Logo des Repositoriums
 

Real-time Image-based Localization for Hand-held 3D-modeling

dc.contributor.authorMair, Elmar
dc.contributor.authorStrobl, Klaus H.
dc.contributor.authorBodenmüller, Tim
dc.contributor.authorSuppa, Michael
dc.contributor.authorBurschka, Darius
dc.date.accessioned2018-01-08T09:14:31Z
dc.date.available2018-01-08T09:14:31Z
dc.date.issued2010
dc.description.abstractWe present a self-referencing hand-held scanning device for vision-based close-range 3D-modeling. Our approach replaces external global tracking devices with ego-motion estimation directly from the camera used for reconstruction. The system is capable of online estimation of the 6DoF pose on hand-held devices with high motion dynamics especially in rotational components. Inertial information supports directly the tracking process to allow for robust tracking and feature management in highly dynamic environments. We introduce a weighting function for landmarks that contribute to the pose estimation increasing the accuracy of the localization and filtering outliers in the tracking process. We validate our approach with experimental results showing the robustness and accuracy of the algorithm. We compare the results to external global referencing solutions used in current modeling systems.
dc.identifier.pissn1610-1987
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/11160
dc.publisherSpringer
dc.relation.ispartofKI - Künstliche Intelligenz: Vol. 24, No. 3
dc.relation.ispartofseriesKI - Künstliche Intelligenz
dc.subject3D modeling
dc.subjectHand-held scanning
dc.subjectInertia aided visual tracking
dc.subjectVisual localization
dc.titleReal-time Image-based Localization for Hand-held 3D-modeling
dc.typeText/Journal Article
gi.citation.endPage214
gi.citation.startPage207

Dateien