression algorithm (e.g. [Swacha 2004]), which was
not implemented in the experimental system only for the sake of its simplicity.

SCRIPT-BASED SYSTEM FOR MONITORING CLIENT-SIDE ACTIVITY 581

Table 1. Measured packet and event description size.

Data Value
Registered events (one week) 43661
Average packet size 7700 B
Average event description length 385 B
Maximum event description length 440 B
Minimum event description length 213 B

The time gap between sending consecutive packets (see Table 2; very long
inactivity periods are not included as they break the sessions) depends on the
type of the monitored website. It gets longer for websites with more content,
keeping users busy reading, thus reducing their activity.

Table 2. Time gap between packets uploads .

Data Time (s)
Average time 3
Minimum time 1
Maximum time 15

Moving the mouse across the screen over many active elements produces a
packet every second. Such a frequent packet uploading may noticeably slow
down the Internet connection, bringing up the compression issue again.
Diminishing the packet size is necessary for the proposed monitoring system to
be used unobtrusively even on slow dial-up Internet connections.

7. Conclusions

The presented system for monitoring a client-side activity is capable of
monitoring a wide range of user actions performed in a web browser
environment. The actions are recorded, arranged in packets, and then sent to the
server to be stored and processed.

Stored information contain detailed facts about the element which triggered
the event, precise date and time of the event, and identification of the document,
user and session during which the event took place. Although discussing how
this information can be processed is beyond the scope of this paper, it is obvious
that it can at least yield valuable information on usability of particular web page
elements and errors in their arrangement, thus giving hints to improve the quality
of the website.

A unique feature of the described system is that it is completely script-driven
on a client side, requiring no additional software to be installed on the client
system. It also makes the system platform-independent as well.

582 BUSINESS INFORMATION SYSTEMS – BIS 2006

8. References
[Andersen 2000] J. Andersen, A. Giversen, A. H. Jensen, R. S. Larsen, T. B.

Pedersen, and J. Skyt, Analyzing Clickstreams Using Subsessions. In Proceedings
of the Third International Workshop on Data Warehousing and OLAP,
Washington DC, November 2000, pp. 25–32.

[Coggeshall 2004] J. Coggeshall, PHP Unleashed, Sams Publishing, Indianapolis,
2004

[Fenstermacher 2002] K.D. Fenstermacher, M. Ginsburg, “A Lightweight
Framework for Cross-Application User Monitoring”, Computer, 35(3), 2002, pp.
51–59

[Fenstermacher 2003] K. Fenstermacher, M. Ginsburg, “Client-Side Monitoring for
Web Mining”, Journal of the American Society of Information Science and
Technology, 54(7), 2003, pp. 625–637

[Gemius 2006] Gemius, www.gemius.pl, 2006
[Goodman 2004] D. Goodman, M. Morrison, JavaScript Bible, Wiley Publishing,

Indianapolis, 2004
[Hilbert 2000] D. Hilbert, D.F. Redmiles, “Extracting Usability Information from

User Interface Events”, ACM Computing Surveys, Dec. 2000, pp. 384–421
[Laurie 2002] B. Laurie, P. Laurie, Apache: The Definitive Guide, O'Reilly Media,

2002
[OpenTracker 2006], OpenTracker, www.opentracker.net, 2005
[Pfaffenberger 2004] B. Pfaffenberger, S.M. Schafer, Ch. White, B. Karow, HTML,

XHTML and CSS Bible, Wiley Publishing, Indianapolis, 2004
[PostgreSQL 2005] PostgreSQL, www.postgresql.org, 2005
[Robie 2004] J. Robie, S. Byrne, P. Le Hégaret, A. Le Hors, L. Wood, G. Nicol, M.

Champion, Document Object Model (DOM) Level 3 Core Specification,
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-200404077, April 2004

[ShinyStat 2006], ShinyStat, www.shinystat.com, 2005
[Stat.pl 2006] Stat.pl, www.stat.pl, 2006
[Swacha 2004] J. Swacha, The Predictive-Substitutional Compression Scheme and

its Effective Implementation. In Proceedings of Data Compression Conference,
IEEE Computer Society Press, Los Alamitos, 2004

[Taskware 2005], Wintask, www.wintask.com, 2005
[Webalizer 2005] The Webalizer, www.webalizer.com, 2005

