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Abstract: This paper analyzes the dynamic programming construction of bundles
within the framework of the Winner Determination Problem in Combinatorial Auc-
tions, based on constraint processing. We discuss different approaches to its represen-
tation and highlight the corresponding complexity, employing suitable combinatorics
from Discrete Mathematics. Our view may enlighten us about the exponential search
space—and incidentally pointing to appropriate techniques to cope with this challenge.

1 Introduction

In the present paper, we focus on the Winner Determination Problem (WDP) in Combina-
torial Auctions (CAs): “Given a set of bids in a combinatorial auction, find an allocation
of items to bidders, including the possibility that the auctioneer retains some items, that
maximizes the auctioneer’s revenue.”’; cf. [CSS06], p. 8. No item is allocated more than
once and every bidder receives at most one subset. In this paper, the WDP for the OR-
bidding language is considered, i.e. all atomic bids by one bidder are connected with OR
operators; the bidder is willing to obtain any number of disjoint atomic bids for the sum of
their respective prices.

The WDP belongs to the N'P-complete problem class, i.e. it cannot be deterministically
solved in polynomial time (as long as NP # P). This statement has encouraged us to
check various forms of architectures to address the problem.

We mainly highlight the complexity to construct the bundles, to be grounded in a constraint-
based interpretation; finally, we summarize the paper.

2 Representation

At first glance the representation of the CA bundles as a power-set lattice—as illustrated
in Figure 1 for an auction with 4 items—looks very appealing. The bottom-up phase
in [How98] in a global approach to the according constraint satisfaction problem (CSP)
would produce possible solutions for the bundles on the next higher level. The feasible
solutions for the top node (involving all variables) would then be solution candidates for
the WDP (here a constraint optimization problem). For this representation, the decision
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Figure 1: Power-set lattice
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Figure 2: Lattice with joins for bundle B1,2,3,4

has to be made whether the bidders or the items form the variables of such a CSP. Consid-
ering the first variant we would always have the (additional) task to maintain the feature of
disjoint bundles. Hence, we have experimented taking the items as variables (the bidders
serve as values), by which we (automatically) ensure an (appropriate) allocation.

The composition of bundles with more than two items cannot be implemented by only
combining bundles on the next lower level. There may exist homogeneous bids for bundles
which can’t be split up: the values for the items in the bundle may all be identical—the
same bidder may get assigned to each position in the bundle tuple; otherwise a bidder
would receive bundles s/he didn’t want at all. In contrast to the power-set lattice presented
in Figure 1, not only bundles on the next lower level are part of the joining procedure.
Figure 2 shows a lattice now with all bundles connected to bundle B; » 3 4 that are involved
in the joins to construct all possibilities for By 2 3 4.

Additionally, bundles on lower levels can also be the result of joins. This leads to the
lattice shown in Figure 3. Comparing the number of joins in Fig. 1 and Fig. 3, we can
recognize that the really necessary number of joins is higher than naively expected.

542



Figure 3: Lattice with all neccessary joins

Let us count the number of proper non-empty subsets of a finite set of cardinality y:

p= S0 - SO-()-() - e -

2.2 —1) | (0

Let us now count the number of all subset connexions downward of all set nodes at their
cardinality level /:

r = i(?)-z(zﬂ—l)—n - 2~i(7)-5‘2(l,2) -

n m
2. -S5(1,2) 2
lz_;(l) 2(1,2) 2)

m being the number of items in the auction, Sa(n, k) the Stirling No. of the 2" kind—
indicating by S2 (I, 2) the number of possibilities of a level-/ set merging 2 sub-bundles.

Let us finally count! the actual number of joins? having i items in the bundle(s) at cardi-
nality level i:

m

i = z/2 = Z(T).Sg(ij) = ii(’?).(g(iml) _

=2

(S0 (&) -

Thanks to Heinz Liineburg for discussion
2correct—no “t” inside =
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This complete representation obviously exceeds the available resources.?

A different, more promising approach to the WDP is a heuristic one. Using techniques
as presented in [SK06] could result in comparatively good—albeit possibly not optimal—
solutions. The challenge in using such methods in connection with Combinatorial Auc-
tions lies in modeling a sophisticated mutation procedure. Indiscriminately mutating en-
tries may lead to infeasible collections that conflict with the idea that, in the end, bids may
really get allocated. Here is one possibility to deal with this problem:

After (e.g., randomly) determining the number of positions to mutate and then the corre-
sponding specific positions, the remaining partial allocations have to be checked for fea-
sibility. If not feasible, this iteration must be skipped. In the other (positive) case (maybe
gained by problem structure-preserving procedures), the next step would construct a valid
allocation for the new position(s). Merging those two partial allocations inherently leads to
a feasible overall allocation, and that allocation (the new or the former one) favoured by the
heuristic—passing the acceptance criterion (deterministically/randomly, greedy/tolerance-
based)—is used as the basis for the next iteration.

30f course, in our small example, it’s not tremendous:
T =(pigures)] 1" (4+6+4)+4-(3+3)+6-2
= 14 + 24 + 12 = 50
~[Equation 2] 2. ((411) : (2(17” - 1) + (;) ) (2(27” - 1) +
(1) OV -1+ (§) - o) ~1)
=2-4-1-D+6-(2—-1)+4-(4—-1)+1-(8-1))
=2-(0 + 6 + 12 + 7)=2-25
j=z/2=25-2/2=25
= (equationd) (31 +1—2041))/2 = (81 + 1 — 32)/2 = 50/2
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3 Remarks

The exponential outcome yields to a recommendation of a distributed system, by which
each computer node reflects a bundle on an online combinatorial auction (CA) platform.
From a bidder’s point of view it might be advantageous to introduce several “bid bots”
(bidding robots)*, yet belonging to the same physical bidder. Playing a role in several
bundles hides the uniqueness of the actual bidder—a perhaps interesting feature reflecting
asymmetric information. Furthermore, it is usually unknown whether bidders really com-
pete or (at least temporarily) cooperate; such research has a tremendous impact—we may
just recall the previous Nobel Prize in Economics “for having enhanced our understanding
of conflict and cooperation through game-theory analysis”, announced via [Nob05].

4 Résumé

The present paper illustrates the huge combinatorial search space in the auction setting by a
thorough, though easily accessible, theoretical analysis based on Discrete Mathematics®—
reflecting the still existing state of the art presented in [San02]. Only for a small-sized CA
an exhaustive representation is possible. Whether local constraint propagation might help
is still subject to additional investigation. An initial implementation in the frame of a
modest research project is currently in progress and should provide further insight.
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4incl. the artificial bidder bg getting assigned to each item retained (not purchased)
Syou may consult [How(09] <
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