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Abstract: Finite Element simulation of crash tests in the car industry generates huge
amounts of high-dimensional numerical data. Methods from Machine Learning, es-
pecially from Dimensionality Reduction, can assist in analyzing and evaluating this
data efficiently. Here we present a method that performs a two step dimensionality
reduction in a novel manner: First the simulation data is represented as (normalized)
histograms, then embedded into a low dimensional space using histogram distances
and the nonlinear method of Spectral Embedding/Diffusion Maps, thus enabling a
much easier data analysis. In particular, this method solves the problem of comparing
simulation data with small changes in the Finite Element grids due to variations of
geometry or unequally fine grid structures.

1 Introduction

Numerical simulation of car crash tests has evolved since the 1980’s to be an integral part

of the development process for new vehicles. Due to the rapid growth in computational

capacity, enabling the generation of more and much more detailed simulations, the size of

the emerging simulation data increased enormously. Today, for one simulation run data

is saved for more than a million finite element nodes at several hundred time steps; tests

to decide on small parameter variations (plate thickness, positions for drillings, material

variations) require bundles of several thousand simulation runs.

Conventionally, evaluation of this data is performed by an engineer examining several

3D-visualisations of the simulation runs simultaneously and grouping them according to

observed effects. Accelerating and simplifying this difficult and time-consuming analysis

through the use of Machine Learning methods is a subject of recent research [Boh13].

As the data is highly complex with dimensionality of an order of 108, in particular exceeding

the number of data points by a factor of hundred thousand, methods of dimensionality

reduction need to be applied: Since all simulation runs in a bundle concern the same car

model at the same stage of development, the data exhibits many redundancies and it is to

be expected that a lower-dimensional embedding will still be able to parameterize the data
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according to its so-called intrinsic geometry. A 2- or 3-dimensional embedding can then

present a visual overview over the relations between simulation runs in a bundle and thus

be an important tool for the development engineer.

In this paper we focus on a selected method of nonlinear dimensionality reduction: Spectral

Embedding, in particular Diffusion Maps, presented 2006 by Coifman and Lafon [Coi06]

and already applied successfully for simulation data analysis [Erb07, Boh13]. This method

is based on the use of a kernel function describing the similarities of different data points.

Commonly the similarity function is derived from distance functions on the data set. So far,

when applying Diffusion Maps on car data, one regards the Euclidean distance between

so-called displacement vectors, containing the absolute values of the displacements at

every finite element node [Boh13, Iza14]. This approach requires identical dimensions

of all displacement vectors considered, meaning identical numbers of FE nodes for every

simulation run. In practice, this is not always the case. Often simulations are ran to compare

the effect of varying certain structural parts, thus leading to simulation runs with different

geometries and consequently different finite element meshes. To compare these simulation

runs, projections on auxiliary meshes can be employed, which are however computationally

costly and might not be very accurate. An alternative choice of distance functions seems

promising to overcome this problem.

Here, we will for the first time investigate the approach to calculate distances between

simulation runs via a usage of histograms of the displacements. Representing the high-

dimensional data as histograms with fewer bins than the original dimensions means a

dimensionality reduction already in a preprocessing step, which will then be further refined

by the application of Diffusion Maps, using an appropriate histogram distance.

The theoretical foundations of Diffusion Maps will be presented in Section 2 of this paper,

as well as a short review of histogram distances. In Section 3 we introduce our proposed

method and the algorithm, followed by the results obtained by applying this approach to

several sets of industrial data and a discussion in Section 4.

2 Fundamental Concepts

In the following, we will refer to the data set as X = {x1, x2, . . . , xm} ⊂ R
n, where each

of the m data points represents a full simulation run. Dimensionality reduction means the

search for a map (the so-called embedding) f : X −→ R
p with p≪ n, preserving intrinsic

information on the data (mostly geometric information, such as certain distances). If we

assume that the data set X lies on a nonlinear manifold, we also need to apply nonlinear

methods to obtain a suitable embedding. Spectral Embedding methods like Diffusion Maps

find such an embedding using a kernel matrix describing local similarities between data

points.
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2.1 Review of Diffusion Maps

Diffusion Maps [Coi06] are based on the notion of a so-called diffusion distance, motivated

as follows: Imagine the data set X to be the node set of a complete weighted graph (G,ω)
with G = (X,X ×X). The edge weights are assigned depending on the local similarity of

the adjoint nodes:

ω : X ×X → R, ω((xi, xj)) = k(xi, xj),

with k being a kernel function. Here one normally uses the Gaussian kernel, kε(xi, xj) :=

exp
(

d(xi,xj)
2

ε

)

with a scaling parameter ε > 0 and d the Euclidean distance; for our

application however we will apply the Gaussian kernel with an application-specific dis-

tance function d : X × X → R. By normalizing the edge weights with the degrees of

the correspondent nodes we obtain a Random Walk on X with transition probabilities

p(xi, xj) = ω((xi, xj))/
∑

y∈X ω((xi, y)).
If the points are similar according to the chosen distance function, the respective transition

probabilities will be high, for dissimilar points they will be low. Running the Random Walk

forward in time, we obtain information about regions of high affinity within the data set,

leading naturally to a definition of the diffusion distance, depending on a time parameter

t ∈ R:

Dt(xi, xj)
2 :=

∑

y∈X

(pt(xi, y) − pt(y, xj))
2 1

π(y)

with π denoting the stationary distribution of the Markov Chain and pt(xi, xj) the proba-

bility of transition from xi to xj in t steps [Coi06]. Thus, the diffusion distance sums over

all possible connections between two points in t time steps, intuitively leading to a high

robustness to noise.

To approximate this distance in practice, we consider the spectral decomposition of the

operator pt or, equivalently, of the t-th power of the transition matrix P = (p(xi, xj))ij .

As P is not symmetric, we conjugate it by the diagonal degree matrix D with Dii :=
∑

j k(xi, xj).

The new matrix A := D
1
2 PD− 1

2 is symmetric and shares the spectrum with P. We know

from the Perron-Frobenius theorem that all eigenvalues λi are real, and 1 = λ1 > λ2 ≥
λ3 ≥ . . . ≥ λn.

We denote the eigenvectors of A by {vj}. Right and left eigenvectors {φj} and {ψj} of P

are obtained by conjugation:

φj = vjD
1
2 , ψj = vjD

− 1
2 .

Hence we can express the diffusion distance at time t by the spectral decomposition of

P [Coi06]:

Dt(xi, xj)
2 =

n
∑

l=2

λ2t
l (ψl(xi) − ψl(xj))

2.1

1Remark: ψ(x) denotes for an x ∈ X the i-th entry of ψ ∈ R
m, with i the index of x = xi in the indexed

set X
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The term for l = 1 is left out, as the eigenvector ψ1 belonging to the eigenvalue λ1 = 1 is

constant.

Due to the non-increasing property of the spectrum we can approximate the diffusion

distance by using only the first p < n terms:

Dt,p(x, y)
2 :=

p+1
∑

l=2

λ2t
l (ψl(x) − ψl(y))

2

Thus we can achieve a dimensionality reduction by embedding the data set into R
p by the

diffusion maps

Ψt,p : Y −→ R
p, x 7→ (λt

2ψ2(x), λ
t
3ψ3(x), . . . , λ

t
p+1ψp+1(x))

T , (1)

preserving the local diffusion distances in the originating space X up to an error depending

on the ratio
λt

p+1

λt
2

.

To take out statistically unsuitable side effects, we can replace isotropic kernel functions

such as kε by anisotropic ones [Nad08]. Here, instead of kε we applied the anisotropic

Gaussian kernel, k̃ε(x, y) := kε/
∑

z∈X kε(x, z)
∑

z∈X kε(y, z), where the terms in the

denominator are used as an approximation of the probability density by which the dataset

X was drawn from the underlying manifold.

2.2 Review of Histogram Distances

For a consistent notation, let us formalize the notion of a (multidimensional) histogram:

Definition 1 (Histogram). For a finite set I ⊂ N
d and a map h : I −→ R≥0 we call the

set H = (h(i))i∈I a histogram. The elements of I represent bins, the assigned values h(i)
are the respective weights.

To compare histograms, one can distinguish between two main classes of distances: bin-to-

bin-distances and cross-bin-distances. The former only take into account the weights of

matching bins, meaning they can be written as:

d(H1, H2) =
∑

i∈I

f(h1(i), h2(i)) for histograms H1 = (h1(i))i∈I and H2 = (h2(i))i∈I

with a suitable function f : R × R −→ R≥0. In particular this means that the histogram

topology is completely disregarded.

Cross-bin-distances on the other hand take into account neighboring or even all bins as well.

A discrete ground distance dij is utilized to define distances between the bins represented

by i and j. This facilitates the formulation of distances that correspond well with human

perception and at the same time are more robust with respect to the choice of bin ranges.

However, cross-bin-distances are obviously more computationally expensive.
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Popular examples for histogram distances include the L1- and L2-distances of the his-

tograms’ weight vectors (bin-to-bin-distances). Note that there also exists a cross-bin

histogram distance based on diffusion distances [Lin06], which undertakes the diffusion

approach from a different angle than Diffusion Maps and is not further considered here. In

this paper, we focus on the following distances, both widely used in image processing:

χ2-distance The χ2-distance is a bin-to-bin-distance, following the intuition that differ-

ences between ’large’ bins are less significant than those between ’small’ bins [Pel10].

It is based on the χ2-test used in statics and is defined as:

χ2(H1, H2) =
1

2

∑

i∈I

(h1(i) − h2(i))
2

h1(i) + h2(i)

Earth-Mover’s-Distance (EMD) EMD [Rub00] is a cross-bin-distance, its name origi-

nating from the analogy to imagine one histogram as a set of earth heaps and the

other as a set of holes, with a ground distance assigned to every pair of bins. The

EMD then is the minimum cost of moving the earth into the holes and is obtained by

solving a discrete minimum cost flow problem.

For the rather technical precise definition and set-up, we refer to [Rub00].

3 Method

We propose the following analysis procedure to compare the simulation data (cf. [Iza14]):

1. Extraction of displacement data of charasteric integral parts from the simulation data.

2. Preprocessing of data. Here: representation of the ni-dimensional displacement

vectors vi as one-dimensional histograms
(

hi(j)
)nbins

j=1
.

3. Creation of a kernel kε, utilizing a suitable histogram distance function as shortly

discussed in Section 2.2.

4. Dimensionality reduction by Spectral Embedding. Here: Use of Diffusion Maps (as

in Equation (1)).

5. Postprocessing and analysis of embedded data (e.g. by application of clustering

algorithms). Here: 2D-visualisation of embedding space.

The histogram representation in step 2 allows us to apply Diffusion Maps also to compare

simulation runs with varying geometries. It needs to be noted that this step represents a first

layer of dimensionality reduction, where some information is lost – in our use case, this

especially means that information about the positions of the displacements is discarded and

only the extent of the deformation is stored.
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Input: List filelist of m simulation data sets {x1, . . . , xm}, parameter nbins, time step t
Output: Histograms {

(

h1(j)
)nbins

j=1
, . . . , (hm(j))nbins

j=1}, stored as a matrix W ∈ R
nbins×m

where wkl =
(

hl(k)
)

Initialize displacement matrix V ∈ R
n×m and histogram matrix W ∈ R

nbins×m;

i = 1;

for file ∈ filelist do
Read and store displacement vectors in x, y, and z-direction at time step t
vx,vy,vz ∈ R

ni from file (with ni number of finite element nodes in model);

Calculate absolute displacement vector vabs: ∀k : vabs
k :=

√

(vx
k)2 + (vy

k)2 + (vz
k)2;

V[:, i] := vabs;

i++;

end

Determine minimum minglob and maximum maxglob of entries in displacement matrix V;

Define nbins identically large classes for histograms (according to minglob and maxglob);

for k ∈ { 1, 2, . . . , nbins } do

Generate a histogram (h(j))nbins

j=1 of displacement vector V[:, k] according to the defined

class partitioning;

Normalize histogram to total weight of 1;

Store histogram weight vector in W[:, k];

end

Algorithm 1: Extraction and Preprocessing

Input: Matrix W ∈ R
nbins×m of histogram weight vectors, originating from Algorithm 1;

(histogram-) distancea d; scaling parameter ε for Gaussian kernel, target dimension p
Output: Diffusion coordinates of data for the embedding into R

p

Initialize distance matrix D ∈ R
m×m;

for i ∈ { 1, 2, . . . ,m } do

for j ∈ { 1, 2, . . . ,m } do

D[i, j] := dij := d(W[:, i],W[:, j]);

end

end

Generate kernel matrix K(1) with entries k
(1)
ij = exp

(

−
d2

ij

ε

)

;

p := K(1) · 1, where 1 = (1 . . . 1)T ;

Generateb matrix K(2) := K(1)./(p · pT ) (approximation of anisotropic Gaussian kernel) ;

v := sqrt(K(2) · 1);

Generate symmetric matrix K := K(2)./(v · vT ) conjugated to K(2);

Perform spectral decomposition of K to obtain eigenvalues and eigenvectors {λi}
nbins
i=1 , {ψi}

nbins
i=1 ;

Return MT with M := [λiψi]
p+1
i=2 ;

Algorithm 2: Diffusion Maps with histograms for crash simulation data

aFor cross-bin-distances the input d comprises in particular the respective ground distance
bThe operation ./ denotes elementwise division
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We state the combined algorithms for step 1 and 2 in Algorithm 1 and for steps 3 and 4 in

Algorithm 2, adapted from [Laf04]. The matrix M ∈ R
m×p, generated from the output of

the second algorithm by M[:, i] = (λiψi)
T for i ∈ { 2, 3, . . . , nbins }, comprises in its rows

the diffusion coordinates of the m data points for an embedding into R
p. Note again that

the first eigenvector to the eigenvalue λ1 = 1 is not taken into account, as it is the constant

vector and thus does not store any relevant information.

4 Results and Discussion

To analyze the discrimination ability of the algorithm, it has been implemented in Python2

and applied to the following data sets:

Truck-Beam Structural beam of a Chevrolet C2500 Pick-Up-Truck at frontal collision,

m = 132 simulation runs with variation of 9 parameters, each n = 1714 FE-

nodes [Boh13].

Car-Lateral Lateral part of a medium-sized vehicle at lateral collision with varying geom-

etry (40 to 44 integral parts, original data from German car manufacturer), m = 143
simulation runs with different FE-meshes, each ni ≈ 26.100 FE-nodes.

(a) Structural Beam (b) Bending mode 1 (c) Bending mode 2

Figure 1: Truck-Beam data set and different bifurcation modes

As it is difficult to find an objective measure for the algorithm’s quality we chose three

evaluation criteria: Simulation runs that are similar according to their visualizations should

be grouped together, runs that bear no similarities to others should be recognizable as

outliers and in case of bifurcations the modes should be clearly separated.

To check the consistency of the new approach we first applied the algorithm to the Truck-

Beam data set, which can also by analyzed with the conventional method. The data set is

illustrated in Figure 1. It features a clearly visible bifurcation in its bending behavior, which

we wish to find in the embeddings as well. Figure 2 shows a two dimensional embedding of

the Truck-Beam data set according to the diffusion coordinates obtained with Algorithm 2.

The data points are colored corresponding to the value of the second eigenvector (resp. the

first diffusion coordinate), which according to spectral clustering theory comprises the most

information about the global structure of the data set [Lux07]. It can be seen, that both axes

correlate with the beam’s bending behavior (color-coded in the small images): the second

eigenvector separates the bifurcation modes by its sign, the value of the third eigenvector is

proportional to the extent of the deformation in the middle segment of the beam.

2We used Python 2.7.1 with an extensive use of the packages NumPy and matplotlib
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Figure 2: Embedding of the Truck-Beam dataset as in Figure 3a (parameters: γ =
32, nbins = 10), with selected visualizations of deformations.

The first row of subfigures in Figure 3 shows the results obtained with different distance

functions: 3a with histograms and the EMD histogram distance, 3b with histograms and

the χ2-distance function and 3c with the standard Euclidean distance of the displacement

vectors without any histograms (which is applicable here as the FE grids for the simulation

runs are identical). One can observe that the first two embeddings are similar concerning

the structure of the clusters and the positioning of the data points. The Euclidean distance

embedding is rather appropriate concerning the data as well, but the two groups are not

as clearly separated as in the other embeddings, and the two central points are not placed

to the correct bifurcation mode by the second eigenvector. These differences between

histogram distances and displacement vector distances are confirmed for variations of the

scaling parameter ε (details on the parameter choice see below) and are rather surprising,

since by applying histograms in the preprocessing step and thus performing dimensionality

reduction, we discarded some information. Considering the embeddings obtained, it must

be assumed that a large part of this lost information was noise, which would make the

technically less accurate new method more appropriate for this data set.

For the Car-Lateral data set with varying geometry the simulation runs are also grouped in

an appropriate manner (see Figure 4). The two groups (upper and lower), as well as the

two outliers, match the data well, especially along the second eigenvector. As the data are

confidential industrial data provided by the manufacturer, visualizations cannot be shown

here. It should be noted that this data set could not be analyzed with the conventional

diffusion maps method, as the FE grids differ among the simulation runs. Therefore, our

new method seems well applicable for the intended purpose in this first test.
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(a) EMD, γ = 32, nbins = 12 (b) χ2, γ = 32, nbins = 12 (c) Euclidean distance, γ = 32

(d) EMD, γ = 1, nbins = 12 (e) EMD, γ = 32, nbins = 5 (f) EMD, γ = 32, nbins = 20

Figure 3: Different embeddings of the Truck-Beam dataset

4.1 Parameter choices and variations

The most important parameters to be varied in our proposed method are the ε of the Gauss

kernel for Diffusion Maps and the nbins for the histogram construction. The Gauss kernel’s

parameter determines the size of the neighborhood around a point xwhere the value kε(x, y)
differs from zero significantly. While there are no objective rules about suitable values,

some rules of thumb have been established. As proposed for Diffusion Maps by Lafon we

use the average distance between a point and its nearest neighbor [Laf04] and additionally

scale it with a parameter γ: ε := γ
m

∑

x∈Y miny∈Y { d(x, y) | d(x, y) 6= 0 }.

For the Truck-Beam data set all tested choices of γ lead to reasonable embeddings, but

changes apply to the axes’ functions: For γ = 1 (cf. Figure 3d) the second eigenvector in

addition to the information about the bifurcation modes comprises the information about

the total deformation of the beam. Third and fourth eigenvector (not depicted here) take

the function of indication vectors, as they each only comply information about one of the

bifurcation modes and become zero for the other. For growing γ the embedding changes,

to finally stay stable from γ = 16 with the point cloud shaped as in Figure 3a.

Using histograms, the choice of nbins (or the interval length h ∼ 1
nbins

respectively) is crucial

for the expressiveness of the histogram. Too small as well as too large classes will not do
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(a) EMD, γ = 32, nbins = 16 (b) χ2, γ = 32, nbins = 16 (c) EMD, γ = 32, nbins = 5

Figure 4: Different embeddings of the Car-Lateral dataset
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Figure 5: Practical Runtimes, evaluated for the Car-Lateral data set. The choice of

nbins = 16, obtained by the Sturges rule, is marked by the gray vertical line.

justice to the underlying structure: small intervals emphasize minor changes too much;

large intervals obscure the structures entirely. In statistical applications, rules of thumb

have been established for class intervals, depending on the number of observed data points.

The displacements calculated in the car crash show structures similar to those of several

normal distributions: As the nodes are all connected, a large displacement for one node

influences all neighboring nodes as well. Therefore we applied one of these rules here as

well: Due to its simplicity and the similar results of all rules for small data sets, we initially

chose nbins according to the Sturges-rule [Stu26]:

nbins = ⌈log2(m) + 1⌉.

Our experiments showed, that for all data sets the Sturges rule provided very good results.

Less classes obscured some of the information, as to be seen in Figure 3e with a choice of

nbins = 5 for the Truck-Beam data set, where the bifurcation is no longer obvious and some

misplacements appear compared to the choice of nbins = 12 proposed by the Sturges-rule.

For more classes on the other hand, general structures and tendencies are to be seen for all

tested bin numbers, but here as well the bifurcation becomes less obvious, cf. Figure 3f for

nbins = 20, where three agglomerations can be seen instead of two. The Car-Lateral data
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set was even more stable for variations of nbins, as to be seen in Figure 4c: even for only

5 bins the embedding looked very similar to the Sturges-rule based choice of nbins = 16;

analogously the shape of the point cloud does not change for very small bin sizes such as

nbins = 100. The negative effects of too large choices for nbins are (as expected) boosted by

the application of bin-to-bin-distances, such as χ2, but still surprisingly good, especially

considering the low runtime [Sch13].

The number of bins yields the initial configuration for the distance computations and

thus, combined with the choice of a distance function, determines the algorithm’s runtime.

Here lies a large advantage of the χ2-distance, as it runs linearly in O(nbins), whereas

EMD is usually implemented with Orlin’s algorithm [Kor08], resulting in a runtime of

O(nbins
3 log nbins). A practical evaluation is plotted in Figure 5. For all class sizes consid-

ered, calculation of the χ2-distance took less than 0.01 seconds.

5 Conclusion

Our presented approach for the analysis of car crash simulation data proved successful for

a real-world example with varying geometries. In a preprocessing step we represented the

displacement data as normalized histograms and then used pairwise histogram distances

to calculate a lower dimensional embedding using Diffusion Maps. The industrial data

was arranged in a meaningful manner with visible correlations between the coordinate

axes and the deformation behavior, which should simplify further analysis by development

engineers.

Applying the method to a data set with fixed grid structures we could compare it to classical

diffusion maps based on the Euclidean distances of the displacement vectors. This led to the

surprising result that for our (simple) data set the distinguishing quality of the embedding

was even improved by the new approach. Especially the EMD histogram distance proved

stable against parameter variations. The χ2-distance shows comparably good embedding

results at much better runtimes, but with a higher sensitivity to parameter changes.

For the histogram representation in contrast to a displacement vector representation all

information about positions and directions of the deformations are discarded. For the data

investigated here, this did not prove problematic, but might be for more complex data sets. In

general though the bundles of simulation runs generated in the car development process are

all considered under the same loading conditions, so that positions of deformations should

not vary. Still, to overcome these potential problems for more complex simulation runs

one could further investigate the use of multidimensional histograms, e.g. 3-dimensional

histograms to store displacement information on all coordinate directions instead of absolute

displacements.
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