
“Automotive 2017” is the seventh event in a conference series focusing on
safety and security in the field of automotive and other critical software ap-
plication domains. This volume contains the papers accepted for presentation
at the conference.

ISSN 1617-5468
ISBN 978-3-88579-663-3

Gesellschaft für Informatik e.V. (GI)

publishes this series in order to make available to a broad public
recent findings in informatics (i.e. computer science and informa-
tion systems), to document conferences that are organized in co-
operation with GI and to publish the annual GI Award dissertation.

Broken down into
• seminars
• proceedings
• dissertations
• thematics
current topics are dealt with from the vantage point of research and
development, teaching and further training in theory and practice.
The Editorial Committee uses an intensive review process in order
to ensure high quality contributions.

The volumes are published in German or English.

Information: http://www.gi.de/service/publikationen/lni/

269

GI-Edition
Lecture Notes
in Informatics

Peter Dencker, Herbert Klenk,
Hubert Keller, Erhard Plödereder (Hrsg.)

Automotive –
Safety & Security 2017
Sicherheit und Zuverlässigkeit für
automobile Informationstechnik

30.–31. Mai 2017
Stuttgart

Proceedings

P.
D

en
ck

er
, H

. K
le

n
k,

 H
. K

el
le

r,
E.

 P
lö

d
er

ed
er

 (
H

rs
g.

):
A

u
to

m
o

ti
ve

 2
01

7

3029349_GI_P-269_Cover.indd 1 20.04.17 11:04

Peter Dencker, Herbert Klenk, Hubert B. Keller,
Erhard Plödereder (Hrsg.)

Automotive - Safety & Security 2017

Sicherheit und Zuverlässigkeit für automobile
Informationstechnik

30. – 31.5.2017
Stuttgart, Germany

Gesellschaft für Informatik e.V. (GI)

Lecture Notes in Informatics (LNI) - Proceedings
Series of the Gesellschaft für Informatik (GI)

Volume P-269

ISBN 978-3-88579-663-3
ISSN 1617-5468

Volume Editors
Herbert Klenk

Airbus
Rechliner Str.
85077 Manching
E-Mail: herbert.klenk.external@airbus.com

Erhard Plödereder
Universität Stuttgart
Universitätsstr. 38
70569Stuttgart
E-Mail: ploedere@informatik.uni-stuttgart.de

Series Editorial Board
Heinrich C. Mayr, Alpen-Adria-Universität Klagenfurt, Austria
(Chairman, mayr@ifit.uni-klu.ac.at)
Dieter Fellner, Technische Universität Darmstadt, Germany
Ulrich Flegel, Infineon, Germany
Ulrich Frank, Universität Duisburg-Essen, Germany
Andreas Thor, HFT Leipzig, Germany
Michael Goedicke, Universität Duisburg-Essen, Germany
Ralf Hofestädt, Universität Bielefeld, Germany
Michael Koch, Universität der Bundeswehr München, Germany
Axel Lehmann, Universität der Bundeswehr München, Germany
Thomas Roth-Berghofer, University of West London, Great Britain
Peter Sanders, Karlsruher Institut für Technologie (KIT), Germany
Torsten Brinda, Universität Duisburg-Essen, Germany
Ingo Timm, Universität Trier, Germany
Karin Vosseberg, Hochschule Bremerhaven, Germany
Maria Wimmer, Universität Koblenz-Landau, Germany

Dissertations
Steffen Hölldobler, Technische Universität Dresden, Germany

Thematics
Andreas Oberweis, Karlsruher Institut für Technologie (KIT), Germany
 Gesellschaft für Informatik, Bonn 2017
printed by Köllen Druck+Verlag GmbH, Bonn

This book is licensed under a Creative Commons Attribution-NonCommercial 3.0 License.

Vorwort

Die 7. Tagung Automotive – Safety & Security 2017 - Sicherheit und Zuverlässigkeit für
automobile Informationstechnik fand am 30. - 31. Mai 2017 an schon vertrautem Platz in
Stuttgart-Feuerbach im Auditorium der Robert Bosch GmbH statt. Die Tagungsserie ist
mit der Zuverlässigkeit und Sicherheit softwarebasierter Funktionen im Automotive-Be-
reich befasst. Zwei Tage lang wurden die neuesten Ideen und konkreten Lösungen für die
drängenden Herausforderungen der Softwareentwicklung mit Schwerpunkt auf Sicherheit
und Zuverlässigkeit sowie Qualität in den Endprodukten diskutiert. Hochkarätige einge-
ladene Hauptredner waren Franco Gasperoni, Christian Wieschebrink und Stefan Jähni-
chen.

Franco Gasperoni ist Mitbegründer der Firma AdaCore, die als Produzent der Ada und
Spark Technologien weltweit bekannt ist und deren Software gerade in Bereichen mit
höchster Zuverlässigkeit, wie in der Avionik, eingesetzt werden. Seit 2016 ist Franco
Gasperoni auch Chief Executive Officer von AdaCore. In seinem Vortrag „Software Sa-
fety and Security in a World of Systems“ referierte er über die Möglichkeiten, mit tech-
nologischen Mitteln die Sicherheit und Zuverlässigkeit heutiger komplexer Systeme deut-
lich zu verbessern.

Christian Wieschebrink ist seit 2004 Referent im BSI, wo er sich vor allem mit Pri-
vatsphäre bewahrenden codebasierten kryptographischen Verfahren befasst. In seinem
Vortrag „IT-Sicherheit für das vernetzte Fahren“ gab er Einblicke in die nötigen Elemente
der IT-Sicherheit der kooperativen Systeme für vernetzte Fahrzeuge. Die konkrete For-
mulierung von IT-Sicherheitsanforderungen für Fahrzeugkomponenten und deren kon-
struktive Umsetzung war ein weiterer Aspekt.

Stefan Jähnichen leitete das Fraunhofer Institut FIRST und war Ordinarius an der Univer-
sität Berlin. Seit seiner Pensionierung engagiert er sich im neu entstehenden Einstein Cen-
ter Digital Future. Leitend in vielen Gremien war er unter anderem Präsident der Gesell-
schaft für Informatik und ist Aufsichtsratsvorsitzender des Leibniz Zentrums für
Informatik Schloß Dagstuhl. Er adressierte in seinem Vortrag „Anonymität und Authen-
tifizierung im vernetzten Fahrzeug“ die immer wichtiger werdenden Themen der Privat-
heit von Daten und der Sicherheit im Zugang zu vernetzten Fahrzeugen.

Direkt nach der Konferenz fand am 31.5. ein Tutorial von Jan Pelzl, Hochschule Hamm-
Lippstadt, zum Gebiet „Intrusion Detection and Prevention Systems for Automotive Sys-
tems“ statt. Seit 2015 hat Pelzl die Professur für Computer Security an der Hochschule
Hamm-Lippstadt inne. Seit 1999 war er im Bereich der eingebetteten IT-Sicherheit tätig
und setzte erfolgreich viele nationale und internationale Projekte um. Zuvor war er von
2007 bis 2014 technischer Geschäftsführer der ESCRYPT GmbH, einer Tochtergesell-
schaft der Robert Bosch GmbH. Seine Forschungsschwerpunkte liegen in dem Bereich
der Embedded Security und Cyber Security, insbesondere Automation, Automotive und
Medical. Er ist Autor des Lehrbuchs „Understanding Cryptography“.

Parallel zur Konferenz zeigte eine Ausstellung einschlägige Werkzeuge rund um die au-
tomotive Softwareentwicklung. Der Konferenz vorgeschaltet fanden bereits am 29. Mai
Sitzungen von GI und VDI Fachausschüssen und –gremien statt, die auch fachliche Träger
dieser Konferenz sind. Anschließend traf man sich zu einem informellen Get Together für

bereits anwesende Konferenzteilnehmer. Das Networking konnte in den Kaffee- und Mit-
tagspausen der Konferenz und insbesondere beim Konferenzdinner am 30. Mai vertieft
werden.

Die Automobilindustrie erfährt einen grundlegenden Wandel durch die rasch fortschrei-
tende Digitalisierung, alternative Antriebskonzepte, Vernetzung von Fahrzeugen und Inf-
rastrukturen sowie autonomen Fahrfunktionen. Die Weiterentwicklung klassischer Me-
thoden und Vorgehensweisen zur Sicherstellung der erforderlichen Software-Qualität
sicherheitskritischer Anteile wird aktuellen automobilen Anforderungen nicht mehr ge-
recht. Zukünftig ist insbesondere die Reduzierung der Komplexität unter Beachtung von
Safety und Security Anforderungen, sowie deren Wechselwirkung wichtig zur Sicherstel-
lung einer zuverlässigen Funktion unter allen sich ergebenden Situationen. Hinzu kommen
die Anforderungen der Beherrschung des autonomen Fahrens.

Zwar hat die Diskussion über softwarebasierte „Defeat Switches“ in Diesel-Fahrzeugen
in den letzten Monaten die Schlagzeilen der Presse und damit auch die Aufmerksamkeit
der Führungsetagen beherrscht, aber in den vorausblickenden Arbeiten der Entwicklungs-
abteilungen ist man sich inzwischen der Wichtigkeit der Abschirmung der automotiven
Systeme gegenüber böswilligem Eindringen bewusst. Gleichzeitig macht der Übergang
der Haftung auf den Hersteller bei autonomem Fahren klar, dass für die Zuverlässigkeit
der Software auch eine dem Stand der Technik entsprechende Softwareentwicklung nötig
sein wird. Neueste Untersuchungen belegen auch hier noch Defizite. Die Automotive –
Safety&Security Konferenzserie liegt damit genau im Trend.

Im Vorwort der Konferenz im Jahr 2015 schrieben wir: „…Kritische Ereignisse in letzter
Zeit zeigen drastisch, dass ohne die Berücksichtigung entsprechender Sicherheitsanforde-
rungen sowohl aus dem Safety- als auch aus dem Security-Bereich erhebliche Risiken in
der zukünftigen Entwicklung drohen. Autonomes Fahren unter massiver Vernetzung
und hochkomplexer Informationsverarbeitung mit interpretativen Entscheidungen des
Fahrzeugs erfordern höchste Zuverlässigkeit und gleichzeitig transparentes und nachvoll-
ziehbares Verhalten.“

Diese Sätze sind unverändert gültig. Allerdings können wir ein Wandern des Brennpunkts
beobachten: Während sich die damaligen Beiträge vorrangig um technische Lösungen zur
Vermeidung von Gefährdungen der Sicherheit (im Sinne der Security) bemühten, ist dies-
mal ein Trend zu erkennen, bereits in den frühen Phasen der Systementwicklung geeignete
Analysen durchzuführen und Maßnahmen zu ergreifen, die das Risiko von Sicherheitsver-
letzungen und von funktionalem Versagen zu minimieren suchen. Ausgehend von der
Grundforderung nach der Zuverlässigkeit softwarebasierter Funktionen sind Safety und
Security Anforderungen integriert zu betrachten und umzusetzen.

An dieser Stelle möchten wir dem Programmkomitee danken, das zu den nötigen vielen
Reviews bereit war, um die Begutachtung aller Beiträge durch mindestens vier Gutachter
zu gewährleisten. Aus der Menge der eingereichten Papiere wurden die besten und ein-
schlägigsten Beiträge für die Konferenz und die Proceedings ausgewählt, die erneut in der
„Lecture Notes in Informatics“-Serie publiziert werden. Leider konnten nur rund die
Hälfte der Einreichungen in das Konferenzprogramm aufgenommen werden. Wir danken
allen Autoren für ihr Interesse an der Konferenz. In der Schlusssession der Konferenz war,

wie immer, die Spannung groß, wer die Preise für den besten Beitrag und für die beste
Präsentation erhalten würde.

Die Tagung ist Teil einer Serie, die seit 2004 im zweijährigen Turnus veranstaltet wird.
Die Tagungsbände der Serie sind Zeitzeugen eines hochinteressanten Wandels der Inte-
ressen rund um software-gestützte Funktionen im Automobil. Seit dem anfänglichen Rin-
gen um bessere Zuverlässigkeit in den damals verbesserungsbedürftigen Systemen haben
wir das Entstehen von einschlägigen Richtlinien und Standards, z. B. EN 26262, erlebt,
deren Notwendigkeit 2004 noch sehr umstritten war. Seit 2012 ist zu beobachten, dass
sich das Interesse der Sicherheit zuwendet, nun, da Automobile nicht mehr autarke Ein-
heiten sind, sondern beginnen, in globale Kommunikationsnetze eingebunden zu sein. Die
bislang oft ungesicherten Kommunikationsprotokolle im Auto müssen mit den nötigen
technischen Mitteln gegen unautorisierte Zugriffe und Beeinflussungen abgesichert wer-
den. Weltpolitische Ereignisse haben gezeigt, dass das Eindringen in Systeme nicht nur
von einigen wenigen böswilligen Hackern in Garagen betrieben wird. Sicherlich haben sie
dazu beigetragen, dass Sicherheit zu einem globalen Thema geworden ist. Hardware-ori-
entierte Angriffe zeigen, dass Security von Grund auf in allen Ebenen der Systeme zu
betrachten ist und auf technischer Ebene neue Sicherheits- und Zuverlässigkeitsfragen für
die IT im Fahrzeug aufwirft. Aber auch die das Fahrzeug umgebenden Prozesse, von der
Diagnostik in der Werkstatt und der Wartung über die Bereitstellungsmethoden von Tele-
fonie und Infotainment, bis hin zur Erfüllung gesetzlicher Anforderungen rund um E-Call-
Dienste, müssen in die Sicherheitsanalysen aufgenommen werden und zweifelsohne Neu-
erungen erfahren.

Die fachlichen Träger der Automotive-Tagung sind die Fachgruppen Ada, ASE,
ENCRESS, EZQN, FERS und FoMSESS der Gesellschaft für Informatik in den Fachbe-
reichen "Sicherheit - Schutz und Zuverlässigkeit" und "Softwaretechnik" sowie der Fach-
ausschuss "Embedded Software" der VDI/VDE-Gesellschaft Mess- und Automatisie-
rungstechnik und der Förderverein Ada Deutschland e.V. Die Tagungsleitung hatten
Hubert B. Keller, Karlsruher Institut für Technologie, und Klaus Fronius, ETAS GmbH,
inne. Die wissenschaftliche Leitung erfolgte durch Hubert B. Keller, Karlsruher Institut
für Technologie, und Erhard Plödereder, Universität Stuttgart. Unser Dank geht an das
restliche Organisationsteam, bestehend aus Peter Dencker, Hochschule Karlsruhe (Aus-
stellung), Christoph Grein (Web), Reiner Kriesten, Hochschule Karlsruhe (Tutorials), Na-
tascha Funk, ETAS GmbH (Tagungssekretariat und -vorbereitung), Herbert Klenk, Airbus
(Finanzen und Tagungsband) und Klaus Fronius, ETAS GmbH (Organisation vor Ort).

Der besondere Dank der Tagungsleitung geht an die ETAS GmbH für die großzügige Be-
reitstellung der Tagungsstätte und der Verpflegung der Tagungsteilnehmer und an Frau
Cornelia Winter, Gesellschaft für Informatik, für die zügige Bearbeitung der Proceedings.
Dank auch an den Förderverein Ada Deutschland e.V. für die Übernahme der finanziellen
Verantwortung für die Gesamtveranstaltung.

Karlsruhe und Stuttgart, im Frühjahr 2017

Hubert B. Keller Erhard Plödereder

Sponsoren und Aussteller

Wir danken den folgenden Unternehmen und Institutionen für die Unterstützung der Ta-
gung.

Universität Stuttgart

Wissenschaftliche Leitung / Vorsitz Programmkomitee
Hubert B. Keller, Karlsruher Institut für Technologie (KIT)
Erhard Plödereder, Universität Stuttgart

Tagungsleitung
Hubert B. Keller, Karlsruher Institut für Technologie
Klaus Fronius, ETAS GmbH

Organisation
Klaus Fronius, ETAS GmbH (Lokale Organisation)
Herbert Klenk Airbus (Finanzen, Tagungsband)
Peter Dencker, Hochschule Karlsruhe (Ausstellung)
Reiner Kriesten, Hochschule Karlsruhe (Tutorien)
Christoph Grein (Web)

Programmkomitee
Gerhard Beck, Rohde & Schwarz SIT GmbH
Manfred Broy, TUM; Zentrum Digitalisierung.Bayern
Stefan Bunzel, Continental AG
Simon Burton, Robert Bosch GmbH
Peter Dencker, Hochschule Karlsruhe
Dirk Dickmanns, Airbus
Bernhard Fechner, FU Hagen
Hannes Federrath, Universität Hamburg
Felix Freiling, Universität Erlangen-Nürnberg
Klaus Fronius, ETAS GmbH
Simon Fürst, BMW Group
Rüdiger Grimm, Universität Koblenz-Landau
Erwin Großpietsch, EUROMICRO
Albert Held, Daimler AG
Bernhard Hohlfeld, TU Dresden
Dieter Hutter, DFKI / Universität Bremen
Stefan Jähnichen, TU Berlin
Jan Jürjens, TU Dortmund
Herbert Klenk, Airbus
Reiner Kriesten, Hochschule Karlsruhe
Thomas Kropf, Robert Bosch GmbH
Ulrich Lefarth, Thales Deutschland
Tobias Lorenz, Continental Automotive GmbH
Jürgen Mottok, OTH Regensburg
Francesca Saglietti, Univ. Erlangen-Nürnberg

Ina Schaefer, TU Braunschweig
Jörn Schneider, Hochschule Trier
Elmar Schoch, Audi AG
Claus Stellwag, Elektrobit Automotive GmbH
Werner Stephan, DFKI
Theodor Tempelmeier, Hochschule Rosenheim
Michael Weyrich, Universität Stuttgart
Hans-Jörg Wolff, Robert Bosch GmbH
Thomas Wollinger, escrypt GmbH

Fachliche Träger und Veranstalter
Gesellschaft für Informatik mit den Fachgruppen Ada, ASE, ENCRESS, EZQN, FERS,
FoMSESS
VDI/VDE-GMA mit dem Fachausschuss 5.11 Embedded Software;
Förderverein Ada Deutschland. e.V.

Inhaltsverzeichnis

Andreas Schwierz, Georg Seifert und Sebastian Hiergeist, Technische Hochschule
Ingolstadt

Funktionale Sicherheit in Automotive und Avionik: Ein Staffellauf …………………..... 13

Christof Ebert, Vector Consulting Services GmbH

Risk-Oriented Security Engineering ………………………………………………………... 27

Marko Wolf1 and Robert Lambert2, 1ESCRYPT GmbH, 2ETAS Canada Inc.

Hacking Trucks – Cybersecurity Risks and Effective Cybersecurity Protection for
Heavy Duty Vehicles …………………………………………………………………………. 45

Norman Rink and Jeronimo Castrillon, TU Dresden

Extending a Compiler Backend for Complete Memory Error Detection ……………… 61

Benjamin Lesage, David Griffin, Iain Bate and Frank Soboczenski,
University of York

Exploring and Understanding Multicore Interference from Observable Factors ……. 75

Christopher Corbett1, Tobias Basic2, Thomas Lukaseder3 and Frank Kargl3,
1Audi AG, 2TU Darmstadt, 3Universität Ulm

A Testing Framework Architecture for Automotive Intrusion Detection Systems …… 89

Kevin Lamshöft, Robert Altschaffel and Jana Dittmann, Otto-von-Gerricke-
Universität Magdeburg

Adapting Organic Computing Architectures to an Automotive Environment to
Increase Safety & Security ………………………………………………………………….. 103

Konstantin Zichler1 und Steffen Helke2, 1Daimler AG, 2Brandenburgische
Technische Universität Cottbus-Senftenberg

Ontologiebasierte Abhängigkeitsanalyse im Projektlastenheft ……………………..… 121

Nelufar Ulfat-Bunyadi, Denis Hatebur and Maritta Heisel, Universität
Duisburg-Essen

Performing a More Realistic Safety Analysis by Means of the Six-Variable Model ... 135

Asim Abdulkhaleq1, Stefan Wagner1, Daniel Lammering2, Hagen Boehmert2

and Pierre Blueher2, 1Universität Stuttgart, 2Continental

Using STPA in Compliance with ISO 26262 for Developing a Safe Architecture
for Fully Automated Vehicles …………………………..…………………………………. 149

Paul Chomicz1, Armin Müller-Lerwe2, Götz-Philipp Wegner2, Rainer Busch2

and Stefan Kowalewski1, 1RWTH Aachen, 2Ford Research & Innovation
Center Aachen

Towards the Use of Controlled Natural Languages in Hazard Analysis and Risk
Assessment …………………………………………………………………………………… 163

Peter Dencker et. al.; Automotive Safety & Security 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 13

Funktionale Sicherheit in Automotive und Avionik: Ein

Staffellauf

Andreas Schwierz1 Georg Seifert1 Sebastian Hiergeist1

Abstract: Der nachfolgende Bericht geht auf die gemeinsamen Interessen von sicherheitskritischen
Systemen aus der Luftfahrt- und der Automobilbranche ein. Hierbei wird dargelegt, dass die Software-
Funktionalität stark von der eingesetzten Hardware abhängig ist und Auswirkungen auf die ge-
wünschte Sicherheit hat. In diesem Bereich können beide Branchen voneinander profitieren. Die
Luftfahrt hat historisch gesehen schon früh angefangen, systematisch funktionale Sicherheit zu stan-
dardisieren, wohingegen die Automobilbranche seit 2011 nachzieht und mit ihrer großen Markt-
macht auf die Hardwarehersteller einwirken kann. Hieraus könnte auch die Luftfahrtindustrie ihren
Nutzen ziehen.

Keywords: Luftfahrt, Automobil, Funktionale Sicherheit, Echtzeitsysteme, WCET, Redundanzsys-

tem, Interferenz, Zugriffskollisionen

1 Einleitung

Luftfahrtzeug- und Automobilhersteller teilen beide das Interesse, sichere Beförderungs-
mittel bereitzustellen. Getrieben durch den Wandel von mechanischen zu elektrischen/-
elektronischen (e/e) Systemen begann in der Luftfahrt ab den 1980ern2 eine strukturierte
Auseinandersetzung mit funktionaler Sicherheit. Die Herausforderung war eine Beibehal-
tung bzw. Steigerung der Sicherheitsansprüche um ein Fail-Operational Verhalten garan-
tieren zu können. Erreicht wurde dies durch die Entwicklung von Redundanzarchitekturen
auf Systemebene. Verwendung fanden hierbei Mikroprozessoren (Micro Processor Unit,
MPUs), die mit proprietärer Erweiterungen (ASICs, FPGAs, usw.) um die entsprechen-
de Redundanzfunktionalität erweitert wurden. Im Vordergrund stand hier die Sicherheit
des Gesamtsystems, während andere Faktoren wie Gewicht, Größe, Energieverbrauch und
Kosten einen untergeordneten Stellenwert einnahmen.

Die Automobilbranche hat erst mit der Veröffentlichung des ISO 26262 [Te09] im Jahr
2011 ein Äquivalent zu den Avionik-Standards definiert. Bedingt durch die Anforderun-
gen aus der Automobilbranche lag der Entwicklung des Standards eine andere Anforde-
rungsbasis zugrunde. Der Hauptunterschied besteht darin, dass ein Fail-Safe Verhalten
für solche Systeme ausreichend ist. Die oben genannten Faktoren wie Gewicht, Größe,
Energieverbrauch und Kosten haben bei diesen Systemen einen ungleich höheren Stellen-
wert. Um diese Anforderungen erfüllen zu können wurde seitens der Chip-Hersteller viel

1 Technische Hochschule Ingolstadt, Zentrum für Angewandte Forschung, Paradeplatz 13, 85049 Ingolstadt,
Vorname.Nachname@thi.de

2 Im Jahr 1982 wurde der Standard DO-178[Sp82] veröffentlicht.

14 Andreas Schwierz et. al.

Entwicklungs- und Forschungsaufwand betrieben, um die geforderten Safety-Aspekte im
Rahmen des ISO 26262 zu erfüllen.

Dem historisch bedingten Erfahrungsvorsprung zum Trotz konnte die Luftfahrtindustrie
hingegen keinen Einfluss auf die Entwicklung sicherheitskritischer und gleichzeitig hoch-
integrierter Hardware-Komponenten ausüben[FK06]. In sicherheitskritischen Avionik-Sys-
temen muss dies durch den Einsatz von bewährten MPUs, in Kombination mit einer Red-
undanz auf Systemebene, gelöst werden. Zur Steigerung der Integrationsdichte wurde in
der zivilen Luftfahrt der Integrated Modular Avionic (IMA) Ansatz entwickelt, der erst-
mals im Airbus A380 zum Einsatz kam. Diese Architektur ist auf die Verwendung in
großen, komplexen Systemen ausgelegt und für den Einsatz in sicherheitskritischen Avio-
nik-Systemen ungeeignet. In Anbetracht der anvisierten Einsatzszenarien von unbemann-
ten Flugkörpern[Vo13] müssen deswegen funktional hochintegrierte Mikrocontroller (Mi-
crocontroller Unit, MCUs) verwendet werden.

Seitens der Automotive Mikrocontroller (Automotive Microcontroller Unit, AMCUs)-
Hersteller standen hier domänenspezifischen Entwicklungsanforderungen im Vordergrund.
Damit AMCUs in künftigen Avionik-Systemen eingesetzt werden können, muss die Zu-
lassbarkeit argumentiert werden. Bei der Entwicklung des Avionik-Systems entstehen Com-
mercial off-the-shelf (COTS)-spezifische herausforderungen, von denen drei in den nach-
folgenden Kapiteln aufgegriffen werden.

Kapitel 2 erläutert den Stellenwert der Qualität bei der Avionik-Herstellung und stellt
die Frage, ob Hardware-Komponenten, entwickelt nach ISO 26262, eine Erleichterung in
der Flugzeugzulassung darstellen können. Trotz der umfangreichen Safety-Features in-
nerhalb der AMCU wird die Zuverlässigkeit einer einzelnen AMCU nicht ausreichen,
um den höchsten Sicherheitsansprüchen gerecht zu werden. Deswegen werden in Kapi-
tel 3 aktuelle Sicherheitsbedenken untersucht und entsprechende Lösungsmöglichkeiten
aufgezeigt. Als sinnvolle Lösung erscheint in diesem Zusammenhang die Realisierung ei-
nes Redundanznetzwerkes durch AMCU-eigenen Bordmittel. Aufgrund der dadurch stark
steigenden Datenlast auf den einzelnen MCU müssen die Einflüsse von Eingabe/Ausga-
be (E/A)-Datenflüssen auf die Software-Ausführungszeit detaillierter untersucht werden.
Dieser Aspekt wird in Kapitel 4 ausführlich betrachtet.

2 Avionik-Entwicklung: Qualität von komplexen COTS

In der Luftfahrt und Automobilindustrie beschreiben domänenspezifische Standards die
Entwicklung von sicherheitskritischer Hardware als Teil eines Systems. In der Luftfahrt
ist dies der Standard DO-254[Sp00] – in der Automobilindustrie der ISO 26262[Te09].
Sie sind aus dem Bewusstsein entstanden, dass ein strukturierter Entwicklungsprozess
notwendig ist um systematische Fehler bei komplexen Komponenten zu vermeiden. Dies
muss das Ziel während der Entwicklung sein, da durch eine umfangreiche Verifikation
nicht alle Entwicklungsfehler aufgedeckt werden können.

Diese Erkenntnis gilt für komplexe COTS-Komponenten. Deren Entwicklungsprozess bzw.
die daraus resultierende Qualität muss zulassungskonform sein. Das heißt, es muss hierbei

Funktionale Sicherheit in Automotive und Avionik: Ein Staffellauf 15

eine qualitative Bewertung über den Entstehungsprozess der Komponente erstellt werden.
Das daraus resultierende Ergebnis ist eine Vertrauensaussage über die Integrität bzw. Qua-
lität der COTS-Komponente. Als Bewertungsgrundlage für die Qualität kann dabei der
domänenspezifische Standard herangezogen werden. Dieser Vergleich ist gewinnbringen-
der, wenn der COTS-Entwicklungsprozess auf einem verbreiteten Standard beruht. Da die
gewonnenen Erkenntnisse auf einem Vergleich zwischen zwei Standards basieren ist das
Abstraktionsniveau hoch. Die Wiederverwendung ist dadurch unabhängig von Hersteller
und Produkt.

Der AMCU stellt für die Luftfahrtindustrie eine komplexe COTS-Komponente dar und er-
füllt die Anforderung: Entwickelt nach einem verbreiteten Standard. Die Zielsetzung des
ISO 26262 bzgl. der Entwicklung funktional sicherer Systeme ist eine Ausgangsvoraus-
setzung für einen Vergleich. Diese Halbleiterprodukte werden in Zukunft weitere sicher-
heitsrelevante Funktionen übernehmen und die Hersteller sind sich der steigenden Nach-
frage bewusst. Mit diesem Anspruch wird die aktuelle Entwurfsversion des ISO 26262
aus dem Jahr 2016 um Teil 113 ergänzt, damit die domänenspezifischen Anforderungen
an die Halbleiterentwicklung sichergestellt werden können. Ein domänenübergreifendes
Qualitätsverständnis wird Einfluss auf die Entwicklung von künftigen Halbleiterproduk-
ten haben, von denen beide Branchen profitieren.

Im weiteren Verlauf dieses Kapitels wird auf die aktuelle Zulassungssituation von COTS-
basierter Avionik eingegangen. Zusätzlich soll dargestellt werden, welche Vorteile die Her-
stellung einer Vergleichbarkeit der branchenabhängigen Standards in Avionik-Projekten
bringen kann.

2.1 Zulassung COTS-basierter Avionik

Einleitend ist zu klären, dass der Begriff Zulassung im Zusammenhang mit Avionik-Sys-
temen der Lesbarkeit geschuldet ist. Tatsächlich wird ein Flugsystem von der Zulassungs-
behörde als Ganzes genehmigt. Ein Avionik-System wird hierbei nicht einzeln betrachtet,
doch muss es konform zu den Regularien entwickelt worden sein damit es zulassbar ist.
Somit kann im folgenden Avionik-Zulassung als die Zulassbarkeit eines Avionik-Systems
verstanden werden.

Noch bevor die Hardware von e/e Systemen im Fokus der funktionalen Sicherheit stand,
beschrieb man mit dem DO-1784 die Softwareentwicklung für Luftfahrtanwendungen.
Die Absicht war, konkretere Zielvorgaben für die Software-Entwicklung zu definieren,
um die abstrakteren Sicherheitsrichtlinien der Zulassungsbehörde zu erfüllen. Mit dem
DO-254 [Sp00] wurde 2000 ein Standard veröffentlicht der dieses Ziel für die Hardware-
Entwicklung verfolgt. Als übergeordnetes Bindeglied zwischen den DO-178B und dem
DO-254 dient die aktuelle Veröffentlichung des Standards ARP4754A [SA10]. Er be-
schreibt den Entwicklungsprozess für Avionik-Systeme und definiert die beiden Standards
als entsprechende Empfehlung für die Hardware und Software-Entwicklung.

3 Leitfaden zur Anwendung des ISO 26262 für Halbleiter
4 Aktuelle Veröffentlichung ist der DO-178C aus dem Jahr 2012.

16 Andreas Schwierz et. al.

COTS sind Komponenten entwickelt für verschiedene Kunden und unterschiedliche An-
wendungen. Der Entwicklungsverlauf bzw. dessen Ergebnis bestimmt alleinig der Her-
steller. Die Produkte sind an der Nachfrage am Markt und den akzeptierten Standards
ausgerichtet. Der Endkunde hat keinen Einfluss auf den Entstehungsprozess und muss
nach dessen Entwicklung nachweisen, ob die Anforderungen für seinen Anwendungsfall
erfüllen werden. Mit dieser Tatsache wird in der Luftfahrtindustrie bereits seit Jahrzehn-
ten erfolgreich umgegangen, was durch die im Einsatz befindlichen MPUs in Systemen
bewiesen wird [Ye96].

Die heute anvisierten COTS-Komponenten sind komplexer, als die bereits im Einsatz be-
findlichen MPUs. Die entstandenen Erfahrungen bei der Entwicklung und Zulassung von
COTS-basierter Avionik decken die Einschränkungen im praktischen Nutzen des DO-254
auf. Eine umfangreiche Offenlegung von Entwicklungsdaten durch den COTS-Herstel-
ler ist nötig, widerspricht jedoch dem Schutz dieses Wissens. Versuche an dieses Wissen
durch Reengineering zu gelangen, stellten sich als nicht praktikabel heraus [HB07].

Aus wirtschaftlichen Gründen streben Avionik-Hersteller keine Eigenentwicklung von
zentralen Rechenkomponenten wie MPUs und MCUs an und verwenden stattdessen al-
ternative Methoden. Diese sollen nachweisen, dass die COTS-Komponente den Anforde-
rungen der Gesetzgebung und des Avionik-Systems entsprechen. Ein schadhaftes Fehl-
versagen muss extrem unwahrscheinlich sein. Dabei wird erwartet, dass die Komponente
unter allen denkbaren Bedingungen wie beabsichtigt funktioniert und für unerwartete Er-
eignisse Maßnahmen ergriffen werden.

Aktuelle Ansätze über die Argumentation der Zulassbarkeit von COTS-Komponenten bau-
en auf einer Kombination folgender Bestandteile auf [Ce14], [Wi15]:

Vorhandene Entwurfsdaten Hat der Hersteller einen strukturierten und anforderungs-
basierten Entwicklungsprozess verwendet, so können diese Daten – dessen Einver-
ständnis vorausgesetzt – wiederverwendet werden.

Eigene Erzeugung von Entwurfsdaten Durch Reengineering-Maßnahmen können die-
se Daten auch nach der Entwicklung erhoben werden.

Betriebserfahrung Die Aussagekraft der Erfahrung kann die Produktreife untermauern,
sodass keine systematischen Fehler bei einer ähnlichen Verwendung zum Tragen
kommen.

Fehlermaskierung auf Systemebene Das Verhalten bei bestimmten Fehlerszenarien kann
nicht in jedem Fall nachgewiesen werden. Durch Anpassung der Systemarchitektur
(z.B. strukturelle Redundanz mit unterschiedlichen Komponenten, siehe Kapitel 3)
können diese Fehler maskiert werden.

Detaillierte Entwurfsdaten sind notwendig, falls den Informationen zur COTS-Kompo-
nente nicht vertraut wird oder deren Aussagekraft nicht ausreicht. Damit die Betriebser-
fahrung glaubwürdig die Qualität einer Komponente unterstützt, muss diese aufwändig

Funktionale Sicherheit in Automotive und Avionik: Ein Staffellauf 17

ermittelt und bewertet werden. Dieses hier beschriebene Vorgehen der COTS-Nachweis-
führung ist anwendbar für MPUs oder MCUs mit niedriger Komplexität. Ein AMCU zählt
nicht hierzu.

2.2 Zielsetzung des Qualitätsvergleichs

In Kapitel 2.1 werden Herausforderungen und aktuelle Lösungsansätze zur Zulassung von
Avionik-Systemen beschrieben, wenn eine COTS-Hardware-Komponente eine zentrale
Rolle im Systementwurf einnimmt. Die Zulassungsproblematik von COTS-Komponenten
ist ein ständiger Wettlauf mit der fortschreitenden Technologie und ohne diese Produkte
ein Innovationspotential künftiger sicherheitsrelevanter Avionik gehemmt wäre. Aktuell
zulassungskonform entwickelte Komponenten beheben diesen Mangel nicht.

Bisher wurde die Vergleichbarkeit des Qualitätsniveaus zwischen den domänenspezifi-
schen Standrads ISO 26262 Teil 5 und DO-254 nicht untersucht. Ähnliche erbrachte Ver-
gleiche zwischen den Softwarestandards beider Domänen [GHW11], [Le12] geben dazu
Anlass, diesen für Hardwarestandards mit einer zielgerichteten Verwertungsperspektive zu
erbringen.

Ist das Qualitätsniveau zwischen den Domänen vergleichbar, werden folgende Auswirkun-
gen erwartet:

∙ Die wiederkehrenden Kosten der Zulassung von COTS-basierter Avionik können re-
duziert werden. Diese Annahme beruht darauf, dass der Vergleich beider Standards
generischer Natur (ohne Projektbezug) ist. So können diese einmal gewonnenen Er-
kenntnisse für eine Vielzahl von Avionik-Projekten wiederverwendet werden.

∙ Versuche der Einflussnahme der Luftfahrtindustrie auf die Entwicklung von COTS-
Komponenten-Hersteller sind bekannt [CB04]. Ist den Herstellern bewusst, dass die
notwendigen prozessspezifischen Anpassungen wirtschaftlich sind, werden sie um-
gesetzt. Das Risiko der Machbarkeit wird im Vorfeld dieser Forschung erbracht.

3 Sicherheitsbedenken aus dem Avionik-Sektor und Steigerung der

Sicherheit

Wie bereits in Kapitel 2.1 beschrieben ist, liefert der DO-254 keine Hilfestellung für
die zulassungskonforme Entwicklung von COTS-basierter Avionik. Um den Einsatz von
COTS MCUs dennoch zu ermöglichen entstand durch die Federal Aviation Administrati-
on (FAA) zu diesem Thema in Zusammenarbeit mit namhaften Firmen aus dem Avionik-
Bereich 2011 eine Forschungsarbeit die sich mit dieser Problematik befasst. Aus dem dar-
aus resultierenden „Handbook for the Selection and Evaluation of Microprocessors for
Airborne Systems“ [FA11] werden die Sicherheitsanforderungen behandelt die auch auf
AMCUs angewendet werden müssen. In diesem Kapitel wird bewertet, ob diese von AM-
CUs erfüllt werden können. Die Beschreibung eines Redundanzkonzeptes ermöglicht die
Erkennung und Toleranz weiterer Fehlerfälle.

18 Andreas Schwierz et. al.

3.1 Aktuelle Safety-Bedenken aus dem Avionik-Bereich

Im Rahmen der Untersuchungen seitens der FAA konnten insgesamt drei Hauptpunkte
ermittelt werden, bei denen hinsichtlich des Einsatzes von AMCUs im Avionik-Bereich
noch Sicherheitsbedenken bestehen.

Sichtbarkeit und Debugbarkeit AMCU-Hersteller erlauben in der Regel keinen Ein-
blick in die internen Strukturen ihrer Produkte, da dieses Wissen als Firmengeheim-
nis angesehen wird. Dies hat den signifikanten Nachteil, dass sich die Hardware
nicht mehr bis ins Detail analysieren lässt, um so exakte Vorhersagen hinsichtlich
der Ausführungszeit treffen zu können. Durch die Integration der Systemarchitektur
auf einem Chip wird es zudem unmöglich, gezielt zwischen den Komponenten Feh-
ler einzuspeisen. Dadurch lassen sich die Sicherheits-Algorithmen nicht mehr, oder
nur mit hohem Aufwand auf der Hardware selbst testen.

Konfigurationsprobleme Da es für einen AMCU-Hersteller nicht wirtschaftlich ist, für
jeden Kunden eigene Produkte nach einem exakt vorgegebenen Funktionsumfang
zu entwickeln, werden die Produkte für den breiten Markt konzipiert. Dieser bein-
haltet einen Durchschnitt an Funktionen die in der entsprechenden Domäne übli-
cherweise benötigt werden. Da die Funktionen anwendungsspezifisch konfiguriert
werden müssen, werden Software-Register zur Aktivierung bzw. Deaktivierung ver-
wendet. Die Konfiguration der einzelnen Komponenten erfolgt dabei ebenfalls über
in Software ansteuerbare Register. Bedingt durch Software-Fehler oder atmosphä-
rische Einflüsse wie Single Event Upset (SEU) 5 können sich die Konfigurationen
einzelner Register unbeabsichtigt ändern.

Gemeinsam genutzte Ressourcen Während die Anzahl der Komponenten innerhalb ei-
ner MCU immer weiter steigt, werden einige Komponenten weiterhin von mehreren
Teilnehmern gleichzeitig benutzt. Hierzu zählt unter anderem der Hauptspeicher,
der sowohl von Prozessoren als auch Direct Memory Access Controller (DMA-C)
bedient wird. Hierbei kommt es, wie in Kapitel 4.1 beschrieben, zwangsweise zu
Kollisionen, was starke Auswirkungen auf die Ausführungszeit haben kann.

3.2 Maßnahmen zur Steigerung der Safety auf Architekturebene

Ergänzend werden im Bericht der FAA Lösungsansätze behandelt. Hierbei soll durch Ar-
bitrierungsverfahren für gemeinsam genutzte Ressourcen oder einem sogenannten Fra-
me-Lock Ansatz [FA11] eine Entschärfung der Problematik bei den Ausführungszeiten
erreicht werden. Trotz der vorgestellten Möglichkeiten kann durch das Fehlen von Ent-
wurfsdaten nicht sichergestellt werden, dass alle Fehlerfälle abgedeckt sind. Hierzu wer-
den zwingend weitere Maßnahmen auf Systemebene benötigt.

5 Änderung von Werten/Zuständen innerhalb der MCU oder des Speichers durch geladene Teilchen aus der
Atmosphäre.

Funktionale Sicherheit in Automotive und Avionik: Ein Staffellauf 19

Redundanz Der klassische Redundanzansatz in Form eines Triplex- [vN56] oder Qua-
druplex-Systems [AB10] bietet den größten Mehrgewinn bezogen auf die Sicherheit
des Gesamtsystems. Hierdurch kann durch die Verschaltung mehrerer gleicharti-
ger AMCUs, wie in Abb. 1 gezeigt, ein Fail-Operational-Verhalten erreicht werden
– vorausgesetzt das Redundanznetzwerk selbst wurde entsprechend fehlertolerant
ausgelegt.

Redundanzarchitektur

. . .

AMCU1

Sicherheits-
Schicht

AMCUn

Sicherheits-
Schicht

RN

Abb. 1: Redundanzkonzept

Bezüglich der Robustheit gegenüber äußeren Einflüssen gibt es hier Seitens der FAA
Vorschriften, welche im DO-160 [Sp10] konkretisiert sind. Für die Realisierung ei-
nes solchen Redundanznetzwerkes (in Abb. 1 als RN dargestellt) bietet es sich an,
auf die standardmäßig vorhandenen Schnittstellen der verwendeten AMCUs zuzu-
greifen. Hierzu wurde bereits eine entsprechende Voranalyse in [HH16] durchge-
führt. Durch den Aufbau eines solchen Netzwerkes können beispielsweise Konfi-
gurationsprobleme toleriert werden, welche durch äußere Umwelteinflüsse ausge-
löst wurden. Auch der komplette Ausfall eines MCU durch Überspannung oder
Alterung, kann dadurch toleriert werden. Hierbei bringt es einen entsprechenden
Mehrwert, wenn das System um den Aspekt der Hardware-Dissimilarität [Mo99]
erweitert wird. Das aktuelle Ausschluss-Kriterium für solche Redundanzarchitektu-
ren sind schlicht die Kosten (siehe [Gr15]), da alle Komponenten innerhalb des Steu-
ergerätes mindestens dreimal vorhanden sein müssen. Andererseits wurden von der
Automotive-Industrie bereits erste Bemühungen unternommen um mittels spezieller
Duplex-Systeme und Rekonfigurationsmechanismen [Mu15] effizientere Lösungen
erreichen zu können.

Dissimilarität Um die Auswirkung von Entwicklungsfehlern der AMCU ausschließen
zu können, kann der Redundanzansatz mit verschiedenen MCUs und Intellectual
Properties (IPs) verschiedener Hersteller verwendet werden. Der Grad einer hinrei-
chenden Dissimilarität von MCUs muss dabei im Einzelfall geprüft werden.

Der dissimilare Ansatz führt jedoch zu einem signifikanten Anstieg der Entwick-
lungskosten, da eine Einarbeitung in mehrere MCUs erfolgen muss – zusätzlich zu
Entwicklung und Wartung redundanter Software-Versionen für die verschiedenen
MCUs.

20 Andreas Schwierz et. al.

4 Analyse von Zugriffsstrukturen

In Kapitel 3.2 wird dargestellt, dass einzelne MCUs den Safety-Anforderungen der Luft-
fahrt nicht genügen, wodurch ein redundanter Betrieb unerlässlich ist. Durch diese For-
derung verschärfen sich die in Kapitel 3.1 genannten Bedenken über die Sichtbarkeit und
Nutzung gemeinsamer Ressourcen. Die dadurch entstehenden hardwareseitigen Zugriffs-
konflikte können sich stark auf die Software auswirken, was wiederum zu einer Verletzung
von zeitlichen Bedingungen führen kann.

Klassische Avionik-Systeme basieren aktuell auf diskreten CPUs bei denen der E/A-Bus
und in vielen Fällen der System- bzw. Speicher-Bus offengelegt ist. Dies bedeutet nicht
nur, dass das Busprotokoll (z.B. Arbitrierungsstrategie) zur Analyse offengelegt ist, son-
dern auch, dass mit externen Messgeräten die Kommunikation verifiziert werden kann.

Durch den Einsatz von hochintegrierten MCUs wird die Analyse des zeitlichen System-
verhaltens, sowie deren Einzelkomponenten und der Anwendungs-Software erheblich er-
schwert. Um Aussagen über die Zugriffspfade oder auftretender Interferenzen treffen zu
können, muss auf integrierte Debug-Schnittstellen oder auf externe Messmethoden zu-
rückgegriffen werden.

4.1 Allgemeine Problematik

In sicherheitskritischen Echtzeitsystemen, wie beispielsweise in Flugsteuerungen der Avio-
nik, werden zyklische Regelschleifen verwendet. Neben dem Sensor-Input und der Aktor-
Ansteuerungen werden bei hoch sicherheitskritischen Systemen mit mehrfach redundan-
ter Hardware (vgl. Kapitel 3.2) zudem die Ein- und Ausgaben abgeglichen. In Abb. 2 wird
eine typische Verarbeitungskette der Daten dargestellt. Die Ausführung der grau darge-
stellten Funktionen ist ein synchroner Prozess, für den sich die auftretenden Datenströme
gut evaluieren lassen. Die Eingabe der angebundenen Sensoren hingegen läuft asynchron
zur Regelschleife ab und steht somit in Konkurrenz zueinander.

Applikation

Redundanzsystem

Sensoren

Aktoren

Abgleichen Eingabe

Regelalgorithmus

Abgleichen Ausgabe

verschicken

Regelkreis

Abb. 2: Erweiterte Regelschleife

Funktionale Sicherheit in Automotive und Avionik: Ein Staffellauf 21

Um eine Analyse der Datenströme, insbesondere der Zugriffszeiten auf Register- und
Speicherbereiche zu gewährleisten, ist in aktuellen Flugsteuerungsanwendungen das Ein-
lesen der asynchronen Sensordaten ein Teil der (synchronen) Regelschleife. Dies stellt
sicher, dass nur eine aktive Komponente (vgl. Abb. 3a) Zugriffe auf die verschiedenen Res-
sourcen verursacht. Dadurch entstehen keine Konflikte und die Zugriffszeiten auf Adress-
und Registerbereiche lassen sich mit einem Maximum (Worst Case) angeben. Ein Nachteil
dieser Implementierung ist, dass die Verarbeitung der Datenströme Ressourcen der CPU
belegt.

CPU

Peripherie Speicher

(a) Konkurrenzfreier Zugriff

CPUDSP DMA

Peripherie Speicher

(b) Konkurrierender Zugriff

Abb. 3: Zugriff auf Ressourcen

Diese einfache Datenverarbeitung lässt sich nur mit moderaten Datenraten und wenigen
Schnittstellen realisieren. Durch den Anstieg der zu verarbeitenden Daten und abzude-
ckenden Schnittstellen6 ist eine effizientere Verarbeitung der Eingabedaten nötig. Dies
lässt sich durch den Einsatz spezialisierter Hardware wie DMA-C und digitaler Signalpro-
zessors (Digital Signal Processor, DSPs) realisieren. Mittels eines selbstständigen Zugriffs
auf Speicher und Peripherie sowie einer optionalen Datenverarbeitung kann die CPU ent-
lastet werden.

Durch den Einsatz weiterer aktiver Komponenten (vgl. Abb. 3b) lässt sich ein kollisions-
freier Zugriff auf gemeinsame Ressourcen nicht mehr realisieren. Dies führt auch dazu,
dass sich die Zugriffszeiten auf Speicher und Register nicht mehr verifizieren lassen. Es
kann zwar immer noch eine obere Schranke angegeben werden, wobei diese nur verein-
zelt oder in Extremsituationen auftritt und die Vorteile von Speicherdirektzugriff (Direct
Memory Access, DMA) und DSP zunichtemacht.

4.2 Abschätzen von Datenströmen

Der pessimistische Ansatz, dass jeder Zugriff eine Kollision verursacht, tritt in modernen
MCUs nicht immer auf. Wird von verschiedenen Komponenten auf Ressourcen im System
zugegriffen, muss dadurch nicht immer ein Konflikt entstehen. Ein Beispiel hierfür ist die
Verwendung eines Crossbar Switch als Verbindungsnetzwerk bei dem nur bei Zugriffen
auf identische Zielressourcen Kollisionen auftreten.

6 Implementierung von Redundanzsystemen mithilfe von on-Chip Schnittstellen (vgl. Kapitel 3.2), Radar- oder
Kamera-basierte Fahrerassistenzsystemen (Advanced Driver Assistance Systems, ADAS), etc.

22 Andreas Schwierz et. al.

4.2.1 Analyse möglicher Kollisionspfade

Um einen Überblick über die möglichen Kollisionen und deren Eigenschaften zu erhalten
lassen sich gezielte Messungen durchführen. Dafür werden einzelne Pfade gegeneinander
vermessen und die daraus resultierenden Interferenzen festgehalten.

Als Testaufbau eignet sich ein minimales Programm, welches CPU-getrieben nur einen
vorher festgelegten GPIO-Pin zyklisch umschaltet. Hierbei handelt es sich um eine kom-
pakte Befehlsfolge, der im CPU-Cache gehalten wird. Ein Nachladen von Instruktionen
aus dem Hauptspeicher ist nicht nötig. Neben den Zugriffen auf den GPIO-Pin werden
asynchrone Transfers mithilfe des DMA-C induziert, um Daten beispielsweise von einem
UART-Register in den SRAM zu übertragen.

Anhand des Datenbuchs (im aktuellen Beispiel wird ein TI Hercules TMS570LC4357
verwendet, vgl. Reference Manual [Te14]) lässt sich feststellen, dass sowohl das GPIO-
als auch das UART-Register einen gemeinsamen Bus verwenden. Treten nun gleichzeitig
Transferanfragen auf, so sind hier Kollisionen zu erwarten. Diese lassen sich mit Oszil-
loskop oder Logic Analyzer aufzeigen, sodass dadurch die daraus resultierende Wartezeit
der CPU ausgemessen werden kann. Diese Analyseschritte müssen für jeden möglichen
Pfad innerhalb des MCU wiederholt werden.

Neben externen Messmethoden lassen sich mithilfe von Tracing-Schnittstellen Informatio-
nen über das System herausführen um die internen Abläufe besser analysieren zu können.
Hier kann es jedoch, je nach Implementierung der Tracing-Schnittstelle, zu Problemen
kommen. Einige Implementierungen übergeben die Ereignisse, ohne einen internen Zeit-
stempel zu setzen, an einen Zwischenspeicher. Die gepufferten Nachrichten werden erst
durch das Auftreten bestimmter Ereignisse durch den MCU verschickt, wodurch die exter-
nen Tracing-Hardware keine exakten Zeitstempel generieren kann. Im Mittel stimmen die
interpolierte Ausführungszeiten je Instruktion, jedoch zeigt dies, dass hier der Fokus klar
auf den durchschnittlichen Performance-Werten liegt und nicht auf die sicherheitsrelevante
Worst Case Execution Time (WCET).

4.2.2 Analyse von Zugriffsmustern

Neben dem Wissen über mögliche Kollisionen sind für Timing-Analysen die tatsächli-
chen Zugriffsmuster von Applikationen notwendig. Hierunter wird die zeitliche Abfolge
von Zugriffen auf bestimmte Adressbereiche verstanden. Ebenfalls können zyklisch wie-
derkehrende Zugriffsmuster (vgl. Regelschleife, Abb. 2) die Analyse erleichtert, da nur auf
einem zeitlich begrenzten Muster Analysen erbracht werden müssen.

Neben den Zugriffsmustern der Applikation lassen sich zudem auch Zugriffsmuster seitens
der E/A ermitteln. Können hier keine Muster abgeleitet werden, so lassen sich mit Hilfe
der maximalen physikalischen Übertragungsrate einzelner Schnittstellen die Zugriffsra-
ten ermitteln. Es kann davon ausgegangen werden, dass innerhalb der Zeitspanne einer
Nachricht maximal eine definierte Anzahl an Unterbrechungen initiiert werden kann.

Funktionale Sicherheit in Automotive und Avionik: Ein Staffellauf 23

4.2.3 Abschätzen von Konflikten

Kombiniert man das Wissen aus der Analyse der Zugriffsmuster der Software und aus
denen der Schnittstellen, so lassen sich die theoretische Anzahl an maximalen Konflikten
errechnen. Dies reduziert die Überschätzung der WCET erheblich, da nur die maximal
auftretenden Konflikte berechnet werden und nicht für jede Instruktion von einer Vielzahl
von Kollisionen ausgegangen werden muss.

5 Schluss

Bei der Entwicklung von funktional sicheren Systemen wechselten sich die Luftfahrt- und
Automobilindustrie, ähnlich eines Staffellaufs, chronologisch bei der Weiterentwicklung
von Technologien und Methoden ab. So wie vor der Jahrtausendwende Fly-By-Wire-Sys-
teme entstanden sind, die keiner mechanischen Absicherung bedürfen [Ye96], so hat die
Automobilindustrie durch ihre Marktmacht den Sicherheitsgedanken bis zum Hardware-
Komponenten-Hersteller, die zu AMCUs geführt haben, transportieren können.

Dieser Forschungsbeitrag versteht sich als Fortsetzung dieses Staffellaufes. Es werden Un-
tersuchungen beschrieben die u. a. notwendig sind um AMCUs in sicherheitskritischen
Avionik-Systemen, mit dem Anspruch der Zulassbarkeit, einsetzen zu können. Indem die
Luftfahrtindustrie den Stab weiterträgt, werden ebenso neue Impulse für den Automobil-
markt gesetzt. Diese können einen Mehrwert für neue sicherheitsrelevante Automotive-
Systeme im Bereich des autonomen Fahrens darstellen.

Danksagung

Diese Veröffentlichung wird unterstützt durch:

∙ das Projekt FORMUS3IC “Multi-Core safe and software-intensive Systems Impro-
vement Community”, Förderkennzeichen AZ-1165-15, der Bayerische Forschungs-
stiftung,

∙ das Open Innovation for RPAS (OPIRA) Projekt, finanziert durch das Luftfahrtfor-
schungsprogramm V (LuFo V5-1), Förderlinie “Technologie” des Bundesministeri-
ums für Wirtschaft und Energie und

∙ der von Airbus Defense and Space finanzierten Stiftungsprofessur “Systemtech-
nik für sicherheitskritische Software”, unterstützt durch den “Stifterverband für die
Deutsche Wissenschaft e.V.”

Literaturverzeichnis
[AB10] Audsley, N. C.; Burke, M.: Distributed Fault-Tolerant Avionic Systems – A Real-Time

Perspective. 2010.

[CB04] Cole, P.; Beeb, M.: Safe COTS graphics solutions: impact of DO-254 on the use of COTS
graphics devices for avionics. In: The 23rd Digital Avionics Systems Conference (IEEE
Cat. No.04CH37576). Institute of Electrical and Electronics Engineers (IEEE), 2004.

24 Andreas Schwierz et. al.

[Ce14] Certification Authorities Software Team: Compliance to RTCA DO-254/ EUROCAE
ED-80, "Design Assurance Guidance for Airborne Electronic Hardware", for COTS In-
tellectual Properties Used in Programmable Logic Devices. Bericht 33, Federal Aviation
Administration, August 2014.

[FA11] FAA: Handbook for the Selection and Evaluation of Microprocessors for Airborne Sys-
tems. Bericht, 2011.

[FK06] Forsberg, Hakan; Karlsson, Kristoffer: COTS CPU Selection Guidelines for Safety-
Critical Applications. In: 25TH Digital Avionics Systems Conference. Institute of Elec-
trical and Electronics Engineers (IEEE), oct 2006.

[GHW11] Gerlach, Matthias; Hilbrich, Robert; Weißleder, Stephan: Can cars fly? from avionics to
automotive: Comparability of domain specific safety standards. In: Proceedings of the
Embedded World Conference. 2011.

[Gr15] Grave, Rudolf: Autonomous Driving – From Fail-Safe to Fail-Operational Systems.
TechDay December2015, 2015.

[HB07] Hilderman, Vance; Baghi, Tony: Avionics certification: A complete guide to DO-178
(software), DO-254 (hardware). Avionics Communications, Leesburg, VA, 2007.

[HH16] Hiergeist, Sebastian; Holzapfel, Florian: Fault-tolerant FCC Architecture for future UAV
systems based on COTS SoC. 2016.

[Le12] Ledinot, Emmanuel; Gassino, Jean; Blanquart, Jean-Paul; Boulanger, Jean-Louis; Quéré,
Philippe; Ricque, Bertrand: A cross-domain comparison of software development ass-
urance standards. ERTS, 2012.

[Mo99] Montenegro, Sergio: Sichere und fehlertolerante Steuerungen: Entwicklung sicherheits-
relevanter Systeme. Hanser, München [u.a.], 1999.

[Mu15] Much, Alexander: The Safe State: Design Patterns and Degradation Mechanisms for
Fail-Operational Systems. safetronic.2015, 2015.

[SA10] SAE Aerospace: Guidelines for Development of Civil Aircraft and Systems. Bericht
ARP4754, SAE International, Dezember 2010.

[Sp82] Special C. of RTCA: DO-178: Software Considerations in Airborne Systems and Equip-
ment Certification. RTCA, Dezember 1982.

[Sp00] Special C. of RTCA: DO-254, Design Assurance Guidance for Airborne Electronic
Hardware. RTCA, April 2000.

[Sp10] Special C. of RTCA: DO-160G: Environmental Conditions and Test Procedures for Air-
borne Equipment. RTCA, 2010.

[Te09] Technical Committee 22: ISO/DIS 26262 - Road vehicles – Functional safety. Bericht,
International Organization for Standardization, Geneva, Switzerland, Juli 2009.

[Te14] Texas Instruments: . TMS570LC43x 16/32-Bit RISC Flash Microcontroller. Texas In-
struments, Mai 2014.

[vN56] von Neumann, J.: Probabilistic Logics and Synthesis of Reliable Organisms from Unre-
liable Components. 1956.

[Vo13] Volpe National Transportation Systems Center: Unmanned Aircraft System (UAS) Ser-
vice Demand 2015-2035: Literature Review and Projections of Future Usage. Bericht
DOT-VNTSC-DoD-13-01, U.S. Department of Transportation, 2013.

Funktionale Sicherheit in Automotive und Avionik: Ein Staffellauf 25

[Wi15] Wilkinson, Chris: Obsolescence and Life Cycle Management for Avionics. Bericht, Fe-
deral Aviation Administration, November 2015.

[Ye96] Yeh, Y.C.: Triple-triple redundant 777 primary flight computer. In: IEEE Aerospace
Applications Conference. Proceedings. Institute of Electrical and Electronics Engineers
(IEEE), 1996.

Peter Dencker et.al.: Automotive Safety & Security 2017
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 27

Risk-Oriented Security Engineering

Christof Ebert and Dominik Lieckfeldt 1

Abstract: Virtually every connected system will be attacked sooner or later. A 100% secure
solution is not feasible. Therefore, advanced risk assessment and mitigation is the order of the day.
Risk-oriented security engineering for automotive systems helps in both designing for robust
systems as well as effective mitigation upon attacks or exploits of vulnerabilities. Security must be
integrated early in the design phase of a vehicle to understand the threats and risks to car functions.
The security analysis provides requirements and test vectors and adequate measures can be derived
for balanced costs and efforts. The results are useful in the partitioning phase when functionality is
distributed to ECUs and networks. We will show with concrete examples how risk-oriented cyber
security can be successfully achieved in automotive systems. Three levers for automotive security
are addressed: (1) Product, i.e., designing for security for components and the system, (2) Process,
i.e., implementing cyber security concepts in the development process and (3) Field, i.e., ensuring
security concepts are applied during service activities and effective during regular operations.

Keywords: Cyber Security, Safety, embedded systems, quality requirements, risk management,
validation

1 Introduction

1.1 Automotive Connectivity and Cyber-Security

More than 20 years ago, the invention of the CAN bus built the basis of connectivity. In
the beginning, only two to three ECUs (electronic control units) were connected. But
nowadays we have complex networks of sensors and actors with different bus systems
like CAN, LIN, FlexRay, MOST or Ethernet. The interaction of functions in this
distributed network is an essential part for our today’s modern cars with all features for
safety and comfort.

Besides the further development of innovative sensors like radar and camera systems and
the analysis of the signals in highly complex ECU systems, the connected cars will be a
driving factor for tomorrow‘s innovation. Internet connections will not only provide the
need for information to the passenger. Functions like eCall or communication between
cars or car to infrastructure (car2x) shows high potential to revolution the individual
traffic. This includes the improvement of the traffic flow controlled by intelligent traffic
lights, warnings from roadside stations or brake indication of adjacent cars. This builds
the basis for enhanced driver assistant systems and automated driving. But the
connection to the outer world bears also the risk for attacks to the car (Fig. 1).

1 Vector Consulting Services, Ingersheimer Straße 24, D-70499 Stuttgart, E-Mail: Christof.Ebert@vector.com

28 Christof Ebert and Dominik Lieckfeldt

Fig. 1: Car with remote connections

The picture above shows several car connections that are already available today or will
come up soon in the near future. Each connection to the car has a potential risk for an
attack, regardless if it is wireless or wired. Just the threat is different. The access through
a connector is only possible for a limited amount of cars, whereas a far field connection
can be accessed from anywhere in the world. But also near field connections play an
important role, such as tire pressure monitoring system, Bluetooth and wireless LAN.
Security and reliability of these connections will be essential for the acceptance and
success of these systems. With the introduction of this technology precautions must be
taken to increase the reliability and to reduce the vulnerability to the system.

Obviously with growing connectivity functional safety needs security. Based on the
specific challenges of automotive security, OEMs and suppliers have to realize an
effective protection against manipulations of automotive E/E systems [EB2016]. Key
points in the development of protected E/E systems are the proper identification of
security requirements, the systematic realization of security functions, and a security
validation to demonstrate that security requirements have been met. The following items
need to be considered to achieve security in the car development process:

•• Standardized process models for a systematic approach which is anchored in the
complete development process. This starts on the requirements analysis through
the design and development down to the test of components and the network.

•• Quick software updates to close vulnerabilities in ECU software.

•• Reliable protocols that are state-of-the-art and meet long-term security demands.
Related to security this is often combined with cryptographic keys. So, a key
management over the lifecycle of the vehicle must be maintained.

Risk-Oriented Security Engineering 29

•• In-vehicle networks and system architecture that provides flexibility and
scalability and are designed under consideration of security aspects.

Based on our experiences in several client projects, we show which security engineering
activities are required to create secure systems and how these activities can be performed
efficiently in the automotive domain [EB2016]. In the following we want to take a view
on each of these topics, what are the current activities, but also want to provide hints on
how to mitigate the security risks.

1.2 Safety and Security

Night drive on the highway. The display suddenly flashes and the loudspeakers transmit
a loud and painful sound. The driver is highly disturbed and tries to stop this annoyance.
In doing so he is losing control over the car and causes an accident. Mere fiction? Not
really. Continuously growing complexity within the electrical subsystems of the car,
their interconnection by a variety of bus systems, and the use of standard components
with open interfaces make networked systems within the car increasingly vulnerable.
Such risks demand strong protection on various levels along the entire life-cycle of
components and of the entire vehicle. Looking to past experiences with insufficient
security in other domains, it is obvious that automotive security will determine which
suppliers and electronic platforms (e.g. AUTOSAR) will capture the market for standard
components. And it will determine how fast further communication systems (e.g.,
telematics with internet access) will be accepted by customers and policy makers.

What is cyber-security? Basically, security is a quality attribute which heavily interacts
with other such attributes, such as availability, safety or robustness. Security is the sum
of all attributes of an information system or product which contributes towards ensuring
that processing, storing and communicating of information sufficiently protects integrity,
availability and trust. Security implies that the product will not do anything with the
processed or managed information which is not explicitly intended by its specification. If
for instance the classic definition of a functional requirement meant that the car can be
started by turning the key, but would also allow a variety of mechanisms to start it
otherwise, maybe for diagnostic or repair services (who was not in such situation that he
needed support on the road and the person would open the trunk and start the engine
directly?). Security implies that the car cannot be started except for the defined scenarios
and is therefore protected against theft or misbehaviors. It’s growing relevance comes
from the simple observation that by defining functionalities alone, there is nothing said
about the correlation of features, specifically if one of the many components of the car
malfunctions. Many drivers of cars of the first generation of highly interconnected
electrical control units distributed across the car will recall strange behaviors, such as
windows which would open when switching on the radio. Automotive security has to
ensure that any such malfunction or misuse case will not happen.

There is a big difference when we contrast safety and security. Safety is built upon
reliability theory and looks into statistical malfunctions of components with small

30 Christof Ebert and Dominik Lieckfeldt

probabilities and how they will impact functionality. Security on the other hand has to
deal with the worst cases with a probability of one because once known, they will be
exploited. One might argue that safety is about criticality for the life and health of the
system’s user, while security is only about annoyances. It is however obvious that within
a safety-critical system, such as a car, security meets safety because malfunctions can
interact and cause disturbances that can result in accidents, as described in our
introduction.

Vulnerability scenarios within cars have been changing fast over the past years. The
increasing interconnection on different architectural layers (e.g., electrical control units,
software components, configurations and their changes, communication inside and
outside the car, diagnosis, telematics) has caused a level of complexity that was
unknown so far. It is a mere question of time until the resulting loopholes and
weaknesses are identified and abused. It was showed already that widely used
automotive bus systems such as CAN and FlexRay can be brought from the outside – by
connecting a device to any point of such bus systems – into overload conditions which
will eventually cause malfunctions [EB2016].

State of the art communication systems increasingly offer open interfaces (e.g., DVDs,
E-Mails, USB, Bluetooth, IP-based diagnostics) that allow to inject viruses and Trojan
horses to the respective embedded operating systems. Also, defective code and
configuration settings can create new and unknown vulnerabilities as we are used to
from many information systems.

This is what drives the security attacks in our illustrative case study from the beginning
of this article. Fig. 2 illustrates the primary sequence of incidents that caused the flashing
display and the loudspeakers or head unit to transmit such loud signals.

Step 1:
Upgrade of a third
party device

Step 2:
Accidential intro-
duction of infected
upgrade software

Step 3:
Transmission of valid but dangerous signals
IF CarSpeed > 150km/h
AND OutsideIllumination = Night
THEN SET Volume:= Max, DisplayBrightness:= Dark,...

CD-Wechsler

Media
amplifier

Head Unit

Gateway

Instrument
cluster

Info-
tainment
bus

Interior bus

USB

Media
player

Media player
interface

Step 1:
Upgrade of a third
party device

Step 2:
Accidential intro-
duction of infected
upgrade software

Step 3:
Transmission of valid but dangerous signals
IF CarSpeed > 150km/h
AND OutsideIllumination = Night
THEN SET Volume:= Max, DisplayBrightness:= Dark,...

CD-Wechsler

Media
amplifier

Head Unit

Gateway

Instrument
cluster

Info-
tainment
bus

Interior bus

USB

Media
player

Media player
interface

Fig. 2: „Night Drive“ – How could it happen?

Risk-Oriented Security Engineering 31

As so often in security attacks, the first step was just a normal upgrade of the multimedia
equipment with a better device. Needless to say that it was not delivered and installed by
the OEM, but came through an internet delivery for perceived cost reasons and enhanced
functionality. In a second step infected software came into the multimedia devices,
probably via an infected USB stick or from a media file. It could well be that software
upgrades to one of the media devices also brought this infected software into the system.
From here onwards it was just normal cause and effect, namely transmission of valid but
dangerous signals on the infotainment bus which were triggered by listening to signals
with speed and outside illumination. These signals are almost omnipresent in car
networks due to many dependencies on these factors.

The different reasons for insufficient automotive security are illustrated with examples in
Fig. 3. They are distinguished according to the different scenarios that cause the
vulnerability or security problem within the product (e.g., functionality, architecture,
configurations), in the process (e.g., design, development, validation, stakeholder
communication), and in the field (e.g., maintenance, enhancements, diagnosis).

All these scenarios result from unawareness of security needs and security technology,
be it by ignorance (“this won’t matter in cars because all our critical electrical units are
protected by cryptography”), arrogance (“security matters only in information systems”)
or naivety (“we have verified all requirements and components according to our
established test strategy”). An overall security strategy is mostly missing.

- software components or
media in use which have not
been qualified
- after-sales devices and
components are integrated to
the car without assessing the
impacts on other subsystems
such as network overload

- unknown state of the practice for
security verification tools and test
methods
- missing requirements and
criteria for security
- non-proprietary or open
components are introduced
without verifying security criteria
on system level

- insufficient training on
security for software and
systems engineering
- unknown misuse / abuse
scenarios
- automotive bus systems are
active even when ignition is off

By naivety

- new software releases are
introduced during production
and after-sales without
considering security checks and
qualifications

- inadequate or missing
communication between
automotive electrical engineers
and IT security experts
- development processes
specifically on system level
without security requirements and
checks

- experiences from other
products, domains and
markets (e.g., IT,
telecommunications) are not
considered
- security is designed only on
the basis of firewalls, gateways
and protected components

By
arrogance

- changes and modifications are
not sufficiently validated against
security requirements and
abuse / misuse scenarios
- security impacts of changing a
component or introducing a
new version or variant of a
software / hardware component
are not analyzed

- missing security requirements
- no abuse and misuse scenarios
- insufficient verification during the
entire component and system life-
cycle
- inadequate checklists and
design guidelines to design for
security

- security is insufficiently
supported by architecture
- components are individually
verified but not the system in
which they operate

By
ignorance

After-sales / fieldDevelopment processProduct / architectureCauses

- software components or
media in use which have not
been qualified
- after-sales devices and
components are integrated to
the car without assessing the
impacts on other subsystems
such as network overload

- unknown state of the practice for
security verification tools and test
methods
- missing requirements and
criteria for security
- non-proprietary or open
components are introduced
without verifying security criteria
on system level

- insufficient training on
security for software and
systems engineering
- unknown misuse / abuse
scenarios
- automotive bus systems are
active even when ignition is off

By naivety

- new software releases are
introduced during production
and after-sales without
considering security checks and
qualifications

- inadequate or missing
communication between
automotive electrical engineers
and IT security experts
- development processes
specifically on system level
without security requirements and
checks

- experiences from other
products, domains and
markets (e.g., IT,
telecommunications) are not
considered
- security is designed only on
the basis of firewalls, gateways
and protected components

By
arrogance

- changes and modifications are
not sufficiently validated against
security requirements and
abuse / misuse scenarios
- security impacts of changing a
component or introducing a
new version or variant of a
software / hardware component
are not analyzed

- missing security requirements
- no abuse and misuse scenarios
- insufficient verification during the
entire component and system life-
cycle
- inadequate checklists and
design guidelines to design for
security

- security is insufficiently
supported by architecture
- components are individually
verified but not the system in
which they operate

By
ignorance

After-sales / fieldDevelopment processProduct / architectureCauses

Fig. 3: Causes for security vulnerabilities and issues in the life-cycle of a car

32 Christof Ebert and Dominik Lieckfeldt

Typically, components are individually protected such as encrypted flashware for an
engine controller. Critical functionality such as engine management, theft protection or
engine diagnosis is hardened and verified. Increasingly secure networks and
architectures are discussed and will certainly influence the design of cars ten years from
now. Safety has received a lot of focus recently in automotive engineering and
qualification of components and systems, such as processes to ensure proper handling
and engineering according to SIL-levels. But safety and associated design rules are
insufficient as we have learned before. They look to faults and their probabilities, while
security has to deal with the worst case in scenarios where a probability is replaced by
the willingness of the attacker to cause the worst possible damage.

Two aspects related to security in embedded systems have to be considered: (1) Attack
scenarios go well beyond individual components and functions. (2) While safety deals
with avoiding critical failure modes, security has to cope with intelligently introduced
causes of faults, which is far more difficult, given that the attackers’ intelligence,
willingness, determinedness, and creativity often exceed that of the engineers looking to
a problem from the – different – perspective of how to solve it, and not how to find
loopholes and strange feature correlations.

Telecommunication and information systems have realized several years ago that
isolated mechanisms (e.g., distributed functionality in proprietary subsystems, protection
on component-level, gateways and firewalls between components, validation of critical
functions) are insufficient. This article underlines together with concrete examples how
automotive security can be achieved. We will take the three different perspectives that
were introduced in Fig. 3, namely (1) the product and its architecture (e.g., specification
of security requirements, misuse and abuse cases, vulnerability analysis, inherently
secure architectures); (2) engineering for security during the development process (e.g.,
FMEA and hazard analysis as a basis for security, protection on component- and on
system-level, systematic verification, code analysis, validation on product-level); and (3)
the relevant after-sales activities in the field (e.g., fault analysis, patch and correction
handling, emergency response and handling, distribution of corrections and protective
mechanisms).

Security and related measures demand well-founded concepts all along the life-cycle of
both components and the car itself, especially if their effectiveness has to be proven at a
later point due to legal actions. With this article we strive not only to provide guidance
for specific misuse cases but to change the mentality of engineers of embedded systems
towards designing for security – rather than for functionality.

1.3 Risk-oriented Security

Developing secure software is challenging for several reasons, namely because
increasingly systems are connected, most software is developed in a global context in
heterogeneous teams with various skills, systems complexity is exploding with
embedded and IT systems converging such as IoT, and both budget and cycle times are

Risk-Oriented Security Engineering 33

continuously decreasing. For instance a modern car has almost hundred embedded
microcontrollers on board and is connected over several external interfaces to a variety
of cloud technologies. At the same time cyber-attacks and vulnerabilities are increasing.
Therefore, software technology and the underlying security engineering have to be
constantly improved.

While there is a movement towards better understanding security from the ground up,
many of the existing approaches in managing security have been focused around
encryption, developing malware software, and to detect attacks to networks and systems.
Existing methods and tools are limited by large number of false positives and inability to
consistently trace such issues to the root causes. In this article we will particular draw
attention to all aspects of security from specification to design and life-cycle support.

Over the past decade trends like connected car and driver assistance systems among
others have led to software and connectivity playing an increasingly important part in
developing vehicles and also for business models of OEMs and suppliers likewise.

Devastating impact of security issues is already known from industrial sectors like IT-
infrastructure, aviation, information technology and telecommunications, industrial
control systems and energy and financial payments. Virtually every connected system
will be attacked sooner or later. A 100% secure solution is not feasible. Therefore,
advanced risk assessment and mitigation is necessary to protect assets. Consequently, the
typical solution to security in these industries relies on suitable risk assessment that
projects threats on assets of interests. Thereby cost of implementing specific security
measures can be compared with the probability of a particular threat that they counter.

Asset-based risk assessment is a suitable tool for companies to steer efforts for security
engineering in a systematic and comprehensive way and thereby involve all relevant
stakeholders in the organization. For example, a CEO may not find it very helpful to
have a long exhaustive list with every attack vector or potential threat – they need to be
provided with a ranked listing and useful decision-support tools which clearly shows
alternatives and consequences. From the view of an automotive system developer, a flat
listing of potential threats might not help to improve the system. To really help, they
need to be able to map security threats, countermeasures and requirements to
system/architecture elements in their scope of the project.

The systematic management of security threats and associated security goals is essential
to actually providing safe and competitive products, and to protect valuable assets and
business models.

But what makes security engineering so complex? Automotive developers face the
challenge of securing a system against attackers whose capabilities and intentions are at
best partially known. Some attacks might today appear infeasible, but todays impossible
attacks might become more likely in the near future. An example of this is attacking a
vehicle simply by exploiting wireless interfaces, 20 years ago would have been
extremely unlikely, however today a cheap software defined radio and accomplish these

34 Christof Ebert and Dominik Lieckfeldt

types of attacks with little effort. On the other hand, an attacker might invest more effort
into launching an attack the more valuable a successful attack is to him. Some attacks
represent more effort to the attacker than others given the specific potential of the
attacker. It is this risk/reward payoff that is analyzed in security engineering. Likewise
during testing and verification, suitable methods to verify that the vehicle has the
required security level and process goals like, test strategy and coverage, need to be
chosen.

Furthermore, the assets to be protected from attacks are decided by stakeholders
involved, e.g. drivers would indicate different assets of their vehicle to be protected
compared with what an automotive developer considers an asset. However,
customers/drivers need to be satisfied with their vehicle in order to buy another one from
the same company. Consequently, security engineering must seek tradeoffs between cost
of security measures and benefit to assets in order to make sustainable decisions.

Security concepts must balance the cost of not having enough security and thus being
successful attacked with all damaging consequences and the cost spent to implement
appropriate security mechanisms and keep them updated along the life-cycle of the car –
well beyond end of production. We therefore introduce here a strict risk-oriented
approach to security (Fig. 4).

Asset Attack Threat

Attack Potential Security Goal

is performed
against risk is

reduced by
requires

causes

has
value for

Threat Agent
(e.g. hacker)

Stakeholders
(e.g., owner,
driver, OEM)

has

Security
Engineering

is achieved
by

Fig. 4: Overview of risk-oriented cyber-security analysis process with the major steps of asset
determination, attack potentials and security goals derived from threats

To summarize, the relationship between assets, attackers and threats is complex and
dynamic (e.g. attacks are more probable the less effort is required and the more value
successful attacks represent; attack vectors and effort change over time). Furthermore,
common understanding of assets among all stakeholders of security engineering is
mandatory in order to provide information for steering the security engineering.

Choosing the right set of security engineering methods for analysis, concept and testing
is challenging but required in order to enable goal-oriented and manageable security
engineering.

Risk-Oriented Security Engineering 35

Risk-based Security Engineering combines state-of-the-art methods for automotive
security risk assessment in a practical framework and supports all involved stakeholders
to develop “secure-enough” products. The method and our approach for proposing a
concrete technical security concept is based upon security best practices such as:

•• SAE J3061 (Automotive cyber-security) being the first standard on the topic of
automotive cyber-security but also being aware that it primarily enriches ISO 26262
towards security for functional safety [SAE2016].

•• ISO 15408 (Evaluation criteria for IT security) with its focus on IT systems,
specifically the 7 evaluation assurance levels (EAL) for security requirements and
guidance on common criteria a standardized practice translated by Vector to
automotive common criteria.

•• ISO 27001 (Information security management systems) with its governance
requirements for security engineering across the entire value chain.

•• IEC 62443 (Industrial communication network security) with its strong view on
distributed systems and necessary security technologies and governance.

•• ISO 26262 (Automotive functional safety) using its clear focus on automotive
electronic systems with good coverage of entire life-cycle; revision in 2016
[ISO2017].

•• IEC 61508 (Functional safety for electronic systems) while being aware that it is
only a high-level functional safety guidance for electronic systems.

Our Vector Security Check and underlying security engineering methods have adopted
the state of the practice in security evaluation and proposed mitigation [EB2016]. It is
using significant research work from our worldwide security projects. It also uses
external best practices, such as “E-safety vehicle intrusion protected applications“
(EVITA) funded by European Union [Ev2017], HEAVENS [Is2014], and other
proposed methods for security risk assessment in automotive development [Se2017,
Si2017, Pr2017, ETSI2010].

We will furtheron show by examples how to use the risk-oriented security concept
covering the entire security life-cycle with focus on the upper left activities, namely

•• Asset Definition and Threat and Risk analysis

•• Security Goals

•• Security Concept

1.4 Related Work in Automotive Security

The automotive industry is already engaged in security topics since several years.
Several (EU-) funded projects had been launched for researches on Car2x. In the

36 Christof Ebert and Dominik Lieckfeldt

following a few of them will be presented. The SEVECOM project (www.sevecom.org,
[Se2017]) has analyzed risks and threats and has defined first general security
architecture. A notably project for security was EVITA (“E-safety vehicle intrusion
protected applications”, www.evita-project.org, [Ev2017]; Fig. 5). The main objectives
were to design a secure on-board network and the definition of building blocks to protect
security relevant components and data inside a vehicle. One of the major outcomes was
the definition of a hardware security module, defined in three versions: light, medium
and full. Each version requires at least a hardware acceleration for data encryption
(AES), secure key storage and a secure boot. These requirements show equivalences to
the SHE (Secured Hardware Module) defined by the HIS (Hersteller Initiative Software,
www.automotive-his.de).

Fig. 5: EVITA classification for the hardware security module (HSM)

In-field tests for a Car2x communication was made in the Sim project (www.simtd.de,
[Si2017]). In the area of Frankfurt, a field test was established with more than 100 test
vehicles. Highways, country roads and city traffics were equipped with infrastructure to
communicate with. A currently active project is PRESERVE (http://www.preserve-
project.eu, [Pr2017]). The main objective is the design of security architecture for
vehicle-to-infrastructure (V2x), to setup and test the system. This shall be achieved by
setting up a fully operating security subsystem in a real environment with consideration
of cost and performance. This includes also a further hardware environment with
adequate performance.

These activities are important preconditions for a secure communication that is
standardized in the Car2x area. This is essential for interoperability between cars from
different car manufacturers and beyond national boundaries. In Europe there is the
CAR2CAR consortium working on standards for vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I) and a cooperative intelligent transport system (C-ITS).

Risk-Oriented Security Engineering 37

2 Security analysis

Security in a complex system cannot be achieved by applying countermeasures on single
items. It requires an analysis of the complete functionality or system as a whole and to
apply countermeasures as an integral part. First, you need to identify what are the assets
I want to protect. Besides financial aspects also confidentiality and, especially for the
automotive industry, safety functions must be considered carefully. The next step would
be a threat analysis: who has access to my assets, what are potential attackers and where
are my access points. A typical approach to this is the construction of a data flow
diagram in which the assets are identified. It provides an overview of all connections and
access points, where attacks and manipulations can be achieved. From the material
above a risk assessment can be done to obtain the measurements and results in a
classification of the risk. An example of such a risk assessment can be found in the
picture below. Here, as an example, the classification was defined in three categories:
Low, medium and high (Fig. 6).

Fig. 6: Definition of security level derived from threat analysis and risk assessment.

This process provides systematic means to deal with the subject and results in a balanced
trade-off for cost and efforts. Depending on the determined security level
countermeasures can be defined on system level and further derived as security input
requirements for ECUs. The analysis phase provides now also requirements for hardware
extensions of the ECU, e.g. if hardware acceleration is needed for authentication or if a
specific key management is required for higher security measures. The requirements are
also an input to define test vectors on functional (for an ECU) and system level (for the
vehicle). These tests, together with standard penetration tests, then will help to provide
evidence for successful application of the security to the function and system.

3 In-vehicle security

The IT industry deals already since years with strategies for data protection and to

38 Christof Ebert and Dominik Lieckfeldt

provide secured networks to prevent them against unauthorized access. Wide
experiences are available here, that, with special considerations, can be adapted and are
useful for the automotive industry as well. Similar activities can be seen such as the
adaptation of the Ethernet when BroadR-Reach was introduced to the automotive area.
This allows also taking over the proven software architecture of Ethernet, so that a
number of approved protocols are available as well for a secured data transmission.
Essentially, they are based on cryptography, software algorithms based on more or less
complex mathematics. The algorithms itself are not the secret and are available to the
public but keys provide the secret and they must be created, distributed and maintained
carefully. A popular key management system used by the IT industry is the PKI (Public
Key Infrastructure). It contains a hierarchical certificate management with associated
keys and builds the basis for an authenticated communication between partners.

3.1 Security Engineering

While security requirements are concerned with what has to be protected, security
engineering defines how the protection is realized. It affects all activities that are
associated with “normal” engineering, such as system design, software construction,
tests and after sales. We regard each of these activities in the following paragraphs.

In a recent client project, we had to identify and prioritize security requirements for an
auto-motive E/E component. Based on the size and complexity of the component
development project and the given capacity for security engineering, we selected an
agile approach [EB2016] that was conducted in form of several workshops. The client’s
engineers provided expertise on the component’s functions and their implementation.
We moderated the workshop and provided expertise in security requirements analysis as
well as knowledge on the used technologies’ vulnerabilities and sensible protection
mechanisms.

For better understanding we will show some hands-on examples from current security
projects:

•• Adapt the development processes to factor in security engineering activities.
Security engineering activities are known, scheduled, and executed smoothly within
the “normal” development, not in an ad hoc way. Security is considered from the
beginning on through the complete project. Additionally, synergies can be exploited
(e.g. a configuration management process can prevent quick fixes that have not been
tested against security vulnerabilities).

•• Systematically elicit security requirements. Elements that have to be protected are
known from the beginning on, allowing for stringent realization of their security.
Additionally, security requirements can be used to deduce test cases for security
validation.

Risk-Oriented Security Engineering 39

•• Thoroughly review or test any security relevant arte-fact. Reviews of security engi-
neering artefacts such as security requirements and security concept as well as
simulations of security functionalities and code analyses allow for the identification
of vulnerabilities at the earliest possible time.

•• Use analysis and test tools. Automated tools reduce effort and allow for efficient
and comprehensive analysis and (regression) testing. For instance the Vector
PREEvision PLM and modelling environment provides a strong collaborative
engineering backbone for ensuring application of above measures along the life-
cycle.

•• Manage embedded security competencies. Many activities of security engineering
require a specific embedded security expertise, e.g. identification of vulnerabilities,
design of the security architecture, secure implementation, performance of security
tests, and review of security-related work products. Without this expertise, effective
security engineering is near to impossible. Therefore, build up embedded security
competence in your organizational unit or obtain it from internal or external
providers.

We do not claim that these are the only valid solutions. Depending on e.g. corporate
culture, existing experiences, and project size and complexity, other solutions may be
preferred. Independent of the approach used, we noticed several activities that benefitted
the introduction and the performance of security engineering in general [EB2016].

3.2 Software update and maintenance

To enable efficient after sales activities in spite of constraining security mechanisms,
several aspects need to be addressed. How can software updates be performed in the
field with both security against unauthorized manipulations and justifiable logistical
effort? The association of German car manufacturers (HIS) has created specifications for
secure flashing of ECU software, for which conforming flash bootloaders are available.
However, the concrete realization of the related logistical infrastructure needs to be
considered (Fig. 7).

An important aspect of after sales activities is the way OEMs and suppliers react when a
security issue is detected in a fielded vehicle. Such scenarios have to be foreseen before
the vehicle’s SOP and procedures that define actions and responsibilities have to be set
up. Actions to be planned are risk assessment of the issue, elimination of critical
software vulnerabilities, and update of the software in the field. To achieve an efficient
issue handling, a smooth cooperation between OEM and suppliers is required.

Certificates are building the basic concept for a secure and authenticated communication
between the vehicle and the backend. They are managed in a PKI system installed and
maintained by the OEM. This allows customer oriented service and maintenance with
online connections to the vehicle. In case of a car problem, first diagnostic analysis could

40 Christof Ebert and Dominik Lieckfeldt

be made by the OEM help center in case of a malfunction. It also can be used to report
early recognized anomalies and with the collection and analysis of further data an early
warning could be sent to the driver before a harmful damage occurs.

Optimal preparation of a service can be achieved when the car workshop reads out
online car information. Finally, software updates can be initiated quick and easy without
the need to enter the workshop. This can be particularly helpful if software problems are
encountered. This is an important if not even an essential pre-requisite for connected cars
and provides several advantages: if an attack has been, it can be quickly closed by a
software update. Like on a PC, software patches and updates can be distributed to close
the vulnerabilities. A secure vehicle-to-backend connection can also provide a secure
way to communicate with the internet. It opens also the possibility to perform software
updates to ECUs if, for example, a critical software failure in an ECU was encounter.

The advantage of software maintenance over the backend of the OEM is obvious. The
communication between the two systems can be strongly restricted, so that other
connections are simply not possible, because the firewall at this location does not need to
allow any other accesses. The connections are restricted to those partners who have
access to the keys and certificates. In addition, system information can be gathered in the
field and (anonymously) transmitted, which helps improving car functions. Moreover,
this can open new business divisions for an EOM like cloud-services, function enabling,
secure internet access or software-as-a-product.

Fig. 7: Secured Remote-connection of the vehicle to the OEM backbone using certificates.

4 Case Study: Connectivity

A major objective in the IT industry is the provisioning of high performance and secure
networks in enterprises. The location of the items on the network is just one aspect for
the organization and operation of such a network. Considering security aspects in the
basic structure from the very beginning can provide essential advantages for the
flexibility and scalability of such a network. It can also reduce the risk for attacks. The
major attack scenario sin automotive vehicles are described in Fig. 8

Risk-Oriented Security Engineering 41

Connectivity + Complexity

4G
LTE

OB
D

SuppliersOEM

Clouds
Service
Provider

ITS
Operator

 Cyber Attacks Safety Risks

Password
attacks

Service
Provider

Application
vulnerabilities

Public
Rogue clients,
malware

DSR
C

Man in the
middle attacks

Eavesdropping,
Data leakage

Command injection,
data corruption,
back doors

Physical attacks,
Sensor confusion

Fig. 8: Increasing connectivity drives complexity and enables multiple attack paths.

Security components like firewall and router are also important parts and are useful to
separate networks. For example, account computers will not be connected to the same
network as that from marketing or development. Instead, computers are grouped to
separate networks depending on their use case and traffic. A router interconnects the
networks and provides data exchange between them. It passes only the relevant and
allowed data from one network to the other. The access to computers is already restricted
by the structure of the network. The router with an integrated firewall also manages the
access to the internet. This device observes the incoming and outgoing traffic and can be
configured that only allowed traffic will pass. Additionally, maintenance can be done
easily on the central part by applying patches or re-configure the device if needed.

Let’s consider a car network under the aspects shown above. At the very beginning, a
safety and security analysis has been performed and the networks are partitioned so that
the connected items are grouped under functional, safety and security aspects. The
different networks are interconnected by a gateway. The ECU with a remote connection
is considered particularly as unsafe. Even if great care was taken during the software
implementation, a failure cannot be excluded and the potential risk is too high that
someone could capture and take control of the ECU from outside. To minimize the risk,
this ECU should not have access to any other internal networks. We locate this function
into a separate ECU (inter comm. module) and connect it through the gateway (Fig. 9).

The gateway can now contain a firewall that has separate filter rules for each subnet.
Only those messages are passed to other networks that are allowed. The traffic inside a
network is not restricted and affected by the firewall.

42 Christof Ebert and Dominik Lieckfeldt

Fig. 9: Vehicle network with remote connectivity and gateway

We now take advantage of our threat analysis and risk assessment that has provided a
detailed security analysis of our system. In the data flow diagram we saw the interaction
of signals between partitioned functions separated in ECUs. This has already helped us
to separate the ECUs to different networks, respectively partitioned the networks
according to safety, security and functional aspects. We can now classify networks into
security zones according to the safety and security requirements of the transmitted
signals. If a network mainly contains signals with high security and safety requirements,
that is classified as high security zone. The network with intermediate safety and security
data is classified as a medium security zone. The network that contains just a few signals
with safety and security requirements and many signals from remote connections is a
low security zone. A network that contains an ECU with a remote connectivity must be
treated as unsafe in principle and is therefore in a low security zone or even completely
isolated (Fig. 10).

The origin and distribution of the signals influences the settings of the firewall in the
gateway. The presence of signals from other security zones gives an indication to the
security measures for the internal signals. If a network is physically isolated and signals
from other networks are rarely used, the threat potentials are low. Unless other threats
from adversaries2 are identified, reduced measures can be applied for signals in such a
security zone. This reduces efforts and costs for security measures of these ECUs. It
shows how partitioning provides advantages. The signal flow from high to low security
zones is not critical. However, if threats for data manipulation on the network are given,
security measures like authentication or confidentiality can be added to the data. Greater
care must be taken in the other direction. The risk potentials for these signals must be
observed carefully. Also, if filter rules of the firewall can influence the complete security
zone settings. For counter measures, authentication on signal may be required.

2For example, the manipulation of sensor signals for the engine control on the powertrain.

Risk-Oriented Security Engineering 43

Fig. 10: Security zones in automotive networks

5 Conclusion

Automotive security has gained huge relevance in short time-frame. Attacks are reported
today almost continuously and therefore systems must be protected and hardened. Safety
needs security as a mandatory condition, which means that any safety-critical system as
a minimum must also be protected for cyber security. Security must be integrated early
in the design phase of a vehicle to understand the threats and risks to car functions.

Risk-oriented security helps to balance growing security threats with increasing
complexity over the entire life-cycle. Unlike many previous attempts our research and
many practice projects indicate that while design for security is good, it is not good
enough. Effective security must handle the entire life-cycle (Fig. 11).

Security analysis provides requirements and test vectors and adequate measures can be
derived for balanced costs and efforts. The results are useful in the partitioning phase
when functionality is distributed to ECUs and networks. Networks isolated under
security aspects helps to reduce the risks and efforts. Security key management will
become an important part and requires a key infrastructure (PKI) managed by the OEM
over the production and maintenance phase of the vehicle. Additionally the secure key
handling inside an ECU and the usage in development, production and maintenance
phase must be considered. The PKI must be online to allow access by the workshops.
Additionally, an OEM backend is needed that allows flash programming over the air, at
least to provide hot fixes and patches. Such a backend can provide additional security
and features to the car owners, but can also open new business divisions for OEMs.

44 Christof Ebert and Dominik Lieckfeldt

Security Case,
Audit,

Compliance

Assets, Threats
and Risk
Assessment

Security Goals
and

Requirements

Technical
Security
Concept

Security
Implemen-
tation

Security
Validation

Security Case,
Audit,

Compliance

Security
Verification

Security
Management
for After-Sales

Fig. 11: Security Engineering along the Life-cycle

Companies urgently need to build up necessary basic security expertise and obtain
adequate external support, specifically where security meets safety. Mature development
processes provide a good basis but need to be amended with dedicated security
engineering activities as we have showed in this article.

Bibliography

[EB2016] C. Ebert, A. Braatz: Automotive security engineering, Vector White Paper 2016.

[Se2017] SeVeCom (Secured Vehicular Communication) project: www.sevecom.org, Last
accessed on 12.Mrc.2017.

[Si2017] SIMTD (Secure Intelligent Mobility): www.simtd.de, Last accessed on 12.Mrc.2017

[Pr2017] PRESERVE (Preparing Secure Vehicle-to-X Communication Systems):
www.preserve-project.eu, Last accessed on 12.Mrc.2017

[Ev2017] EVITA (E-safety vehicle intrusion protected applications): www.evita-project.org,
Last accessed on 12.Mrc.2017.

[ISO2017] ISO 26262, ed.2, draft - Road vehicles — Functional safety, Last accessed on
12.Mrc.2017, www.iso.org

[ETSI2010] ETSI TR 102 893, "Intelligent Transport Systems (ITS); Security; Threat,
Vulnerability and Risk Analysis (TVRA)," 2010.

[Is2014] M. Islam et al.: Project overview HEAVENS - Healing Vulnerabilities to Enhance
Software Security and Safety, Volvo AB, 2014.

[SAE2016] SAE International: “Cybersecurity Guidebook for Cyber-Physical Vehicle Systems,
J3061_201601”, 2016, www.sae.org

Peter Dencker et. al. (Hrsg.): Automotive Safety & Security 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 45

1ESCRYPT GmbH, Munich, Germany (marko.wolf@escrypt.com
2ETAS Canada Inc., Kitchener, Canada (robert.lambert@etas.com)

Hacking Trucks – Cybersecurity Risks and Effective
Cybersecurity Protection for Heavy-Duty Vehicles

Marko Wolf1 and Robert Lambert2

Abstract: Similar to passenger cars, heavy-duty vehicles, such as commercial trucks and buses,
are becoming increasingly software-driven, interconnected and semi-automated, and hence are
also becoming increasingly susceptible to cybersecurity attacks. This article will identify and
evaluate these cybersecurity threats and risks affecting the monetary business operation, reliability,
and safety of heavy-duty vehicles, comparing them with similar cybersecurity risks for typical
passenger vehicles. Based on this overall cybersecurity threat and risk analysis, the article will
then present and explain our holistic and multi-layer protection approach to reduce such
cybersecurity risks for heavy-duty vehicles.

Keywords: Cyber security, automotive, heavy-duty, security risk, threat, protection

1 Introduction and Motivation

Most automotive industry players agree [McK16] that three central technology trends –
namely connectivity, electro-mobility, and autonomous driving – will determine the
development of the automotive domain for next 10-15 years. According to Werner
Bernhard [Ber16], Head of Daimler Trucks & Buses, significant change will affect
commercial vehicles in particular which “will experience more changes within the next
10 years as we have seen in the last 50 years”. As shown in Figure 1, the rise of these
three game-changing technologies will accelerate the deployment of electronic control
systems, greatly increase the amount of vehicular software, and compound the number of
digital interfaces, all of which will in turn increase the degree of networking and the
system complexity in general.

Figure 1: In order to improve fuel efficiency, fleet management, and safety, heavy-duty vehicles

46 Marko Wolf and Robert Lambert

will utilize – similarly to passenger vehicles - more electronic control systems, an increasing
degree of networking, and a larger amount of software [Cha09]; this clearly also increases the need

for proper cybersecurity protections.

However, since “complexity is the worst enemy of security” [Sch12] we will experience
also more related cybersecurity risks & threats and hence we will also need more
cybersecurity protection. In fact, compared with standard passenger vehicles, heavy-duty
vehicles will be even more susceptible to cybersecurity threats since these vehicles:

 will use more complex and software-driven functionality (e.g., for platooning),
 will create, process, store and exchange more data internally and also externally

via powerful, long-distance wireless communication channels (e.g., LTE
interfaces for fleet management),

 will be more standardized, homogenous, and interoperable (e.g., use
interchangeable engines, and employ the SAE J1939 in-vehicle network
protocol),

 must often support multiple attachments (e.g., tractor implements) which, if
they communicate with the vehicle, present a risk for virus and worm infection
(especially since attachments will often be produced by multiple distinct
manufacturers, so any weaknesses in communication protocols will take much
coordination effort, and even more time, to fix satisfactorily),

 have greater value (typically > 100.000 €) and often carry valuable or
dangerous loads (e.g., goods worth 1 million € per truck or hazardous
chemicals),

 promise more gains from each attack and have larger potential attack benefits
(e.g., systematic toll fraud, large-scale counterfeiting), and last but not least,

 are in motion up to 20 hours a day, with 3x the distance travelled, up to 5x the
size and up to 30x the weight of a typical passenger car.

Considering these features together, we perceive how urgent the need for cybersecurity
is. Cybersecurity considerations are just as critical as the usual safety considerations for
heavy-duty vehicles, and in fact, security considerations are necessary to provide safety.

1.1 Our Contribution

This article will identify and evaluate potential cybersecurity threats and risks affecting
the reliability, safety, and monetary business operation of heavy-duty vehicles in
comparison with similar cybersecurity risks for typical passenger vehicles. Based on this
overall threat and risk analysis, the article will then present and explain our holistic and
multi-layer protection approach to reduce such cybersecurity risks for heavy-duty
vehicles.

Hacking Trucks – Cybersecurity Risks 47

1.2 Related Work

While passenger vehicle security is already well covered in security engineering,
security research, and the media (for instance by the notable publication [CMK11]),
heavy-duty vehicle security, has up until now, been investigated or tackled only rarely.
Some recent publications have begun to raise awareness of the problem, for example
[OBr16] and [PSA16]. The currently most prominent publication regarding heavy-duty
vehicle security, [BHM16], demonstrates several practical attacks on vehicle safety
owing to the openness and easy (physical) access to a standardized in-vehicle network
(via SAE J1939 protocol) used across all trucks and other heavy-duty vehicles in the
USA. However, to the authors’ knowledge there are virtually no publications providing
detailed investigations into potential attackers, attack motivations, attack paths, damage
potentials, or even potentially effective security protection for heavy-duty vehicles.

2 Cybersecurity Threats on Heavy-Duty Vehicles

While trucks and buses differ from standard passenger vehicles in size, weight, value,
typical use, and, attraction to hackers (cf. Section 1), their internal E/E architecture is
quite similar to passenger cars. As depicted in Figure 2, they also consist of about 50
distributed electronic control units (ECUs) that communicate with each other over
standardized automotive bus networks such as CAN. They further provide various
standardized communication interfaces to the outside world such as the physical on-
board diagnosis interface (e.g., OBD port), short-range wireless communication interface
(e.g., Wi-Fi), and long-distance mobile broadband communication (e.g., LTE). Hence,
trucks and buses can also be susceptible to similar cybersecurity threats and risks as
passenger cars.

Figure 2: Typical heavy-duty vehicle E/E architecture with its various wired and wireless

48 Marko Wolf and Robert Lambert

interfaces

The next subsections will identify and evaluate current and future cybersecurity threats
and risks affecting the monetary business operation, reliability, and safety of heavy-duty
vehicles as compared with similar cybersecurity risks for typical passenger vehicles
(where similar security threats exist). To this end, we provide exemplary (real-world)
attacks; identify typical attackers and evaluate their individual attack potential. We
further identify exemplary damaged parties; evaluate the damage potential of the attack;
and calculate the resulting cybersecurity risk, which is then compared with similar
cybersecurity threats for passenger vehicles (where similar security threats exist). For
evaluation of the attack and damage potentials and the calculation of the resulting
cybersecurity risk, we use a simplified version of the well-established security risk
evaluation method as described in [SW12] and shown in Table 1.

Attack success probability ↓ Security risk assessment

Certain Medium High High High

Possible Small Medium High High

Unlikely Negligible Small Medium High

Very rare Negligible Negligible Small Medium

Damage potential→ Insignificant Significant Critical Catastrophic

Table 1: Simplified 4x4 automotive cybersecurity risk matrix according to [SW12]

The following sections analyze four important vehicular cybersecurity attack categories,
which are physical theft, electronic manipulation, data theft, and safety attacks.

2.1 Physical Theft of Complete Vehicles or Valuable Vehicle Components

Physical theft of complete vehicles or valuable vehicle components is probably the
oldest and most prominent vehicle security attack. Compared with passenger vehicles,
heavy-duty vehicles are subject to a higher security risk because of the much higher
attack gain of up to 1 million € for a truck with a valuable load.

Passenger vehicle Heavy-duty vehicle
Exemplary attacks Theft of airbags, navigation

systems, whole car
Theft of navigation system,
tractor, load, or both

Typical attacker Organized crime Organized crime
Attack probability Possible Possible
Damaged party Owner Owner, operator, customer
Damage potential Significant Critical
Resulting cybersecurity risk Medium High

Table 2: Systematic derivation and comparison of cybersecurity risks for passenger vehicles and
heavy-duty vehicles regarding vehicle theft or theft of valuable vehicle components

Hacking Trucks – Cybersecurity Risks 49

Truck vehicle thieves can abuse the known security vulnerabilities of many remote
keyless entry (RKE) and immobilizer implementations, which are similar to those
installed in today’s passenger cars [GOD16]. Therefore, thieves can attack RKE by:

 simple jamming of the remote “lock” signal,
 calculating and sending the “unlock” signal based on a wiretapped “lock”

signal,
 injecting the “unlock” signal into the unprotected onboard network via

physically connecting to it through exposed and easily accessible physical bus
interfaces (e.g., trailer hitch, external user interface)

If separation between internal and external networks is weak, even wireless interfaces
like Wi-Fi or Bluetooth might be abused to inject “unlock” messages. Quick thefts of
locked trucks raise suspicions that such thefts based on weak cybersecurity are still
prevalent1. Truck component thieves in turn can abuse inherently limited physical
protection (often put in place in order to enable easy interoperability and exchange of
parts) and weak component authentication mechanisms (often not implemented at all)
which could prevent the installation or the proper operation of vehicle components from
unknown sources.

2.2 Manipulation Attacks on Electronic Vehicle Functionality and Vehicle Data

Together with physical thefts, unauthorized manipulations of in-vehicle data and
functionality are probably the most common vehicle cybersecurity attacks. They are
usually insider-attacks executed by the legitimate owner or driver of the truck, very often
with professional support from specialized companies2, which makes it particularly hard
to defend against, especially since the truck manufacturers are seldom the damaged
parties.

In fact, most manipulation attacks try to circumvent legal restrictions that protect the
environment (e.g., disable exhaust gas treatment [Bo17]), driving safety (e.g., disable
emergency brake system [Sta16]), traffic safety and fair competition (e.g., manipulated
speedometers3) or try to betray the used-vehicle buyer (e.g., odometer manipulation).
Damages to OEMs emerge mainly by warranty fraud due to out-of-specification usage
(e.g., chip tuning) or manipulated lifetime counters (e.g., manipulated motor running
time). However, with the continuously growing pay-on-demand economy (e.g., truck
leasing, truck renting, or very costly special vehicles used only for a short time period
such as agriculture vehicles), attacking such digital pay-on-demand (third-party)
business models (e.g., pay-as-you-drive insurances) becomes a critical manipulation
attack target as well [Law08].

1 https://www.usatoday.com/story/news/crime/2016/07/05/clarkstown-cops-180k-truck-stolen-lot/86728206/
2 http://www.allcartuning.com/chiptuning-lkw.html
3 http://www.c-a-i.net/products.php?category=speedo

50 Marko Wolf and Robert Lambert

Passenger vehicle Heavy-duty vehicle
Exemplary attacks Chip tuning, odometer

manipulation, Pay-per-
use bypassing, EDR
manipulation

Chip tuning, tachograph
manipulation, bypassing legal or
safety limitations, Pay-per-use
bypassing, manipulate vehicle/load
monitoring

Typical attacker Owner Owner, driver, operator
Attack probability Unlikely Possible
Damaged party OEM, third party,

society
OEM, third party, society

Damage potential Significant Significant (at least)
Resulting cybersecurity risk Small Medium

Table 3: Systematic derivation and comparison of cybersecurity risks for passenger vehicles and
heavy-duty vehicles regarding manipulation attacks on electronic vehicle functionality and data

With modern vehicle E/E architectures, virtually all manipulation attacks can be
executed by electronic means alone, with only minimal or even no physical
manipulation. The insider attacker will mainly use the easily accessible onboard
diagnosis interface (OBD) which allows deep access to virtually all onboard ECUs. In
order to manipulate certain data or functionality (usually via some variable control
parameters stored in a table in ECU flash memory), the attacker needs to re-engineer
some “hidden commands” or - for trucks even more simply – can make “use” of the
standardized SAE J1939 protocol used in virtually all modern trucks [BHM16].

Even though most manipulations will cause “only” financial damages, deep software
manipulation of today’s complex E/E architectures, which control several critical driving
functionalities, performed with home-brewed tools of dubious origin and quality, can
clearly affect vehicle-driving safety as well, even though that might not have been
intended. And here we see an elevated damage potential for heavy-duty compared to
passenger vehicles. The attack potential for heavy-duty vehicles is rated higher than for
normal passenger vehicles owning to many factors: the standardized, easy accessible
J1939 interface and the increased number of promising attack targets that could work to
the benefit of an owner, driver, or operator. This elevates the “medium” cybersecurity
risk for trucks and buses.

2.3 Data Theft Attacks or Misuse of Digital Vehicle Data

Data theft or data misuse attacks might be expected to be rare events at a first
consideration, but are already a multibillion-dollar real-world problem.

The most prominent data theft attacks are IP thefts employed to reduce engineering costs
for competing products or to make counterfeit parts. According to the U.S. Federal Trade
Commission, “counterfeiting represents a $12 billion per year problem for the entire
automotive industry”. However, it is not only a financial problem, but is very often also
a safety problem. This is because counterfeit parts may not perform as well as legitimate

Hacking Trucks – Cybersecurity Risks 51

OEM aftermarket components, may be manufactured with less precision, or may use
inferior materials. Truck braking systems are one of the components most likely to be
counterfeited, and these fake braking parts result in a large number of deadly accidents
[Cla14]. Other IP theft targets are costly to developed engine control software or
exhaust-cleaning programs. Vehicular IP thefts and software piracy attacks are mainly
insider attacks (i.e., attacks having complete physical control of the target vehicle)
executed by dedicated experts that, for instance, simply dump ECU software binaries
using an OBD command, re-enable fused debug interfaces, up to more sophisticated
physical attacks that, for instance, de-package a chip and read-out memories with
powerful microscopes [Sko01].

Like with passenger cars, other data theft attacks are privacy infringements that involve
secretly collecting, storing, and transferring, for instance, vehicle location, vehicle
operation, or driver’s communications4. This data could then be used to monitor
individual driving behavior (e.g., to defend warranty claims), enable individual
marketing (e.g., location-based services), resell collected data to third parties5 (e.g.,
Google maps), or – in the worst case – this secretly stored data used against the driver in
case of an accident6. However, for commercial trucks, in addition to potential privacy
infringements, economic espionage is much more likely, and the attack path is similar. In
contrast to passenger cars, modern trucks often enable OEMs, logistic operators, carriers,
and sometimes even customers to have considerable remote access to truck internal data,
even in some cases allowing direct access to the CAN bus to monitor and control vehicle
position, or to get information on how the vehicle has been loaded, or even how it is
being driven. Competitors can try to hack into these remote interfaces to monitor (or
disturb) their competition or might try to steal or purchase such data from third party
application providers (e.g., digital toll applications) that collect, store, aggregate, and sell
such data without the explicit knowledge and permission of the driver or operator.

While the attack probability for heavy-duty vehicles is already somewhat larger due to
the broader deployment of remote access applications, the damage potential for trucks
regarding espionage and safety is considerably larger, resulting in a high cybersecurity
risk.

Passenger vehicle Heavy-duty vehicle
Exemplary attacks IP theft, privacy

invasions, counterfeit
parts

IP or business secrets theft, privacy
invasions, counterfeits parts, vehicle
tracking, load control or navigation
manipulation, operator/driver extortion

Typical attacker Plagiarist, competitor,
third parties (e.g.,
insurances), OEM

Plagiarist, competitor, third parties
(e.g., insurance companies), OEM,
government, organized crime

Attack probability Possible Possible

4 https://www.adac.de/infotestrat/technik-und-zubehoer/fahrerassistenzsysteme/daten_im_auto/
5 http://www.usatoday.com/story/money/cars/2013/03/24/car-spying-edr-data-privacy/1991751/
6 https://netzpolitik.org/2016/bmw-speichert-keine-standortdaten-gibt-aber-bewegungsprofil-an-gericht/

52 Marko Wolf and Robert Lambert

Damaged party Driver, owner, OEM Driver, operator, customer, OEM,
society

Damage potential Significant Critical
Resulting cybersecurity risk Medium High

Table 4: Systematic derivation and comparison of cybersecurity risks for passenger vehicles and
heavy-duty vehicles regarding data theft attacks or misuse of digital vehicle data

2.4 Attacks on Vehicle Reliability and Vehicle Safety

Finally, yet importantly, truck reliability and safety are at least as endangered as it has
been recently demonstrated with real-world passenger cars, where hackers where able to
remotely hijack a Jeep over the Internet and have successfully attacked the Jeep’s
steering, acceleration, and braking systems7. In fact, due to the standardized J1939
protocol used in virtually all modern trucks, the (most) costly attack preparation step, the
reverse engineering of the susceptible internal commands, would not be necessary,
making such safety attacks against trucks and buses much easier. Researchers from
Michigan University have already demonstrated such attacks in practice on a class-8
semi-tractor and a 2001 school bus [BHM16]. Even though they have not executed their
attacks remotely, it is easy to imagine that hackers will find many similar remote entry
points as have already been very successfully found into passenger cars [CMK11].

In real life, such safety attacks have not happened yet against cars nor against trucks,
since these attacks are still quite costly to prepare and provide virtually no direct
financial benefit, or would cause enormous search pressure if abused for extortion or
even terrorism. Thus, we rate the attack probability for trucks “unlikely” in the first
instance, while we inherently rate the potential damage of a 40-ton vehicle driving
around at 60 mph without brakes “catastrophic”, which results again in high
cybersecurity risks for trucks compared with “medium” for passenger vehicles.

Passenger vehicle Heavy-duty vehicle
Exemplary attacks Delete critical data, lock

critical functions, hijack
driving functionality

Delete critical data, lock critical
functions, hijack driving functions

Typical attacker Extortionist, terrorist,
nation-state

Extortionist, terrorist, nation-state

Attack probability Very rare Unlikely
Damaged party Driver, society Driver, operator, customer, society
Damage potential Catastrophic Catastrophic
Resulting cybersecurity risk Medium High

Table 5: Systematic derivation and comparison of cybersecurity risks for passenger vehicles and
heavy-duty vehicles regarding attacks on vehicle reliability and vehicle safety

7 https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Hacking Trucks – Cybersecurity Risks 53

3 Cybersecurity Protection for Heavy-Duty Vehicles

The following section will provide our holistic, systematic and multi-layer protection
approach in order to reduce the cybersecurity risks for heavy-duty vehicles to a
minimum. Our holistic approach assures vehicular security by applying the following
three security principles:

(1) Security for the entire heavy-duty vehicle system (i.e., from individual ECU to
connected cloud backend)

(2) Security for the entire heavy-duty vehicle lifecycle (i.e., from first requirements
analysis to vehicle phase-out)

(3) Security for the entire heavy-duty vehicle organization (i.e., from security
processes to security governance)

The next three subsections explain the realization of these three security principles in
more detail. We do not have to start from scratch, but can benefit and reuse much of the
already existing experience and security solutions from the passenger vehicle domain. In
fact, most of the security approaches for passenger vehicles can be directly transferred to
the heavy-duty vehicle domain.

3.1 Security for the Entire Heavy-Duty Vehicle System

For sustainable vehicular security, it is necessary to always consider the whole vehicle
system starting from the individual ECU up to the connected services in the backend,
since a smart attacker would also check the whole vehicle system for the weakest link at
which to execute an attack most easily. Thus, for instance, even a perfectly secure
encryption algorithm would lose all security if we use a global secret key for every truck,
if that one key can be obtained from any ECU which uses the secure algorithm.

For sustainable vehicular security, we also need multiple lines of defense since –
especially within the rather slow and costly to adapt vehicular security domain - we
always have to assume that one of our protection measures might become weakened or
even fail. Long term, real-world security experience forbids the typical “single point of
failure” protection approaches which might have, for instance, only a single firewall
gateway isolating a secure internal vehicle network from an insecure external one, and
where a single vulnerability would compromise all vehicles of that type in the world
completely and at once.

Unfortunately, until now exists no standardized vehicle security approach yet, but Figure
3 shows how a sustainable vehicular security approach might look from the technical
perspective, where the vehicle system employs multiple lines of defense. Each line or
layer uses different security mechanisms, assuming that not all security mechanisms
would fail at once. Based on a secure trust anchor, usually realized with an automotive-
capable hardware security module [WW12], we can assure the integrity (and
confidentiality) of the ECU firmware which uses, for instance, secure boot or trusted

54 Marko Wolf and Robert Lambert

boot protection [WG11]. The protected ECU firmware in turn provides higher-level
software-based security functions to enable secure onboard communication protocols
such as the AUTOSAR-based “Secure Onboard Communication (SecOC)” protocol
[AS15]. A secure in-vehicle E/E architecture further separates connected ECUs into
three to ten mutually isolated sub-networks of different security and safety classes,
which can communicate across subnets only via secure gateway processors enforcing
strict firewalling rules [JSV13]. Vehicle-external communication is further protected by
a central gateway (CGW) equipped with vehicular intrusion detection (IDS) and
response (IRS) systems, which implement external communication security protocols for
securing V2V (e.g., IEEE 1609) and V2I (e.g., Embedded TLS) communications
[WSA15]. Finally, yet importantly, all relevant backend and infrastructure services such
as key management and cloud services, but also connected IoT and cellular devices,
need strong classical network security and mobile security solutions.

Figure 3: Multiple lines of defense protecting the entire heavy-duty vehicle system.

3.2 Security for the Entire Heavy-Duty Vehicle Lifecycle

In contrast to classical engineering, where the operational environment is mainly defined
by natural laws and reliable statistics and where engineering processes usually end with
the start of production, security engineering does not end until product phase-out. This is
because the security environment is continuously changing, particularly in early
production, or when newly identified attack paths, new vulnerabilities, or new security
research are discovered.

Thus, security engineering uses a continuous vehicle security lifecycle [SAE16] that

Hacking Trucks – Cybersecurity Risks 55

provides security procedures for the whole vehicle lifecycle from requirements
engineering until phase-out, as shown in Figure 4 (including some exemplary security
procedures executed during each lifecycle phase).

Such a continuous lifecycle also has some additional technical and organizational
implications, since for instance all development hardware, all tool chains, and at least
some of the experts involved have to remain available until final phase-out, which means
for heavy-duty vehicles: for up to 20 years.

Figure 4: Continuous vehicle security lifecycle with exemplary security operations per lifecycle
phase, which are executed continuously until product phase-out, to be able to react to the

continuously changing security environment.

3.3 Security for the Entire Heavy-Duty Vehicle Organization

Vehicle security is indeed much more that “just another technical vehicle feature”
developed by “just another company division”. In fact, sustainable vehicle security
requires deep cross-divisional integration and strong commitment from the whole

56 Marko Wolf and Robert Lambert

organization. This is especially difficult since security, at first glance, creates neither
new features nor new revenues, but only additional documentation, processes, and
complexity without any immediately apparent benefits.

Without engaging the whole organization, the efforts for security can become quickly
ineffective and bogged down by compatibility issues, insufficient resources, hard-wired
dummy values, “secret” (debug) circumventions, or organizational process
vulnerabilities such as insufficient access and usage control for important cryptographic
secrets.

On the other hand, a well-engaged security organization helps a lot for instance to avoid
inefficiency by several mutually incompatible isolated solutions (also known as
“Insellösungen”). It also clearly reduces security risks by reducing complexity (“which is
the worst enemy of security”), provides always a good system overview and ensures
proper management of all security-critical functions and corresponding credentials.
Moreover, well-organized vehicle security management can in fact increase security
without extra costs, for instance, if small separate security mechanisms can together
share a powerful high-security hardware crypto module.

Figure 5 gives a first overview on how a vehicle manufacturer or vehicle supplier could
setup his vehicle security organizational structure, which is an independent and
additional structure to the classical IT security organizational structure. Thus the vehicle
security organizational structure shown in Figure 5 clearly focusses on the cybersecurity
protection of the company’s products, but does not replace classical organizational IT
security, such as securing company networks or controlling access to the company’s
facilities.

Hacking Trucks – Cybersecurity Risks 57

Figure 5: Roles and relations for implementing vehicle security within the organization.

In the following, a very short description of the different security roles and their
responsibilities shown in Figure 5 is given.

Vehicle Security Officer (VSO) is an (additional) role of a team member in who is
involved in virtually all organizational units participating in the vehicle product
lifecycle, such as development, testing, production, and operation, but also in cross-
divisional departments such as quality management. The VSO ensures, for instance, that
his team members get sufficient cybersecurity training, comply with all relevant security
rules and processes, apply up-to-date cybersecurity protection mechanisms, and report
new cybersecurity risks and threats (if any), new security requirements, or potential
improvements for vehicle cybersecurity protection. VSOs are steered by and report to
the Vehicle Security Center.

Vehicle Security Center (VSC) is a team of dedicated vehicle security experts which
develop and maintain the relevant cybersecurity procedures (e.g., security engineering
process), guidelines (e.g., secure coding guideline), and policies (e.g., access control
policy for software signing key) for ensuring sufficient cybersecurity protection of all
company vehicle products through their entire lifecycle. The VSC works closely with the
Vehicle Security Incident and Response Team (VSIRT) to evaluate (new) security risks

58 Marko Wolf and Robert Lambert

and threats and, if needed, coordinates the development and rollout of effective response
measures such as security patches. The VSC further works closely with many other
company departments, for instance with legal departments to keep their cybersecurity
requirements up-to-date (e.g., new privacy protection laws), with cooperate IT for
hosting security services (e.g., security credential management system), or with
cooperate research to improve their knowledge about new security threats and effective
protections. The VSC is further responsible for in-house security training and awareness,
internal security tests and audits security monitoring and intelligence, and development
of new cybersecurity protection measures. The VSC in turn is managed the Chief
Vehicle Security Officer (CVSO) who will directly (and exclusively) report to the
management board.

Vehicle Security Incident and Response Team (VSIRT) is a team of vehicle security
experts focused on new cybersecurity risks and threats around the company’s products
and cybersecurity forensics. The VSIRT monitors press & media, attends relevant
security conferences, boards, and committees, talks to customers, employees, and even
competitors to learn about new security risks and threats. Sometimes they even provide
“bug bounty” programs, which pay for security vulnerabilities detected and reported by
so-called “white hackers”. The VSIRT is also responsible for executing (e.g., revoking a
certificate) or requesting (e.g., development of a security patch) effective response
measures in case of a critical product security risk. The VSIRT is steered by the VSC.

Chief Vehicle Security Officer (CVSO) is a senior executive heading all vehicle security
activities of a company. The CVSO decides about the vehicle security strategy, manages
relevant cybersecurity risks, ensures cybersecurity governance, and makes decisions on
all critical incident response measures (e.g., service shutdowns). Since cybersecurity is a
cross-divisional function, the CVSO reports only directly to the management board and
can thus push necessary cybersecurity protection requirements and measures through all
other company departments.

4 Summary and Outlook

In this article, we have identified and evaluated potential cybersecurity threats and risks
affecting the reliability, safety, and monetary business operation of heavy-duty vehicles
in comparison with similar cybersecurity risks for typical passenger vehicles. Based on
this analysis, we then presented and explained our holistic protection approach to reduce
such cybersecurity risks for heavy-duty vehicles.

The analysis has shown that the cybersecurity risks for heavy-duty vehicles are often of
higher risk when compared to typical passenger vehicles, since the corresponding attacks
on heavy-duty vehicles could be executed easier or would have a larger damage
potential. The analysis further shows that most of these cybersecurity threats are already
realistic, in fact already executed, today and will become even more critical in the future.

Hacking Trucks – Cybersecurity Risks 59

But the article showed also that many effective cybersecurity protection measures
already existing in the passenger vehicle domain, can very often be easily transferred to
the heavy-duty vehicles. The next version of this article will further investigate the costs
and efforts needed for implementing proper cybersecurity protections for heavy-duty
vehicles and will show that the return on investment will be achieved even earlier and
more easily when compared with the implementation and return expected in standard
passenger vehicles.

5 References

[AS15] AUTOSAR, “Specification of the Secure Onboard Communication”, In AUTOSAR
Release 4.2.2, July 2015.

[Ber16] Wolfgang Bernhard, “Daimlers Lkw-Chef will autonome Trucks bis 2020”, In
Manager Magazin, June 2016.

[BHM16] Yelizaveta Burakova et al., “Truck Hacking: An Experimental Analysis of the SAE
J1939 Standard”, In USENIX Workshop on Offensive Technologies, August 2016.

[Bo17] Christian Bock, “Die Lüge vom sauberen LKW”, In ZDF Zoom, January 2017.
[Cha09] Robert Charette, “This car runs on code” In IEEE Spectrum 46.3, 2009.
[Cla14] Jane Clark, “Are Your Aftermarket Truck Parts the Real Deal?”, In Truckinginfo.com,

March 2014.
[CMK11] Stephen Checkoway et al., “Comprehensive Experimental Analyses of Automotive

Attack Surfaces”, In USENIX Security, August 2011.
[GOD16] Flavio Garcia et al., "Lock It and Still Lose It–On the (In) Security of Automotive

Remote Keyless Entry Systems", In USENIX Security. August 2016.
[JSV13] James Joy et al., “Gateway Architecture for Secured Connectivity and in Vehicle

Communication”, In VDI Wissensforum, October 2013.
[Law08] Nate Lawson, “Highway to Hell: Hacking Toll Systems”, In Blackhat, August 2008.
[McK16] McKinsey, “Automotive Revolution Perspective Towards 2030”, In Advanced

Industries, January 2016.
[OBr16] Chris O’Brien, “Long-Haul Trucking Connectivity Brings Hacking Risks”, In

Trucks.com Trucking Technology, May 2016.
[PSA16] FBI & NTHSA, “Motor Vehicles Increasingly Vulnerable to Remote Exploits”, In

Public Service Announcements I-031716-PSA, March 2016.
[SAE16] SAE J3061 Vehicle Cybersecurity Systems Engineering Committee, “Cybersecurity

Guidebook for Cyber-Physical Vehicle Systems”, In SAE International, January 2016.
[Sch12] Bruce Schneier, „Complexity the Worst Enemy of Security“, In Schneier Security Blog,

December 2012.
[Sko01] Sergei P. Skorobogatov, “Copy Protection in Modern Microcontrollers”, In

http://www.cl.cam.ac.uk/~sps32/mcu_lock.html, November 2001.
[Sta16] Kristina Staab, “Wenn der Lkw die Notbremse zieht”, In SWR Aktuell Hintergrund,

August 2016.
[SW12] Michael Scheibel et al., “A Systematic Approach to a Quantified Security Risk

Analysis for Vehicular IT Systems", In Automotive Safety & Security, November 2012.
[WG11] Marko Wolf et al., “Design, Implementation, and Evaluation of a Vehicular Hardware

Security Module”, In International Conference on Information Security and
Cryptology, November 2011.

[WSA15] Yaron Wolfsthal et al., “Solution for Detecting Cyber Intrusions to Connected
Vehicles”, In IBM Security Intelligence, September 2015.

60 Marko Wolf and Robert Lambert

[WW12] André Weimerskirch et al., “Hardware Security Modules for Protecting Embedded
Systems”, In ESCRYPT Security Whitepapers, May 2012.

Peter Dencker et. al.; Automotive Safety & Security 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 61

Extending a Compiler Backend for Complete Memory

Error Detection

Norman A. Rink1 Jeronimo Castrillon2

Abstract: Technological advances drive hardware to ever smaller feature sizes, causing devices to
become more vulnerable to faults. Applications can be protected against errors resulting from faults
by adding error detection and recovery measures in software. This is popularly achieved by apply-
ing automatic program transformations. However, transformations applied to intermediate program
representations are fundamentally incapable of protecting against vulnerabilities that are introduced
during compilation. In particular, the compiler backend may introduce additional memory accesses.
This report presents an extended compiler backend that protects these accesses against faults in the
memory system. It is demonstrated that this enables the detection of all single bit flips in memory.
On a subset of SPEC CINT2006 the runtime overhead caused by the extended backend amounts to
1.50x for the 32-bit processor architecture i386, and 1.13x for the 64-bit architecture x86 64.

Keywords: transient hardware faults, soft errors, memory errors, error detection, fault tolerance,

resilience, compiler backend, code generation, intermediate representation (IR), LLVM

1 Introduction

Aggressive technology scaling increases the rates of hardware faults [Sh02, Bo05, Bl06,
Ba05], and faults cause erroneous application behavior with non-negligible probabili-
ties [SPW09, NDO11]. Transient hardware faults, also known as soft errors, are commonly
attributed to cosmic radiation [Ba05]. However, due to shrinking feature sizes, devices are
also becoming more vulnerable to variations in supply voltage and temperature, which
reduces reliability [Bo05, Sh14]. Moreover, the current trends toward lowering energy
consumption and temperature dissipation further reduce reliability [Es11, Ta12, Sh14].

In safety-critical automotive applications, faults that go undetected can pose a danger to
human life. Therefore, software that is designed for applications with strict safety and re-
liability requirements must incorporate measures to tolerate hardware faults [Pa08]. Soft-
ware can be made fault-tolerant by adding integrity checks to programs. When a check
fails, an error has been detected and suitable measures can be taken to recover from it.
To enable checks, and hence error detection, some form of redundancy must be added
to programs. This can be done conveniently by applying automatic program transforma-
tions, such as source-to-source transformations, cf. [Re99, BSS13, KF15, Ka16]. With the
rising popularity of the LLVM framework and intermediate representation (IR) [LA04],

1 Center for Advancing Electronics Dresden, Technische Universität Dresden, Chair for Compiler Construction,
01062 Dresden, norman.rink@tu-dresden.de

2 Center for Advancing Electronics Dresden, Technische Universität Dresden, Chair for Compiler Construction,
01062 Dresden, jeronimo.castrillon@tu-dresden.de

62 Norman A. Rink and Jeronimo Castrillon

many fault tolerance schemes have appeared that are implemented as IR transformations,
e.g. [FSS09, Sc10, Fe10, Zh10, Ri15, CNV16]. Operating on IR has the advantages of
target-independence and increased productivity compared with operating on machine in-
structions. However, when transformations are applied to programs at an abstraction level
above machine instructions, the compiler backend may introduce new vulnerabilities to
faults. Specifically, the backend introduces numerous additional memory accesses, cf. Fig-
ure 1, which are then not protected against faults in the memory system.

A B C D E F G H I J K L

test case

0

20

40

60

80

100

p
e
rc
e
n
t

backend

IR

Fig. 1: Dynamic load operations present in the intermediate repre-
sentation (IR) of programs or inserted by the compiler backend. The
test programs labeled A–L are introduced in Section 4, cf. Table 1.

In this work we present a modified compiler backend that adds error detection measures to
the memory accesses it inserts. By combining this backend with any fault tolerance scheme
that operates on program IR or source code, errors can be detected in all memory accesses
that occur in the final machine code. Our compiler backend implements error detection by
dual modular redundancy (DMR), i.e. data words in memory are duplicated. Whenever
a data word is loaded from memory, the duplicated copies are compared. If disagreement
is found, an error has been detected. Thus, DMR is capable of detecting any number of
flipped bits within a data word. For complete protection of all memory accesses in the final
machine code of programs, the extended compiler backend will be combined with the AN

encoding error detection scheme at the IR level [Br60, Fo89, FSS09, Ri15].

Many fault tolerance schemes circumvent the problem of memory errors by assuming
that memory is protected against faults by hardware measures, such as memory modules
equipped with error correcting codes (ECC) [Re05, YGS09, MPC14, DS16]. This as-
sumption, however, is problematic for two reasons. First, cost and area considerations may
rule out using ECC memory at all levels in the memory hierarchy, especially in on-chip
caches and load-store queues. In fact, the need to protect a processor’s load-store queue
against faults has recently been stressed [DS16]. Second, it has been found that the widely
used single error correcting, double error detecting (SECDED) codes are incapable of
handling large fractions of error patterns that occur in practice [HSS12].

This article is structured as follows. Section 2 introduces memory faults and error detection
schemes, including the AN encoding scheme. Section 3 identifies the memory accesses
that are inserted by the compiler backend and explains how they are equipped with error

Extending a Compiler Backend for Complete Memory Error Detection 63

detection measures. Section 4 evaluates our error detection scheme. Section 5 discusses
related work, and Section 6 summarizes and discusses the findings of the present work.

2 Background

Faults in memory are a major cause of erroneous application behavior and service dis-
ruptions [SPW09, HSS12]. Typical faults in memory cells are bit flips caused by ener-
getic particles that originate from cosmic radiation [Ba05]. However, motivated by the
current trend toward reducing energy consumption, it has been suggested that the operat-
ing voltage of SRAM be lowered [Es12], and that refresh cycles of DRAM modules be
extended [Li11, We15]. Both suggestions reduce the capability to retain data and hence
increase the probability of memory faults.

The probability that a data word is corrupted by a fault increases with the time that the
data word spends in memory. When considering fault tolerance measures for the memory
system, main memory is targeted first since this is where the lifetimes of data will generally
be the longest. This also means that when, say, ECC are implemented in hardware, on-chip
memories, such as low cache levels or load-store queues, may not be protected, cf. [DS16].

2.1 DMR-based error detection

Error detection schemes work by maintaining redundant information that is used to check
the integrity of data. This is most evident in error detection schemes based on DMR, where
two copies are kept of each data word. If the two copies disagree, an error must have
occurred. By comparing the two copies, all single bit flips can be detected. Multiple bit
flips can also be detected, provided they do not affect the two copies in identical ways. In
particular, multiple bit flips can always be detected if they occur in only one of the copies.

Note that applying error detection by DMR to multi-threaded applications can be prob-
lematic. If all memory accesses are duplicated non-selectively, care must be taken to avoid
race conditions when different threads access redundant copies of data.

2.2 Error detection by encoding

An alternative approach to error detection is based on encoding data. If the set of valid
code words is a small subset of all possible data words, a fault is likely to produce a data
word that is not a valid code word. Hence, errors can be detected by checking whether data
words are also valid code words. Parity checking is an example of this: in valid code words,
the parity bit equals the parity of the code word. This enables the detection of single bit
flips. ECC memory typically uses more sophisticated codes, which can also correct errors.

When data is encoded, additional bits are required to represent code words. Although these
bits contain redundant information, no data is duplicated explicitly. Therefore, encoding-
based error detection schemes can immediately be applied to multi-threaded applications.

64 Norman A. Rink and Jeronimo Castrillon

A simple, yet effective, encoding-based error detection scheme for integer values can be
defined by decreeing that the valid code words are precisely the multiples of a fixed integer
constant A. This is known as AN encoding [Br60, Fo89]. Variants of AN encoding are
popularly used in software-implemented error detection [CRA06, FSS09, Sc10, KF15,
Ri15, Ka16]. While AN encoding has the advantage that its capability to detect complex
error patterns can be adjusted flexibly by varying the encoding constant A, not all values
of A are equally well-suited to error detection [Ho14].

2.3 Memory error detection by AN encoding

We now describe a scheme for detecting errors in memory. The scheme is based on AN
encoding, and the key idea is that only valid code words are kept in memory. To achieve
this, an integer value m must be encoded before being stored:

mencoded = m ·A. (1)

Consequently, whenever a value mencoded is loaded from memory, it must be decoded be-
fore further processing takes place:

m= mencoded/A. (2)

Errors can be detected by evaluating the following boolean expression for a value n that
has been loaded from memory:

n mod A= 0. (3)

In the absence of errors, the value n is a valid code word, and expression (3) evaluates to
TRUE. Hence, if expression (3) evaluates to FALSE, an error must have occurred.

The presented AN encoding scheme has been implemented by instrumenting load and
store instructions in the LLVM IR of programs. Every store instruction is preceded by
a multiplication with the constant A, cf. (1). Following every load instruction there is a
modulo operation for error checking, cf. (3), and a division for decoding, cf. (2). Figure 1
proves that this approach to memory error detection has its limitations since the compiler
backend inserts additional load instructions when lowering the IR to machine code. Errors
in memory that affect these load instructions cannot be detected at the IR level.

3 The Extended Compiler Backend

To overcome the limitations of IR-based error detection, the additional memory accesses
that are inserted by the compiler backend must be protected against faults. Backends for
the C programming language insert memory accesses for the following purposes: to han-
dle register spills (spill); to save and restore callee-saved registers (csr), the frame pointer
(fptr), and the return address (return); to pass function arguments (arg); to access jump
tables (jt). Since all of these memory accesses, apart from jump table accesses, operate

Extending a Compiler Backend for Complete Memory Error Detection 65

on the local program stack, duplicating these accesses causes no issues for multi-threaded
applications that use shared memory. Since jump table accesses are read-only, their dupli-
cation is safe too. We have extended the LLVM backend [LA04] for the x86 architecture
to implement DMR-based error detection for backend-inserted memory accesses.

3.1 Register spills

The x86 machine code in Listings 1 and 2 illustrates how DMR-based error detection
works for register spills. Originally, cf. Listing 1, the register eax is spilled to a stack slot
at offset –0x30 from the frame pointer (in register ebp). The extended backend allocates
a second stack slot at offset –0x34, cf. Listing 2. When the register eax is restored, the
values at the two stack slots are compared. If disagreement is found, control is transferred
to an error handler. For the purpose of the present work, error handling consists of exiting
the program with a special exit code that indicates that an error has been detected.

List. 1: Register spill and restore.

mov eax ,−0 x30 (ebp)
. . .

mov −0x30 (ebp) , eax

add eax , e s i

List. 2: Duplicated spill and error checking.

mov eax ,−0 x34 (ebp)
mov eax ,−0 x30 (ebp)

. . .
mov −0x30 (ebp) , eax

cmp −0x34 (ebp) , eax

jne <e r r o r h a n d l e r >
add eax , e s i

3.2 Other stack accesses

The memory accesses csr, fptr, return, and arg are analogous to register spills in that they
also save values to the program stack and later restore these values to registers. DMR-based
error detection is added by duplicating the values on the stack, completely analogously to
Listing 2. Full implementation details of DMR-based error detection for these memory
accesses can be found in the accompanying technical report [RC16]. Here we only discuss
the subtleties of the return and arg accesses.

On the x86 architecture, the return address is always passed on the stack. Thus, given the
possibility of memory faults, it can never be assumed that the return address is correct. To
obtain a copy of the return address that is guaranteed to be correct, the calling convention
has been modified so that the return address is passed in a register. Note that on architec-
tures with a designated return register, e.g. ARM or MIPS, protecting the return address
against memory faults does not require that the calling convention be modified.

To detect errors in function arguments that are passed on the stack, the calling convention
has been modified so that a duplicated copy of the argument sequence is put on the stack
immediately above the original sequence, as in Figure 2. When a function argument is
loaded into a register, error checking is performed by comparing its value with the corre-
sponding value in the duplicated argument sequence.

66 Norman A. Rink and Jeronimo Castrillon

stack:

original
argument sequence

duplicated
argument sequence

Fig. 2: Original and duplicated function arguments on the stack.

The obligation to implement our modified calling convention rests entirely with the caller.
This means that, if a callee chooses not to perform error detection on the return address or
on its stack arguments, this does not break function calls. In particular, library functions
can still be called fully transparently from within protected functions.

3.3 Jump tables

Jump tables are arrays of addresses of basic blocks, and they reside in the program code
segment. To protect jump tables against errors, the extended backend duplicates each jump
table in the code segment. Before transferring control to an address that is stored in a jump
table, error checking is performed by comparing the address with the corresponding entry
in the duplicated jump table.

4 Evaluation

Since faults occur rarely in individual devices, one must actively inject faults into systems
or programs to evaluate the effectiveness of fault tolerance schemes. In this work, the test
programs from Table 1 are used for this purpose. Some of the test programs (C, E, K)
appear in the MiBench suite [Gu01], and similar programs are often used to evaluate fault
tolerance schemes [Re99, OSM02, KF15, Ri15, DS16]. The programs represent typical
algorithmic tasks, such as sorting, tree and graph traversal, manipulation of bit patterns,
and linear algebra. In test program L, a switch statement selects one of the many arguments
of the enclosing function; this test has been included here since it is the only one that passes
function arguments on the stack for the 64-bit calling convention on x86.

Binaries have been generated from the test programs on the i386 architecture (the 32-bit
version of x86) and on x86 64 (the 64-bit version of x86). Figure 3 depicts the work flow
for this. Program IR is generated by the Clang compiler frontend, which is part of the
LLVM infrastructure. Binaries are evaluated on both i386 and x86 64 since these architec-
tures have different numbers of general purpose registers: while x86 64 has sixteen, i386
has only eight. As a consequence, there will be more backend-inserted memory accesses in
i386 binaries. All binaries have been generated at optimization level -O3, and the constant
A= 58659 has been used for AN encoding, cf. [Ho14].

Extending a Compiler Backend for Complete Memory Error Detection 67

Fig. 3: Generation of binaries with memory error detection measures.

description

A array reduction
B bubblesort
C cyclic redundancy checker (CRC-32)
D DES encryption algorithm
E Dijkstra’s algorithm (shortest path)

arithmetic expression interpreter
F recursive expression tree evaluation
G token lexer for arithmetic expressions
H arithmetic expression parser
I matrix multiplication
J array copy
K quicksort
L switch

Tab. 1: Suite of test programs.

It should be noted that AN encoding produces incorrect programs if the bit width of the
constant A is so large that not all encoded values fit into the machine data word. This
problem occus on the i386 architecture when high addresses, e.g. addresses in the stack
area, are encoded: multiplying high addresses with the constant A results in a value that
cannot be represented by 32 bits. For this reason, AN encoding of the test programs E, F,
G, H, K fails on the i386 architecture. On x86 64 this is not a problem since pointers are
only 48 bits wide and the chosen constant A= 58659 is represented by 16 bits.

In evaluating error detection schemes, it is common practice to inject single bit flips,
e.g. [YGS09, Fe10, DS16]. To study how programs respond to memory errors, we in-
ject single bit flips into the data words resulting from load operations. This is facilitated
by the Intel Pin tool [Lu05] for dynamic binary instrumentation: during the execution of a
binary, a single load operation is instrumented with an xor-operation that flips one of the
bits in the result of the load. We refer to the execution of a binary with a flipped bit as a
fault injection experiment. The outcome of a fault injection experiment is determined by
the program’s response to the injected bit flip. The following responses can occur:

1. correct: The program terminates normally and produces correct output.

2. hang: The program runs for longer than 10x its normal execution time, and is there-
fore deemed to hang. In practice, especially in safety-critical embedded applications,
a hardware watchdog may terminate and restart long-running programs.

3. crash: The program terminates abnormally, e.g. due to a segmentation fault.

4. sdc: Silent data corruption occurs when the program terminates normally but pro-
duces incorrect output.

68 Norman A. Rink and Jeronimo Castrillon

5. encoding: The fault is detected by AN encoding.

6. backend: The fault is detected by the extended backend’s DMR measures.

The fault injection experiments conducted in this work cover all possible patterns in which
single bit flips in memory can affect the binaries generated from the test programs. In the
following, we therefore report absolute numbers of program responses.

A B C D I J L
0

2000

4000

6000

8000

10000

12000

n
u
m
b
e
r
o
f
fa
u
lt
in
je
c
ti
o
n
e
x
p
e
ri
m
e
n
ts

correct

crash

sdc

hang

a: i386 binaries.

A B C D E F G H I J K L
0

5000

10000

15000

20000

25000

30000

35000

correct

crash

sdc

hang

b: x86 64 binaries.

Fig. 4: No error detection.

A B C D I J L
0

5000

10000

15000

20000

25000

30000

35000

n
u
m
b
e
r
o
f
fa
u
lt
in
je
c
ti
o
n
e
x
p
e
ri
m
e
n
ts

backend

encoding

a: i386 binaries.

A B C D E F G H I J K L
0

5000

10000

15000

20000

25000

30000

35000

backend

encoding

correct

b: x86 64 binaries.

Fig. 5: AN encoding and DMR in the backend.

4.1 No error detection

Figure 4 summarizes the fault injection experiments for the plain binaries generated from
the programs in Table 1, i.e. the binaries without any form of error detection. Only the test
programs for which AN encoding produces correct programs appear in Figure 4a.

While crash responses indicate that something has gone wrong, when sdc occurs in prac-
tice, one has no reason to believe that the computed output is incorrect. Therefore, one
is often particularly interested in the proportion of sdc [Fe10, KF15, DS16]. For the i386

binaries the number of sdc is generally larger than for x86 64. This is to be expected given
that i386 has fewer registers: more data words that are relevant for the program output will,
at least temporarily, reside in memory and hence be vulnerable to faults.

Figure 4 shows that there is indeed a need for error detection schemes. While some faults
do not affect program behavior, thus leading to correct responses, there is always a large
fraction of malignant program responses, i.e. crash, hang, and sdc.

4.2 AN encoding with DMR in the compiler backend

When AN encoding at the IR level is combined with the extended compiler backend, all
single bit flips in memory are detected, as evidenced by Figure 5. For the binaries F and

Extending a Compiler Backend for Complete Memory Error Detection 69

H on x86 64 there are a number of correct responses, which occur when faults affect load
operations that are part of a call to the memcpy library function. Although this function call
is present in the IR, it is not protected by our AN encoding scheme since no data is loaded
into the program. The response correct ensues when faults affect only those portions of
the copied data that are subsequently not used and hence not loaded into the program.

While Figure 5a, for the 32-bit binaries, is dominated by backend responses, this is not
the case for Figure 5b. Since x86 64 has more general purpose registers than i386, there
is lower register pressure, causing the backend to insert fewer additional memory accesses
to handle spill, csr etc. Also note that the total numbers of fault injection experiments in
Figure 5a are about twice as high as in Figure 4a. This is due to the dominating backend

responses in Figure 5a and the fact that the extended backend duplicates memory accesses.

Figure 5 proves that our approach to detecting memory errors is effective: no malignant
program responses remain. In particular, DMR-based error detection in the extended com-
piler backend succeeds at removing the vulnerabilities that Figure 1 hints at.

4.3 Runtime overheads

Fault tolerance comes at the price of performance penalties since some form of redundancy
is required. The runtimes of the test programs from Table 1 are depicted in Figure 6, where
geometric means across all test programs are shown. Runtimes have been normalized to
the plain binaries, without any error detection measures.

The largest fraction of overhead is due to AN encoding, which is plausible given the high
latency of integer multiplication, division, and modulo, cf. (1)–(3). In fact, AN encoding is
known to introduce large overheads, cf. [FSS09, Ri15, Ka16]. Given that AN encoding is
responsible for detecting only a small fraction of errors in the i386 binaries, cf. Figure 5a,
the overhead that AN encoding introduces may not be justifiable on i386.

The overhead that the extended backend causes on i386 is dominated by spill, followed
by arg. This is in agreement with the fact that i386 has relatively few registers and uses
a calling convention by which all arguments are passed on the stack. Neither of these
observations apply to the x86 64 architecture, and hence the overhead introduced by the
extended backend is considerably lower.

The runtime overhead introduced by the extended backend has also been evaluated on a
subset of the SPEC CINT2006 suite. The subset consists of those C benchmarks that are
unaffected by our modified calling convention, which are: 400.perlbench, 401.bzip2,
429.mcf, 445.gobmk, 458.sjeng, 462.libquantum. Geometric means across these
benchmarks are shown in Figure 7, where runtimes have again been normalized to the
plain binaries, to which the backend has not applied any DMR-based error detection mea-
sures. Note that the overhead introduced by duplicating function arguments is lower in
Figure 7a than in Figure 6a. An explanation for this is that functions in the SPEC bench-
marks have larger bodies, and hence longer execution times, than in the test programs
from Table 1. Therefore, the overhead introduced by duplicated function arguments car-

70 Norman A. Rink and Jeronimo Castrillon

ries less weight. When all DMR measures are applied by the backend, the resulting mean
overheads are 1.50x on i386 and 1.13x on x86 64.

From Figures 6 and 7 it is clear that the handling of register spills is the dominant source of
overhead among the DMR-based measures in the compiler backend. Comparing the results
for the i386 and x86 64 architectures, it can be concluded, perhaps unsurprisingly, that
memory error detection is more efficient on architectures with many registers. It should
also be noted that the overhead of handling return addresses can be reduced, if not entirely
avoided, on architectures that pass the return address in a register, e.g. ARM or MIPS.

All runtime measurements were conducted on an Intel Core i7-4790 CPU (3.6GHz), with
32GB of main memory. The operating system is Ubuntu 16.04.1 LTS, with a 4.4.0 kernel.

p
la
in

A
N

fp
tr

c
s
r jt

re
tu
rn

a
rg

s
p
il
l

a
ll0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

n
o
rm

a
li
z
e
d
ru
n
ti
m
e

a: i386 binaries.

p
la
in

A
N

a
rg

c
s
r

s
p
il
l

jt

fp
tr

re
tu
rn a
ll0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

b: x86 64 binaries.

Fig. 6: Mean overheads for test programs.

p
la
in

fp
tr jt

c
s
r

a
rg

re
tu
rn

s
p
il
l

a
ll0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

n
o
rm

a
li
z
e
d
ru
n
ti
m
e

a: i386 binaries.

p
la
in

fp
tr

c
s
r

a
rg jt

re
tu
rn

s
p
il
l

a
ll0.0

0.2

0.4

0.6

0.8

1.0

1.2

b: x86 64 binaries.

Fig. 7: Mean overheads for SPEC.

5 Related work

Fault tolerance schemes that operate on program source code appeared early, and this
approach is still pursued [Re99, BSS12, BSS13, KF15, Ka16]. Low rates of silent data
corruption can be achieved despite the fact that the compiler backend may introduce new
vulnerabilities after these schemes have been applied. However, a considerable proportion
of faults still lead to program crashes, e.g. [KF15].

With the advent of super-scalar processors it became viable to implement DMR-based
error detection schemes by duplicating machine instructions [OSM02]. Subsequently pro-
posed fault tolerance schemes were also implemented by modifying compiler backends,
e.g. [Re05, YGS09, MPC14, DS16]. Unlike in the present article, these schemes assume
that memory is protected by hardware measures, e.g. ECC, and hence memory opera-
tions are not accompanied by error detection. The only exception to this is the nZDC
scheme [DS16], where memory accesses are duplicated since the processor’s load-store
queue is assumed to be vulnerable to faults. Since the nZDC scheme duplicates all load
operations, and not just those that access local memory, it is limited in handling multi-
threaded applications correctly, as already noted in [DS16].

Extending a Compiler Backend for Complete Memory Error Detection 71

The popularity of the LLVM compiler framework and IR [LA04] has led to many IR-
based fault tolerance schemes [FSS09, Sc10, Fe10, Zh10, Ri15, CNV16]. The DMR-based
schemes [Fe10, Zh10, CNV16] assume, once again, that memory is protected against faults
by hardware measures. The encoding-based schemes [FSS09, Sc10, Ri15] do not make this
assumption, but they suffer from the observed shortcoming that the memory accesses that
are introduced by the compiler backend are left unprotected.

That return addresses and frame pointers need protection was already observed in the con-
text of protecting an operating system against hardware faults [BSS13]. The fault tolerance
scheme in [BSS13] was implemented based on aspects [SGSP02]. Conceptually, aspects
operate on program source code, but their implementation requires interaction with the
compiler. Thus, the implementation of aspects may introduce new vulnerabilities.

AN encoding was originally introduced in [Br60] and studied in detail, among other arith-
metic error codes, by [Ga66, Av71]. Protecting processors by AN encoding was suggested
in [Fo89], where the ANB and ANBD schemes were also introduced. IR-based implemen-
tations of AN encoding appeared in [FSS09, Ri15]. As in the present article, other fault
tolerance schemes also combine encoding with DMR [OMM02, CRA06, KF15]. Here we
applied DMR very selectively, only to local memory accesses inserted by the compiler
backend, which has the advantage that duplication is safe in multi-threaded programs.

6 Summary and Discussion

Fault tolerance schemes that are applied to programs at the level of intermediate repre-
sentation (IR) cannot address vulnerabilities resulting from later stages of the compilation
process. Specifically, the compiler backend introduces additional, unprotected memory
accesses to implement, e.g., register spills. In this article we have presented an extended
backend that adds error detection by dual modular redundancy (DMR) to the memory ac-
cesses it inserts. It has been shown that this, combined with an IR-based AN encoding
scheme, succeeds at detecting all errors resulting from single bit flips in memory.

The extended backend introduces an average runtime overhead of 1.50x for binaries from
SPEC CINT2006 running on i386, and 1.13x for the corresponding binaries running on
x86 64. This is in agreement with the expectation that there is less need to protect against
faults in the memory system on machines with more registers, i.e. on x86 64. The reported
runtime overheads are noticeably lower than for the nZDC scheme, which also duplicates
memory accesses [DS16]. This is unsurprising since, in the present work, error detection
has been applied to memory accesses more selectively.

Implementing fault tolerance schemes at the IR level enables target-independence and en-
hances productivity. The latter is particularly important for relaxed fault tolerance schemes,
where some amount of vulnerability is accepted in exchange for reduced overhead [Fe10,
KF15, Ri15]. In quantifying the vulnerabilities of a relaxed scheme, meaningful results
can only be obtained if one is guaranteed that the compilation process following the appli-
cation of the fault tolerance scheme does not introduce new vulnerabilities. The extended
backend we have presented here gives this guarantee.

72 Norman A. Rink and Jeronimo Castrillon

Due to strict safety and reliability requirements, automotive applications may not be able
to rely on relaxed fault tolerance schemes. Schemes based on IR transformations only are
also not an option due to the remaining vulnerabilities. The extended compiler backend
overcomes this problem and thus facilitates complete memory error detection.

7 Acknowledgments

This work was funded by the German Research Council (DFG) through the Cluster of
Excellence ‘Center for Advancing Electronics Dresden’ (cfaed). The authors acknowledge
useful discussions with Sven Karol and Tobias Stumpf.

References

[Av71] Avizienis, A.: Arithmetic Error Codes: Cost and Effectiveness Studies for Application
in Digital System Design. IEEE Trans. on Computers, C-20(11):1322–1331, 1971.

[Ba05] Baumann, R.: Soft Errors in Advanced Computer Systems. IEEE Design & Test of
Computers, 22(3):258–266, 2005.

[Bl06] Blome, J. A.; Gupta, S.; Feng, S.; Mahlke, S.: Cost-efficient soft error protection for
embedded microprocessors. In: Proc. Int’l Conf. Compilers, Architecture and Synthesis
for Embedded Systems. CASES’06, pp. 421–431, 2006.

[Bo05] Borkar, S.: Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation. IEEE Micro, 25(6):10–16, 2005.

[Br60] Brown, D. T.: Error Detecting and Correcting Binary Codes for Arithmetic Operations.
IRE Trans. Electronic Computers, pp. 333–337, 1960.

[BSS12] Borchert, C.; Schirmeier, H.; Spinczyk, O.: Protecting the Dynamic Dispatch in C++
by Dependability Aspects. In: Proc. 1st Workshop Software-Based Methods for Robust
Embedded Systems. SOBRES’12, 2012.

[BSS13] Borchert, C.; Schirmeier, H.; Spinczyk, O.: Return-Address Protection in C/C++ Code
by Dependability Aspects. In: Proc. 2nd Workshop Software-Based Methods for Robust
Embedded Systems. SOBRES’13, 2013.

[CNV16] Chen, Z.; Nicolau, A.; Veidenbaum, A. V.: SIMD-based Soft Error Detection. In: Proc.
ACM Int’l Conf. Computing Frontiers. CF’16, pp. 45–54, 2016.

[CRA06] Chang, J.; Reis, G. A.; August, D. I.: Automatic Instruction-Level Software-Only Re-
covery. In: Int’l Conf. Dependable Systems and Networks. DSN’06, pp. 83–92, 2006.

[DS16] Didehban, M.; Shrivastava, A.: nZDC: A compiler technique for near Zero Silent Data
Corruption. In: Proc. Design Automation Conf. DAC’16, 2016.

[Es11] Esmaeilzadeh, H.; Blem, E.; Amant, R. St.; Sankaralingam, K.; Burger, D.: Dark silicon
and the end of multicore scaling. In: Proc. 38th Ann. Int’l Symp. Computer Architecture.
ISCA’11, pp. 365–376, 2011.

[Es12] Esmaeilzadeh, H.; Sampson, A.; Ceze, L.; Burger, D.: Architecture Support for Disci-
plined Approximate Programming. In: Proc. 17th Int’l Conf. Architectural Support for
Programming Languages and Operating Systems. ASPLOS’12, pp. 301–312, 2012.

Extending a Compiler Backend for Complete Memory Error Detection 73

[Fe10] Feng, S.; Gupta, S.; Ansari, A.; Mahlke, S.: Shoestring: Probabilistic Soft Error Relia-
bility on the Cheap. In: Proc. 15th Int’l Conf. Architectural Support for Programming
Languages and Operating Systems. ASPLOS’10, pp. 385–396, 2010.

[Fo89] Forin, P.: Vital Coded Microprocessor Principles and Applications for Various Transit
Systems. In: Control, Computers, Communications in Transportation: Selected Papers
from the IFAC/IFIP/IFORS Symposium. pp. 79–84, 1989.

[FSS09] Fetzer, C.; Schiffel, U.; Süßkraut, M.: AN-Encoding Compiler: Building Safety-Critical
Systems with Commodity Hardware. In: Proc. 28th Int’l Conf. Computer Safety, Relia-
bility, and Security. SAFECOMP’09, pp. 283–296, 2009.

[Ga66] Garner, H. L.: Error Codes for Arithmetic Operations. IEEE Trans. Electronic Comput-
ers, EC-15(5):763–770, 1966.

[Gu01] Guthaus, M. R.; Ringenberg, J. S.; Ernst, D.; Austin, T. M.; Mudge, T.; Brown, R. B.:
MiBench: A Free, Commercially Representative Embedded Benchmark Suite. In: Proc.
IEEE Int’l Symp. Workload Characterization. IISWC’01, pp. 3–14, 2001.

[Ho14] Hoffmann, M.; Ulbrich, P.; Dietrich, C.; Schirmeier, H.; Lohmann, D.; Schröder-
Preikschat, W.: A Practitioner’s Guide To Software-based Soft-Error Mitigation Using
AN-Codes. In: Proc. 15th Int’l Symp. High-Assurance Systems Engineering. 2014.

[HSS12] Hwang, A. A.; Stefanovici, I. A.; Schroeder, B.: Cosmic Rays Don’t Strike Twice: Un-
derstanding the Nature of DRAM Errors and the Implications for System Design. In:
Proc. 7th Int’l Conf. Architectural Support for Programming Languages and Operating
Systems. ASPLOS’12, pp. 111–122, 2012.

[Ka16] Karol, S.; Rink, N. A.; Gyapjas, B.; Castrillon, J.: Fault Tolerance with Aspects: A Fea-
sibility Study. In: Proc. 15th Int’l Conf. Modularity. 2016.

[KF15] Kuvaiskii, D.; Fetzer, C.: Δ-encoding: Practical Encoded Processing. In: Proc. 45th Ann.
Int’l Conf. Dependable Systems and Networks. DSN’15, 2015.

[LA04] Lattner, C.; Adve, V.: LLVM: a Compilation Framework for Lifelong Program Analysis
& Transformation. In: Proc. Int’l Symp. Code Generation and Optimization. CGO’04,
p. 75, 2004.

[Li11] Liu, S.; Pattabiraman, K.; Moscibroda, T.; Zorn, B. G.: Flikker: saving DRAM refresh-
power through critical data partitioning. In: Proc. 16th Int’l Conf. on Architectural Sup-
port for Programming Languages and Operating systems. ASPLOS’11, pp. 213–224,
2011.

[Lu05] Luk, C.-K.; Cohn, R.; Muth, R.; Patil, H.; Klauser, A.; Lowney, G.; S. Wallace, Steven;
Reddi, V. J.; Hazelwood, K.: PIN: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In: Proc. Conf. Programming Language Design and Imple-
mentation. PLDI’05, pp. 190–200, 2005.

[MPC14] Mitropoulou, K.; Porpodas, V.; Cintra, M.: DRIFT: Decoupled CompileR-Based
Instruction-Level Fault-Tolerance. In: Proc. 26th Int’l Workshop Languages and Com-
pilers for Parallel Computing. LCPC’13, pp. 217–233, 2014.

[NDO11] Nightingale, E. B.; Douceur, J. R.; Orgovan, V.: Cycles, Cells and Platters: An Empirical
Analysis of Hardware Failures on a Million Consumer PCs. In: Proc. 6th Conf. on
Computer Systems. EuroSys’11, pp. 343–356, 2011.

[OMM02] Oh, N.; Mitra, S.; McCluskey, E. J.: ED4I: Error Detection by Diverse Data and Dupli-
cated Instructions. IEEE Trans. Computers, 51(2):180–199, 2002.

74 Norman A. Rink and Jeronimo Castrillon

[OSM02] Oh, N.; Shirvani, P. P.; McCluskey, E. J.: Error Detection by Duplicated Instructions in
Super-Scalar Processors. IEEE Trans. Reliability, 51(1):63–75, 2002.

[Pa08] Panaroni, P.; Sartori, G.; Fabbrini, F.; Fusani, M.; Lami, G.: Safety in Automotive Soft-
ware: An Overview of Current Practices. In: Proc. 32nd Ann. IEEE Int’l Computer
Software and Applications Conf. COMPSAC’08, pp. 1053–1058, 2008.

[RC16] Rink, N. A.; Castrillon, J.: Comprehensive Backend Support for Local Memory Fault
Tolerance. Technical Report TUD-FI-16-04, Technische Universität Dresden, 2016.

[Re99] Rebaudengo, M.; Reorda, M. S.; Torchiano, M.; Violante, M.: Soft-error Detection
through Software Fault-Tolerance techniques. In: Int’l Symp. Defect and Fault Toler-
ance in VLSI Systems. DFT’99, pp. 210–218, 1999.

[Re05] Reis, G. A.; Chang, J.; Vachharajani, N.; Rangan, R.; August, D. I.: SWIFT: Software
Implemented Fault Tolerance. In: Int’l Symp. Code Generation and Optimization. CGO
’05, pp. 243–254, 2005.

[Ri15] Rink, N. A.; Kuvaiskii, D.; Castrillon, J.; Fetzer, C.: Compiling for Resilience: The Per-
formance Gap. In: Proc. Mini-Symp. Energy and Resilience in Parallel Programming.
ERPP’15, 2015.

[Sc10] Schiffel, U.; Schmitt, A.; Süßkraut, M.; Fetzer, C.: ANB- and ANBDmem-Encoding:
Detecting Hardware Errors in Software. In: Proc. 29th Int’l Conf. Computer Safety,
Reliability, and Security. SAFECOMP’10, pp. 169–182, 2010.

[SGSP02] Spinczyk, O.; Gal, A.; Schröder-Preischkat, W.: AspectC++: An aspect-oriented exten-
sion to the C++ programming language. In: Proc. 40th Int’l Conf. Tools Pacific: Objects
for internet, mobile and embedded applications. CRPIT’02, pp. 53–60, 2002.

[Sh02] Shivakumar, P.; Kistler, M.; Keckler, S. W.; Burger, D.; Alvisi, L.: Modeling the effect
of technology trends on the soft error rate of combinational logic. In: Proc. Int’l Conf.
Dependable Systems and Networks. DSN’02, pp. 389–398, 2002.

[Sh14] Shafique, M.; Garg, S.; Henkel, J.; Marculescu, D.: The EDA Challenges in the Dark
Silicon Era: Temperature, Reliability, and Variability Perspectives. In: Proc. 51st Ann.
Design Automation Conf. DAC’14, pp. 1–6, 2014.

[SPW09] Schroeder, B.; Pinheiro, E.; Weber, W.-D.: DRAM Errors in the Wild: A Large-scale
Field Study. In: Proc. 11th Int’l joint Conf. Measurement and Modeling of Computer
Systems. SIGMETRICS’09, pp. 193–204, 2009.

[Ta12] Taylor, M. B.: Is dark silicon useful? Harnessing the four horsemen of the coming dark
silicon apocalypse. In: Proce. 49th Ann. Design Automation Conf. DAC’12, pp. 1131–
1136, 2012.

[We15] Weis, C.; Jung, M.; Ehses, P.; Santos, C.; Vivet, P.; Goossens, S.; Koedam, M.; Wehn, N.:
Retention Time Measurements and Modelling of Bit Error Rates of WIDE I/O DRAM in
MPSoCs. In: Proc. Design, Automation & Test in Europe Conf. & Exhibition. DATE’15,
pp. 495–500, 2015.

[YGS09] Yu, J.; Garzarán, M. J.; Snir, M.: ESoftCheck: Removal of Non-vital Checks for Fault
Tolerance. In: Proc. 7th Ann. Int’l Symp. Code Generation and Optimization. CGO’09,
pp. 35–46, 2009.

[Zh10] Zhang, Y.; Lee, J. W.; Johnson, N. P.; August, D. I.: DAFT: Decoupled Acyclic Fault
Tolerance. In: Proc. 19th Int’l Conf. Parallel Architectures and Compilation Techniques.
PACT’10, pp. 87–98, 2010.

Peter Dencker et. al.; Automotive Safety & Security 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 75

Exploring and Understanding Multicore Interference from

Observable Factors

Benjamin Lesage1, David Griffin 1, Iain Bate1 and Frank Soboczenski1

Abstract:

Multi-core processors bring a wide variety of challenges to the development, maintenance and
certification of safety-critical systems. One of the key challenges is to understand how tasks sharing
the processing resource affect one another, and to build an understanding of existing or new platforms.
Industry reports that interference can lead to large variations in execution times which can lead
to a wide variety of problems including timing overruns. To support performance improvements,
debugging and timing analysis, a framework is presented in this paper for reliably establishing the
interference patterns of tasks using simple contenders. These contenders systematically manipulate the
shared resources so the effect on interferences can be understood and analysed. The approach relies
on guided exploration of the interference space and existing performance monitoring infrastructure. It
has been implemented on a Tricore AURIX platform to analyse the behaviour of multiple real and
kernel applications.

Keywords: Inter-core interferences, timing analysis, Shared resources, measurement-based, perfor-

mance monitoring

1 Introduction

The drive for performance in modern systems has to face an increasing energy wall; merely
increasing clock speeds to achieve higher performance is no longer a viable solution. On the
other hand, multicore platforms offer improved performances through the use of multiple
processing units on the same chip. Tasks are running concurrently on different cores while
sharing off-core resources such as lower levels of the memory hierarchy or external IO
channels. The introduction of resources shared by concurrent tasks introduce new sources
of interferences. Accesses to a shared resource may suffer arbitration delay when multiple
cores compete for said resource. The behaviour of a request may also be altered due to
interferences, e.g. the eviction of a cache block by a concurrent task.

Preemption-related interferences, similarly to inter-core interferences, exhibit both direct
and delayed effects after the occurrence of an interference event. Inter-core interferences
however do not occur as a single point of interference, as opposed to a preemption, but
interleave with the normal execution of a task. During inter-core interference analysis, this
requires to more pessimistic assumptions where each request is assumed to be in conflict
with a request from a co-runner [Al15], or complex models of the underlying architecture
requiring precise knowledge of its behaviour [JHH15]. Various mechanisms have been

1 Department of Computer Science, University of York, York, United Kingdom

76 Benjamin Lesage et. al.

proposed instead to limit or preclude interferences in time and space between concurrent
cores, such as cache partitioning [SM08] or leaky bucket schemes [Ji13]. Such schemes
require often costly support from the underlying platform. To identify the solution adapted
to a specific task, a necessary step is the building of an understanding of its sensitivity to
interferences and the underlying factors.

Modern architectures exhibit performance monitoring counters (PMCs) as a tool to evaluate
the behaviour of a task. PMCs provide an estimate of the occurrences of low-level events
on the platform. The information they expose can be used in particular to evaluate how
often and how much a task makes use of particular resource, private or shared [An97], with
minimal knowledge on the platform. As an example, consider an architecture with a single
private instruction cache on top of a shared SRAM memory. Without further knowledge of
the platform, one can safely assume that a task with a large observed miss rate is more likely
to access the shared memory and be sensitive to inter-core interferences. Some factors are
thus more pertinent than others to the execution time variations of a task. Moreover, there
are typically more events to be counted than registers available to track those events.

This paper proposes an approach to identify the main factors of variability in the temporal
behaviour of a task. The analysis operates without knowledge of the underlying platform
and the implemented policies for shared resources. The technique exposes the PMCs which
are tied to variations in the execution time of a task. Through systematic and reproducible
exploration of the interference space, this allows the isolation of the effect of interferences.
The selection of most relevant factors provides feedback on the sources of interferences that
need to be tackled to improve the predictability of a task’s behaviour and the robustness a
task or the system as a whole w.r.t. interferences. Focused testing on the factors identified by
the analysis can further provide for a partial multi-variate model of the temporal behaviour
of a task in relation to said factors. We provide general guidelines on how synthetic
contenders can exercise inter-core interference in the analysed system.

2 Related Work

Current state of the art techniques for the analysis of the effects of inter-core interferences
focus on either taking into account possible effects or precluding them. The work of
Altmeyer and al. [Al15] belongs to the first category. The authors propose a generic
framework to compute the response time of task, taking into account the delays that might
rise from the arbitration of accesses to the shared bus. While focused on a single shared
resources, the technique needs to take into account a wide range of effects, such as memory
refreshes, cache hits and misses, to build a reasonable model of interleaved accesses. More
integrated approaches [JHH15] further improve the precision of the estimates but require
an extensive knowledge of the underlying platform or complex models capturing a large
portion of the system state.

Approaches such as partitioning divide the shared resource space into segments dedicated to
the sole benefit of a single task. They focus on precluding interferences at the expense of lim-
iting the resources available to each task [Al14; SK11; SM08]. Leaky bucket schemes [Ji13]

Exploring and Understanding Multicore Interference from Observable Factors 77

offer an alternative solution to reduce interferences. Accesses to a shared resource by a
task are budgeted to limit the amount of interferences they might generate in a given time
interval. In either case, the interference problem becomes an optimisation one to derive the
budget allocated to each task in the system, satisfy the system’s constraints, and maximise
the use of the shared resource. Such techniques should therefore be applied with care, and
their underlying assumptions and impact empirically validated. As an example, considerable
interferences might still occur in partitioned caches due to shared miss handling status
registers [VYF16].

Radojković et al. [Ra12] evaluate the effect of inter-core interference from co-runners
through empirical experiments. Their work demonstrates that shared resources can con-
tribute to large variations in the temporal behaviour of a task. Their evaluation relies on
resource stressing kernels, thus identifying the slowdown which may be induced by a
specific component on the platform. We instead aim at identifying which components
or combinations thereof contribute to variations in the behaviour of a specific task. This
reduces the pessimism of the following analyses by focusing on the components known to
impact the analysed task. Testing can then proceed by focusing on said components, e.g.
allowing for the empiric validation of selected inter-core interference management methods.
Our approach also relies on a wider exploration of the interference space as the worst-case
scenarios do not stem from stressing a single resource.

3 Overview

Our approach to evaluate the impact of inter-core interferences on the execution of a task
can be broken down into simple steps. Data is first collected by running the task of interest
against selected competitor tasks while collecting data related to both execution time and as
many performance counters as possible. All collected measurements capture the end-to-end
behaviour of the analysed task; instrumentation primitives surround the analysed task. We
then identify a set of representative factors to understand which factors drive variations in
the execution of the analysed task, and whether or not they relate to inter- or intra-core
effects.

Without prior knowledge of the usefulness of PMCs, it is necessary to build a small dataset
with all PMCs in order to determine their usefulness. To this end in Section 6, Principal
Components Analysis is used for an automatic feature selection phase, i.e. to find a set of
PMCs which is capable of representing the variability of the data. The identification of the
PMCs relevant to the analysed task can help direct later testing phases, to evaluate selected
inter-core interferences management approaches or build a model of the analysed task.
Further data collection phases and the exercised contenders can be focused on the factors
known to contribute to variability in the behaviour of the analysed task. Without refining
the selection of components exercised during analysis, more different types of contenders
need to be considered to exercise all possible sources of interference. This is turn leads to
more testing or less significant data available.

While the factor selection is platform-agnostic (§ 6), the available factors and their inter-
pretation depend on the underlying system. The methods thus relies on platform-specific

78 Benjamin Lesage et. al.

instrumentation. Instrumentation and contenders are expected to respectively capture the
available PMCs alongside timing information and exercise the different sources of variabil-
ity in the platform. We discuss the requirements inherent to those steps in Section 5. To
illustrate our approach, we focus in the following on an Infineon AURIX Tricore platform
as presented in the next section.

4 Evaluation Platform

Our evaluation platform is composed of the OSEK/VDX compliant Erika Enterprise [En16]
real-time operating system running on top of an Infineon AURIX Tricore TC27x [In14].
Figure 1 outlines the architecture of the AURIX platform. The AURIX cores have different
capabilities and fulfil different roles in the system:

∙ Core 0: Error checking, Energy Efficient Tricore 1.6E core

∙ Core 1: Error checking, High Performance Tricore 1.6P core

∙ Core 2: No error checking, High Performance Tricore 1.6P core

Fig. 1: Overview of the Infineon AURIX Tricore platform.

Each core has access to a crossbar which connects a SRAM unit, flash memories, and
external peripherals through a bridge. Interference across cores typically stem from con-
current accesses to either of those resources, e.g. congestion on the flash due simultaneous

Exploring and Understanding Multicore Interference from Observable Factors 79

requests requiring arbitration. In the following, we focus on interferences caused by either
the SRAM and one of the code ROM. The default memory mapping in Erika does not map
data into the secondary ROM or segments located in remote scratchpads.

Core 1 and 2 expose 12 PMCs, 9 in the case of Core 0, which have the capability to monitor
performance metrics such cache hits/misses, executed branches, or stalls in the pipeline.
Only 3 registers are available per core to track PMCs, and each PMC can only be tracked
by a specific register. This restricts the set of PMCs which can be monitored during a single
run. For example, there is no configuration of said registers which allows tracking both data
and instruction cache misses for Core 1.

In the best case, to capture data on all PMCs from the AURIX, it would be necessary to
run each test four times. This is undesirable in that it increases the amount of testing that is
required from the user to understand the impact of interferences on a task. Other platforms
may expose more PMCs which renders this approach infeasible for large sets of tests3.
Redundancy between factors or a lack of correlations to interferences further reinforces
the need to reduce the set of collected PMCs to a significant one. Consider for example a
computationally intensive program mapped into its core local scratchpads. Monitoring its
cache hits will not yield conclusive results.

5 Data Collection

Our approach relies on task-level instrumentation to capture end-to-end timing traces. The
collected traces include both the execution time of the analysed task and related metrics
pertinent to the behaviour of the platform. We thus rely on the PMCs exposed by the
hardware. PMCs expose counts for specific events or latencies suffered by a task, e.g. the
number of executed branches acts as an observable proxy for the path executed during an
observation. Increases in stalls suffered by the load/store unit can be indicative of increased
contention in the shared memory. Our implementation automates the whole trace collection
process, allowing for the automated collection of traces capturing all available PMCs on
the platform or a selection thereof.

The PCA requires the presence for each run of all available factors, PMCs on the target
platform, to establish their relation to the execution time of the analysed task. The anal-
ysed task is ran multiple times, under the same inputs, merging the results obtained for
identical runs but different configurations of PMCs. While we aimed at improving the
reproducibility of the framework between runs, the platform still exhibit some uncontrolled
sources of variability, e.g. uninitialised values on processor start. Those prevent the perfect
reproduction of the runs of a task. We validated that the error between reproduced runs
is both minimal and characterised as random noise, by fixing a performance counter and
comparing its value across identical runs and varying PMCs configurations. The error is
minimal (< 5%). The use of the Wald-Wolfowitz [St06] further confirmed that it could be
reasonably characterised as random noise and would not introduce systemic failings [St06].

3 For example, the P4080 platform [Se], which we have also applied the technique to, exposes approximately 128
PMCs with 4 registers per core, and would require each experiment to be repeated 32 times.

80 Benjamin Lesage et. al.

A dedicated instrumentation buffer is used to log the timing and PMCs values on each
core. A full instrumentation buffer interrupts all execution on the platform and triggers the
collection of the data through the debugger interface. The same debug interface is used
to configure the PMCs exercised during a set of runs. A single binary and test vector can
thus be used to collect different PMCs. Instrumentation buffers are mapped into a debug
memory segment, itself mapped onto local scratchpads during analysis or unmapped on
a deployed system. Writes to the unmapped debug segment are simply discarded by the
platform. The event instrumentation routines can therefore be kept in the deployed system.
Each request for an instrumentation point is broadcast to all cores in the system to capture
PMCs across all cores.

5.1 Synthetic contenders

We developed a set of synthetic contenders to drive the exploration of the possible inter-core
interference configurations. The contenders aim to exert the variability inherent to the
analysed task in reaction to inter-task conflicts. Knowledge about the potential sources of
variability in a system is required to exert them in a significant way. As such, contenders are
strongly platform-dependent. While contenders for one platform may not apply to another,
similar principles apply, e.g. varying accesses across cache lines, cache sets or physical
pages, interleaving sequences of reads or writes, etc.. The use of the complete system as
deployed would help understand the main sources of variability in the analysed task, but
may not highlight the impact of contention should it suffer a constant interference rate.

A single set of platform-wide contenders has been derived for the AURIX. Controlled
accesses to the shared memory segments, through non-cacheable addresses, are used to
generate interferences. Those are restricted to the Shared RAM and a segment of flash.
Given the default memory mapping implemented by the OSEK/VDX-compliant Erika OS,
a core is restricted to either its local scratchpads, the shared memory, or one of the flash
segments. While the method is not restricted to a specific platform, taking into consideration
its underlying restrictions helps reducing the configurations that need to be considered
during testing. Contending accesses interleave with non-interfering one; accesses by a core
to its scratchpad do not contribute to the overall inter-core interferences. Each contender
loops upon a determined access sequence to generate a controlled, continuous amount of
contention. To preclude any impact on the functional behaviour of the analysed tasks and
preserve data coherency, there is no sharing of data between contenders and analysed tasks.

The level of interference generated by a contender is expressed as and controlled by the
portion of its instructions generating contention. Both the interference level and pattern
exercised by a contender are set dynamically within user-defined bounds. An interference
level is first randomly selected. Then a permutation of instructions is generated to select the
conflicting ones. The code of each contender is stored in a local scratchpad such that it can
be rewritten to enforce the selected interference pattern. The interference patterns exercised
by a contender during an experiment can easily be reproduced.

Contenders run on all cores effectively acting as an idle task in the system. On each core a
preemptive task with the lowest priority runs the main loop of a contender. Variation in the

Exploring and Understanding Multicore Interference from Observable Factors 81

observed interference patterns relies on periodic reconfiguration of the contenders, upon a
signal from the analysed task. The process can proceed without explicit synchronisation
between contenders and analysed task. This signal is triggered at the end of the periodic
analysed task allowing for the reconfiguration to occur between activations of the task. Like
the instrumentation routines, the primitives can thus be kept into the deployed system.

6 Feature Selection

Due to the impracticality of capturing vast amounts of data for each and every PMC, as
well as a desire to focus on high-quality PMCs, it is necessary to reduce the number of
observed PMCs4. The goal for this step is to identify the PMCs which are correlated, and
then select a set of representative PMCs which can be captured in a single configuration
while still describing the majority of the data. While it is inevitable that some detail in the
data will be lost at this stage, the reduction in the amount of effort required to get a single
data point enables more data to be collected.

In order to accomplish this, we use the technique of PCA [Jo02]. PCA is a technique which
identifies correlations within a dataset by finding the Principal Components (PCs) of the
data. Each PC describes one of the main axes of variance in the analysed dataset such
that variations on each axis can be attributed to a specific set of factors. Correlated factors
are thus captured as part of the same PC. For example, the main axis of variation on a
data-sensitive application, its main PC, will include factors such as hits in the cache or stalls
in the memory units. This is further illustrated in Figure 2, which shows the main axes of
variations in a 2-dimensional dataset; PC1 captures the axis along which the majority of the
variance in the data occurs.

Additional metrics are attached to the PCs and each factor inside a PC to measure their
respective impact on the whole dataset and the PC. The PCs specify a loading on each
factor that indicates the weighting that must be assigned to its observations such that they
lie on the axis defined by the PC. In other words, the loading of a factor on a PC captures its
correlation to the PC, how it evolves alongside the axis defined by the PC. A loading of near
0 indicates that the observations are not correlated on the PC, whereas loadings of 1 and
-1 indicate perfect positive and negative correlation respectively, i.e. a factor which values
respectively increase or decrease with values along the PC. Considering the same example
of a memory intensive task, accesses to the bus from the task or contenders are likely to
increase its execution time, thus being positively correlated to the principal components.
Conversely, a decrease in executed integer instructions may be correlated to an increase
in the memory traffic, and the task’s execution time. In the Figure 2 example, x has a high
loading in PC1, indicating a high degree of correlation to PC1, but a much lower loading
on PC2.

PCs themselves have an overall magnitude assigned to them which can be seen as a proxy
for their contribution to the variations in the dataset, i.e. the amount of variance in the
dataset captured upon the axis of the PC. The right-hand side of Figure 2 shows how it is

4 In statistical literature, this is commonly referred to as dimensionality reduction or feature selection.

82 Benjamin Lesage et. al.

possible to reduce the 2-dimensional dataset to a single dimension on which accounts for
the majority of the variability.

A standard use of PCA is to identify which PCs do not significantly contribute to the overall
distribution of a dataset using their respective loadings. For example, if a PC accounts for
less than 10% of the variance in the entire dataset, as accounted for by its loading, then
variation along that PC can be simply dismissed as sampling error and the PC ignored; this
quickly and simply reduces the number of dimensions in the analysed data set. However, in
this application it may be necessary to reduce the number of factors further, and select only
the high quality PMCs which yield information on the observed interferences multiplier.
Hence it is necessary to filter the PMCs further, such that only the highest quality PMCs
are used.

The first step to finding the highest quality PMCs is to remove all PCs which are not
correlated to the execution time of the task under analysis, as these are unlikely to yield
useful information. This relies on the absolute loading of the analysed task’s execution
time on the PC to measure their correlation. In addition, components which explain a low
amount of the overall variance are removed, as these represent factors which are unlikely to
have a high impact on the result. The remaining components are weighted by the amount of
variance they explain, through their respective loadings, and then the PMCs with the highest
degree of correlation to these components are selected. For example, if 2 components A,B
remain, of which A explains 60% of the variance and B 30%, then for each PMC that is
selected correlated to B, two PMCs will be selected that correlate to A. The exact PMCs
selected will be those with the highest correlation to the components A and B respectively.

It is also possible to add additional constraints to factor selection. Depending on the
platform, and the amount of effort a user is prepared to undertake when gathering data, it
may be desirable to place a restriction on the number of runs required to gather the data.
This may not always be the case, or the user may not be able to expend the additional effort
to capture them. Therefore, if the user wishes to impose additional constraints to reduce
the burden of data gathering, these constraints should be formulated and applied at this
stage. This is implemented by using a Integer Linear Programming (ILP) solver [Gu15] to
perform the maximisation step, and so any ILP constraints can be used.

A pseudocode implementation of the application of PCA in our approach to select n relevant
factors is given in Algorithm 1. Once PCA has identified which PMCs must be collected,
the main data collection process can now take place and is only required to record values
for these PMCs, which reduces the burden of instrumentation.

Quality of the selected factors and contenders

One issue that may be encountered during feature selection is the selection of poor quality
factors. This can happen if user constraints prevent high quality factors from being selected,
or high quality features simply don’t exist. If this is the case then the outcome of the
algorithm may be a limited number of factors (< n) or factors with a low correlation to the
execution time of the analysed task.

Exploring and Understanding Multicore Interference from Observable Factors 83

1 Function GetBestPMCs(dataset, n)

2 P← PCs of dataset given by PCA
3 discard any c ∈ P not correlated with execution time
4 discard any c ∈ P not accounting for a substantial amount of variance (e.g. < 10%)
5 compute relative weighting of remaining c ∈ P

6 select n PMCs maximising the sum of loadings subject to the weightings (and additional user
constraints) by ILP solver

7 return PMCs

8 end

Algorithm 1: Pseudo-code implementation of PCA as used to extract the best possible
PMCs for instrumentation

xx x xxx xx x xx xx xx xPC1

x x
x

x
xx
x

x x
xx
xx
x x x PC1

PC2 x xx x xxx xx xx xxxPC2

x

y

Fig. 2: Graphical Example of PCA

The use case for the analysis also drives requirements on the exercised contenders during
the construction of the analysed dataset. If the observations focus on a subset of shared
resources of interest, the selected factors then offers a relative classification of those
resources which contribute the most to variations in the analysed task. Similarly for a
conclusive feature selection, it is important for a contender to exercise various sources of
interferences; focus on a single of the shared resources of interest, e.g. the shared memory,
may lead to orthogonal variations of available PMCs hindering the analysis process.

Variability within the analysed dataset is an important factor to discriminate the PMCs
that correlate to the behaviour of the analysed task. The exercised contenders should aim
not only at generating worst-case interference scenarios but also produce a wide gamut of
scenarios. Our feature selection focuses on factors correlated to the execution time of the
analysed task. Therefore, variation on the inputs, executed paths, and observed scenarios is
only captured by the analysis if it has a noticeable impact on the analysed task’s temporal
behaviour.

7 Evaluation

We evaluated our approach on various benchmarks deployed on the Erika OS running atop
the AURIX platform, as described in Section 4. Two sets of benchmarks were investigated:
simple examples from the Taclebench suite [Co] and three real-world applications. The

84 Benjamin Lesage et. al.

collection of end-to-end timing and PMCs values relies on the instrumentation of the
analysed task, i.e. the insertion of a call to the instrumentation routine before and after
calls to the analysed task. We use the Rapita Verification Suite [Ra] to that purpose.
All benchmarks are set to run in a single periodic task concurrently with our synthetic
contenders. Input vectors are either provided as part of the benchmark [Co] or randomly
generated during our experiments. Similarly, explored interference levels and patterns are
randomly generated for each execution before each execution of the analysed task. To
enforce the occurrences of inter-core interferences, portions of the data manipulated by
some benchmarks have been mapped into the shared memory.

7.1 Understanding the sources of execution time variability

We present the factors identified as relevant to the variability of a selection of benchmarks
in Table 1. The temporal variability for a benchmark is captured by the ratio between
the maximum and minimum observed execution time during our experiments (in the
last column). The real-world benchmarks investigated were missile-c, a missile control
program converted from Ada to C [Hi], and the powerwindow and lift benchmarks from the
Taclebench [Co] suite. ALU, LSU, LU stalls represents stalls in the Arithmetic, Load/Store
and Loop unit respectively. Each factor is prefixed by its measuring core.

The largest ratios between maximum and minimum execution times are observed as an
example for anagram, binarysearch, dijkstra, and missile_c. Our analysis selects in such
cases factors such as the number of executed branches, multiple issues, or stalls in the
ALU, as most relevant to the observed variations. This suggests that variability in these
benchmarks stems first and foremost from the observations capturing different execution
paths; variations in the execution time of such tasks is not driven by the variations in
inter-core interferences but changes in executed paths and input vectors. The analysis of the
impact of inter-core interferences on those benchmarks should therefore distinguish between
different execution scenarios. Considering dijkstra as an example, the path searching
algorithm includes a short, special case if the source and target nodes are the same.

The identification of factors from other cores as relevant, e.g. C2 Data Memory Stalls for
compressdata or matmult, is an indicator of the sensitivity of an application to variations in
the behaviour of concurrent tasks as triggered by our contenders. The strong contribution
of factors such as memory stalls further identifies those tasks as data intensive applications.
On compressdata, variations due to contentious data accesses further trumps those due to
small variations in the execution path. Further testing should therefore focus on contenders
exercising the shared memory to exploit variability in these benchmarks.

The results of the application of the analysis to different benchmarks and cores also points
towards an asymmetry on the platform. Tasks running on Core 1 are more likely to be
impacted by contenders on Core 2 than on Core 0; factors from Core 2 are more often
selected on their own for benchmarks running on Core 1 than factors from Core 0. This
may stem from lower contention levels from the energy efficient Core 0, or asymmetry in
the arbitration of accesses to the shared resources.

Exploring and Understanding Multicore Interference from Observable Factors 85

Tab. 1: Representative factors identified for each benchmark.
Benchmark Core Select Factors Max/Min runtime ratio

MÄLARDALEN

adpcm_encoder C0 C0 Data Memory Stalls C0 ALU Stalls 1.00276

C0 Executed branches C2 LSU Stalls

adpcm_encoder C1 C1 Data Memory Stalls C1 Executed branches 1.00412

C2 Data Memory Stalls C2 ALU Stalls

anagram C1 C1 Data Memory Stalls C1 LSU Stalls 3.4214

C1 Multiple instructions issue C1 Executed branches

binarysearch C0 C0 Data Memory Stalls C0 ALU Stalls 1.85784

C0 Executed branches C2 Data Memory Stalls

binarysearch C1 C0 Data Memory Stalls C1 Data Memory Stalls 1.9

C1 ALU Stalls C1 Executed branches

bitcount C0 C0 Data Memory Stalls C0 ALU Stalls 1.2179

C0 Executed branches C1 LSU Stalls

bitcount C1 C1 ALU Stalls C1 LSU Stalls 1.22467

C1 Executed branches C2 LSU Stalls

codecs_dcodrle1 C0 C0 Data Memory Stalls C0 LSU Stalls 1.43177

C0 Executed branches C2 Data Memory Stalls

codecs_dcodrle1 C1 C1 Data Memory Stalls C1 LSU Stalls 1.53956

C1 Multiple instructions issue C1 Executed branches

compressdata C0 C0 Data Memory Stalls C0 Executed branches 1.55328

C1 Data Memory Stalls C2 Executed branches

compressdata C1 C0 Data Memory Stalls C1 Data Memory Stalls 1.63359

C1 Executed branches C2 Executed branches

countnegative C0 C0 Executed branches C1 Data Memory Stalls 1.25762

C1 LSU Stalls C2 Data Memory Stalls

countnegative C1 C1 LSU Stalls C1 Multiple instructions issue 1.06209

C1 Executed branches C2 LSU Stalls

dijsktra C0 C0 ALU Stalls C0 Executed branches 1577.23

C1 LSU Stalls C2 LSU Stalls

dijsktra C1 C1 Data Memory Stalls C1 LSU Stalls 147.27

C1 Multiple instructions issue C1 Executed branches

duff C0 C0 Data Memory Stalls C0 ALU Stalls 1.51672

C1 Data Memory Stalls C2 Data Memory Stalls

duff C1 C0 Data Memory Stalls C1 Data Memory Stalls 1.51595

C1 ALU Stalls C2 Data Memory Stalls

matmult C0 C0 Data Memory Stalls C1 Data Memory Stalls 1.32437

C2 Data Memory Stalls C2 Multiple instructions issue

matmult C1 C1 Data Memory Stalls C1 LSU Stalls 1.31893

C2 Data Memory Stalls C2 Multiple instructions issue

ndes C0 C0 Data Memory Stalls C0 ALU Stalls 1.09869

C0 LSU Stalls C1 Data Memory Stalls

ndes C1 C1 Data Memory Stalls C1 ALU Stalls 1.112

C1 LSU Stalls C2 Data Memory Stalls

qurt C0 C0 Data Memory Stalls C0 ALU Stalls 1.35984

C0 Executed branches C2 Data Memory Stalls

qurt C1 C1 Data Memory Stalls C1 ALU Stalls 1.33716

C2 Data Memory Stalls C2 Executed branches

rijndael_encoder C0 C0 Data Memory Stalls C2 Data Memory Stalls 1.03466

C2 Multiple instructions issue C2 Executed branches

rijndael_encoder C1 C1 Data Memory Stalls C1 LSU Stalls 1.0344

C2 Data Memory Stalls C2 Multiple instructions issue

statemate C0 C0 Data Memory Stalls C0 LSU Stalls 1.00501

C0 Executed branches C2 LSU Stalls

statemate C1 C1 LSU Stalls C1 Multiple instructions issue 1.00509

C1 Executed branches C2 LSU Stalls

st C0 C0 Data Memory Stalls C0 ALU Stalls 1.10449

C1 Data Memory Stalls C1 Multiple instructions issue

st C1 C1 Data Memory Stalls C2 Data Memory Stalls 1.13961

C2 Multiple instructions issue C2 Executed branches

REAL-WORLD EXAMPLE

lift C0 C0 Data Memory Stalls C0 ALU Stalls 1.46235

C0 Executed branches C2 Multiple instructions issue

lift C1 C1 ALU Stalls C1 LU Stalls

C1 Multiple instructions issue C1 Executed branches 1.48444

missile_c C0 C0 Data Memory Stalls C0 ALU Stalls 24.3645

C0 LSU Stalls C0 Executed branches

86 Benjamin Lesage et. al.

7.2 Exploring the impact of inter-core interferences

We focus in the following on the matmult benchmark running on Core 0. The application
comprises a single path computing the multiplication of two matrices mapped into the main
memory. Variability in the temporal behaviour of the benchmark is thus mostly related to
inter-core interferences and accesses to the shared main memory, as captured by our method
in Table 1. Using our framework, we collect observations under different configurations
of interference levels, i.e. the portion of accesses to the shared memory, from each core.
The collected execution times are then normalised over the execution time for matmult in
isolation, without contenders. The median of the observed execution times for each inte
rference level are presented in Figure 3.

Fig. 3: Normalised execution time for matmult under inter-core interferences

As expected, the execution time of the matmult benchmark increases alongside the inter-
ferences generated by the synthetic contenders. This is however not a strictly increasing
curve; high execution times are more likely to be observed when about 80% of Core 1
memory accesses hit the shared memory, and at least 60% of Core 2 do. This reinforces the
observation that the arbitration policy on the AURIX shared memory may be asymmetric.

Furthermore, maximising the interferences generated by other cores does not guarantee
maximising the impact on the analysed task as contending cores start interfering with
themselves, restricting their maximum bandwidth to the main memory, and each other.
Similarly, focusing solely on the impact of a single source of interferences at a time, e.g.
Core 1, does not lead to maximised observed execution time. To understand the impact of
interferences, we advocate the need to explore a wide variety of configurations, in terms of
types of interferences but also strength of those interferences.

Exploring and Understanding Multicore Interference from Observable Factors 87

8 Conclusion

This paper introduces a feature selection approach to understand the main source of variabil-
ity in an application. Our approach draws the relation between the temporal behaviour of an
application and the observable factors on the platforms through the performance monitoring
infrastructure. We focus on the impact of inter-core interferences stemming from the use of
shared resources by concurrent tasks. To exercise a sufficient level of variability, we rely on
synthetic, configurable contenders to exercise different interference patterns, sources, and
levels.

We implemented our approach on the OSEK/VDX-compliant Erika OS running atop the
Tricore AURIX TC277x platforms. Our framework allows the joint collection of timing and
PMCs information, under user-controlled interference ranges. The evaluation demonstrates
that the method is able to classify the main sources of variability in different categories of
applications, from control code to more data-centric kernels. Using such a simple kernel, we
further illustrated the importance of variability in the test conditions to highlight variability
and the worst-case configurations in the analysed task.

We evaluated our process on other platforms, such as the Freescale P4080, and plan to
expand to other architectures or sources of interferences. Our approach requires only
minimal knowledge of the underlying platform. Namely, potential sources of interferences
need to be identified and contenders designed to exercise them. Work is further required to
interpret the meaning behind the PMCs selected by the analysis. However, similar design
principles still apply across platforms, such as varying access patterns, data-centric kernels,
etc., and similar performance monitoring infrastructure are available.

Acknowledgments

This work was partially funded by EU FP7 IP PROXIMA (611085), and the UK EPSRC
Project MCCps (EP/P003664/1). EPSRC Research Data Management: No new primary
data was created during this study.

References

[Al14] Altmeyer, S.; Douma, R.; Lunniss, W.; Davis, R. I.: Evaluation of Cache Parti-
tioning for Hard Real-Time Systems. In: 2014 26th Euromicro Conference on
Real-Time Systems (ECRTS). July 2014.

[Al15] Altmeyer, S.; Davis, R. I.; Indrusiak, L.; Maiza, C.; Nelis, V.; Reineke, J.: A
Generic and Compositional Framework for Multicore Response Time Anal-
ysis. In: Proceedings of the 23rd International Conference on Real Time and
Networks Systems. RTNS, 2015.

88 Benjamin Lesage et. al.

[An97] Anderson, J. M.; Berc, L. M.; Dean, J.; Ghemawat, S.; Henzinger, M. R.; Le-
ung, S.-T. A.; Sites, R. L.; Vandevoorde, M. T.; Waldspurger, C. A.; Weihl, W. E.:
Continuous Profiling: Where Have All the Cycles Gone? ACM Trans. Comput.
Syst. 15/4, Nov. 1997.

[Co] Contributors: Taclebench Benchmark Suite.

[En16] Enterprise, E.: ERIKA Enterprise | Open source RTOS Osek/VDX Kernel, 2016,
URL: http://erika.tuxfamily.org/drupal/.

[Gu15] Gurobi Optimization, I.: Gurobi Optimizer Reference Manual, 2015, URL:
http://www.gurobi.com.

[Hi] Hilton, A.: SPARK Missile Guidance Simulator.

[In14] Infineon: Aurix (TM) Family TC27xT Documentation, 2014, URL: www.
infineon.com/aurix.

[JHH15] Jacobs, M.; Hahn, S.; Hack, S.: WCET Analysis for Multi-core Processors with
Shared Buses and Event-driven Bus Arbitration. In: Proceedings of the 23rd
International Conference on Real Time and Networks Systems. RTNS, ACM,
New York, NY, USA, 2015.

[Ji13] Jing, W.: Performance Isolation for Mixed Criticality Real-time System on
Multicore with Xen Hypervisor, MA thesis, Uppsala University, Department of
Information Technology, 2013.

[Jo02] Jolliffe, I.: Principal component analysis. Wiley Online Library, 2002.

[Ra] Rapita Systems: Rapita Verification Suite, https://www.rapitasystems.com/.

[Ra12] Radojković, P.; Girbal, S.; Grasset, A.; Quiñones, E.; Yehia, S.; Cazorla, F. J.:
On the Evaluation of the Impact of Shared Resources in Multithreaded COTS
Processors in Time-critical Environments. ACM Transactions on Architecture
and Code Optimization 8/4, 34:1–34:25, Jan. 2012.

[Se] Semiconductor, F.: EREF: A Programmer’s Reference Manual for Freescale
Embedded processors.

[SK11] Sanchez, D.; Kozyrakis, C.: Vantage: scalable and efficient fine-grain cache
partitioning. In: SIGARCH Computer Architecture News. Vol. 39. 3, ACM,
pp. 57–68, 2011.

[SM08] Suhendra, V.; Mitra, T.: Exploring locking: partitioning for predictable shared
caches on multi-cores. In: Design Automation Conference (DAC). 45th ACM/IEEE.
June 2008.

[St06] Stephens, L. J.: Schaum’s Outlines: Beginning Statistics. McGraw-Hill, 2006.

[VYF16] Valsan, P. K.; Yun, H.; Farshchi, F.: Taming Non-Blocking Caches to Improve
Isolation in Multicore Real-Time Systems. In: IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). Apr. 2016.

Peter Dencker et. al.; Automotive Safety & Security 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 89

A Testing Framework Architecture Concept for Automotive

Intrusion Detection Systems

Christopher Corbett1, Tobias Basic2, Thomas Lukaseder3, Frank Kargl3

Abstract: Vehicles are the target of a rising number of hacking attacks. The integration of in-vehicle
intrusion detection systems is a common approach to increase the overall system security. However,
testing and evaluating these systems is difficult due to the lack of tools to generate realistic benign
and malicious workloads as well as sharing these workloads with other researchers. Currently, test-
ing tools are predominantly intended for Network Intrusion Detection System (NIDS) in company or
industrial networks where their usefulness became apparent. Yet, in the automotive domain, develop-
ment of testing tools is still in the early stages. Existing non-commercial automotive tools only focus
on one specific bus technology each. However, in-vehicle communication exceeds bus technology
boundaries and a testing tool must cover multiple technologies. We propose a framework architec-
ture concept for in-vehicle NIDS testing and evaluation to enable the creation of realistic network
traffic and attacks in consideration of automotive specific challenges. Our concept provides the op-
portunity to share data without additional anonymization effort therefore improving cooperation and
reproducibility of testing results.

Keywords: automotive, network, IDS, evaluation, security, framework

1 Introduction

Automotive networks are essential for both driver assistance and future trends such as
autonomous driving. With increasing complexity and rising numbers of network devices,
the possible impact of malicious manipulation and malfunction also increases. Additional
network bandwidth is mandatory to cover new functional requirements and cannot be met
with traditional bus systems such as the Controller Area Network (CAN). Automotive
Ethernet is designed to tackle these problems and — in addition to the necessary band-
width — provides greater flexibility with regard to higher layer protocols.

A rising number of attacks on vehicles (e.g. [MV15],[RM15]) emphasizes the need for
more security precautions and extended protection mechanisms in upcoming automobiles.
Embedding Intrusion Detection Systems (IDS) into in-vehicle networks is an applicable
approach to enhance overall vehicle security complementary to encryption and authenti-
cation mechanisms. Evaluating and testing IDS is a difficult task. Realistic datasets that
are compliant to the automotive domain specific requirements are necessary for testing
but hard to obtain. Furthermore, there is no standardized methodology for the evaluations
which in turn leads to a lack of comparability of the results.

1 Audi AG, 85045 Ingolstadt, christopher.corbett@audi.de
2 TU Darmstadt, Department of Computer Science, fi59eged@rbg.informatik.tu-darmstadt.de
3 Ulm University, Institute of Distributed Systems, {firstname}.{lastname}@uni-ulm.de

90 Christopher Corbett et. al.

In this paper, we show that most commonly available tools do not meet the requirements
for automotive NIDS evaluations and we introduce our architecture concept to cover those
needs. With our approach, we are not only able to test network intrusion detection systems
or generate custom network traffic, but — through separation of the evaluation scenario
definition from specific network parameters — scenarios can be shared among interest
groups without the necessity to anonymize traces or the risk of exposing real network
topologies and information.

The remainder of this paper is structured as follows: In Section 2, we provide an overview
of automotive domain specific protocols and topologies. We present related work in Sec-
tion 3 and then give an overview of common in-vehicle network attack scenarios in Section
4. Necessary intrusion detection evaluation steps are described in section 5 and the derived
requirements can be found in Section 6. Our framework architecture concept is described
in Section 7; followed by our conclusion in Section 8.

2 Background

The automotive industry introduced a variety of bus technologies over the years. Local In-
terconnect Network (LIN), Media Oriented Systems Transport (MOST), Controller Area
Network (CAN) and Flexray are well established in in-vehicle networks. With new feature
sets, bandwidth requirements increased rapidly and therefore new technologies such as
the enhanced CAN — Controller Area Network Flexible Data Rate (CAN-FD) — and the
Ethernet (IEEE 802.3) protocol gained attention. As in-vehicle networks are very hetero-
geneous, data exchange between Electronic Control Units (ECUs) exceeds bus technology
boundaries and translations (e.g. transporting CAN frames via Ethernet) are commonly
used. To start off with a decent framework feature set to generate testing workload we ex-
amined attributes, parameters and characteristics of automotive Ethernet, CAN and CAN-
FD.

2.1 Automotive Protocols

With each bus technology and feature set, new automotive protocols were introduced or
enhanced over time, from which some are used in industrial networks (e.g. CAN proto-
cols) and for others it is thinkable to be used in company networks (e.g. remote vehicle
diagnostics). Figure 1 shows the classification of CAN and Ethernet protocols in the layers
of the Open Systems Interconnection Model (OSI).

A Testing Framework Architecture Concept for Automotive Intrusion Detection Systems 91

Figure 1: Protocol overview

Zimmermann and Schmidgall [ZS14] give an in depth overview of most of the standard-
ized automotive protocols. In Table 1 we provide a brief summary of protocols we analyzed
to derive requirements for the testing framework architecture.

Protocol Standard Description

Unified Diagnostic Ser-
vices (UDS)

ISO 14229 An application client-server protocol to remotely call
diagnose procedures in ECUs and transport information
back to the requester.

ISO Transport Protocol
(ISO-TP)

ISO 15765-2 Protocol to transport payloads larger than the maximum
payload size on CAN/CAN-FD.

Diagnose over Internet
Protocol (DoIP)

ISO 13400 An automotive transport layer protocol to transport
UDS messages between the client and the server using
port 13400 (UDP/TCP).

Universal Measurement
and Calibration Proto-
col (XCP)

ASAM
MCD-1 XCP
V1.3.0 [AS15]

A bus-independent master-slave communication proto-
col to exchange information between ECUs and a cali-
bration software on a external device (e.g. PC, Vehicle
Tester, Laptop).

Scalable Service-
Oriented Middleware
over Internet Protocol
(SOME/IP)

AUTOSAR
[AU15][AU14]

A service oriented protocol that supports remote pro-
cedures calls, data serialization and a service discovery
and publish/subscribe mechanism.

XoverEthernet AUTOSAR
[AU15][AU14]
/ Proprietary

Frames of one bus system are transported as payload via
Ethernet (e.g. CAN over Ethernet).

Proprietary Proprietary Besides standardized and established protocols, car
manufacturers make use of own or third party propri-
etary protocols.

Table 1: List of analyzed protocols

2.2 Communication patterns

Communication patterns in in-vehicle networks are based on design rules which rest upon
applied bus technologies as well as application and protocol requirements. Therefore, each
Original Equipment Manufacturer (OEM) network acts differently and a general descrip-

92 Christopher Corbett et. al.

tion can not be given. However, several suppliers provide development tools to cover re-
quirements across OEMs and provide a decent overview of CAN bus communication pat-
terns in their documentation (e.g. Vector Informatik GmbH [Ve15]). These patterns are
extended by common Ethernet behavior (e.g. fire and forget) as it is not an exclusive re-
placement for legacy bus systems in the foreseeable future. As a result we derived several
factors from CAN and Ethernet communications that result in different patterns. These
are:

∙ time triggering
∙ events
∙ fire and forget
∙ request and response
∙ state premises (stateful)
∙ no state premises (stateless)

3 Related Work

3.1 Automotive IDS

The challenges of designing tests of intrusion detection systems are widely understood.
Milenkoski et al. [Mi15] provide a very extensive survey of common practices for tests of
different kinds of intrusion detection systems. They discuss the three main components of
IDS testing: workloads, metrics and measurement methodology. For each of the compo-
nents, the authors provide a common terminology. For our work, we adopt this terminology
and propose an architecture for workload generation in automotive networks.

There has been previous work that deals with designing intrusion detection systems for in-
vehicle networks that employ CAN as main bus technology [Ha14][SKK16][KK16][CS16].
However, to the best of our knowledge, there is no work that deals with intrusion detection
in modern in-vehicle architectures that also employ Ethernet as a backbone technology
for the in-vehicle network. Nonetheless, Herold et al. [He16] have explored anomaly de-
tection for the Scalable Service Oriented Middleware over Internet Protocol (SOME/IP)
using complex event processing. To test their anomaly detection regarding performance,
they implemented a SOME/IP packet generator, featuring four kinds of simple attacks:
1) malformed packets 2) protocol violations 3) system-specific violations and 4) timing
issues. However, they only investigated anomaly detection for SOME/IP, which is an ap-
plication layer protocol that is employed in upcoming Ethernet-based vehicle networks.
The automotive protocol stack for Ethernet-based networks is much more diverse. In our
work, we look at all the protocols and designed an architecture that is able to test an NIDS
in modern Ethernet-based in-vehicle networks.

Moreover, there has been a lot of works that deal with the generation of workloads for
testing IDS [Mi15]. Antonatos et al. [AAM04] have provided an extensible framework for
the generation of realistic workloads in their work. Their generator is, however limited to

A Testing Framework Architecture Concept for Automotive Intrusion Detection Systems 93

application layer traffic, and focuses on the generation of payloads for these protocols. We
do aim for a similar approach for our architecture, but want to provide more flexibility re-
garding developing and describing different scenarios. Our architecture also supports the
generation of traffic down to layer 2. Furthermore, we extend our architecture to fulfill
automotive requirements (cf. Section 6).

3.2 State of the Art Tools

There is a variety of tools which can be used to perform specific attacks or scans, such
as Nmap, Nessus and Metasploit. However, most of them are limited to very specific use
cases such as port scanning in the case of Nmap. While Metasploit can be used to generate
traffic, its main purpose is to generate pure malicious traffic with the help of its integrated
exploit database.

Manual testing is a very time consuming task. It involves manually generating traffic with
a collection of tools, capture the traffic using e.g. Wireshark, and then modifying and
replaying the traffic. Furthermore, none of these tools have been adapted for the automotive
domain. The manually generated traffic would have to be adjusted to represent realistic
traffic in an in-vehicle network for effective testing of automotive NIDS. This adjustment
process can also take a substantial amount of time as the traffic model has to be modified
for every model and vehicle setup.

Packet generation tools are meant as a solution to the manual generation problem. They
facilitate the automated generation of packets, which can be used to test intrusion de-
tection systems. However, they do not provide the functionality required to reliably test
automotive NIDS. Most tools do not fulfill our requirements as they do not support traf-
fic generation, modification, and forwarding across multiple interfaces, which e.g. allows
man-in-the-middle attacks on layer 2.

We have explored the feature sets of 10 existing packet generation tools and have found
that none of them provide support for automotive protocols such as SOME/IP or UDS and
DoIP. None of them provide the ability to prioritize traffic when capturing and modifying
the response, or when capturing and sending a response to a captured packet. Additionally,
a large chunk of the tools did not provide the flexibility to write scripts in order to automate
certain tasks and re-use them for further tasks.

Due to the cyclic nature of a lot of messages sent in an in-vehicle network, we also require
a packet generation tool to send packets at steady intervals with an insignificant amount of
jitter. None of the tools provided a similar feature except Ostinato and packETH. Ostinato
only allowed setting an interval of a packet per X seconds; packETH, however, offered mil-
lisecond and even nanosecond resolution for interval generation, but lacks other features,
such as multiple interface support. Moreover, as the Ethernet layer is more important in
in-vehicle networks compared to company networks, we need full flexibility when craft-
ing and modifying Ethernet packets. Only some of the packet generation tools allowed
receiving packets on layer 2. A summary of our findings can be found in Table 2.

94 Christopher Corbett et. al.

P
C

A
P

R
ep

la
y

M
ul

ti
pl

e
In

te
rf

ac
e

H
an

dl
in

g

S
cr

ip
ti

ng

L
ay

er
2

S
up

po
rt

IP
v6

S
up

po
rt

A
ut

om
ot

iv
e

P
ro

to
co

ls

G
en

er
at

e
M

ix
ed

T
ra

ffi
c

P
ri

or
it

y
H

an
dl

in
g

C
ap

tu
re

T
ra

ffi
c

P
ac

ke
t

m
od

ifi
ca

ti
on

P
ac

ke
t

se
nd

in
g

in
te

rv
al

A
ut

om
at

io
n

Tomahawk ✓ ✓ ✓

Bit-Twist ✓ ✓ ✓ ✓ ✓

Hping2 ✓ ✓

Hping3 ✓ ✓ ✓ ✓

Nemesis ✓ ✓ ✓ ✓

Ostinato ✓ (✓) ✓ ✓ ✓ ✓ ✓ (✓)

packETH ✓ ✓ ✓ ✓ ✓

Yersinia ✓ (✓) ✓

netsniff-ng ✓ ✓ ✓ ✓ ✓

pktgen ✓ (✓) ✓ ✓ ✓ ✓ ✓ ✓

Table 2: An overview of available packet generation tools and their capabilities.

4 In-Vehicle Network Attack Scenarios

There are different types of attack scenarios for in-vehicle networks. Figure 2 shows how
we set up an example network topology with a centralized component (e.g. a gateway or a
routing unit) and four network participants. The following scenarios are feasible ways to
inject malicious traffic or to modify existing network traffic in vehicular networks.

1. Man in the middle: In this scenario a malicious network participant (E) is posi-
tioned between the devices d and r to eavesdrop, manipulate or forge network traffic.

2. Compromised device: In this scenario, device (a) gets compromised with a piece of
malicious software (F) to forge authentic communication or modify communication
behavior.

3. Attached device: A new malicious network participant (G) is attached to the net-
work and forges network traffic on an existing connection between network partici-
pants b and r.

A Testing Framework Architecture Concept for Automotive Intrusion Detection Systems 95

4. Device replacement: An existing device (c) gets replaced by a malicious device
(H).

5. Compromised central network device: Similar to scenario 2) a malicious piece of
software is placed into a central network device (I) to modify network behavior or
traffic.

Figure 2: Overview of in-vehicle network attack scenarios.

5 IDS Testing Parameters and Metrics

This section gives a short introduction to different types of intrusion detection systems,
general testing metrics and parameters as well as automotive domain specific parameters.

5.1 Categorization

Fallstrand et al. [FL15] state that intrusion detection and prevention systems are commonly
categorized based on four properties:

∙ Scope — What kind of entity or entities does the system protect?

∙ Location and Distribution — Where and how are the system components deployed?

∙ Detection method — How does the system identify intrusions?

∙ Post-detection — How does the system respond to detected intrusions?

In this paper, we focus both on centralized and distributed in-vehicle network intrusion
detection systems with a focus on misuse or anomaly based detection algorithms.

96 Christopher Corbett et. al.

5.2 Metrics

IDS testing metrics can be categorized into performance- and security-related metrics
which can again be grouped by commonly used basic attributes such as false-negative,
true-positive, false-positive, true-negative, positive predictive value and negative predic-
tive value, but also in composite values such as expected cost and intrusion detection ca-
pability [MC14]. In addition to the metrics used in prior research, we add detection latency
to the list of metrics. Especially for automotive intrusion detection systems, timeliness of
the attack detection can be crucial for the applicability in the field.

5.3 Requirements for NIDS Testing

The design of NIDS depends on numerous factors such as the network topology, the pro-
tocols, or the detection mechanisms used. These factors also need to be considered when
designing a testing architecture. The testing architecture needs to be able to be agnostic
to differences in NIDS architectures — i.e. it should not inherently favor one architecture
over the other — while still acknowledging specific strengths and weaknesses of NIDS ar-
chitecture types. For instance, some machine learning based NIDS need a certain time to
build their specific neuronal network. A data set with a certain minimal size with labels
for both benign traffic and attacks needs to be available both for training and testing the
NIDS.

Milenkoski et al. [MC14] showed that workloads are mandatory for intrusion detection
system testing and can be divided into three different types: purely benign, purely mali-
cious and mixed workload sets. The acquirement or generation of workloads are either
achieved by executables (e.g. manual generation, exploit databases, vulnerability and at-
tack injection or workload drivers) or traces (e.g. through acquisition or generation). Us-
able training data is scarce and — as these data sets are recorded from real networks —
they also show the characteristics of the original network without the possibility to adjust
to the network configuration of the NIDS application site. Therefore, a dynamic testing
system that can generate traffic on the fly and can generate an unlimited amount of data is
advantageous.

Test runs have to be repeatable to ensure scientifically valid results, while the test environ-
ment also needs to offer the dynamic of real networks in the form of random changes in
the network behavior. For this to work efficiently, automation must be possible.

5.4 Automotive Specific Challenges

An in-vehicle network combines different bus technologies which cannot be strictly sep-
arated and influence each other. Therefore, a comprehensive NIDS needs to consist of a
combination of bus specific NIDS which adds complexity to the NIDS itself and to the
tests of such a system. Currently, research focuses more on NIDS and Network Intrusion

A Testing Framework Architecture Concept for Automotive Intrusion Detection Systems 97

Detection and Prevention Systems (NIDPS) for CAN networks while Ethernet is starting
to gain some attention.

The unavailability of automotive specific attacks is another factor that complicates testing
of an automotive NIDS. In comparison to attacks on company networks, attacks on ve-
hicles are very vehicle and OEM specific. There is no comprehensive database of known
attacks available that could be shared among car manufacturers.

To develop, test, and evaluate automotive NIDS — independent of the chosen detection
method — valid and realistic data sets of network traffic must be available. Usually, traces
of existing traffic or manually generate traffic are used. However, if no real traffic trace is
available, the generated traffic cannot be proven to be realistic.

6 Framework Requirements

Considering attack scenarios, traffic generation, and IDS metrics, we derived a set of es-
sential requirements. The architecture has to meet these requirements to facilitate the gen-
eration of realistic automotive workloads.

Protocol support The architecture must provide the ability to parse, manipulate and forge
packets sent using protocols used in the automotive protocol stack described in Sec-
tion 2. This facilitates the communication with other members in the automotive
network as a legit as well as a malicious entity, depending on the scenario.

Frame manipulation A lot of network management, such as Virtual Local Area Network
(VLAN) segmentation, happens on the Ethernet layer. Therefore, in addition to the
previous requirement, the given tool must be able to manipulate packets on layer 2,
including the VLAN tag.

Response time In order to deal with real-time applications in automotive networks, the
tool has to be able to respond to a packet within the defined deadline for the cor-
responding vehicle domain. This ranges from 10ms for safety-critical sytems up to
150ms for audio/video streams in the infotainment domain [LP13].

Bandwidth The tool must provide a bandwidth of 100 Mbit/s (better yet 1 Gbit/s). Current
automotive applications employ 100 MBit Ethernet, however, in future applications
Gbit Ethernet is going to be employed in vehicles.

Time interval support ECUs are very sensitive regarding the interval at which they ex-
pect a certain signal or packet to arrive at their interface. Hence, the tool must be
able to send and forward packets and frames at steady intervals while keeping the
jitter as low as possible.

Fuzzing support Due to the long lifetime of automobiles, they are continuously exposed
to new kinds of attacks. The tool must provide a fuzzing functionality to be able to
simulate previously unknown scenarios and attacks.

98 Christopher Corbett et. al.

State handling State handling is the ability to establish a certain state in a protocol. For
example, messages A,B,C are sent according to specification and then deviate from
the specification or modify messages. The state machine is also required to perform
e.g. Transmission Control Protocol (TCP) Session Hijacking attacks.

Frame and packet scheduling The prioritization of packets and frames is of higher im-
portance in automotive networks compared to company networks. The architecture
therefore both has to be able to deal with incoming packets of different priority, and
has to be capable to prioritize their processing accordingly.

Multiple interface support Several interfaces must be usable in parallel. Some devices
communicate on several buses such as Ethernet and CAN. The architecture and tool
must be able to replicate this behavior.

Scenario and parameter separation The separation of evaluation scenarios and data or
value sets is important to enable the exchange and verification of results with and by
third parties.

7 Testing Tool Architecture Concept

We propose an architecture for a testing tool that facilitates the proper evaluation of auto-
motive IDS by satisfying all the requirements which we have defined in the previous sec-
tion. Fulfilling the requirements ensures the generation of realistic automotive workloads.
It also overcomes various shortcomings of existing tools. While our goal was to design a
tool for the evaluation of automotive IDS, it can also be used to perform functional testing
as well as security testing of an (automotive) network.

7.1 Architecture

The tool architecture is divided into three layers: user, developer, and system. This makes
the tool’s underlying framework easy to extend for those, who have the technical knowl-
edge and easy to use for those, who just want to set up a test quickly using the pre-defined
scenarios.

From a user’s perspective, either pre-defined testing and attack scenarios or a self-designed
scenario description can be used and configured. The configuration file contains various
parameters exposed by the scenario, such as interfaces, protocols, layers, and packet val-
ues. Furthermore, it includes timing as well as priority information, if needed. Additional
parameters can be exposed through the developer layer.

The tool’s developer layer offers an extensible framework with which testing and attack
scenarios can be developed. It provides three basic modules: function blocks, core and
network abstraction. A developer can implement a function block (e.g. SYN scan attack)
with custom logic and a defined parameter set. These function blocks can then be used by
users to describe scenarios, which resemble malicious, benign, or mixed traffic.

A Testing Framework Architecture Concept for Automotive Intrusion Detection Systems 99

Figure 3: An architecture for an automotive testing tool.

Some simple example scenarios can be:

1. Pure benign traffic: We simulate an ECU that sends out a signal at a pre-defined
interval.

2. Pure malicious traffic: We send out a TCP SYN scan to determine open ports on
an ECU.

3. Mixed traffic: We combine function blocks 1) and 2) to disguise our attack in reg-
ular traffic, and provide a more realistic and challenging scenario.

The core of the framework provides essential functionality such as frame interaction, a
configuration parser, a statistics manager, and a data handler. An Application Programming
Interface (API) can be used by function blocks to interact with the core’s submodules. The
data handler submodule provides means to interact with a list of provided payloads for a

100 Christopher Corbett et. al.

function block. Moreover, the frame interaction submodule enables parsing, crafting, and
manipulation of frames and packets.

The framework’s network abstraction module provides functionality to interface with dif-
ferent kinds of networking sockets, such as raw sockets or custom implementations (e.g.
ring-buffer based implementations such as PF RING[PF]) of the system layer. Further-
more, it takes care of the prioritization of frames to meet defined timing constraints. It
also maps the physical interfaces of the executing host to logical interfaces defined in the
scenario description.

Figure 3 shows the architecture of our proposed testing and workload generation frame-
work for the evaluation of automotive NIDS.

7.2 Discussion

Existing tools shown in 3.2 cover only some features required to create workloads for an
automotive NIDS testing. Either several tools must be combined or they lack necessary
protocol support. Our architecture concept remedies these shortcomings and provides the
ability to generate, modify, and analyze automotive-compliant traffic. Through scenario
descriptions, it is possible to generate both benign and malicious traffic, and easily apply
these scenarios to different vehicle setups. As our approach supports several interfaces, it
is possible to implement more complex scenarios, such as man-in-the-middle attacks on
layer 2. Additionally, setups can be shared among other research groups to verify results
or to be used in their own research.

8 Conclusion

Evaluating and testing network intrusion detection systems is essential for improving
NIDS. Workloads are necessary for testing the NIDS’ crucial detection capabilities. For
automotive Ethernet, such workloads are not currently available. For our malicious work-
load model, we consider five attack scenarios as presented in Section 4. We then derived
several requirements that are necessary to be able to generate realistic traffic in Ethernet-
based in-vehicle networks. In particular, the most important requirements are the ability to
handle multiple interfaces and the ability to prioritize the handling of different streams of
traffic.

We have analyzed several packet generation tools. We have found that none of the tools we
analyzed fulfilled our requirements. The most prominent finding from our analysis showed
that none of the tools provided support for multiple interfaces or traffic prioritization. With
an extensive amount of features missing in all analyzed tools, we have come to the con-
clusion, that extending existing tools is not a viable option and that a new architecture has
to be designed with the specific challenges of in-vehicular networks in mind.

We have proposed a novel architecture concept for a tool that remedies these shortcomings.
Furthermore, we made sure that our proposed architecture is extensible. New scenarios

A Testing Framework Architecture Concept for Automotive Intrusion Detection Systems 101

and attacks can be added easily through scenario descriptions. The provided functionality
can be extended through additional function blocks, or by extending the framework. Our
architecture fulfills the set requirements described in Section 6 by providing the necessary
modules in the framework.

A proof of concept implementation of the framework has to be provided to determine
whether our architecture proves usable in a realistic scenario. Said implementation then
has to be evaluated with regard to our identified requirements by implementing the attack
scenarios as described in Section 4. Furthermore, using said implementation to evaluate
a given automotive NIDS requires implementation of further scenarios to build a realistic
workload model. All these steps are left for future work.

References

[AAM04] Antonatos, Spyros; Anagnostakis, Kostas G; Markatos, Evangelos P: Generating real-
istic workloads for network intrusion detection systems. In: ACM SIGSOFT Software
Engineering Notes. volume 29. ACM, pp. 207–215, 2004.

[AS15] ASAM MCD-1 XCP V1.3.0: Universial Measurement and Calibration Protocol (XCP),
2015.

[AU14] AUTOSAR 4.2 Rev. 1: Example for a Serialization Protocol (SOME/IP), 2014.

[AU15] AUTOSAR 4.2 Rev. 2: Specification of Service Discovery, 2015.

[CS16] Cho, Kyong-Tak; Shin, Kang G: Fingerprinting electronic control units for vehicle intru-
sion detection. In: 25th USENIX Security Symposium (USENIX Security 16). USENIX
Association, pp. 911–927, 2016.

[FL15] Fallstrand, Daniel; Lindström, Viktor: Applicability analysis of intrusion detection and
prevention in automotive systems. Master’s thesis, Department of Computer Science and
Engineering; Chalmers University of Technology;Göteborg Sweden, 2015.

[Ha14] Han, Song; Xie, Miao; Chen, Hsiao-Hwa; Ling, Yun: Intrusion Detection in Cyber-
Physical Systems: Techniques and Challenges. In: IEEE SYSTEMS JOURNAL. vol-
ume 8. IEEE, 2014.

[He16] Herold, Nadine; Posselt, Stephan-A; Hanka, Oliver; Carle, Georg: Anomaly detection
for SOME/IP using complex event processing. In: Network Operations and Management
Symposium (NOMS), 2016 IEEE/IFIP. IEEE, pp. 1221–1226, 2016.

[KK16] Kang, Min-Joo; Kang, Je-Won: Intrusion Detection System Using Deep Neural Network
for In-Vehicle Network Security. PloS one, 11(6):e0155781, 2016.

[LP13] Lee, Youngwoo; Park, KyoungSoo: Meeting the real-time constraints with standard Eth-
ernet in an in-vehicle network. In: Intelligent Vehicles Symposium (IV), 2013 IEEE.
IEEE, pp. 1313–1318, 2013.

[MC14] Mitchell, Robert; Chen, Ing-Ray: A Survey of Intrusion Detection Techniques for Cyber-
Physical Systems. volume 46. ACM Computing Surveys, 2014.

[Mi15] Milenkoski, Aleksandar; Vieira, Marco; Kounev, Samuel; Avritzer, Alberto; Payne,
Bryan D: Evaluating Computer Intrusion Detection Systems: A Survey of Common Prac-
tices. ACM Computing Surveys (CSUR), 48(1):12, 2015.

102 Christopher Corbett et. al.

[MV15] Miller, Charlie; Valasek, Chris: Remote Exploitation of an Unaltered Passenger Vehicle.
Black Hat, 2015.

[PF] PF RING: http://www.ntop.org/products/packet-capture/pf_ring/. Last
accessed 2016-12-12.

[RM15] Rogers, Marc; Mahaffey, Kevin: How to Hack a Tesla Model S. DEF CON 23, 2015.

[SKK16] Song, Hyun Min; Kim, Ha Rang; Kim, Huy Kang: Intrusion detection system based
on the analysis of time intervals of CAN messages for in-vehicle network. In: 2016
International Conference on Information Networking (ICOIN). IEEE, pp. 63–68, 2016.

[Ve15] Vector Informatik: Vector: CANoe Interaction Layer. 2015. http://vector.com/
portal/medien/cmc/application_notes/SN-IND-1-011_InteractionLayer.
pdf. Last accessed 2016-12-12.

[ZS14] Zimmermann, Werner; Schmidgall, Ralf: Bussysteme in der Fahrzeugtechnik. Springer
Vieweg, 2014.

Peter Dencker et. al.(Hrsg.): Automotive Safatey & Security 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 103

Adapting Organic Computing Architectures to an
Automotive Environment to Increase Safety &Security

Kevin Lamshöft, Robert Altschaffel, Jana Dittmann 1

Abstract: Modern cars are very complex systems operating in a diverse environment. Today they
incorporate an internal network connecting an array of actuators and sensors to ECUs (Electronic
Control Units) which implement basic functions and advanced driver assistance systems. Opening
these networks to outside communication channels (like Car-to-X-communication) new possibilities
but also new attack vectors arise. Recent work has shown that it is possible for an attacker to infiltrate
the ECU network insides a vehicle using these external communication channels. Any attack on the
security of a vehicle comes implies an impact on the safety of road traffic. This paper discusses the
possibilities of using architectures suggested by Organic Computing to reduce these arising security
risks and therefore improve safety. A proposed architecture is implemented in a demonstrator and
evaluated using different attack scenarios.

Keywords: Automotive, System Architectures, Organic Computing

1 Introduction

Modern cars are complex systems containing a wide array of actuators,
sensors and ECUs (Electronic Control Units). Some of these components
are essential for the basic function of a car while others provide assistance
or amnesties to the driver. All these components are connected to an
internal network. With the growing number of external means to connect
to this network, like Car-to-X-Communication (C2X), In-Car Internet or
remote diagnostics an inherent risk of attacks on these networks arise.
Recent work [MV15] has proven this assumption. Any attack on the
security of a vehicle carries the same implication on the safety of road
traffic as error and faults of individual vehicular components. They can lead
to dangerous situations either through direct means (e.g. failure of brakes),
interruption of an assistance function the driver relies on (e.g. ABS) or
distraction (e.g. Multimedia). The complex interplay of all these
components is bound to further increase with the introduction of
autonomous vehicles. This complexity challenges classical engineering
approaches. Hence this paper explores the possibilities of using

1 Otto-von-Guericke Universität, AMSL, Universitätsplatz 2, 39102 Magdeburg,
Kevin.Lamshoeft|Robert.Altschaffel|Jana.Dittmann@iti.cs.uni-magdeburg.de

104 Kevin Lamshöft et. al.

architectures derived from the field of Organic Computing in order to cope
with the growing complexity.
During this paper section 2 handles a brief introduction on the specifics of
automotive IT and gives an overview on the topic of Organic Computing
in general and the observer/controller architecture in particular. Section 3
will discuss how the naive implementation of Organic Computing
architectures would perform in an automotive environment while section 4
presents and discusses changes to such an architecture proposed by us.
Section 5 describes the implementation of a demonstrator used for
evaluation of the concepts proposed in this work. Section 6 discusses
practical scenarios in which an attacker injects spoofed messages in a
malicious manner. Here it is evaluated if and how the demonstrator could
reduce the impact of an attack. Section 7 concludes this paper with
summary and outlook.

2 State of the Art

This section gives a brief overview on the state of automotive IT focused
on the main vehicular network - the CAN bus. Further introduction is given
on the principles of Organic Computing (OC) and the means to achieve
them by using various architectures. Finally, information on anomaly-
based intrusion detection will be presented since it will be used in the
demonstrator used for evaluating the concepts presented in this work.

2.1 Specifics of automotive IT

Modern cars consist of dumb and smart components. The dumb (or passive)
components are all parts without electronics. Smart (or active) components
consist of:
•• Sensors measure the conditions of the vehicle's systems and environment (e.g.

pressure, speed, rain intensity etc.) but can also capture user input requests.

•• Actuators are units that perform a mechanic actuation.

•• Electronic Control Units (ECUs) perform the electronic processing of input
signals, which are acquired via different types of sensors and relay commands to the
actuators. Some units control critical systems of the vehicle such as the engine and
safety systems (ABS, Airbag) while others control comfort units such as the door

Adapting Organic Computing Architectures to an Automotive Environment 105

control units. The number of ECUs embedded with a vehicle is still rising to more
than 100 in 2010 [Su14].

•• Direct analogue cable connections are used to carry measured signals (from
sensors to ECU) or actuation impulses (from ECU to actuators).

•• Shared Digital Bus Systems are used for communication among ECUs. Beyond
the direct connections between ECUs and sensors/actuators, ECUs are additionally
connected amongst each other via digital field bus systems [Tr09]. This shared
medium is used to exchange required information, like forwarding digitized sensor
signals, exchanging current operating parameters, remote actuation requests or
diagnostic requests for maintenance purposes. In modern cars, several different
technologies for digital automotive field bus systems are used. The most common
automotive field bus system is the Controller Area Network (CAN) [Bos91], which
is the core network of the vehicle systems communication. This CAN network is
divided into sub-networks such as powertrain/engine, diagnostics, comfort or
infotainment. ECUs are connected to each sub-network depending on their functions
and these sub-networks interconnect in a ECU device called CAN Gateway which
handles the routing of messages to different sub-networks. The specific sub-
networks offer a shared medium for the exchange of CAN messages. The CAN
message consists of several flags without further importance to this paper, the CAN
ID and the payload. The CAN ID represents the type of a message and implies a
certain sender and receiver for the message - hence any ECU on the specific bus
will receive all messages but discard the ones with CAN ID unimportant to it. It is
assumed that a message with the corresponding ID is send by the ECU normally
responsible for this message. In addition, the CAN ID serves as priority. Since there
is no sender verification it is very easy to insert crafted packets into CAN networks
once access to an entity able to send on the bus (an ECU or a tap) is established.

Recent trends show the increased communication between cars and other
cars (Car-to-Car, C2C) or infrastructure (Car-to-Infrastructure, C2I
[Ka08]). These communication channels not only increase functionality but
also carry the risk of new attack vectors, as demonstrated [MV15].
In an automotive environment, an attack on the security of the car is bound
to also become a safety risk due to the already dangerous nature of road
traffic. If in classical desktop IT a system crashes the system simple
crashed. If the IT system in a moving vehicle crashes you have a moving
vehicle that does not act reliable to user input and might as well crash in a
more dramatic manner.

106 Kevin Lamshöft et. al.

2.2 General Introduction to Organic Computing

Organic Computing is an approach to deal with the complexity regarding
systems of systems. With the ever-growing amount of different
participating systems, scenarios and circumstances classical engineering
approaches are reaching their limits. OC aims at viewing the system of
systems as an organic whole with the user only formulating aims or tasks
while the subsystems themselves deal with the realization of these tasks, as
evident in the quote from [Wu08]:
In organic computing, the only task humans hold on to is the setting of
goals. As the machine is autonomously organizing, detailed
communication between programmer and machine is restricted to the
fundamental algorithm, which is realizing system organization.

A fundamental aspect of OC is emergence. [WH05] define emergence as:
A system exhibits emergence when there are coherent emergents at the
macro-level that dynamically arise from the interactions between the parts
at the micro-level. Such emergents are novel w.r.t. the individual parts of
the system.

Hence emergence describes a macro behaviour of a complex systems not
inherent in the behaviour of the specific components. A system based on
OC principles is henceforth called an organic system and should fulfil
several properties. These properties are known as self-x-properties. These
include self-adaption as the core property of any organic system [MSU11].
Other examples for self-x-properties in their work are include self-
configuration, self-optimization and self-healing, which are specialized
types of self-adaption. Furthermore, self-perception was identified as a
basic requirement for organic systems [Al14].

2.3 Generic Observer/Controller Architecture in Organic
Computing

In order to guarantee that the macro behaviour of a decentralized self-
organizing system meets the intended purpose a so called
observer/controller is used. A suggestion for this central concept is the
Generic Observer/Controller Architecture as introduced in [Ri06] and is

Adapting Organic Computing Architectures to an Automotive Environment 107

used the foundation for the approach presented in this work. The
architecture consists of three major entities: A multi-agent system, called
System under Observation and Control (SuOC), an observer and a
controller. The Observer is monitoring the SuOC with sensors, processes
the data and passes accumulated information on the state to the controller
which then evaluates possible actions and might control the SuOC. The
observer/controller pattern is built on top of the SuOC - if the
observer/controller fails, the SuOC will retain its self-organizing structure.

The observer consists of different modules, which define the observation
process:
•• O1 Monitor: gains raw data from the underlying SuOC

•• O2 Log file: saves data from each iteration which might be used for predictions

•• O3 Pre-Processor: prepares data for analyses and prediction

•• O4 Data analyser: applies a set of detectors on the pre-processed data; result is
reflecting the current state of the SuOC

•• O5 Predictor: predicts future system states based on raw data, history data and
analyser data

•• O6 Aggregator: accumulates data which is then passed to the controller

The controller receives aggregated data from the observer and compares it
to the goals for the organic system by the external user. This component
directs emergent behaviour of the SuOC in order to achieve desired
emergent behaviour or disrupt or prevent undesired emergent behaviour.
Three types of control can be applied by the controller: Influencing local
decision rules, influencing the system structure and influencing the
environment. The controller uses an internal action selector which selects
best suited action based on the current situation of the SuOC (mapping) and
forwards this decision towards its actuators. The applied action is saved in
a history file and is in a next step evaluated by comparing the new system
state with the state before. Depending on how much the action influenced
the system state of the SuOC the fitness value for the mapping is updated.
Hence the mapping is improved over time. This learning process can be
enhance using machine learning techniques, for example, by using
evolutionary algorithms, learning classifier systems, reinforcement
learning or neural networks.

108 Kevin Lamshöft et. al.

2.4 Anomaly-based Intrusion Detection

The use of use Shannon entropy for detection of anomalies in in-vehicle
networks was proposed in 2011 [MN11]. This work uses entropy which is
the expected average value of information that a message carries in a
message flow. Entropy can be calculated for a single message, specific
CAN IDs or the whole bus traffic. The entropy of the usual behaviour is
determined a priori in a learning phase. For intrusion detection, the entropy
is calculated in fixed intervals and compared to the entropy of normal
behaviour. An anomaly is found if the difference if the expected and the
current value differ more than a threshold. This approach has been
successfully tested and proved useful [MSGC16]. An Extension [CK16]
proposes the use of fingerprinting techniques known from conventional IT
in automotive networks. Here the clock skew estimation is used to localise
affected ECUs.

3 Adopting the Generic Controller/Observer Architecture to
Automotive Bus Networks

As mentioned in section 2.1 defending against advanced attacks on
automotive bus networks is a non-trivial task.
However, most attacks have one aspect in common: On the lowest level,
they are sending forged messages on automotive bus networks. Such a
message does look legitimate in CAN bus networks since there is no
authentication. While fuzzing and replay attacks reportedly can be detected
in parts by automotive IDS [MSGC16], more sophisticated, targeted
attacks can be recognized only by looking at the result in the overall system
– in this case the car.

For example, prior experiments with several cars have shown that an
attacker is able to lock the doors permanently by sending forged messages
on the CAN bus. This prevents the passengers from leaving the car. In
addition, the heating can be turned on and air conditioning can be turned
off while preventing user input. This can lead to serious disturbance or even
bodily harm. For this attack, an attacker only needs a few forged messages.
Each message by itself is inconspicuous and seems legitimate and therefore

Adapting Organic Computing Architectures to an Automotive Environment 109

should not raise any alarm. However, the behaviour of the overall system,
caused by these accumulated messages, is suspicious and harmful.

As shown before a car is a system of system and hence this undesired
behaviour akin to an undesired emergent behaviour. As shown in section
2.3 the Generic Observer/Controller Architecture forms the part of the
Organic Computing approach aiming to observe emergent effects and
either taking actions to achieve desired emergence or preventing/disrupting
undesired emergence. By adapting this architecture to the requirements of
cars and implementing the concept we might be able to detect such
advanced attacks and mitigate their impacts with low-cost hardware. In
contrast to Intrusion Detection Systems the presented approach goes further
and does not only detect anomalies but also takes actions to counter attacks.
This is achieved by not only looking for anomalies but aggregating data
from multiple sources in order to get a better understanding of the systems
state and reducing the number of false-positives. By using methods derived
from the field of machine learning the system learns with each incident and
gets better over time.

The following section will deal with adapting this generic approach to the
automotive domain.

3.1 Theoretical Considerations

The first step on adapting the Generic Observer/Controller Architecture to
the automotive domain is a the definition of system boundaries for the
SuOC. Since this approach aims to increase robustness against attacks, or
in fact general malfunctions as well, we want to achieve desired and disrupt
undesired emergent behaviour of the whole system – technically speaking
the whole car. Considerations on the feasibility of defining a car as SuOC
rely on the definition of a SuOC presented in section 2.3. Here a SuOC is
defined as a multi-agent, self-organizing system.

Automotive IT consists of a network of ECUs, sensors and actuators. As
these ECUs are autonomous entities, communicating and interacting with
each other, observing and acting in an environment to achieve goals they
can be considered agents. Technically speaking a set of ECU networks can

110 Kevin Lamshöft et. al.

therefore considered a multi-agent system. Following the definition given
by [MWJ+07] a self-organizing system is self-managing, structure-
adaptive and employs decentralized control. The network of ECUs is self-
managing in the sense of adapting to different I/O requirements without an
explicit external control input on how to achieve this. The driver gives a
general objective (I/O requirement) towards the car (e.g. Acceleration)
causing multiple ECUs to work together in order to achieve that goal.
Automotive IT is structure-adaptive as the ECUs maintain their structure
and provide the systems primary functionality. As there is no central ECU
that controls the others it employs decentralised control – leading to the
conclusion that the network of ECUs can be seen as a self-organizing
system.

3.2 Adapting the Observer to Automotive Bus Networks

We aim at not only detecting irregularities in the function but the car but
also on reaction towards these irregularities. Therefore, we propose the
usage of multiple cooperating Observer/Controller instances (as defined in
the Generic Observer/Controller Architecture). One major task of the
observer is, similar to IDSs known from conventional IT, detecting
anomalies - called "symptoms" in the MAPE cycle [IBM06]. These
symptoms might lead to an undesired emergent behaviour. Going beyond
the possibilities of an IDS in this approach the Observer considers the
symptoms more thoroughly by aggregating data from several data
analysers (resp. emergence detectors or IDSs), Log files, Predictors and
communicating with other Observers. This helps to reduce false-positives
and get a better understanding of the symptom before applying control
actions.

In order to achieve this the Observer presented in section 2.3 is adapted to
an automotive environment as follows:
•• O1 Monitor: In the OC architecture the observer is monitoring the influence of the

agents on their surroundings. In the case of automotive IT this means that the
Observer is not monitoring the ECUs directly but their influence on the car. Hence
this means the monitoring of specific actuators. As it would require a broad range
of sensors to monitor the actual behaviour of all actuators we propose a different
approach in not monitoring the physical actions of the actuators but in monitoring
the communications on the automotive bus networks. This is feasible since actuators

Adapting Organic Computing Architectures to an Automotive Environment 111

at this moment do not have any computing power themselves and just act on the
orders given by them from the ECUs. Hence, if there is an action, there is also a
message causing this action. This might not hold true for the future, though, so
future work will add sensors which directly monitor the physical actions of the
actuators. Even then the primary sensor will most likely still be the networking
interface which allows the observer to read all BUS communication.

•• O2 Log file: Since the log files function is basically to save data for further iterations
and predictions no adaption to an automotive context is needed.

•• O3 Pre-Processor: This step prepares the raw data supplied by the monitor for the
following steps of analysing and prediction. Depending on the Data Analysers and
Predictors the specific tasks of the Pre-Processor might vary. For bus networks the
main part of the Pre-Processor is filtering (e.g. leave out keep-alive-messages or
duplicates) and prioritising (e.g. error messages) of the network traffic. Aggregation
and counting of reoccurring messages might be useful as well.

•• O4 Data Analyser: This is one of most important parts in the approach presented
in this work. It applies a set of detectors on the pre-processed data in order to identify
undesired behaviour of the car. One trivial approach would be to identify error
frames (e.g. failure of signal lights) on the bus network. This relies on the affected
ECU detecting such failures. It hence would not work in scenarios where no
malfunction of specific components are caused but rather a harmful macro
behaviour, like in the scenario introduced in section 3. Therefore, a deeper analysis
of the network traffic is needed in order to detect undesired emergent behaviour.
Two different approaches are suggested here: detect unusual behaviour and detect
illogical behaviour and detect rule violations. An example for unusual behaviour
might be the toggling of certain features multiple times in short intervals (e.g.
recurring signals to close windows). This might also point to a component failing
to react on a given input, like repeated pushing of a brake pedal without reaction of
the brake. In these cases further analysis will be conducted. As the log file stores
information about the system state the Analyser is able to check if the speed reduced
in case of the repeatedly triggered brake pedal. Examples for illogical behaviour are
opening the trunk while driving, pushing brake and accelerator pedals at same time
causing invalid system states. The third option is to define correct behaviour a priori
by rules (e.g. doors need to be closed while driving) and monitor violations.

•• O5 Predictor: Based on data from the analyser and log file the predictor calculates
possible future system states which will be passed to the controller. This enables the
controller to take preventative actions. For example, the predictor extrapolates the
speed for a time t+1, based on the current speed at time t and the speed of the state
before at time t-1.

•• O6 Aggregator: The aggregator accumulates information of the analysers detectors
and the predictor to give a most accurate evaluation on the current and future system
states to the controller which then based on that information takes actions to
influence the environment towards a desired behaviour. In order to identify and

112 Kevin Lamshöft et. al.

analyse the symptom the Aggregator needs to interpret the data coming from the
data analysers. Hence a semantic lookup table (which message is representing what
information) is needed but could also be implemented at an earlier stage in the Data
Analyser. The data coming from the Observer needs to be encoded in a way that the
Controller can map it to an action. One naive approach is to pass raw information
coming from the analysers without any semantics towards the Controller. For
example, the corresponding CAN IDs which show anomalies could be mapped to
an action (e.g. a detected anomaly at 0x172 would be mapped to an action which
opens the windows). Depending on the Data Analysers and information gathered by
the Aggregator more precise information could be passed. An exemplary data set
for the given scenario could be state = [{Entropy Anomaly Detector -> Affected ID:
0x172}, {ECU Fingerprint Anomaly Detector -> Anomaly Source: central lock
ECU}, {Aggregator -> Result: doors do not open] and would map actions = [{flash
central lock ECU}, {open windows}, {open trunk}]. We recommend using multiple
Observers communicating with each other, getting additional information and do
cross checking, to specify the systems state more accurately. For example, an
Observer monitoring unusual behaviour of the doors (e.g. a door is opening and
closing repeatedly) can request additional information from another Observer which
is monitoring different parts of the vehicle like the powertrain bus in order to
determine if the vehicle is moving.

3.3 Adapting the Controller to Automotive Bus Networks

The Controller’s main task is to take actions based on information it
receives from the Observer. The Controller takes actions by sending
messages to the agents (ECUs) which then applies actions to the car.
Therefore, a mapping of the environmental states and actions is required by
the Controller.

When the Controller gets information by the Observer it applies a set of
classifiers (rules) to map environmental states into actions. Each classifier
has a fitness value/reward that defines the quality of the action and is
updated when the Controller gets feedback on how good the applied action
has performed.
If multiple classifiers fit a given environmental state the one with highest
fitness/reward is selected. The structure of a classifier is given by{State ->
Action : Fitness}. One basic example for a classifier would be {0x172 ->
0x172#1122 : 42}, where 0x172 marks the CAN ID, which shows
anomalies, 0x172#1122the action (the CAN message to be sent by the
controller) and 42 the fitness value. Before applying actions, we suggest

Adapting Organic Computing Architectures to an Automotive Environment 113

reporting to the driver. The user should be informed that an anomaly has
been detected, what causes are probable and which influences are detected
and expected. The driver should have the option to mark the anomaly as
false-positive. Causes for false-positives are found in the data analysers as
well as in unexpected behaviour of the driver or passengers. In a next step
the driver should be informed on planned actions and asked for permission.
There might be situations in which the driver has to act by himself (e.g.
applying manual handbrake to slow the car in case of brake failure). In that
case, the controller only gives a warning and recommendations on how to
act. The rules for reaction can be added manually or generated by machine
learning.

4 Implementation

The approach presented in this paper has been evaluated in a demonstration
in order to examine its merits and drawbacks. For our experimental work
we used the electronics of an Audi Q7 built in 2008. These electronics have
been extracted after a crash test. Due to the crash, most parts of its drive
train were missing. Hence, we focused on ECUs communicating on the
comfort bus. The CAN bus was accessed directly by a Raspberry Pi using
CANtact interfaces. CANtact was chosen for using the SocketCAN driver
of can-utils which allows to receive all frames from the bus and send
arbitrary messages. A Raspberry Pi was used for implementing the
Observer/Controller functionality.
The following subsections give an overview on how the concepts
developed in section 3 have been implemented for the demonstrator.

4.1 Observer Implementation

This subsection describes how the observer was implemented in the
demonstrator.
•• O1 Monitor: The Monitor was implemented on a Raspberry Pi using Python. It

uses a SocketCAN interface to communicate with the CANtact board and the
python-can package to monitor traffic on the bus.

•• O2 Log File: The demonstrator saves general information on the vehicle state, e.g.
the status of ignition and door locks.

114 Kevin Lamshöft et. al.

•• O3 Pre-Processor: Received CAN frames are striped to CAN ID and payload only,
removing timestamps since these would cause bogus results during entropy
calculation.

•• O4 Data Analysers: An entropy-based anomaly detection approach was
implemented. (see section 2.4). The demonstrator implements a combination of
entropy calculation for the whole bus and dedicated calculations for specific IDs.
The entropy analyser has to go through a learning phase before it can be used. In
that learning phase the average entropy 𝜇, standard deviation 𝜎, a model parameter𝑘 and time windows 𝑡 are calculated and defined. A target space which marks the
usual behaviour as a range[𝜇 − 𝜎, 𝜇 + 𝜎]and a acceptance space which allows
minor deviation of the usual behaviour (reduces false-positives) as range[𝜇 − 𝑘𝜎, 𝜇 + 𝑘𝜎], where k is a model parameter are defined. Figure 1 shows the
learned parameter settings used in the experiments.

Fig. 1: Learned parameter settings for the demonstrator

•• O5 Predictor: Prediction is not included in this demonstrator.

•• O6 Aggregator: The Aggregator fetches data from the entropy analysers and
general information of the log file and passes them towards the Controller module.
In this demonstrator the Observer reports where an anomaly is detected (whole bus
and/or CAN IDs), the value of constraint violation (distance of measured entropy
from acceptance space) and a human readable state of the system (e.g. car standing,
doors locked, anomaly regarding locks detected) in order to inform the driver and
for debugging purposes.

4.2 Controller Implementation

For the implementation of the controller a pre-defined classifier set is used.
Using fitness values and wildcards for the classifiers the controller is able
to map any state given as input from the Observer. Before taking any action
the controller reports the aggregated information of the observer and the
mapped action to the user (in the current version via CLI) and asks for
permission. After taking the action the user is asked whether the problem

Adapting Organic Computing Architectures to an Automotive Environment 115

persists (in future versions the controller evaluates that by itself using data
from the observer). If the problem is solved the classifier gets a reward
which increases its fitness. If the anomaly persists the controller takes
another matching action if available. If that is not the case the controller
notifies the user to stop the car.

5 Evaluation

This section describes how the demonstrator was evaluated.

5.1 Adversary Model and Attack Scenarios

Prior research has shown several physical and remote attack surfaces and
vectors [MV15]. In this evaluation scenario we selected an attacker who is
able to send arbitrary messages with spoofed IDs. This allows the attacker
to toggle certain features of the car in with the aim of making driving
impossible or at least very uncomforting. This type of attack is typical for
ransomware campaigns from other computational domains. We define
three different attack scenarios for our experiments:
•• S1 Lockout The attacker locks the driver out of his car. This attack can be

implemented for the Q7 with a minimum effort. When the car gets locked or
unlocked by the remote a corresponding sequence of messages is transmitted on the
comfort bus. The attacker monitors the bus for the first message of this sequence.
Upon detection the attacker immediately sends the sequence to lock the doors. That
procedure is sufficient to lock the doors permanently. As the lock is purely electric
a manual opening with the key can be overridden as described before.

•• S2 Nuisance The attacker randomly toggles warning and turning lights,
continuously raises the volume of the multimedia system and opens and closes the
windows in a random way. This can again be done by inserting CAN messages to
the comfort bus.

•• S3 Confinement The attacker waits on the driver to turn off the car and release the
key. Then the central locks are applied and windows are closed followed by a
Denial-of-Service attack. This results in locked in passengers as doors and windows
are closed an no user input is registered by the ECU.

These three scenarios are implemented in Python using the python-can
package for receiving and transmitting messages. A second Raspberry Pi is
used for this. In each Scenario the BUS traffic is monitored (O1) and pre-
processed (O2).

116 Kevin Lamshöft et. al.

5.2 Test Results

• S1 Lockout When the user tries to open to the car the doors are
locked immediately again. That incident alone does not raise any
alarm. Subsequent tries to open the car led to an alarm triggered by
the detector of the corresponding ID and the complete bus (O4).
The Aggregator (O6) fetches data related to the doors from the log
file (O2) and passes information to the controller that anomalies
were detected on the comfort. It also reports that the doors are
probably closed. Since door locks are a concern for security the
controller reports to the user over a CLI that unusual behaviour is
observed related to the car locks and asks the user if he is trying to
open the car. Depending on user input the observer opens the doors.

• S2 Nuisance The ransomware used in this scenario has several
phases. The ransomware toggles the warning lights (S21). This is
not sufficient to raise alarm. In the next step the ransomware
quickly raises and lowers the volume leading to distracting noise
(S22). The bus detector (O4) raises alarm due to low entropy values
but the ID detector does not. The detected anomaly and information
of the log file (O2) are not sufficient for the controller to take any
actions. Several runs with different parameters for the ID detector
have been performed. Large k values used in the ID detector imply
low false-positives rates but does not lead to the detection the
attack. Low k values lead to detection but brings high false-positive
rates. A productive use is not possible at this moment. However,
given the attack is detected the controller turns off the audio system
as countermeasure. In the next phase the ransomware raises and
lowers the windows in a random way (S23). This behaviour carries
the sample implications like S22. In total, the current
implementation cannot detect the attack reliable without producing
high rates of false-positives. In future implementations, multiple
analysers, for example ECU Fingerprinting or Artificial Neural
Networks, should be used. Moreover, the aggregator could be
improved by using a predictor (O5) and more detailed logs (O2),
e.g. by building a model of the car that reflects its status.

• S3 Confinement The Denial-of-Service attack is detected by ID
detectors of windows and locks as well as the bus detector (O4).

Adapting Organic Computing Architectures to an Automotive Environment 117

Moreover, the Observer reports to the controller that doors and
windows are closed. The controller opens the trunk and notifies the
user to leave the car through the trunk.

6 Summary and Outlook

This work discusses the possibilities of bringing Organic Computing
Observer / Controller architectures into an automotive environment. It is
shown that such an adaption is possible and even enhances security and
safety of an automotive. The main contribution is the discussion and
exploration of necessary adaptation as well as limitation and merits. A first
demonstrator and its efficiency in hampering such complex exemplary
attack scenarios has been shown. The approach presented in this work
allows a reaction on complex threats which single constituent parts would
not itself register as a threat. This approach seems well suited for use in
other scenarios with similar threat scenarios and basic architecture. In
essence all systems which consistent of actuators, sensors, communication
bus and computational units carry the same risk of being attacked by
injected bus messages. If the system is complex enough that a single
injected message does not trigger any alarm or harm by itself while a
sequence of injected messages provokes a harmful macro behaviour the
same threat scenarios arise. The fact that these system of systems show an
observable macro behaviour implies that they influence their surrounding
and hence cause inherent safety risk once their security is compromised.
One example for such a system would be industrial automation. Industrial
automation shares the same basic components like automotive IT and faces
the same problems with ever growing complexity. It is without doubt that
industrial automation systems are systems of systems. In addition, attacks
on these cyber-physical systems also often consist of a sequence of bus
messages to the actuators which are each by itself without harm but in their
entirety cause a harmful macro behaviour. Examples of malicious attacks
on these types of systems might be similar to these presented in here. In the
lockout scenario (S1) an attacker would manipulate an industrial system in
a way to prohibit its normal function. This might include erratic moving of
the industrial robots so a maintenance crew might only be able to approach
the robot after powering it down. In either case the functionality is denied
to the user and a safety risk arises from the security risk. The possibility of

118 Kevin Lamshöft et. al.

causing nuisance (S2) by using industrial actuators and HMI is obvious,
while a locked in scenario (S3) would require doors to be attached to the
industrial system. This mighty only be relevant in risk zones separated by
doors and more a topic of smart home automation. However, an adaptive
system observing the macro behaviour of such a system again enables the
suppression of this threat.

Acknowledgments

The work on organic computing in automotive environments is supported
by German Research Foundation project ORCHideas (DFG GZ: 863/4-1).
The application to industrial control systems is funded in parts by the
German Federal Ministry of Economic Affairs and Energy (BMWi, project
no. 1501502B). The authors thank all project staff members and involved
students as well as the reviewers for their help.

References & Acknowledgments

[MV15] Miller, C.; Valesek C.: Remote Exploitation of an Unaltered Passenger Vehicle. Black
Hat USA

[Su14] Sugimura, T: Junction Blocks Simplify and Decrease Networks When Matched to ECU
and Wire Harness. Encyclopedia of Automotive Engineering. 1–7

[Tr98] Trautmann, T.: Grundlagen der Fahrzeugmechatronik:
EinepraxisorientierteEinführungfürIngenieure, Physiker und Informatiker, 2009

[Ka08] Kargl,F.; Papadimitratos, P.; Buttyan, L.; Müter, M.; Schoch, E.; Wiedersheim, B.;
Thong, T.; Calandriello, G.; di Torino, P.; Held, A.; Kung, A.; Hubaux, J.: Secure
Vehicular Communication Systems: Implementation, Performance, and Research
Challenges. Communications Magazine, Volume 46(11), 110-118

[Wu08] R.P. Würtz (ed.): Organic Computing. Understanding Complex Systems, doi:
10.1007/978-3-540-77657-4 1, © Springer-Verlag Berlin Heidelberg 2008

[WH05] De Wolf T., Holvoet T. (2005) Emergence Versus Self-Organisation: Different
Concepts but Promising When Combined. In: Brueckner S.A., Di MarzoSerugendo
G., Karageorgos A., Nagpal R. (eds) Engineering Self-Organising Systems. ESOA
2004. Lecture Notes in Computer Science, vol 3464. Springer, Berlin, Heidelberg

[MSU11] Müller-Schloer, C.; Schmeck, H.; Ungerer, T.: Organic Computing—A Paradigm Shift
for Complex Systems, Springer, ISBN: 978-3-0348-0129-4, 2011.

Adapting Organic Computing Architectures to an Automotive Environment 119
[Al14] Altschaffel, R; Hoppe, T.; Kuhlmann, S.; Dittmann, J.: Towards more Secure Metrics

for Assessing the Fitness Level of Smart Cars. Proceedings of the 3rd International
Conference on Connected Vehicles & Expo, 149-154

[Ri06] Richter, U.; Mnif, M.; Branke, J.;Christian Muller-Schloer, C.;Schmeck, H.:Towards a
generic observer/controllerarchitecture for Organic Computing. GI Jahrestagung (1) 93
(2006): 112-119.

[MWJ+07] Mühl, G., Werner, M., Jaeger, M., Herrmann, K. &Parzyjegla, H. (2007). On the
definitions of self-managing and self-organizing systems, KiVS 2007 Workshop:
Selbstorganisierende, Adaptive, KontextsensitiveverteilteSysteme (SAKS 2007).

[Bos91] Robert Bosch GmbH, CAN Specification 2.0, 1991, http://www.bosch-
semiconductors.de/media/ubk_semiconductors/pdf_1/canliteratur/can2spec.pdf, (last
checked: 18.10.2016)

[MN11] Müter, Michael, and NaimAsaj. "Entropy-based anomaly detection for in-vehicle
networks." Intelligent Vehicles Symposium (IV), 2011 IEEE. IEEE, 2011.

[CK16] Cho, Kyong-Tak, and Kang G. Shin. "Fingerprinting electronic control units for vehicle
intrusion detection." 25th USENIX Security Symposium (USENIX Security 16).
USENIX Association, 2016.

[MSGC16] Marchetti, M., Stabili, D., Guido, A., &Colajanni, M. (2016, September). Evaluation of
anomaly detection for in-vehicle networks through information-theoretic algorithms. In
Research and Technologies for Society and Industry Leveraging a better tomorrow
(RTSI), 2016 IEEE 2nd International Forum on (pp. 1-6). IEEE.

[IBM06] COMPUTING, Autonomic, et al. An architectural blueprint for autonomic computing.
IBM White Paper, 2006, 31. Jg.

120 Kevin Lamshöft et. al.

Peter Dencker et. al. (Hrsg.): Automotive Safety & Security 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 121

Ontologiebasierte Abhängigkeitsanalyse im
Projektlastenheft

Konstantin Zichler1 und Steffen Helke2

Abstract: Zu Beginn eines Projekts dokumentieren interdisziplinäre Domänen-Experten die
Anforderungen an alle Lebensphasen eines Nutzfahrzeugs und die entsprechenden
Realisierungskonzepte im Projektlastenheft. Die Kenntnis der Abhängigkeiten zwischen
Anforderungen bietet den Vorteil, fehlerhafte Produktkonzepte bereits in der frühen Projektphase
zu vermeiden. Bei der Durchführung von Abhängigkeitsanalysen besteht für die Experten der
einzelnen Abteilungen die Schwierigkeit darin, von den dokumentierten Einzelbeiträgen auf
domänenübergreifende Abhängigkeiten zwischen den Anforderungen zu schließen. Bisher werden
diese Analysen für gewöhnlich manuell durchgeführt, da es dafür kaum Werkzeugunterstützung
gibt. Wir stellen ein neuartiges Verfahren vor, bei dem das für die Abhängigkeitsanalyse
erforderliche, fachspezifische Wissen zu einer gemeinsamen Wissensbasis in Form einer
Ontologie aggregiert wird. Zusammen mit Axiomen, einem Reasoner und Werkzeugen aus dem
Natural Language Processing wird eine automatisierte Abhängigkeitsanalyse im Projektlastenheft
realisiert, mit der es möglich ist, bisher nicht berücksichtigte Abhängigkeiten zwischen
Anforderungen zu identifizieren.

Keywords: Anforderungsmanagement, Abhängigkeitsanalyse, Ontologie, Reasoner, Natural
Language Processing.

1 Einleitung

Die Entwicklung von Nutzfahrzeugen startet gewöhnlich nach einem Frontloading-
Prinzip. Ziel bei diesem Ansatz ist es, bereits in einer frühen Phase der
Produktentstehung Fahrzeugkonzepte so zu entwickeln, dass diese im späteren
Projektverlauf kaum noch verändert werden müssen. Dies wird dadurch erreicht, dass
alle relevanten Marktanforderungen an ein Produkt von Beginn an bei der Konzeption
berücksichtigt werden. Dieses Vorgehen birgt vor allem den Vorteil, dass nach
Abschluss der Frontloading-Phase nur noch über ökonomisch sinnvolle und technisch
realisierbare Alternativen von Fahrzeugkonzepten entschieden werden muss. Dadurch
werden viele Verzögerungen im weiteren Prozessverlauf vermieden und die gesamte
Produktentwicklung stabiler und kostengünstiger.

Als Voraussetzung für die Entwicklung marktgerechter Produkte gilt das
Anforderungsmanagement. In der frühen Phase des Projekts erheben Projektteams,
bestehend aus interdisziplinären Domänen-Experten, zunächst die Anforderungen an alle

1 Daimler AG, T/OGP, Mercedesstr. 132/1, 70546 Stuttgart, konstantin.zichler@daimler.com
2 Brandenburgische Technische Universität Cottbus-Senftenberg, steffen.helke@b-tu.de

122 Konstantin Zichler und Steffen Helke

Lebensphasen eines Nutzfahrzeugs. Jeder Domänen-Experte definiert die
Anforderungen, die aus Sicht der eigenen Abteilung erforderlich sind. Dabei handelt es
sich um funktionale und nichtfunktionale Anforderungen. Anschließend entwickelt das
Projektteam auf Basis der Anforderungen Realisierungskonzepte und bestätigt die
technische Machbarkeit, sowie die Wirtschaftlichkeit des Projekts.

Die frühe Phase in der Produktentstehung von Nutzfahrzeugen erfordert insbesondere
eine präzise Abstimmung zwischen den Domänen-Experten, wobei unterschiedlichste
Einflussfaktoren berücksichtigt werden müssen. Als maßgebliches Instrument dient
dabei das Projektlastenheft. Darin dokumentieren Projektteams Anforderungen,
Realisierungskonzepte und andere für die Projektabwicklung wichtige Informationen.
Das Projektlastenheft dient vor allem als Kommunikationsgrundlage zwischen den
Domänen-Experten und soll ein gemeinsames Verständnis für das angestrebte
Projektziel schaffen. Um ein Verständnis der Inhalte für alle Projektteammitglieder
gleichermaßen zu ermöglichen, werden Anforderungen und Realisierungskonzepte in
natürlicher Sprache in Office-Dokumenten dokumentiert. Das Projektlastenheft ist ferner
die Grundlage für den weiteren Spezifikationsprozess und die anschließende
Produktentwicklung. Alle Abhängigkeiten zwischen den Anforderungen müssen durch
sorgfältige Analysen identifiziert und bewertet werden, da sie zu Widersprüchen und
damit fehlerhaften Fahrzeugkonzepten führen können.

Bisher suchen Projektteams manuell nach Abhängigkeiten im Projektlastenheft, da es
hierfür kaum Werkzeugunterstützung gibt. Neben der Tatsache, dass das
Projektlastenheft ein sehr umfangreiches Dokument ist, stellen die unterschiedlichen
Perspektiven der Fachexperten dabei eine der wesentlichen Herausforderungen für eine
erfolgreiche Abhängigkeitsanalyse dar. Das Wissen über Zusammenhänge im Projekt
liegt verteilt vor, hauptsächlich in den Köpfen der Domänenexperten. Mit seinem
Beitrag im Projektlastenheft dokumentiert der jeweilige Fachexperte nur einen Teil
seines Wissens. Für das Projetteam besteht die Herausforderung folglich darin, von den
dokumentierten Einzelbeiträgen auf domänenübergreifende Abhängigkeiten zwischen
den Anforderungen zu schließen. Ein weiterer Faktor sind die impliziten Annahmen der
einzelnen Projektteammitglieder. Pohl et al. verweisen bspw. darauf, dass der häufigste
Grund für unvollständige Anforderungen falsche Annahmen der Stakeholder sind. Sie
setzten z.B. voraus, dass bestimmte Informationen selbstverständlich sind und deshalb
gar nicht explizit genannt werden müssen [PR11].

Anhand des folgenden Beispiels wird diese Problematik deutlich. Ein Plug-in-Hybrid-
Fahrzeug soll auf der Grundlage einer vorhandenen Fahrzeugplattform entwickelt
werden. Das Projektteam entscheidet sich bei der Definition des Realisierungskonzepts
dafür, das Bordnetz der vorhandenen Fahrzeugplattform zu übernehmen. Wenn das
Bordnetz zuvor in einem Fahrzeug mit Verbrennungsmotor eingesetzt wurde, wäre die
Lebensdauer des Bordnetzes für ein Plug-in-Hybrid-Fahrzeug nicht ausreichend. Der
Grund dafür ist, dass Teile des Bordnetzes eines Plug-in-Hybrid-Fahrzeugs auch im
Stillstand des Motors aktiv sind, nämlich während der Beladung des Akkumulators über
eine externe Stromquelle. In diesem Beispiel muss das Projektteam also die

Ontologiebasierte Abhängigkeitsanalyse im Projektlastenheft 123

Abhängigkeiten zwischen den Anforderungen an die Nutzung des Plug-in-Hybrid-
Fahrzeugs, wie das Fahren und das Laden des Akkumulators, und den Anforderungen an
die Lebensdauer des Bordnetzes ausreichend berücksichtigen. Da diese Anforderungen
aber in einem realen Projekt von unterschiedlichen Domänen-Experten aus Vertrieb,
Entwicklung und Qualität erhoben werden, können bei einer manuellen Analyse solche
Abhängigkeiten auch leicht unerkannt bleiben.

Um derartige Anforderungen besser aufdecken zu können, schlagen wir vor, das verteilte
Wissen über die Produktentstehung von Nutzfahrzeugen in einer Wissensbasis zu
konzentrieren und basierend auf den gesammelten Informationen domänenübergreifende
Abhängigkeiten zwischen Anforderungen abzuleiten. Das Wissen soll dabei mit Hilfe
von Ontologien repräsentiert werden. Eine Ontologie ist eine formale, explizite
Spezifikation einer gemeinsamen Konzeptualisierung [SBF98]. Sie kann als eine
Wissensbasis verstanden werden, die das Wissen einer Anwendungsdomäne beschreibt.
Mit Hilfe von Methoden zur Schlussfolgerung ist es außerdem möglich, neue, implizite
Informationen aus dem bereits spezifizierten Wissen abzuleiten [HKR+08]. Für die
Prüfung der Ontologie auf Konsistenz und zur Ableitung von implizitem Wissen werden
Inferenzmaschinen (engl. Reasoner) eingesetzt.

Der Einsatz von Ontologien im Anforderungsmanagement wurde in der Vergangenheit
bereits in einigen Arbeiten vorgestellt, vgl. dazu [FMK+11], [SB16], [SP14], [Si14] und
[SHS14]. Dabei fokussieren diese Ansätze eher auf detaillierte und vor allem technische
Anforderungen, wie sie für Feinspezifikationen im späteren Verlauf der
Produktentstehung typisch sind. Demgegenüber enthält ein Projektlastenheft vor allem
grobe Anforderungen und strategische Zielbeschreibungen an alle Produktlebensphasen.
Das bedeutet, dass dabei auch Anforderungen aus den Abteilungen, wie Vertrieb,
Produktion, Logistik und After-Sales berücksichtigt werden müssen. Schraps und Peters
[SP14] schränken in ihrer Arbeit bspw. die Satzstruktur der Anforderungen bereits bei
ihrer Formulierung durch eine formale Grammatik ein. Die so formulierten
Anforderungen werden mit Hilfe von semantischen Mustern in eine Ontologie überführt.
In der Arbeit von Farfeleder et al. [FMK+11] werden Schablonen (engl. boilerplates) zur
standardisierten Beschreibung von Anforderungen verwendet. Über eine graphische
Schnittstelle wird vom Nutzer zunächst eine vorgegebene Schablone ausgewählt.
Anschließend bekommt er für die Befüllung der Leerfelder vom Werkzeug Vorschläge,
die aus einer Anforderungsontologie stammen. Solche Vorgehen erfordern grundsätzlich
gut strukturierte Spezifikationsdokumente und viel Erfahrung der Nutzer im Umgang mit
Anforderungsmanagement. Die frühe Phase in der Produktentstehung erfordert jedoch
Lastenhefte, deren Erstellung möglichst flexibel gehandhabt werden kann, da große
Teile eines Fahrzeugkonzepts durch Beschluss wieder entfallen können. Insbesondere
durch die häufigen Änderungen am Fahrzeugkonzept würde eine exakte Dokumentation
ohnehin nur unnötig die Arbeit der Domänenexperten behindern. Daher kann im
vorliegenden Anwendungsfall von einer Struktur, wie sie bspw. bei den Spezifikationen
mit hohem Detaillierungsgrad vorhanden ist, nicht ausgegangen werden. Eine
Modellierung der Anforderungen in Form einer Ontologie durch Domänen-Experten
muss aufgrund des zu hohen Aufwands ebenfalls ausgeschlossen werden.

124 Konstantin Zichler und Steffen Helke

Aus diesem Grund schlagen wir für die Abhängigkeitsanalyse im Projektlastenheft eine
Kombination aus einer Ontologie in Verbindung mit einem Reasoner und Natural
Language Processing (NLP) vor. Nach unserem Konzept wird ein Teil der Ontologie,
das sogenannte Domänenmodell, welches das für die Produktentstehung erforderliche
Wissen enthält, von Mitarbeitern aus einem zentralen Projektmanagement Office
manuell erstellt. Dieses Domänenmodell beschreibt vor allem die Klassenebene der
Ontologie. Die Instanzebene des Domänenmodells soll unter Zuhilfenahme von NLP
vollautomatisiert erstellt werden. Damit soll es möglich sein, in einem gegebenen
Projektlastenheft eine volltautomatisierte Abhängigkeitsanalyse durchzuführen. Diese
Analyse wird von einem zentralen Bereich durchgeführt. Das Projektteam bekommt eine
Auswertung über die ermittelten Abhängigkeiten und kann diese bei der Konzeption des
Fahrzeugs berücksichtigen. Da es für diesen Anwendungsfall noch keine dedizierte
Werkzeugunterstützung gibt, nutzen wir Plug-ins innerhalb der bekannten Architekturen
Protégé [Mu15] und GATE [CTR+13], um die grundsätzliche Machbarkeit einer
vollautomatischen Abhängigkeitsanalyse im Projektlastenheft nachzuweisen.

Das Papier gliedert sich wie folgt. In Abschnitt 2 werden die Grundlagen zu Ontologien
und NLP erläutert. In Abschnitt 3 stellen wir unseren Ansatz für eine ontologiebasierte
Abhängigkeitsanalyse anhand einer prototypischen Werkzeugkette vor. In Abschnitt 4
beschreiben wir erste Experimente mit der prototypischen Werkzeugkette und
diskutieren die Ergebnisse. Dabei weisen wir die grundsätzliche Machbarkeit einer
ontologiebasierten Abhängigkeitsanalyse im Projektlastenheft nach. Abschnitt 5 befasst
sich mit verwandten Arbeiten. Unsere Ergebnisse fassen wir in Abschnitt 6 zusammen
und geben darüber hinaus einen Ausblick über unser weiteres Vorgehen.

2 Grundlagen

Ziel dieses Kapitels ist es, Grundlagen über Aufbau, Erstellung und Anwendung von
Ontologien zu vermitteln, sowie bekannte Methoden und Werkzeuge aus dem Natural
Language Processing (NLP) vorzustellen.

2.1 Erstellung und Anwendung von Ontologien

Der größte Mehrwert von Ontologien in Verbindung mit Methoden zur Schlussfolgerung
ist die Ableitbarkeit von neuem Wissen. Die Grundlage dafür ist eine Wissensbasis – die
Ontologie. Eine Ontologie beschreibt das Wissen einer Anwendungsdomäne durch die
Begriffe (Konzepte), die innerhalb dieser Domäne genutzt werden und ihre Beziehungen
(Relationen) zueinander. In Abb. 1 ist eine schematische Darstellung einer Ontologie zu
sehen. Dabei sei zunächst auf die Klassen der Ontologie verwiesen, die hier mit
schwarzen Kreisen markiert sind. Klassen beschreiben die übergeordneten Begriffe einer
Domäne. Klassen können Unterklassen besitzen. Im abgebildeten Beispiel hat die Klasse
Vehicle eine Unterklasse Distribution. Diese Unterklasse spezifiziert eine bestimmte Art
eines Fahrzeugs, nämlich die eines Fahrzeugs für den Verteilerverkehr. Klassen können

Ontologiebasierte Abhängigkeitsanalyse im Projektlastenheft 125

über Relationen miteinander verknüpft werden. Zwei Klassen, und die sie verbindende
Relation bilden ein sogenanntes Tripel. Das Beispiel in Abb. 1 zeigt bspw. das Tripel
(CANBus, isPartOfVehicle, Distribution) und drückt damit aus, dass ein CAN-Bus
immer in der Distribution eines Fahrzeugs enthalten sein muss. Eine konkrete
Ausprägung einer Klasse wird als Instanz oder Individuum bezeichnet. Instanzen sind in
Abb. 1 durch schwarze Rauten gekennzeichnet. EBus2X ist bspw. ein fiktiver Eigenname
für eine Instanz der Klasse CAN-Bus.

Abb. 1: Schematische Darstellung einer Ontologie

Ontologien werden in Ontologiesprachen beschrieben, wie bspw. OWL 2 (Web
Ontology Language). OWL basiert auf der Prädikatenlogik erster Stufe [HKR+08].

Die Erstellung von Ontologien gliedert sich in zwei Teile, das Ontology Learning und
das Ontology Population (siehe Markierungen in Abb. 1). Ontology Learning beschreibt
die Erzeugung neuer Klassen (Konzepte) und Relationen in der Ontologie. Dadurch wird
die innere Struktur der Ontologie erweitert. Demgegenüber zielt Ontology Population
auf die Instanziierung dieser Klassen und Relationen [RMC+11].

Für gewöhnlich werden Ontologien manuell erstellt, was durchaus aufwändig sein kann.
Für die Erstellung werden Ontologie-Editoren genutzt. Ein bekanntes Beispiel ist der
Ontologie-Editor der Stanford University Protégé [Mu15]. Weiterhin gibt es
Möglichkeiten, Ontologien oder Teile davon automatisiert zu erstellen. In der
Vergangenheit wurden dazu NLP-Techniken innerhalb der General Architecture for Text
Engineering (GATE) genutzt, vgl. dazu [WKR10] und [MFP09]. Dabei ist bisher vor
allem die automatisierte Erstellung von flachen Klassenhierarchien mit nicht immer
ausreichender Genauigkeit möglich. Im Gegensatz zum Ontology Learning, lässt sich
Ontology Population, also die Anreicherung einer Ontologie mit Instanzen und den

126 Konstantin Zichler und Steffen Helke

Beziehungen zwischen ihnen, weitestgehend automatisieren.

In einer Ontologie liegt Wissen in einer formalisierten Form vor. Die
Maschinenlesbarkeit dieses Wissen ermöglicht es, Schlussfolgerungen über die Inhalte
der Ontologie automatisiert zu ziehen. Zu diesem Zweck werden die bereits erwähnten
Reasoner genutzt. Sie prüfen die Wissensbasis auf Konsistenz und leiten neue
Informationen aus dem bereits spezifizierten Wissen ab. Zu diesem Zweck werden
Axiome und Ausdrücke definiert. Auch Relationen können genauer spezifiziert werden,
um bspw. auszudrücken, dass zwei Klassen Synonyme sind, wenn diese in der
betrachten Domäne dieselbe Semantik besitzen. In Abb. 1 kommt die Relation
isPresentDuringOperation zweimal vor und ist im Gegensatz zu den anderen Relationen
durch eine Strichpunktlinie dargestellt. Diese besondere Notation zeigt an, dass diese
Relation auf der Grundlage des nachfolgenden Object-Subproperty-Axioms mit Hilfe
eines Reasoners abgeleitet worden ist:

SubObjectPropertyOf(ObjectPropertyChain a:isPartOfVehicle
a:shallPerform)a:isPresentDuringOperation)

Dieses Axiom wird auch als Property Chain bezeichnet und sagt aus, dass beim direkten
Aufeinanderfolgen von zwei vorgegebenen Relationen (im Beispiel isPartOfVehicle und
shallPerform) die Endpunkte der entstehenden Kette mit einer dritten Relation (im
Beispiel isPresentDuringOperation) zu verknüpfen sind.

2.2 Natural Language Processing

Die Automatisierung von Ontology Population erfolgt in der vorliegenden Arbeit mit
NLP innerhalb von GATE. Die General Architecture for Text Engineering (GATE) ist
eine Open Source Software, deren Hauptzweck darin besteht, Dokumente zu annotieren.
Diese Annotationen können in GATE automatisch oder manuell erstellt werden. Die
automatische Erstellung von Annotationen im Rahmen unseres Ansatzes erfordert unter
anderem die folgenden Anwendungen, die in GATE als Processing Resources
bezeichnet werden: Tokeniser, Sentence Splitter, Part of Speech (POS) Tagger,
Gazetteer, JAPE Transducer. In [Cu14] werden diese wie folgt erläutert:

•• Tokeniser spalten Text in sehr kleine Token, wie Nummern, Satzzeichen und
Worte verschiedener Art.

•• Gazetteer bestehen aus Listen, die Namen von Entitäten, wie bspw. Namen von
Städten, Organisationen oder Wochentagen enthalten. Diese Listen werden dazu
genutzt Begriffe wie Eigennamen im Text zu suchen (Named Entity Recognition).
Alle Zeichenketten im Text, die mit dem Eigennamen einer der genutzten
Gazetteer-Liste übereinstimmen, werden mit der Annotation Lookup markiert.

•• Sentence Splitter segmentieren, wie der Name schon sagt, Text in Sätze. Dabei
wird eine Gazetteer-Liste mit Abkürzungen verwendet, um diese von Satzzeichen
zu unterscheiden, die ein Satzende markieren.

Ontologiebasierte Abhängigkeitsanalyse im Projektlastenheft 127

•• Part-of-Speech Tagger erstellen Annotationen zu jedem Wort oder Symbol im
Text, die angeben, um welche Wortart es sich bei dem jeweiligen Wort oder
Symbol handelt.

Die so erstellten Annotationen können anschließend mit dem JAPE Transducer
verändert werden. JAPE (Java Annotation Patterns Engine) erlaubt die Erkennung von
Regulären Ausdrücken in Annotation, die auf einem Text erstellt wurden. Für die
Anwendung von JAPE werden im ersten Schritt Grammatiken erstellt. Eine JAPE
Grammatik besteht aus Phasen, von welchen jede aus Muster-Aktion-Regeln besteht.
Die Phasen laufen sequentiell durch und stellen eine Kaskade von Transduktoren über
Annotationen dar. Eine Regel hat eine linke und eine rechte Seite. Die linke Seite der
Regeln beschreibt jeweils Muster von Annotationen, die gesucht werden sollen. Die
rechte Seite besteht aus einer Anweisung für die Manipulation dieser Annotationen.
Annotationen, die in das Muster der linken Seite der Regel passen, werden mit einem
Label versehen. Dadurch kann auf der rechten Seite der Regel auf dieses Label Bezug
genommen werden [Cu14]. Mit dem JAPE Transducer ist es möglich, bestehende
Annotationen zu verändern oder nach Textbestandteilen zu suchen und diese zu
annotieren. Nachfolgend ist eine Regel dargestellt, die im Text nach einem Token mit
der Zeichenkette Vehicle gefolgt von einer Zahl sucht und diesen als DistributionTruck
annotiert:

Rule: DistributionTruck
(

{Token.string == Vehicle} {Token.kind == number}
):tag
-->
:tag.DistributionTruck = {rule = "DistributionTruck"}

Mit dieser Regel könnte bspw. nach Fahrzeugmodellen im Text gesucht werden. Alle
Processing Resources werden in einer Processing Pipeline angeordnet und von GATE
sequentiell ausgeführt. Am Ende liegt ein annotierter Text vor, der Aufschluss über die
Semantik der Textbestandteile gibt. Diese Informationen können dazu verwendet
werden, die Inhalte des Texts gezielt auszuwählen und weiterzuverarbeiten.

3 Ontologiebasierte Abhängigkeitsanalyse im Projektlastenheft

In diesem Kapitel präsentieren wir eine prototypische Umsetzung für die
Abhängigkeitsanalyse im Projektlastenheft. Weiterhin stellen wir Überlegungen über die
Einbindung des Lösungsansatzes in die organisatorischen Abläufe eines
Industrieunternehmens an.

3.1 Prototypische Werkzeugkette

Für die Lösung der Aufgabenstellung verwenden wir eine prototypische Werkzeugkette,

128 Konstantin Zichler und Steffen Helke

die im Wesentlichen aus Protégé [Mu15], GATE [CTR+13] und dem OwlExporter
[WKR10] besteht. Die Abhängigkeitsanalyse mit dieser Werkzeugkette erfordert ein
bereits bestehendes Domänen-Modell in Form einer Ontologie. Dieses Domänen-Modell
wird manuell erstellt (Ontology Learning) und besteht aus Klassen, Relationen, Axiomen
und Ausdrücken. Die Begriffe (Konzepte) für die Ontologie stammen aus den an der
Projektabwicklung beteiligten Domänen. Sie werden aus bereits vorhandenen
Projektlastenheften und anderen Projektdokumenten gesammelt, in eine hierarchische
Beziehung gebracht und über Relationen miteinander in Beziehung gesetzt.
Grundsätzliche Zusammenhänge, wie bspw., dass alle Fahrzeuge auf Verkehrswegen
fahren, werden über Axiome und Ausdrücke in OWL 2 formuliert und in der Ontologie
hinterlegt. Die ontologiebasierte Abhängigkeitsanalyse unter Verwendung von NLP ist
in Abb. 2 dargestellt. Nachfolgend werden die Schritte der Analyse näher beschrieben:

1. Das zuvor manuell erstellte Domänen-Modell wird als RDF/XML-Dokument
exportiert und in einem Ordner gespeichert. Dieses Modell ist die Grundlage für
die spätere Ontology Population.

2. Projektlastenhefte werden in GATE importiert. Es können gleichzeitig mehrere
Dokumente importiert werden. Alle Dokumente werden automatisch in
sogenannte GATE-Dokumente konvertiert.

3. Aus den GATE-Dokumenten wird ein Korpus erstellt. An dem Korpus erfolgt die
anschließende sprachliche Analyse.

4. Der Korpus durchläuft die Komponenten Document Reset PR, English Tokeniser,
Gazetteer, Sentence Splitter, POS Tagger, NE Transducer und OrthoMatcher aus
der Anwendung ANNIE [CMB+02]. Die einzelnen Bestandteile des Textes
werden entsprechend ihrer Zugehörigkeit von ANNIE annotiert. Als Ergebnis liegt
ein annotierter Korpus vor. Zur besseren Übersichtlichkeit wurden die
Komponenten für die sprachliche Analyse in Abb. 2 zu einem Schritt
zusammengefasst.

5. Ausgehend von zuvor definierten JAPE-Regeln, sucht der JAPE Transducer nach
Annotationen im Korpus. Die JAPE-Regeln sind Teil der OwlExporter Demo
[WKR10] und wurden für den vorliegenden Anwendungsfall angepasst. Das Ziel
dieses Schrittes ist es, Instanzen für die Ontology Population zu identifizieren. Der
JAPE Transducer erstellt zusätzliche Annotationen, die die Begriffe für den
anschließenden Export markieren.

6. Der OwlExporter, ein Java Plug-in, identifiziert die Instanzen und Relationen, die
exportiert werden sollen, anhand der Annotationen im Korpus. Danach exportiert
der OwlExporter Instanzen und Relationen in die Ontologie. Für diesen Schritt
wird die zuvor erstellte Ontologie im RDF/XML-Format benötigt. Sie dient als
Ausgangsdokument für die Ontology Population. Der OwlExporter positioniert
die im Korpus gefundenen Instanzen und Relationen automatisch an die richtige
Stelle in der Ontologie. Das Ergebnis ist eine Ontologie im RDF/XML-Format.

Ontologiebasierte Abhängigkeitsanalyse im Projektlastenheft 129

7. Die Ontologie wird mit Protégé geöffnet.

8. Der Reasoner Fact++ [TH06] wird nun verwendet, um die Konsistenz der
Ontologie zu prüfen und um neue (implizite) Abhängigkeiten in der Ontologie
abzuleiten.

9. Mit dem SPARQL Query Panel werden die Abhängigkeiten innerhalb der
Ontologie abgefragt. Als Ausgabe werden sogenannte Tripel, also Instanz-Paare
mit jeweils einer Relation abgefragt.

Abb. 2: Prototypische Werkzeugkette

3.2 Organisatorische Umsetzung

Die Randbedingungen in einem Industrieunternehmen lassen es nicht zu, dass Domänen-
Experten eigenständig Wissen in Form einer Ontologie modellieren und sprachliche
Analysen mit GATE durchführen. Neben dem Faktor Zeit spielen dabei auch noch die
fehlenden Kenntnisse der Domänen-Experten im Bereich von Ontologien und NLP eine
entscheidende Rolle. Aus diesem Grund schlagen wir vor, einen zentralen Bereich für
Projektmanagementunterstützung, ein sogenanntes Project Management Office (PMO),
mit der Durchführung der ontologiebasierten Abhängigkeitsanalyse zu beauftragen. In
einigen Projekten der Fahrzeugentstehung übernimmt der Projektmanagementunter-
stützer (PMU) eine dem Requirements Engineer ähnliche Rolle. Er leitet das Projektteam
bei der Erstellung des Projektlastenhefts an und hilft bei ausgewählten Tätigkeiten des
Anforderungsmanagements. In seiner Querschnittsrolle hat er außerdem einen guten
domänenübergreifenden Überblick und Zugriff auf erforderliche Projektunterlagen.
Außerdem ist er als neutrale Person geeignet, um Schwachstellen im Konzept

130 Konstantin Zichler und Steffen Helke

aufzuzeigen, da er keine der am Projekt beteiligten Abteilungen vertritt und damit mit
mehr Akzeptanz beim Aufzeigen von Fehlern rechnen kann. Eine organisatorische
Umsetzung unseres Vorgehens ist in Abb. 3 dargestellt.

Abb. 3: Organisatorische Umsetzung der ontologiebasierten Abhängigkeitsanalyse

Dabei ist ein Projektmanagementunterstützer derjenige, der das Werkzeug für die
ontologiebasierte Abhängigkeitsanalyse verwaltet. Er erstellt die Wissensbasis
(Ontologie) und versorgt die Projektteams mit den Ergebnissen der ontologiebasierten
Abhängigkeitsanalyse. Der Ablauf gliedert sich wie folgt:

1. Projektteams übergeben ihre Projektlastenhefte an den PMU.

2. Der PMU führt die Abhängigkeitsanalyse durch. Dabei filtert er die ermittelten
Abhängigkeiten, um die Projektteams nicht mit unnötig vielen Informationen zu
belasten.

3. Der PMU leitet die relevanten Ergebnisse an das jeweilige Projektteam weiter. Die
Domänen-Experten werden über die Abhängigkeiten informiert und können
Anforderungen ergänzen oder ändern und Anpassungen am Produktkonzept
vornehmen.

4 Praktische Experimente und Diskussion der Ergebnisse

Zum Nachweis der prinzipiellen Machbarkeit unseres Ansatzes, haben wir einen Text
aus fiktiven Anforderungen zusammengestellt. In Abb. 4 ist dieser Text bereits in GATE
importiert. Dabei ist zu sehen, dass die für den Export relevanten Begriffe mit Hilfe der
adaptierten OwlExporter Demo im Text identifiziert und für den Export mit der
Annotation OwlExportClassDomain und OwlExportRelationDomain annotiert wurden.

Ontologiebasierte Abhängigkeitsanalyse im Projektlastenheft 131

Abb. 4: Annotierte Begriffe für den Export mit OwlExporter Screenshot GATE

Im nächsten Schritt werden diese Begriffe von dem OwlExporter in das RDF/XML-
Dokument exportiert (Ontology Population). Dieses Dokument enthält die angereicherte
Ontologie, die im nächsten Schritt mit Protégé geladen wird.

In Abb. 5 ist das Ergebnis des Ontology Population und der Schlussfolgerung durch den
Reasoner zu sehen. Die beiden Instanzen EBus2X und Vehicle7 wurden zusammen mit
der Relation isPartOfVehicle aus dem Text exportiert. Daneben wurden auch die
Instanzen TestDriveCityTour und Charge4FreeCharging sowie die Relation
shallPerform aus dem Text extrahiert, die hier aber aus Gründen der Übersichtlichkeit
nicht dargestellt sind.

Abb. 5: Darstellung der Inferenz in Protégé

Aufgrund des zuvor definierten Axioms leitet der Reasoner aus dem vorhandenen
Wissen, zusätzlich zwei neue Abhängigkeiten her:

(EBus2X, isPresentDuringOperation, TestDriveCityTour)
(EBus2X, isPresentDuringOperation, Charge4FreeCharging).

Diese zusätzlichen Relationen sind nun explizit und werden den Domänen-Experten
angezeigt. Damit ist für das gesamte Projektteam klar, dass EBus2X durch diese beiden
Operationen ebenfalls betroffen ist. Als Folge können die Domänen-Experten die
Anforderung an die Lebensdauer des Bordnetzes und anschließend das Produktkonzept
bereits in der frühen Projektphase anpassen.

Dieses Beispiel zeigt nur einen kleinen Ausblick dessen, was möglich ist. Die Instanzen
TestDriveCityTour und Charge4FreeCharging könnten ihrerseits weitere
Verknüpfungen zu anderen Einflussfaktoren aufweisen. Diese könnten ebenfalls
automatisiert mit EBus2X und anderen Konzepten der Ontologie verknüpft werden, so
dass sich noch mehr Abhängigkeiten ergeben. Durch diese Art der Analyse kann die

132 Konstantin Zichler und Steffen Helke

Qualität eines Produktkonzepts in der frühen Phase der Produktentstehung zusätzlich
gesteigert werden. Der manuelle Aufwand, der für die Modellierung der Klassen und
Relationen anfällt, ist dabei verhältnismäßig gering. Außerdem kann das manuell
erstellte Domänen-Modell mehrfach wiederverwendet werden. Der größte Teil der
Ontologie, wird mit Hilfe des Ontology Population automatisiert erstellt. Speziell die
laufenden Änderungen auf Instanzebene, können mit Hilfe des Ontology Population
ebenfalls automatisiert werden. Dieses Vorgehen erlaubt die Analyse von sehr
umfangreichen Dokumenten in kürzester Zeit. Da Teile eines Nutzfahrzeugs häufig
parallel in unterschiedlichen Projekten entwickelt werden, können so die
Projektlastenhefte von mehreren Projekten gleichzeitig auf Abhängigkeiten analysiert
werden. Damit könnten nicht nur domänenübergreifende, sondern auch
projektübergreifende Abhängigkeiten gefunden werden.

Bevor jedoch diese Werkzeugkette genutzt werden kann, muss einige Vorarbeit geleistet
werden. Das Domänen-Modell muss erstellt und validiert werden. Weiterhin müssen die
NLP-Komponenten angepasst werden. Es müssen bspw. JAPE-Regeln formuliert und
Gazetteer-Listen erstellt werden. Von der Qualität dieser Vorarbeit ist folglich auch die
Trefferquote bei der sprachlichen Analyse im Text abhängig. Daneben bleibt der
Aufwand für die Pflege und Wartung der Wissensbasis und der Werkzeuge für die
sprachliche Analyse.

5 Verwandte Arbeiten

Schraps und Bosler stellen einen Ansatz vor, mit dem sie das Wissen aus Software-
anforderungen in eine Anforderungsontologie überführen. Dazu werden die
Anforderungen im ersten Schritt mit Hilfe von NLP-Techniken annotiert. Anschließend
sucht eine Mustererkennung nach vordefinierten Mustern in der Grammatik der
Anforderungen. Teile der Anforderungen, die in diese Muster fallen, werden
entsprechend ihrer Semantik in die Anforderungsontologie überführt [SB16]. In ihrer
Arbeit präsentiert Siegemund eine Methode für eine automatisierte Validierung und
Messung des Anforderungswissens. Mit der prototypischen Implementierung OntoReq
demonstriert Siegemund, wie unvollständige und inkonsistente Anforderungen und
Qualitätsfehler mit Hilfe einer Anforderungsontologie automatisch identifiziert werden.
Außerdem wird der Requirements Engineer bei der Lösung dieser Fehler durch
wissensbasierte Vorschläge angeleitet [Si14]. Schraps und Peters haben eine Methode
entwickelt, bei der Anforderungen mit Hilfe von semantischen Mustern in eine
Ontologie überführt werden. Diese Ontologie nutzen sie anschließend für die Prüfung
der Konsistenz innerhalb des Spezifikationsdokuments. Ihre Methode basiert nicht auf
NLP. Stattdessen schränken sie die Satzstruktur der Anforderungen bereits bei der
Formulierung durch eine formale Grammatik ein [SP14]. Soomro et al. präsentieren eine
ontologiebasierte Visualisierung von unterschiedlichen Abhängigkeitsbeziehungen
zwischen Anforderungen. In ihrem Ansatz behandeln sie speziell die Auswirkungen von
Änderungen der Anwenderanforderungen auf andere Anforderungen. Soomro et al.

Ontologiebasierte Abhängigkeitsanalyse im Projektlastenheft 133

gehen davon aus, dass Software-Teams Abhängigkeiten zwischen Anforderungen
übersehen, weil diese nicht deutlich genug dargestellt werden [SHS+14]. Farfelder et al.
nutzen eine Ontologie, um qualitativ hochwertige Anforderungen bereits bei ihrer
Erhebung zu formulieren. In ihrem System kann der Requirements Engineer über eine
graphische Benutzerschnittstelle aus einer Menge von vorgegebenen Boilerplates
wählen. Das System nutzt eine Domänenontologie, um eine Liste mit Vorschlägen für
die Einzelteile einer Anforderung zur Verfügung zu stellen, die der Requirements
Engineer für die Definition der Anforderungen nutzen kann [FMK+11].

Im Vergleich zu den hier vorgestellten Ansätzen bietet unsere Vorgehensweise die
Möglichkeit, weitgehend vollautomatisch die Abhängigkeiten in Projektlastenheften zu
finden. Werden mehrere Projektlastenhefte analysiert, können sogar Abhängigkeiten
zwischen verschiedenen Projekten identifiziert werden. Unser Ansatz bietet den Vorteil,
dass die Ersteller von Projektlastenheften kein spezielles Know-how zu Natural
Language Processing oder Ontology Engineering benötigen und auch keine formale
Grammatik erlernen müssen. Die Analyse wird in ein zentrales Project Management
Office ausgelagert, wodurch eine Entlastung der Projektmannschaft erreicht wird. Eine
solide sprachliche Qualität der Projektlastenhefte steigert die Leistungsfähigkeit unserer
Methode. Wir arbeiten aktuell an Erweiterungen, die auch bei Rechtschreib- oder
Grammatikfehlern akzeptable Ergebnisse liefern.

6 Zusammenfassung und Ausblick

In dem vorliegenden Papier wurde ein neuartiges Verfahren für die
Abhängigkeitsanalyse im Projektlastenheft vorgestellt. Das für die Abhängigkeitsanalyse
erforderliche, fachspezifische Wissen ist dabei zu einer gemeinsamen Wissensbasis in
Form einer Ontologie aggregiert. Zusammen mit Axiomen, einem Reasoner und
Werkzeugen aus dem Natural Language Processing wurde von uns eine automatisierte
Abhängigkeitsanalyse im Projektlastenheft realisiert, mit der es möglich ist, bisher nicht
berücksichtigte Abhängigkeiten zwischen Anforderungen zu identifizieren. Mit unseren
Ergebnissen aus ersten Tests haben wir die grundsätzliche Machbarkeit des Verfahrens
nachgewiesen. Zukünftig gilt es sicherzustellen, dass das im Domänen-Modell
hinterlegte fachspezifische Wissen korrekt ist. Aus diesem Grund arbeiten wir derzeit an
einem Verfahren, mit dem es möglich ist, eine Ontologie zu validieren. Dabei wollen wir
die spezifischen Rahmenbedingungen innerhalb der Produktentstehung von
Nutzfahrzeugen und die Fähigkeiten der interdisziplinären Domänen-Experten
berücksichtigen. Weiterhin wollen wir quantitative Aussagen über im Projektlastenheft
tatsächlich vorhandene und durch das vorgestellte Verfahren gefundene Abhängigkeiten
treffen können. Zu diesem Zweck werden ausführliche Tests mit der vorgestellten
Werkzeugkette durchgeführt.

134 Konstantin Zichler und Steffen Helke

Literaturverzeichnis

[CMB+02] Cunningham, H.; Maynard, D.; Bontcheva, K.; Tablan, V.: GATE: A Framework and
Graphical Development Environment for Robust NLP Tools and Applications. Proc. of
the 40th Annual Meeting of the Association for Computational Linguistics. 2002.

[CTR+13] Cunningham, H.; Tablan, V.; Roberts, A.; Bontcheva, K.: Getting More Out of
Biomedical Documents with GATE's Full Lifecycle Open Source Text Analytics.
PLoS Computational Biology 9(2), 2013.

[Cu14] Cunningham, et al.: Developing Language Processing Components with GATE
Version 8. University of Sheffield, Department of Computer Science. 17 Nov. 2014.

[FMK+11] Farfeleder, S.; Moser, T.; Krall, A.; St˚alhane, T.; Omoronyia, I.; Zojer, H.: Ontology-
Driven Guidance for Requirements Elicitation, Springer-Verlag, Berlin u.a., 2011.

[HKR+08] Hitzler, P.; Krötzsch, M.; Rudolph, S.; Sure, Y.: Semantic Web: Grundlagen. Springer-
Verlag, 2008.

[MFP09] Maynard, D.; Funk, A.; Peters, W.: SPRAT: a tool for automatic semantic pattern-
based ontology population. Proc. of the Int. Conf. for Digital Libraries and the
Semantic Web, Trento, Italy, 2009.

[Mu15] Musen, M., A.: The Protégé project: A look back and a look forward. AI Matters.
ACM 1(4), June 2015.

[PR11] Pohl, K.; Rupp, C.: Basiswissen Requirements Engineering – Aus- und Weiterbildung
zum Certified Professional for Requirements Engineering. dpunkt-Verlag, 2011.

[RMC+11] Ruiz-Martínez, J., M.; Minarro-Giménez, J., A.; Castellanos-Nieves, D.; García-San-
ches, F.; Valencia-García, R.: Ontology Population: An Application for the E-Tourism
Domain. Int. Journal of Innovative Computing, Information and Control, 7(11), 2011.

[SB16] Schraps, M.; Bosler, A.: Knowledge Extraction from German Automotive Software
Requirements using NLP-Techniques and a Grammar-based Pattern Detection. The 8th
Int. Conf. on Pervasive Patterns and Applications, pp. 17-21, 2016.

[SBF98] Studer, R., V.; Benjamins, R.; Fensel, D.: Knowledge engineering: Principles and
methods. Data & Knowledge Engineering, 25(1-2):161–197, 1998.

[Si14] Siegemund, K.: Contributions to Ontology-Driven Requirements Engineering, 2014.

[SHS+14] Soomro, S.; Hafeez, A.; Shaikh, A.¸Musavi, S.: Ontology Based Requirement Interde-
pendency Representation and Visualisation. In Communication Technologies, Infor-
mation Security and Sustainable Development, Springer-Verlag, pp. 259-270, 2014.

[SP14] Schraps, M.; Peters, M.: Semantic Annotation of a Formal Grammar by Semantic-
Patterns, IEEE 4th Int. Workshop on Requirements Patterns, 2014.

[TH06] Tsarkov, D.; Horrocks, I.: FaCT++ description logic reasoner: System description. In
Proc. of the Int. Joint Conf. on Automated Reasoning, 2006.

[WKR10] Witte, R.; Khamis, N.; Rilling, J.: Flexible Ontology Population from Text: The Owl-
Exporter, Int. Conf. on Language Resources and Evaluation, pp. 3845--3850, 2010.

Peter Dencker et. al.; Automotive Safety & Security 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 135

Performing a More Realistic and Complete Safety Analysis

by Means of the Six-Variable Model

Nelufar Ulfat-Bunyadi1 Denis Hatebur2 Maritta Heisel3

Abstract: Safety analysis typically consists of hazard analysis and risk assessment (HARA) as well
as fault tree analysis (FTA). During the first, possible hazardous events are identified. During the
latter, failure events that can lead to a hazardous event are identified. Usually, the focus of FTA is
on identifying failure events within the system. However, a hazardous event may also occur due to
invalid assumptions about the system’s environment. If the possibility that environmental assump-
tions turn invalid is considered during safety analysis, a more realistic and complete safety analysis
is performed than without considering them. Yet, a major challenge consists in eliciting first the
‘real’ environmental assumptions. Developers do not always document assumptions, and often they
are not aware of the assumptions they make. In previous work, we defined the Six-Variable Model
which provides support in making the ‘real’ environmental assumptions explicit. In this paper, we
define a safety analysis method based on the Six-Variable Model. The benefit of our method is that
we make the environmental assumptions explicit and consider them in safety analysis. In this way,
assumptions that are too strong and too risky can be identified and weakened or abandoned if neces-
sary.

Keywords: safety analysis, hazard analysis, risk analysis, fault tree analysis, assumption, environ-

ment, six-variable model

1 Introduction

The focus of FTA is usually on identifying the failure events within the system that can
lead to a hazardous event (cf. e.g. [IS11], [RS15]). Yet, a system is always embedded in an
environment. It is designed for this environment and satisfies its requirements during oper-
ation only if the assumptions about this environment that were made during development
are valid [ZJ97]. A hazardous event may also occur due to environmental assumptions that
turn out to be invalid. Van Lamsweerde describes in his book [La09] several accidents
in which wrong or invalid assumptions about the environment led to a hazardous event,
while the system behaved as specified. A famous example is the Lufthansa A320 flight to
Warsaw. The plane ran off the end of the waterlogged runway resulting in injuries and loss
of life. The reverse thrust was disabled for up to nine seconds after landing. The reason
was the following. The autopilot had the task to enable reverse thrust only if the plane
is moving on the runway. Since the wheels were not turning due to aquaplaning, the au-
topilot ‘assumed’ that the plane is not moving on the runway and thus disabled reverse
thrust. So, the system behaved as specified but the hazardous event occurred nevertheless

1 University of Duisburg-Essen, Oststrasse 99, 47057 Duisburg, nelufar.ulfat-bunyadi@uni-due.de
2 Institut für technische Systeme GmbH, Emil-Figge-Str. 76, 44227 Dortmund, d.hatebur@itesys.de
3 University of Duisburg-Essen, Oststrasse 99, 47057 Duisburg, maritta.heisel@uni-due.de

136 Nelufar Ulfat-Bunyadi et. al.

due to the wrong assumption. Due to such accidents, we argue that safety analysis should
not only focus on hazardous events resulting from failure events within the system. Wrong
or invalid environmental assumptions should also be considered as possible causes of a
hazardous event. This will result in a more realistic and more complete safety analysis. To
realize that it is necessary (i) to make the environmental assumptions explicit and (ii) to
take the probability for their invalidity into account in safety analysis. In previous work,
we developed the Six-Variable Model which provides the required support in making the
environmental assumptions explicit. In this paper, we present a safety analysis method
that is based on the Six-Variable Model and extends traditional safety analysis in order to
consider also invalid environmental assumptions as possible causes of hazardous events.

The paper is structured as follows. In Section 2, we first introduce the Six-Variable Model.
In Section 3, we briefly describe some fundamentals that we use. Our extensions to safety
analysis are then presented in Section 4. To demonstrate that our method results in a more
realistic safety analysis, we compare our method to traditional safety analysis in Section
5. Finally, we discuss related work in Section 6 and draw conclusions in Section 7.

2 The Six-Variable Model

The problem with assumptions is that developers do not always document the assumptions
they make. Frequently, they are even not aware of them. Even if they are aware of the im-
portance to document assumptions, they are left alone with the question which information
to document. Our Six-Variable Model provides support in this regard.

The Six-Variable Model [UBMH16] is based on the well-known Four-Variable Model
[PM95] and focuses on control systems. A control system consists of some control soft-
ware which uses sensors and actuators to monitor/control certain quantities in the envi-
ronment. In vehicles and air planes, we find a lot of control systems, e.g. ACC (Adaptive
Cruise Control) or ESP (Electronic Stability Program). The Four-Variable Model defines
the content of software documentation for control systems. Therein, Parnas and Madey
differentiate between four variables. Monitored variables m are environmental quantities
the control software monitors through input devices. Controlled variables c are environ-
mental quantities the control software controls through output devices. Input variables i

are data items that the control software needs as input and output variables o are quantities
that the control software produces as output.

However, frequently, it is not possible to monitor/control exactly those variables one is
interested in. Instead, a different set of variables is monitored/controlled, whose variables
are related to the ones of real interest. The Six-Variable Model demands that the variables
of real interest should be documented as well (beside the classical four variables). In ad-
dition, it should also be documented how the variables of real interest are related to the
monitored/controlled ones. The Six-Variable Model is depicted in Figure 1 as a problem
diagram. We first explain the notation and then the content of the model.

Problem diagrams have been introduced by Jackson [Ja01]. A problem diagram shows the
so called machine (i.e. the software-to-be), its environment, and the requirement to be sat-

Performing a Safety Analysis by Means of the Six-Variable Model 137

Control
machine

Monitored
domain

REQ

Controlled
domain

SE!{i}

CM!{o}

Sensor
MD!{m} MD!{r}

Actuator
CD!{d}AC!{c}

Used sensors/
actuators/

other systems

Requirement
in environment

Software-to-be
Problem
domains

in environment

Legend:

Machine
domain

Problem
domain

InterfaceRequirement Requirement
reference

Constraining
reference

r: referenced variables
d: desired variables
m: monitored variables
c: controlled variables
i: input variables
o: output variables

Fig. 1: The Six-Variable Model [UBMH16]

isfied. A problem diagram contains the following modelling elements: a machine domain,
problem domains, a requirement, interfaces, requirement references, and constraining ref-
erences. A problem domain represents any material or immaterial object in the machine’s
environment. The requirement is to be satisfied by the machine together with the problem
domains. Interfaces exist between machine domain and problem domains or among prob-
lem domains. At the interfaces, phenomena (e.g. events, states, values) are shared. Sharing
means that one domain controls a phenomenon, while the other observes it. At an interface,
not only the phenomena are annotated but also an abbreviation of the domain controlling
them followed by an exclamation mark (e.g. CM!). A requirement is connected to problem
domains by means of a requirement reference or a constraining reference. A requirement
reference expresses that the requirement refers somehow to the domain phenomena, while
a constraining reference expresses that the requirement constrains (i.e. influences) them.

In the Six-Variable Model (Figure 1), the machine is the control software. It uses sensors
and actuators to monitor/control certain phenomena of environmental domains (m and c

variables). The requirement is shown on the right-hand side of the model. It refers to and
constrains certain phenomena of the environmental domains. As stated above, these phe-
nomena are not necessarily the same phenomena as the controlled/monitored ones. We
call these phenomena the r and d variables. r (referenced) variables are environmental
quantities that should originally be observed in the environment. Originally means be-
fore deciding which sensors/actuators/other systems to use for monitoring/controlling. As
explained above, this decision frequently results in a different set of variables which are
monitored/controlled. d (desired) variables are environmental quantities that should origi-
nally be influenced in the environment.

The benefit of making the six variables explicit is, among others, that we can make the
environmental assumptions explicit based on them. Usually, we are the developers of the
machine but the sensors/actuators are developed by other parties. We depend on them for
satisfying the requirement REQ (see Figure 1). We assume, for example, that the sensors
provide an i variable which actually reflects the corresponding m variable. Figure 2 shows
the environmental assumptions for the Six-Variable Model. We differentiate between two

138 Nelufar Ulfat-Bunyadi et. al.

types of assumptions (based on [La09]): domain hypotheses and expectations. A domain
hypothesis is a descriptive statement about the environment which needs to be valid. An
expectation is a prescriptive statement to be satisfied by an environmental agent like a
person, sensor, actuator. So, DH-MD is a hypothesis about the monitored domain, which
needs to be true. Exp-SE is an expectation to be satisfied by the sensors, Exp-AC is an
expectation to be satisfied by the actuators, and Exp-CD is an expectation to be satisfied by
the controlled domain. SOF represents the software requirements which are to be satisfied
by the control machine. The requirements REQ can only be satisfied, if DH-MD is valid
and Exp-SE, SOF, Exp-AC as well as Exp-CD are satisfied.

DH-MD: m
actually
reflects r

r m

Control
machine

Monitored
domain

REQ

i

o

Sensor m r

Actuator c
Controlled
domain d

Exp-SE: i
actually

corresponds
to m

i m

Exp-AC: o
actually
results in c

o
c Exp-CD: d is

actually
achieved by c

c d

SOF:
produce o
from i

o
i

Satisfaction argument: DH-MD, Exp-SE, SOF, Exp-AC, Exp-CD ├ REQ

Fig. 2: Assumptions regarding the six variables [UBMH16]

Note that there may be several connection domains (i.e. a chain of sensors or a chain of
actuators) between the machine and the environmental domains (Figure 1), especially in
embedded systems. The existence of connection domains means that there are not only
six variables to be documented but even 4+n variables. However, our Six-Variable Model
supports that (see [UBMH16] for more details).

In case of the Lufthansa air plane (see Figure 3), for example, a referenced variable is
the plane’s movement on the runway. This phenomenon was observed by monitoring the
turning of the wheels. A desired variable was the deceleration of the plane. This should
be achieved by enabling the reverse thrust (controlled variable). Note that we show the
same plane domain twice in Figure 3 and annotated it with an asterisk. Usually, this is
not allowed in problem diagrams (i.e. a domain is only shown once in a diagram) but
we did it here to enable the reader to see the similarity to Figure 1. Figure 3 shows also
the environmental assumptions for the Lufthansa autopilot. Unfortunately, such a model
was not created for the autopilot. Yet, making environmental assumptions explicit helps
already since developers then start reflecting on them. However, we go one step further
and ask for estimating the probability for their invalidity and taking these values into ac-
count in safety analysis. If it then turns out that assumptions are too strong and too risky,
they can be weakened or abandoned. In this way, hazardous events resulting from invalid
environmental assumptions can be prevented.

Performing a Safety Analysis by Means of the Six-Variable Model 139

Autopilot
Enable
reverse
thrust

c a

fd

Wheel
sensors

Plane*

b Plane*

DH-P-1:
Turning of wheels
reflects movement

on runway.

Exp-WS-1:
Measured

wheel speed
reflects turning

of wheels.

SOF-1:
When measured
wheel speed >

0km/h, then activate
reverse thrust.

Exp-RT-1:
Activate

instruction
results in reverse

thrust ON.

a: P! {moving on runway}
b: W! {turning of wheels}
c: WS! {measured wheel speed}
d: A! {activate}
e: RT! {reverse thrust ON}
f: P! {decelerated}

a

b

bcc

d

d

e

Reverse
thrust

Exp-P-1:
Reverse thrust
ON results in
deceleration of

plane.

e

fe

Fig. 3: Six variables in case of the Lufthansa autopilot

3 Fundamentals

Beckers et al. [Be13] have developed a hazard analysis and risk assessment (HARA)
method which is compliant to the ISO 26262 Standard [IS11]. We use and extend this
method in Section 4. Therefore, we introduce it here briefly. The goal of the HARA method
is to identify potential hazards for the considered system and to formulate safety goals re-
lated to the prevention or mitigation of these hazards in order to achieve an acceptable
residual risk. The method consists of seven steps. First, a so called context diagram4 is
created and a list of high-level requirements is defined. Second, for each high-level re-
quirement, possible faults are identified using certain guide words (e.g. no, unintended,
early, late) as a support. Third, for each high-level requirement, situations are selected
from a given list of possible situations (during a vehicle’s life) that are considered to be
relevant for the requirement (e.g. parking manoeuvre, braking situation, highway situa-
tion). Fourth, for each fault/requirement combination, all situations that could lead to a
potential hazard are identified in the list of situations being relevant (result from Step 3).
Fifth, each hazard is classified according to its severity, exposure, and controllability in
order to assess the required level of risk reduction (ASIL). The possible ASILs are: QM,
ASIL A, ASIL B, ASIL C, and ASIL D. ASIL D is the highest level requiring the high-
est risk reduction and QM is the lowest level expressing that the normal quality measures
applied in the automotive industry are sufficient. Sixth, safety goals are defined to address
the hazards (i.e. to prevent or mitigate them). Seventh, the results of the hazard analysis
and risk assessment are reviewed by an independent party.

4 Our Safety Analysis Method

Traditional safety analysis focuses on the system (cf. e.g. [IS11]). The system is defined as
a set of elements that relates at least a sensor, a controller and an actuator with one another
[IS11]. During traditional safety analysis, hazardous events occurring at the actuators are

4 Context diagrams have also been introduced by Jackson [Ja01]. A context diagram is similar to a problem
diagram but it shows only the machine and the problem domains connected to it.

140 Nelufar Ulfat-Bunyadi et. al.

identified (see Figure 1) and their causes are analysed until arriving at the sensors. Possible
causes of a hazardous event (i.e. c variable is not achieved/effected) are then: a fault in the
actuators, a fault in the machine, or a fault in the sensors.

Yet, actually, hazardous events occur at the controlled domains in the environment (see
Figure 1). For example, in case of the Lufthansa air plane, the controlled variable was ‘re-
verse thrust ON’. Yet, the desired variable was ‘plane decelerated’ (see Figure 3). This is
what we actually wanted to achieve in the environment. During HARA, we should there-
fore identify situations in which this goal is not achieved (i.e. d variable is not achieved).
Such hazardous events represent situations, in which assumptions of type Exp-CD (see
Figure 2) turn out invalid. Furthermore, FTA should not stop at the sensors because there
are further possible causes for a hazardous event. As pointed out in Section 2, we make the
assumption that the monitored variables m reflect the referenced variables r (assumptions
of type DH-MD in Figure 2). Yet, these are assumptions that can also turn invalid. Actu-
ally, this was the case in the Lufthansa example. The turning of the wheels did not reflect
the plane’s actual movement on the runway in that situation, i.e. DH-P-1 (see Figure 3)
turned out invalid. We need to consider the possibility that such assumptions turn invalid
in the FTA. Therefore, FTA should not stop at the sensors but at the monitored domains.
Further possible causes of a hazardous event are then: a ‘fault’ in the monitored domain,
i.e. a wrong/invalid domain hypothesis.

In the following, we describe a safety analysis method that performs HARA and FTA in
the way we just suggested. Our method is compliant to the ISO 26262 Standard [IS11].
It consists of the five steps depicted in Figure 4. The figure provides an overview of the
method steps as well as inputs and outputs of each step. They are explained in the follow-
ing.

ex
te
rn
al

in
pu

t
m
et
ho

d
st
ep

s
in
pu

t/
ou

tp
ut

Step 1:
Create problem

diagrams

Step 3:
Perform HARA

Step 4:
Perform FTA

Step 2:
Make assumptions

explicit

Step 5:
Perform risk
reduction

Knowledge from
domain expert

Problem
diagrams

Hazardous
events

Environmental
Assumptions

Fault trees

Target failure
rate achieved?

[Yes]
[No]

Knowledge from
risk expert

Safety
goals

Fig. 4: Overview of our method

Step 1: Create problem diagrams. As a first step, one or (if necessary) several problem
diagrams need to be created for the system’s main functionality based on our Six-Variable
Model presented in Section 2. In the ISO 26262 Standard, the creation of a functional
architecture showing the main system components is suggested. Instead of the functional
architecture, we suggest using problem diagrams as a foundation for HARA because they
show not only the system but also the environment. For the problem diagrams it is es-
sentially important that all domains connecting the machine to the real world are actually
modelled in the problem diagrams even if they only transmit data without processing it

Performing a Safety Analysis by Means of the Six-Variable Model 141

(e.g. in case of a chain of sensors or a chain of actuators). The reason is that failure events
could also occur here.

Step 2: Make assumptions explicit. For each problem diagram from Step 1, the assumptions
need to be made explicit as shown in Figure 2. Making the assumptions explicit has the
benefit that we can assess the probability for their invalidity and consider them in the FTA
(Step 4).

Step 3: Perform HARA. During this step, the HARA is mainly performed in the way de-
scribed by Beckers et al. in [Be13] except that we identify hazardous events at the con-
trolled domains (i.e. situations in which d variable is not achieved) and not at the actuators.
Input to this step are the problem diagrams from Step 1. For each requirement in a problem
diagram, possible faults are identified. For each fault/requirement combination, all situa-
tions that could lead to a potential hazard are identified. Each hazard is classified according
to its severity, exposure, and controllability in order to assess the required level of risk re-
duction (ASIL). Finally, safety goals are defined for preventing or mitigating the hazards.
In order to evaluate whether the residual risk of safety goal violations is sufficiently low,
the ISO 26262 Standard requires for a system with ASIL C or ASIL D to determine the
PMHF (cf. [IS11]). PMHF stands for ‘Probabilistic Metric for random Hardware Failures’
and is used to evaluate the probability of violation of the considered safety goal using,
for example, quantified FTA and to compare the result of this quantification with a target
value. This is what we do in Step 4.

Step 4: Perform FTA. For each hazardous event, we identify possible causes and document
the failure events and faults in a fault tree based on the corresponding problem diagram
from Step 1. The hazardous event occurs at the controlled domain in the problem diagram.
To identify faults, we traverse the problem diagram, starting at this controlled domain and
stopping at the monitored domain(s). Note that it might be necessary to traverse the same
problem diagram for several hazardous events. We document the identified failure events
and faults in a fault tree. A fault tree (FT) is a directed acyclic graph with two types of
nodes: events and gates [RS15]. The notation is shown in Figure 6. The event at the top of
a fault tree is the hazardous event being analysed. Events that are not further decomposed
are basic events, i.e. either faults or situations. Gates represent how failures propagate, i.e.
how failures can combine to cause a hazardous event. There are two types of gates. An
AND gate means that the output event occurs if all of the input events occur. An OR gate
means that the output event occurs if any of the input events occurs.

The fault tree allows one to calculate the probabilities of failure occurrence. We calculate
the probability that a failure occurs in one hour of operation time, assuming that this is
the time of a typical drive cycle (see [IS11], Part 5, Section 9.4.2.3, Note 2). We also
assume a linear failure rate distribution. Therefore, our values for the probabilities in the
fault tree and for the failure rates are the same. Failure rates are annotated at the leaves of
the tree (based on expert knowledge) and are calculated bottom up to the root according to
FTA rules for AND and OR gates (cf. [RS15]). As stated above, the resulting value (i.e. the
actually achieved failure rate) must be compared to a target value. One possibility to obtain
PMHF target values is given by means of Table 6 in Part 5 of the ISO 26262 Standard
[IS11]. It requires for ASIL D a failure rate smaller than 10−8h−1 and for ASIL C a failure

142 Nelufar Ulfat-Bunyadi et. al.

rate smaller than 10−7h−1. Note that these PMHF target values only cover the hardware
parts of the system. The ISO 26262 Standard does not consider faults that occur in the
environment. Since we think that the environment should be considered, we would like
the environment failure rate to have the same value as the PMHF target value. This means
that the overall maximum failure rate for violating the safety goal would be 2 · 10−8h−1

for ASIL D and 2 ·10−7h−1 for ASIL C.

To use the same fault tree for calculating the actually achieved failure rate (in order to
show compliance to ISO 26262), we set the failure rates of the environment events to 1,
if they are connected with an AND gate, and to 0, if they are connected with an OR gate
in order to ignore them. The actually achieved failure rate is compared to the target value
(i.e. 2 · 10−8h−1 for ASIL D or 2 · 10−7h−1 for ASIL C). Only if the calculated value for
the tree is higher than the target value, Step 5 needs to be performed.

Step 5: Perform risk reduction. During this step, modifications are made to the problem
diagrams from Step 1, for example, a sensor is added to increase reliability of monitored
information, or a different procedure is considered (e.g. calculation or estimation). By
means of such modifications, the assumptions of type DH-MD, Exp-SE, Exp-AC, Exp-CD

may change as well, i.e. they are strengthened, weakened, or abandoned. Based on these
modified problem diagrams, Step 4 is performed again. This is done until the target failure
rate is achieved.

5 Comparison of Traditional FTA and Our Method

To illustrate that performing safety analysis based on the Six-Variable Model (as we do
in our method) results in a more realistic and complete safety analysis, we compare two
types of fault trees: Fault Tree 1, which focusses on the system (result of traditional FTA)
and Fault Tree 2, which considers also the environment with the r and d variables. As an
example we consider the ACC system described in [Ro03]. This is a simple version of an
ACC, which mainly supports cruise control. It maintains the desired speed entered by the
driver. If it detects vehicles ahead, it adapts the speed of the ACC vehicle accordingly.

Performing traditional FTA. The system design for the ACC is given as a SysML internal
block diagram in Figure 5. The ACC uses data from a long range radar sensor (LRR) and
ESP sensors to identify vehicles ahead on the same lane. For adapting the speed of the
ACC vehicle, it uses the ESP system and the engine management system.

One hazardous event that may occur at the ESP (actuator) is unintended braking. We per-
form traditional FTA, i.e. we start analysis at the ESP and stop at the sensors (LRR and
ESP sensors) focussing on the identification of system failures. The result, Fault Tree 1, is
given in Figure 6. The hazardous event unintended braking may be caused by two events:
the ESP system performs deceleration on its own (F ESP DEC) or it performs deceleration
due to the input it received (FA ESP DEC). The first event represents a fault in the ESP
system and is not further analysed. The second event may have different causes and is
therefore further analysed. First, the CAN bus may have requested erroneously to decel-
erate, i.e. there was a CAN fault, (F CAN DEC1) or CAN requests for deceleration due

Performing a Safety Analysis by Means of the Six-Variable Model 143

ibd ACC

ACC CAN

Long Range
Radar

ESP

Engine
Management
System

measured speed,
distance, lateral offset
of vehicles ahead

measured speed
and yaw rate of
ACC vehicle

braking-torque-to-be

engine-torque-to-be

data of vehicles
ahead

data of ACC
vehicle,
braking torque

engine torque

driver interaction

measured speed,
distance, lateral
offset of VA,
measured speed and
yaw rate of ACCV,
braking-torque-to-be,
engine-torque-to-be

Fig. 5: ACC system design

to the input it receives from ACC (FA CAN DEC1). The latter event has again two pos-
sible causes: an ACC fault (F ACC DEC) or ACC requests deceleration due to the input
it receives from CAN (FA ACC DEC). The latter event has again two possible causes: a
CAN fault (F CAN DEC2) or CAN requests deceleration due to the input it receives from
sensors. The latter event has again two possible causes: the ESP sensors send wrong infor-
mation (wrong speed and/or wrong yaw rate) due to a fault in the ESP sensors or the long
range radar sends wrong information (wrong speed and/or distance and/or lateral offset)
due to a fault in the long range radar sensor.

Once the fault tree is created, failure rates must be assigned to the leaves of the fault tree
and the failure rates must be calculated bottom up. Due to the experience one of the authors
had in the automotive domain, the values were assigned by him in our example. We used
the tool Reliability Workbench 115 to calculate the failure rates bottom up. To check the
values calculated by the tool, we calculated them also manually. Overall, we achieve a
failure rate of 2.04 ·10−6h−1.

Application of our method. We create first a problem diagram based on the Six-Variable
Model. This is given in Figure 7. In contrast to Figure 5, Figure 7 shows the environment
and the r and d variables. Referenced variables are speed, distance, and lane of vehicles
ahead as well as the lane of the ACC vehicle. Monitored variables are speed, distance,
and relative position of vehicles ahead as well as the course of the ACC vehicle. The
desired variable is the speed adaptation of the ACC vehicle. The requirement in Figure 7 is
‘Maintain desired speed and keep safety distance to vehicles ahead’. This requirement can
be decomposed into the assumptions (expectations and domain hypotheses) and software
requirements given below the problem diagram in Figure 7.

Instead of the hazardous event unintended braking, we consider the hazardous event that
occurs at the controlled domain: unintended speed reduction. Based on the problem dia-
gram in Figure 7, we create the fault tree. It is given in Figure 8. Compared to Fault Tree
1, Fault Tree 2 starts with a different root node due to the different hazardous event that
is considered. This event has two possible causes. First, the ACC vehicle may decelerate

5 http://www.isograph.com/software/reliability-workbench/

144 Nelufar Ulfat-Bunyadi et. al.

HAZARD UB
Q=2,04E-06

Unintended
braking

FA ESPDEC

ESP requests
decelerate due to
ESP input

F ESPDEC

ESP requests
erroneously

decelerate due to
ESP fault

FR=1E-08

FA CAN DEC1

CAN requests
decelarate due to
input from ACC

F CAN DEC1

CAN (with E2E
proctection) requests

erroneously
decelerate due to

CAN fault

FR=1E-08

FA ACC DEC

ACC requests
decelerate due to
ACC input

F ACC DEC

ACC requests
erroneously
decelerate due
ACC fault

FR=1E-06

FA CAN DEC2

CAN requests
decelarate due to
input from
sensors

F CAN DEC2

CAN (with E2E
proctection) requests in

other message
erroneously decelerate
due to CAN fault

FR=1E-08

F ESPS

ESP sensors send
wrong speed and/or

yaw rate
(fault of ESP
sensors)

FR=1E-08

F LRR

LRR sensor sends
wrong speed,
distance, and/or
relative position
(fault of LRR)

FR=1E-06

Legend:

faultevent situation OR gate AND gate

Fig. 6: Fault Tree 1 – Result of Traditional FTA

Performing a Safety Analysis by Means of the Six-Variable Model 145

DH1-ACCV:
DH1-VA:
Exp1-LRR:
Exp1-ESPS:
Exp1-CAN:

SOF1-ACC:

Exp2-CAN:
Exp1-ESP:
Exp1-EMS:
Exp1-ACCV:
Exp2-ACCV:

The course of the ACC vehicle reflects its lane.
Speed, distance, and relative position of a vehicle ahead reflect its speed, distance, and lane.
Measured speed, distance, and lateral offset of a vehicle ahead reflect its actual speed, distance, and relative position.
Measured speed and yaw rate of the ACC vehicle reflect its actual course.
Speed, distance, and lateral offset of vehicles ahead as well as speed and yaw rate of ACC vehicle transmitted by CAN
correspond to the speed, distance, and lateral offset measured by the long range radar and the speed and yaw rate
measured by the ESP sensors.
Determine course of the ACC vehicle based on the measured speed and yaw rate of the ACC vehicle. Calculate relative
position of vehicle ahead based on determined course and lateral offset of vehicle ahead. Calculate engine- or braking-
torque-to-be.
Transmitted engine- and braking-torque-to-be correspond to engineand braking-torque-to-be provided by ACC.
Decelerate instruction reflects braking-torque-to-be.
Accelerate instruction reflects engine-torque-to-be.
Speed of ACC vehicle is adapted according to decelerate instruction.
Speed of ACC vehicle is adapted according to accelerate instruction.

ACC

Vehicles
ahead

Maintain desired
speed and keep
safety distance to
vehicles ahead

ACC
vehicle*

ACC!{braking-
torque-to-be,
engine-torque-to-be}

Long Range
Radar

VA!{speed,
distance,
relative position}

VA!{speed, distance, lane}

ESP
ACCV!{speed adapted}

ESP!{decelerate}

ACC
vehicle*

EMS

ACCV!{lane}
ESPS!{measured
speed, yaw rate of ACCV}

EMS!{accelerate}

CAN*

CAN*

CAN!{measured speed,
distance, lateral offset
of VA, measured speed,
yaw rate of ACCV}

CAN!{engine-
torque-to-be}

CAN!{braking-
torque-to-be}

ESP
sensors

ACCV!{course}

LRR!{measured speed,
distance, lateral
offset of VA}

Fig. 7: Problem diagram for the ACC and environmental assumptions

although its input does not require deceleration (F ACCV1). This event covers exactly the
situation when the c variable does not result in the d variable, i.e. negation of an assump-
tion of type Exp-CD, here Exp1-ACCV. The ACC vehicle shall not decelerate but it does.
The controlled domain ACC vehicle does not behave as expected. This situation may be
seldom but nevertheless we consider it as a possible cause of the hazardous event. In Fault
Tree 1, this event was not considered. The other possible cause of the root node is that the
ACC vehicle decelerates due to the input it receives (FA ACCV DEC). This event is then
further decomposed. The middle of the tree resembles Fault Tree 1. Yet, at the bottom of
the tree, we find again differences, since we consider the possibility that the domain hy-
potheses DH1-ACCV and DH1-VA are wrong/invalid. There may be situations in which
the course estimated by the ESP sensors does not correspond to the actual lane of the ACC
vehicle (F ACCV2). In a curve, for example, the estimation of the own lane and the lane
of vehicles ahead may be difficult. For example, if both cars are driving close to the road
marking, the ACC may assume (based on the determined course of the ACC vehicle and
the calculated relative position of the vehicle ahead) that they are driving on the same lane
although they are actually on two different lanes. So, there may be situations in which the
relative position of vehicles ahead does not reflect their lane. This is covered by event F
LRR. Fault Tree 2 results in an overall failure rate of: 2.02 ·105h−1.

Comparison of the results. The comparison of the two fault trees reveals that, of course, the
consideration of assumptions in Fault Tree 2 results in a higher value for the overall failure
rate since more risks are considered than in Fault Tree 1. Yet, they are the assumptions
that we actually make. Therefore, the overall failure rate of Fault Tree 2 is more realistic.

146 Nelufar Ulfat-Bunyadi et. al.

HAZARD USR
Q=0,000202

Unintended
speed reduction

FA ACCV DEC

ACCV decelerates
because it
receives a

decelerate request

F ACCV1

ACC vehicle
decelerates

erroneously although
input does not require

deceleration

FR=1E-08

FA ESP DEC

ESP requests
decelerate due to

ESP input

F ESP DEC

ESP requests
erroneously

decelerate due to
ESP fault

FR=1E-08

FA CAN DEC1

CAN requests
decelarate due to
input from ACC

F CAN DEC1

CAN (with E2E
proctection) requests

erroneously
decelerate due to

CAN fault

FR=1E-08

FA ACC DEC

ACC requests
decelerate due to

ACC input

F ACC DEC

ACC requests
erroneously
decelerate due
ACC fault

FR=1E-06

FA CAN DEC2

CAN requests
decelarate due to

input from
sensors

F CAN DEC2

CAN (with E2E
proctection) requests in

other message
erroneously decelerate

due to CAN fault

FR=1E-08

F ESPS

ESP sensors send

FR=1E-08

F ACCV2

Course of the ACCV
does not reflect lane

of the ACCV

FR=0,0001

F LRR

FR=1E-06

F VA

FR=0,0001

wrong speed and/or
yaw rate

(fault of ESP
sensors)

LRR sensor sends
wrong speed,
distance, and/or
relative position
(fault of LRR)

Speed, distance,
relative position
do not reflect
speed, distance
lane of VA

Fig. 8: Fault Tree 2 – Result of Our Method

Performing a Safety Analysis by Means of the Six-Variable Model 147

Furthermore, it is more complete since we do not neglect failure events that may occur due
to wrong/invalid assumptions (Exp1-ACCV, DH1-ACCV, DH1-VA).

6 Related Work

A method that is related to our work is the KAOS method described by van Lamsweerde
[La09]. He assumes Jackson’s model of the world and the machine and suggests a goal-
oriented method. He also calls for documenting environmental assumptions (expectations
and domain hypotheses) and for checking whether they are too strong and too risky. How-
ever, he focuses on the classical four variables and thus does not provide support in making
the ‘real’ environmental assumptions explicit.

Another work that is closely related to ours is the work of Tun et al. [Tu15]. They suggest
a method for identifying and classifying environmental assumptions whose violation is
known from experience to have prevented the requirements from being satisfied. The idea
is to reuse this knowledge of past failures to prevent failures in the future. The approach
is quite interesting because it also considers possible mismatches between assumptions
the software makes about the environment and the actual environmental reality. Yet, the
method is reactive, i.e. failures must have been occurred in the past to be considered in
the future. In contrast to that, our method is proactive. We provide support in making the
environmental assumptions explicit and in considering the possibility for their violation
already during safety analysis, i.e. before failures actually occur. The failures can then
be prevented, for example, by changing the system design (e.g. adding sensors) and thus
weakening assumptions.

Another related work is HAZOP (Hazard and Operability Studies) [IE01]. HAZOP is a
technique for examining a system in order to identify potential hazards in the system as
well as potential operability problems with the system. A key characteristic of HAZOP is
that it provides a core set of guide words which are intended to stimulate the imagination
of the team (performing the HAZOP study) in a systematic way to identify hazards and
operability problems. We use these HAZOP guide words in our method (Step 3: Perform
HARA) as well.

Finally, STPA (Systems-Theoretic Process Analysis) [Le11] is a further important related
work. While fault tree analysis is based on reliability theory, STPA is based on systems
thinking. This means, the cause of an accident/hazardous event is not understood as a series
of failure events but as the result of a lack of constraints imposed on the development, de-
sign, and operation of the system. Safety is therefore viewed as a control problem, i.e. haz-
ardous events occur when component failures, external disturbances, and/or dysfunctional
interactions among system components are not adequately handled. Preventing hazardous
events requires thus designing a control structure that enforces the necessary constraints
on system development and operation. STPA is an interesting method and, since it is based
on systems thinking, is closer related to our Six-Variable Model than fault tree analysis.
Yet, fault tree analysis is a well-established technique that is frequently used in industry,
especially in the automotive domain. Therefore, our aim was to extend fault tree analysis.
Yet, we consider extending STPA with our Six-Variable Model in future work.

148 Nelufar Ulfat-Bunyadi et. al.

7 Conclusion and Future Work

In this paper, we presented an ISO-26262-compliant method for performing hazard anal-
ysis and fault tree analysis. The main contribution of our method is that it supports the
identification of failure events beyond the system border. More precisely, it supports de-
velopers in considering the risk associated with possibly too strong environmental assump-
tions in the hazard analysis as well as the fault tree analysis. We think that it is important
to consider such risks because there are numerous real accidents that were caused by such
assumptions turning out to be invalid in certain operational situations while the system
behaved as specified. Too strong assumptions can be weakened or abandoned by changing
the system design. Therefore, they should be detected early on in the development process.
Our method supports that. In future work, we plan to extend STPA (Systems-Theoretic
Process Analysis) with our Six-Variable Model and to compare the resulting method with
the one described in this paper with regard to the applicability, usability, etc.

References

[Be13] Beckers, K.; Heisel, M.; Frese, T.; Hatebur, D.: A Structured and Model-based Hazard
Analysis and Risk Assessment Method for Automotive Systems. In: Proc. of ISSRE
2013. pp. 238–247, 2013.

[IE01] IEC 61882 Hazard and Operability Studies – Application Guide, 2001.

[IS11] ISO 26262 Road Vehicles – Functional Safety, 2011.

[Ja01] Jackson, M.: Problem Frames – Analysing and Structuring Software Development
Problems. Addison-Wesley, 2001.

[La09] Lamsweerde, A. Van: Requirements Engineering – From System Goals to UML Mod-
els to Software Specifications. John Wiley and Sons, 2009.

[Le11] Leveson, N.: Engineering a Safer World – Systems Thinking Applied to Safety. The
MIT Press, 2011.

[PM95] Parnas, D. L.; Madey, J.: Functional Documents for Computer Systems. Science of
Computer Programming, 25(1):41–61, 1995.

[Ro03] Robert Bosch GmbH: ACC Adaptive Cruise Control - The Bosch Yellow Jackets. Edi-
tion 2003 edition, 2003.

[RS15] Ruijters, E.; Stoelinga, M.: Fault Tree Analysis: A Survey of the State-of-the-Art in
Modeling, Analysis and Tools. Computer Science Review, 15(1):29–62, 2015.

[Tu15] Tun, T.; Lutz, R.; Nakayama, B.; Yu, Y.; Mathur, D.; Nuseibeh, B.: The Role of En-
vironmental Assumptions in Failures of DNA Nanosystems. In: Proc. of COUFLESS
2015. pp. 27–33, 2015.

[UBMH16] Ulfat-Bunyadi, N.; Meis, R.; Heisel, M.: The Six-Variable Model – Context Modelling
Enabling Systematic Reuse of Control Software. In: Proc. of ICSOFT-PT 2016. pp.
15–26, 2016.

[ZJ97] Zave, P.; Jackson, M.: Four Dark Corners of Requirements Engineering. ACM Trans-
actions on Software Engineering and Methodology, 6(1):1–30, 1997.

Peter Dencker et. al.; Automotive Safety & Security 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 149

Using STPA in Compliance with ISO 26262 for Developing

a Safe Architecture for Fully Automated Vehicles

Asim Abdulkhaleq1, Stefan Wagner2, Daniel Lammering 3, Hagen Boehmert4 and Pierre
Blueher 5

Abstract: Safety has become of paramount importance in the development lifecycle of the modern
automobile systems. However, the current automotive safety standard ISO 26262 does not specify
clearly the methods for safety analysis. Different methods are recommended for this purpose. FTA
(Fault Tree Analysis) and FMEA (Failure Mode and Effects Analysis) are used in the most recent
ISO 26262 applications to identify component failures, errors and faults that lead to specific hazards
(in the presence of faults). However, these methods are based on reliability theory, and they are not
adequate to address new hazards caused by dysfunctional component interactions, software failure or
human error. A holistic approach was developed called STPA (Systems-Theoretic Process Analysis)
which addresses more types of hazards and treats safety as a dynamic control problem rather than
an individual component failure. STPA also addresses types of hazardous causes in the absence of
failure. Accordingly, there is a need for investigating hazard analysis techniques like STPA. In this
paper, we present a concept on how to use STPA to extend the safety scope of ISO 26262 and support
the Hazard Analysis and Risk Assessments (HARA) process. We applied the proposed concept to
a current project of a fully automated vehicle at Continental. As a result, we identified 24 system-
level accidents, 176 hazards, 27 unsafe control actions, and 129 unsafe scenarios. We conclude that
STPA is an effective and efficient approach to derive detailed safety constraints. STPA can support
the functional safety engineers to evaluate the architectural design of fully automated vehicles and
build the functional safety concept.

Keywords: STAMP/STPA Safety Analysis, ISO 26262, Functional Safety, Autonomous Vehicles.

1 Introduction

Nowadays, innovations in software and technology lead to increasingly complex automo-
tive systems such as self-parking vehicles, the use of smartphones to park vehicles and,
more recently, fully automated driving vehicles. As a new technology, the fully automated
driving vehicles may bring a new safety risk and threats to our society which have to
be controlled during their development. Hence, the safety analysis becomes a great chal-
lenge in the development of safety-critical systems. In the past, failures of the automotive
systems beyond separate component malfunction like interface problems led to safety is-
sues. The automotive industry started to pay attention to the functional safety of vehicle
electronic control systems and to introduce new standards to address the growing com-
plexity of its systems. The safety standard ISO 26262 [IS11] “Road vehicles – Functional

1 Institute of Software Technology, University of Stuttgart, Asim.Abdulkhaleq@informatik.uni-stuttgart.de
2 Institute of Software Technology, University of Stuttgart, Stefan.Wagner@informatik.uni-stuttgart.de
3 Continental, Regensburg, Germany, Daniel.Lammering@continental-corporation.com
4 Continental, Frankfurt am Main, Germany, Hagen.Boehmert@continental-corporation.com
5 Continental, Frankfurt am Main, Germany, Pierre.Blueher@continental-corporation.com

150 Asim Abdulkhaleq et. al.

safety” is an international risk based safety standard to describe state-of-the-art for the de-
velopment of safety-relevant vehicle functions and addresses possible hazards caused by
malfunctioning behaviour of electrical/electronic systems.

1.1 Problem Statement: The ISO 26262 is a document intended to achieve functional
safety regarding an E/E component. It specifically addresses hazards resulting from the
presence of failures and malfunctions emanating from hardware (HW) and software (SW).
These may be introduced by random (HW-related) failures/malfunctions and/or system-
atic SW failures. The intention is to give arguments for functional safety if “best practice”
guidelines have been followed during concept and development phases. The Hazard Anal-
ysis and Risk Assessment (HARA) [IS11] defines possible hazards; deductive and induc-
tive analyses look for E/E faults and failures that lead to these hazards. In contrast to the
general assumption, following this guideline does not mean that the product is “safe”. It
is the authors’ belief that a “safe” product does not only result from the absence of haz-
ards during the presence of malfunctions, but also the absence of hazards in the absence
of malfunctions. That bears the question how these hazards can be identified and what

their cause might be.

1.2 Research Objectives: This research work answers that question by using the STPA
method as an approach to identify the potential hazards of fully automated vehicles in
compliance with ISO 26262 at an early concept phase and provide safety constraints on
how the risk for an accident can be mitigated by avoiding those hazards.

1.3 Contribution: We provide guidance on how to use STPA in compliance with ISO
26262. We apply STPA to the existing architecture design of a fully automated driving
vehicle to develop a safety concept to enhance the architecture design.

1.4 Context: This work was conducted in the form of a cooperation between Continental,
which is a German automotive manufacturing company, and the University of Stuttgart,
during the development process of a fully automated driving vehicle project.

1.5 Terminology:

Functional Safety is “Absence of unreasonable risk due to hazards caused by malfunc-
tioning behavior of Electrical/Electronic systems”[IS11].

Operational Safety (Roadworthiness): is “a property or ability of any kind of automobile
to be in a suitable operating condition or meeting acceptable standards for safe driving and
transport of people, baggage or cargo in roads or streets” [Go14].

Item: “is a system or array of systems or a function to which ISO 26262 is applied” [IS11].

Using STPA for Developing a Safe Architecture for Fully Automated Vehicles 151

2 Background

2.1 Hazard Analysis Approach: STPA

STPA (Systems-Theoretic Processes Analysis) [Le11] was developed by Leveson in 2004
based on the STAMP (Systems-Theoretic Accident Model and Processes) causality ac-
cident model for identifying system hazards and safety-related constraints necessary to
ensure acceptable risk in complex systems. STPA helps to identify causal factors and un-
safe scenarios in which the safety constraints can be violated. STPA results in identifying a
larger set of causes, many of them not involving failures or unreliability, while traditional
techniques were designed to prevent hazards due to component failure accidents (caused
by one or more components that fail). The main steps of STPA are divided into three
sub-steps: (1) Establish the fundamentals of the analysis (e.g. system-level accidents and
the associated hazards) and draw the control structure diagram of the system. (2) Use the
control structure diagram to identify the potentially unsafe control actions. (3) Determine
how each potentially unsafe control action (accident causes) could occur by identifying the
process model and its variables for each controller and analysing each path in the control
structure diagram.

STPA has been successfully applied and extended in different domains such as STPA
for automotive systems [AW13], STPA for cybersecurity [YL14] and STPA for software
safety [AWL15].

2.2 ISO26262 Safety Standard

ISO 26262 (Road vehicles functional safety) [IS11] is an international functional safety
standard, which provides guidance, recommendation and argumentation for a safety-driven
product development in the automotive area. Safety classification and suggestions for spe-
cific safety development processes may aid to stipulate functional safety for each new
product as State-of-the-Art.

ISO 26262 is structured into 10 parts and describes the safety activities in 7 parts (3–
9). Part 3 specifics the concept phase (as shown in Fig. 2) which starts with defining the
item (e.g. system, array or function) and performing the hazard and risk analysis for the
item. The results are the safety goals for all hazards which are derived and classified with
an ASIL (Automotive Safety Integrity Level) rating which is a risk classification scheme
defined by the ISO26262 standard. Part 4 specifies the requirements for product develop-
ment at the system level for automotive applications. Parts 5 and 6 specify the require-
ments for product development at the hardware level and software level for automotive
applications. Part 7 specifies the requirements for production, operation, service and de-
commissioning.Part 8 specifies the supporting processes (e.g. hardware and software tool
qualification). Part 9 specifies the automotive safety integrity level (ASIL)-oriented and
safety-oriented analysis.

152 Asim Abdulkhaleq et. al.

3 Related Work

Hommes [Ho12, Ho15] highlighted the benefits of applying STPA in the automotive do-
main and using STPA as a hazard analysis technique in the ISO 26262 lifecycle, especially
in the concept phase (ISO26262 part 3). Hommes also provided an assessment review of
the ISO 26262 standard’s ability to address the challenges in ensuring the safety of com-
plex software intensive E/E systems. Hommes mentioned that there is a lack in guidance
on hazard identification and elimination in the concept phase, which makes the ISO 26262
standard not sufficient to provide safety assurance. That gives us a strong motivation to
investigate the use of STPA in compliance with the ISO 26262 standard to gain a deeper
understanding about the benefits and limitations of using STPA as a hazard analysis ap-
proach to support the HARA process in ISO 26262.

Recently, Mallya et al. [Ma16] analysed how STPA can be used in an ISO 26262 compliant
process. They mapped every relevant activity and artifact required or recommended by the
HARA process which can be satisfied by applying STPA. They emphasized that the key
difference between STPA and HARA is the risk assessment process. However, both STPA
and HARA have different base assumptions for identifying hazards. Based on this work,
We explored how STPA can extend the safety scope of ISO 26262 by considering different
factors that cause inadequate controls during the operational time of a vehicle (e.g. human,
environment). We also proposed a concept on how to use STPA to support HARA activities
in ISO 26262 instead of mapping STPA activities onto the HARA process.

We have applied STPA to a well-known example of a safety-critical systems in the auto-
motive domain [AW13]: the Adaptive Cruise Control system (ACC). This case study was
performed based on an existing case study with MAN Truck & Bus AG [Wa10] in which
the authors conducted an exploratory case study applying safety cases for the ACC sys-
tem. We compared the results of STAMP/STPA with the safety cases on the same system.
In [AW14], we proposed a safety verification methodology based on STPA safety anal-
ysis. We applied STPA to vehicle cruise control software to identify the software safety
requirements at the system level and verify these safety requirements at the design level.
Recently, we proposed a safety engineering approach for software-intensive systems based
on STPA [AWL15], called STPA SwISs which combines the activities of safety engineer-
ing and software engineering. Thus, in turn, it shall help to reduce the associated software
risks to a low level. This approach can be applied in compliance with the ISO 26262 part
6 at the software level.

4 The Concept of Using STPA in the ISO 26262 Lifecycle

The main goal of STPA is to identify inadequate control scenarios which can lead to ac-
cidents and develop detailed safety constraints to eliminate and control these unsafe sce-
narios. The main starting point of STPA is to identify potential accidents and hazards at
the system level and draw hierarchical safety control structure of the system. The main ac-
tivities of the concept phase in ISO 26262 are defining an item, identifying the hazardous
events that need to be eliminated or controlled and developing the safety concept at the

Using STPA for Developing a Safe Architecture for Fully Automated Vehicles 153

Tab. 1: The terms used in STPA and the terms used in ISO 26262 part 3: concept phase

STPA Terminologies [Le11] ISO 26262 Terminologies [IS11]
Accident: Accident (Loss) results from inad-
equate enforcement of the behavioural safety
constraints on the process.

No corresponding term

No corresponding term Harm: is a physical injury or damage to the
health of persons.

Hazard is a system state or set of conditions
that, together with a particular set of worst case
environmental conditions, will lead to an acci-
dent.

Hazard is a potential source of harm caused by
malfunctioning behaviour of the item.

No Corresponding Item is a system or array of systems to imple-
ment a function at the vehicle level, to which
ISO 26262 is applied.

Unsafe Control Actions are the hazardous sce-
narios which might occur in the system due to a
provided or not provided control action when it
was required.

No corresponding term

No corresponding term Malfunctioning Behaviour: is a failure (termi-
nation of the ability of an element to perform a
function as required) or unintended behavior of
an item with respect to its design intent

Safety Constraints are the safeguards which
prevent the system from leading to losses (ac-
cidents)

Functional Safety Requirements: are specifi-
cations of implementation-independent safety
behaviour, or implementation-independent
safety measures, including its safety-related
attributes.

Causal Factors are the accident scenarios that
explain how unsafe control actions might occur
and how safe control actions might not be fol-
lowed or executed.

No corresponding term

No corresponding term Hazardous Events are combinations of a haz-
ard and an operational situation.

Corresponding safety Constraints are top-
level safety constraints which are derived based
on the unsafe control actions

Safety Goals are top-level safety requirements
as a results of the hazard analysis and risk as-
sessments

No Corresponding term Functional Safety Concept consists of func-
tional requirements and preliminary architec-
tural assumptions.

Process Model is a model required to deter-
mine the environmental & system variables
(process model variables) that affect the safety
of the control actions.

(Partially) Operation Situation is a scenario
that can occur during a vehicle’s life. Operat-

ing Mode is perceivable functional state of an
item or element. Safe State is operating mode
of an item without an unreasonable level of
risk (e.g. switched-off mode, intended operat-
ing mode, degraded operating mode)

No Corresponding term ASIL is one of four levels to specify the item’s
or element’s necessary requirements of ISO
26262 and safety measures to apply for avoid-
ing an unreasonable residual risk, with D repre-
senting the most stringent and A the least strin-
gent level

154 Asim Abdulkhaleq et. al.

Fig. 1: The safety scope of STPA and HARA in ISO 26262

system level. The Hazard Analysis and Risk Assessment (HARA) process in ISO 26262
consists of the following activities [IS11]: (1) Situation Analysis and Hazard identification,
(2) Hazard classification, (3) Hazard determination, and (4) Safety goal determination. In
this paper, we used STPA as a hazard analysis technique to support HARA by defining an
item and identifying the hazards and unsafe scenarios of the item at the system level. The
term ”item” is used here to refer to the system.

Figure 1 shows the safety scope of both STPA and HARA. STPA focuses on identifying
the potential inadequate controls that could lead to the hazards. The inadequate control
can be caused by human error, interaction failure, environmental, software failure. STPA
also focuses on identifying the inadequate controls in absence of the individual component
failures (e.g. dysfunctional interactions or unhandled conditions). The safety scope of the
HARA in ISO 26262 is to identify the possible hazards caused by the malfunctioning
behaviour of electronic and electrical systems (individual components). To use STPA in the
ISO 26262 lifecycle, we first define the important terms of STPA and ISO 26262 (shown
in Table 1). Based on our expertise in STPA and ISO 26262, we map the terms of STPA
and ISO 26262 which have the same meaning. In the following, we summarise the main
steps to use STPA in compliance with ISO 26262 in the part 3 concept phase (shown in
Fig. 2):

1. Apply STPA Step 0 (Fundamentals Analysis):

1.1. Identify Accidents and system-level hazards.

1.2. Identify the high-level system safety constraints.

1.3. Draw the control structure diagram of the system

2. Use the results of STPA Step 0 to define an item and item information needed (e.g.
purpose, content of item, functional requirements etc.). The control structure di-
agram in STPA Step 0 shows the main components which form a system under
analysis. This diagram contains information to help the functional safety engineer
to define an item and its boundaries.

Using STPA for Developing a Safe Architecture for Fully Automated Vehicles 155

Fig. 2: Integration of STPA into the ISO26262- part 3 concept phase

3. Use the list of hazards, accident, the high-level system safety constraints identified
in STPA Step 0 as an input to the HARA approach.

156 Asim Abdulkhaleq et. al.

4 Apply the HARA approach:

4.1 Determine the operational situations and operating modes in which an item’s
malfunctioning behaviour may lead to potential hazards.

4.2 Classify the hazards identified in Step 0 based on the estimation of three fac-
tors: Severity (S), Probability of Exposure (E) and Controllability (C)

a) Identity the hazardous events by considering the hazards in different situa-
tions.

4.3 Determine ASIL (Automotive Safety Integrity Levels) for each hazardous
event by using four ASILs: A (the lowest safety integrity level) to D (the
highest one). If the hazardous event is not unreasonable, we refer it as QM
(Quality Management).

4.4 Formulate the safety goal for each hazardous event.

5. Use the hazardous events, safety goals, situations and modes as input to the STPA
Step 1.

6. Apply STPA Step 1 to identify the unsafe control actions of an item

7. Apply STPA Step 2 to identify the causal factors and unsafe scenarios of each unsafe
control action identified in STPA Step 1.

8. Use the results of STPA Step 1 & 2 to develop the system functional safety concept
and safety requirements at this level.

5 Application Example: Fully Automated Driving Vehicle

Study Object: Semi-automatic and fully automated driving requires compliance with es-
sential system features like reliability, availability, security and safety. A fully automated
driving system (SAE Level 5) [SA16] involves the act of navigating the car without any
input from the human driver through the use of sensing the environment, performing and
calculating a desired driving path (trajectory) and sending the desired controls to the actua-
tors (as shown in Fig. 3). Therefore, the required components for a fully automated driving
system can be classified in three main groups: 1) Sense: Several sensors are necessary to
gather information of the environment, perception of the vehicle state and traffic partici-
pants. For example, wheel speed sensors, cameras, short and long range radars and even
lidar technology are used to get a fine-grained environment model; 2) Plan: The planning
component consist of multiple levels of decision making. The driving strategy plans up-
coming maneuvers and is a core element of the car’s calculated behaviour. It serves as an
input for the trajectory planning sub-module. The function of the trajectory planning is
processing a safe vehicle trajectory with respect to the surroundings (collision avoidance)
and to the given maneuver. The motion controller calculates the motion requests from the
desired trajectory. 3) Act: In the Act group all needed actuators, e.g. brake system, steering
system and engine control, for longitudinal and lateral movement can be summarized. The
output of the motion controller provides the torque requests for the actuators.

Using STPA for Developing a Safe Architecture for Fully Automated Vehicles 157

Fig. 3: Functional Architecture of Fully Automated Driving Vehicles

Tab. 2: Examples of the system level accidents

ID Accident

1 AD vehicle lost the steering and collided into an object moving in front on a
highway.

2 AD vehicle lost the steering/braking suddenly while the vehicle moving up in
the hill and made an accident.

3 AD vehicle made a collision due to loss the communication signals with Back-
end.

4 AD vehicle collided into an object or vehicle due to a wrong driving strategy

Apply the STPA Step 0: Fundamentals Analysis First, we do the first part of STPA
Step 0 (identifying the system-level accidents). As a result, we identified 24 system-level
accidents which the fully automated driving system can lead or contribute to. Table 2
shows examples of the system level accidents. For example, AC.1: The fully automated

vehicle collided into an object moving in front on a highway. Second, we do part 2 of Step
0 (identifying hazards). As a result, we identified 176 hazards which can lead to these
accidents. For example, a hazard can lead to accident AC.1, HA.1: The fully automated

vehicle lost steering control because it received wrong ego longitudinal torque. Third,
we do part 3 of Step 0 (identifying the system-level safety constraints). An example for
a high-level system safety constraint is SC.1: The fully automated driving vehicle must

receive correct data all the time while driving on a road.

158 Asim Abdulkhaleq et. al.

Tab. 3: Examples of the system level hazards

ID Hazards

1 The AD vehicle lost steering control because it received wrong ego longitudinal
torque.

2 The AD vehicle does not detect a moving obstacles in the front.

3 The AD vehicle moves with no data of prediction of situation and scenario for
traffic participants.

4 The AD vehicle receives wrong environmental model data.

Fig. 4: The safety control structure diagram of fully automated driving system

Fourth, we do the part 4 of Step 0 (drawing the high-level safety control structure diagram).
Figure 4) shows the control structure diagram of the fully automated driving system at
the architectural design level. The control structure diagram shows the main components
which interact with the fully automated driving system in the vehicle. We used the results
of the STPA Step 0 to define the item. For example, the fully automated driving function
platform is an item in which the ISO 26262 can be applied. The control structure diagram
shows the boundary of the fully automated driving function platform and its interfaces.
The purpose of the fully automated driving function platform is to control the autonomous
vehicle by issuing the control actions to the motion control and receiving the feedback
from the different sensors.

Using the STPA Step 0 results: We also used the results of the STPA Step 0 (list of
accidents, list of hazards) as an input to the HARA approach. First, we determine the op-
erational situations and operating modes. For example, the operation situation from the

Using STPA for Developing a Safe Architecture for Fully Automated Vehicles 159

accident AC.1 can be determined as OS1: crashing on a highway. The operating mode is
OM.1: driving. We classified each hazard identified in the STPA Step 0 with two factors
(severity and exposure). For example, we estimated the severity for the hazard HA1 as S3
(Life-threatening injuries or fatal injuries), the probability of exposure of the operational
situation (on highway) as E3 (Medium probability). Then, we identified an hazardous event
HE.1 from the hazard HA.1 and the accident AC.1 as HE.1: The fully automated vehicle

lost control of steering while driving on a highway. Next, we estimated the controllability
for each hazardous event (C0: simply controllable to C3: difficult to control). The con-
trollability [MHM15] is a way of assessing the likelihood that the hazardous situation is
usually controllable or not. As assumptions of the fully automated vehicles (SAE level 5),
the driver is not expected to take control at any time. Therefore, we assigned the control-
lability as C3 (Difficult to control or uncontrollable) for each hazardous events of fully
automated driving system. For example, the controllability of the hazardous event HE.1
is C3. We also assigned an ASIL to each hazardous event. For example, the ASIL of the
hazardous event HE.1 is ASIL C. We formulated the safety goal for each hazardous events.
For example, the safety goal for the hazardous event HE.1. is SG.1: the fully automated

driving vehicle must not lose the steering control while driving on a highway.

Apply the STPA Steps 1 & 2: We used the output of the HARA approach (e.g. list of
hazardous events and operational situations) as an input to the STPA Step 1 to formulate
the unsafe control actions. We used the control structure diagram to identify the unsafe
control actions of the fully automated driving vehicle (STPA Step 1). To identify unsafe
control actions, we first identified the critical safety control actions at a high level of ab-
straction. For example, the fully automated driving function platform has a control action
called trajectory. Primarily, the trajectory contains a time sequence of state-space points
with timestamp, x and y position, velocity, acceleration, track angle, jerk, curvature and

curvature rate. The trajectory is issued by the automated driving function platform to the
motion controller.

We evaluated each of these control actions within four general hazardous types [Le11]
(e.g. not providing, providing incorrect, providing at wrong timing/order, and stopped too
soon/applied too long) to check whether or not they lead to hazardous events. We identi-
fied 27 unsafe control actions. For example, UCA-1: The fully automated driving function

platform does not provide a valid trajectory to motion control while driving too fast on a

highway. This unsafe control action (malfunctioning behaviour) can lead to the potential
hazard HA.1.

To generate the corresponding safety constraints, we translated each unsafe control action
into a corresponding safety constraint by using the guide words e.g. “shall” or “must”.
For example, a corresponding safety constraint SC-1 for unsafe control action UCA-1 is:
The fully automated function platform must always provide a valid trajectory to motion

control while driving on a highway. We used the results of the situation analysis to deter-
mine the process model of the Automated Driving (AD) function platform. For example, a
process model variable of the AD function platform is the road type which has the follow-
ing values: highway, parking, intersection, mountain, city, urban. We used the results of
STPA Steps 0 & 1 as input to STPA Step 2 to identify the causal factors and scenarios. We

160 Asim Abdulkhaleq et. al.

also determined the accident causes (STPA Step 2) for each unsafe control action to get
a deeper understanding on how they could occur in the fully automated driving vehicle.
For example, a causal scenario for the unsafe control action UCA-1 is: The fully auto-

mated driving function platform receives wrong signals from backend due to the lack of

communication while driving too fast on a highway. Then, a new safety constraint can be
derived as The fully automated driving function platform shall receive correct data from

the backend without delay during driving.

Using the STPA Step 2 results: We used the results of the STPA Step 2 to build the safety
concept and addressed the new safety requirements. For example, the causal scenario CS.1
of UCA-1 is: The AD function platform does not provide a valid trajectory to motion

control while the system is active and the vehicle is moving and there is traffic ahead

on highway. Then, we identified the safety constraints (SC) for each causal scenario. For
example, the safety constraint (SC.1) for CS.1 is: the AD function platform must always

provide the trajectory to enable motion control to adjust the throttle position and apply

brake friction when the vehicle is moving and there is traffic ahead to avoid a potential

collision. We used the results of the STPA Step 2 to build the functional safety concept
and determine the functional safety requirements.

6 Discussion

Based on our work, we found that STPA and HARA have different base assumptions.
HARA has two parts: 1) Hazard analysis which aims at identifying the hazards that lead to
harm. However, these hazards are related to the individual component failures and they are
not described in terms of other accident causes such as interaction failures between vehicle
and its environment and driver (a passenger in a fully automated vehicle). The second part
is the risk assessment which aims at identifying risks of each identified hazard. Whereas
STPA focuses on control problems, not component failures. STPA aims at identifying in-
adequate control caused by component failures, human errors, and component interaction
errors among the system components. It is also able to identify hazards that arise due to
unsafe interactions among the system components in the absence of component failures.
Therefore, STPA can identify more types of hazards and not only hazards which may oc-
cur due to the component failures, but also the hazards which may occur in the absence
of component failures. To fill this gap between HARA and STPA, we showed how to use
the results of STPA as in input to support the HARA process activities instead of mapping
the HARA activities and artifact to STPA. Moreover, STPA does not support risk analysis
while HARA supports this kind of activities. The work here shows that STPA and HARA
are complementary to each other and STPA can be used to extend the safety scope of ISO
26262.

Another gap in the concept phase in ISO 26262 is that there is no systematic way to
define the item [Ka15]. We found that STPA can fill this gap by applying the STPA Step
0 before starting the concept phase. The STPA Step 0 can define the item and establish
the information needed for the item. Moreover, the STPA Step 0 can define the safety
constraints for each item.

Using STPA for Developing a Safe Architecture for Fully Automated Vehicles 161

The STPA Step 2 requires that defining the process model of the controller, which deter-
mines the current state of the controlled process and how the control actions will be issued
by the controller. This model also is used to determine the causal scenarios of each unsafe
control action identified in STPA Step 1. However, there is no guidance on how to define
the process model and its variables which should be augmented in the process model. We
figured out that HARA can fill this gap by using the situation analysis which determines the
operational situations and operating modes in which an item’s malfunctioning behaviour
will result in a hazardous event. These situations and modes can be used as input to the
process model into STPA.

An assumption of STPA is that it can be applied at all stages of system development pro-
cess, especially at an early stage [Le11]. This assumption is similar to the assumption of
the HARA process which can also be applied at an early stage of system development.
However, STPA helps to derive more detailed safety requirements, not only the functional
safety requirements which are the main output of the concept phase in ISO 26262. There-
fore, mapping the results of STPA Step 1 and Step 2 to build the functional safety concept
requires high expertise in both STPA and HARA. Furthermore, STPA is a top-down pro-
cess and the detailed design of item is not necessary to be known before applying STPA
to the item. This assumption is also similar to the assumption of the HARA process which
can be applied with a little bit of knowledge about the detailed design of the item.

In conclusion, we believe that STPA can support the HARA process in ISO 26262 activi-
ties and help the functional safety engineers to develop the functional safety requirements
for each item identified at an early stage in the concept phase based on the results of the
STPA Step 0. Indeed, the integration of STPA into HARA activities still needs modifica-
tion in the assumptions and terms of both STPA and HARA to directly map the results of
STPA into HARA.

7 Conclusion

In this paper, we explored the use of the STPA approach as hazard analysis in compliance
with ISO 26262 to improve the safety architecture of the fully automated driving vehicle
project at Continental. Our work showed that STPA is a powerful hazard analysis technique
which can be used to support the safety lifecycle and HARA process in ISO 26262 by
providing a systematic guidance on defining an item, deriving detailed safety constraints
and developing safety goals and a functional safety concept. That helps us to evaluate the
architectural design of the new fully automated driving system at an early stage of the
development process. As future work, we plan to explore the use of the STPA approach in
compliance with ISO 26262 at different levels of the fully automated driving architecture
(e.g. software level) to develop detailed safety requirements. We plan also to conduct an
empirical case study evaluating our proposed concept with functional safety engineers at
Continental to understand the benefits and limitations of using STPA to support the HARA
process and to extend the safety scope of ISO26262. We plan also to develop an extension
to XSTAMPP [AvW] to support the HARA process activities.

162 Asim Abdulkhaleq et. al.

References

[AvW] Abdulkhaleq , A.; Wagner, S.: XSTAMPP 2.0: new improvements to XSTAMPP Includ-
ing CAST accident analysis and an extended approach to STPA. STAMP 2015, MIT,
USA.

[AW13] Abdulkhaleq, A.; Wagner, S.: Experiences with Applying STPA to Software-Intensive
Systems in the Automotive Domain. 2013 STAMP Conference at MIT, Boston, USA,
2013.

[AW14] Abdulkhaleq, Asim; Wagner, Stefan: A software safety verification method based on
system-theoretic process analysis. In: International Conference on Computer Safety,
Reliability, and Security. Springer, pp. 401–412, 2014.

[AWL15] Abdulkhaleq, Asim; Wagner, Stefan; Leveson, Nancy: A Comprehensive Safety Engi-
neering Approach for Software-Intensive Systems Based on STPA. Procedia Engineer-
ing, 128:2 – 11, 2015. Proceedings of the 3rd European STAMP Workshop 5-6 October
2015, Amsterdam.

[Go14] Gov.UK: , Guide to Maintaining Roadworthiness: Driver and Vehicle Standards Agency
and Department for Transport, 2014.

[Ho12] Hommes, Qi Van Eikema: Review and Assessment of the ISO 26262 Draft Road Vehicle-
Functional Safety. In: SAE Technical Paper. 2012.

[Ho15] Hommes, Q.V. E.: , Safety Analysis Approaches for Automotive Electronic Control Sys-
tems, 2015.

[IS11] ISO: International Organization for Standardization, International Standard 26262: Road
vehicles â Functional safety. International Standard. ISO, First edition, Nov. 2011.

[Ka15] Kannan, S Manoj; Dajsuren, Yanja; Luo, Yaping; Barosan, Ion: Analysis of ISO 26262
Compliant Techniques for the Automotive Domain. In: Proceedings of the Interna-
tional Workshop on Modelling in Automotive Software Engineering co-located with
ACM/IEEE 18th International Conference on Model Driven Engineering Languages and
Systems (MoDELS 2015), Ottawa, Canada. volume 1487, 2015.

[Le11] Leveson, N.: Engineering a Safer World: Systems Thinking Applied to Safety. Engineer-
ing Systems. MIT Press, 2011.

[Ma16] Mallya, Archana; Pantelic, Vera; Adedjouma, Morayo; Lawford, Mark; Wassyng, Alan:
Using STPA in an ISO 26262 Compliant Process. In: Computer Safety, Reliability,
and Security: 35th International Conference, SAFECOMP 2016, Trondheim, Norway,
September 21-23, 2016, Proceedings. Springer International Publishing, Cham, pp. 117–
129, 2016.

[MHM15] Monkhouse, Helen; Habli, Ibrahim; Mcdermid, John: The Notion of Controllability in
an autonmous vehicle context. In: CARS 2015-Critical Automotive applications: Ro-
bustness & Safety. 2015.

[SA16] Automated Driving Levels of Driving Automation are defined in new SAE International
Standard J3016.

[Wa10] Wagner, S.; Schatz, B.; Puchner, S.; Kock, P.: A Case Study on Safety Cases in the
Automotive Domain: Modules, Patterns, and Models. In: 2010 IEEE 21st International
Symposium on Software Reliability Engineering. pp. 269–278, Nov 2010.

[YL14] Young, William; Leveson, Nancy G.: An Integrated Approach to Safety and Security
Based on Systems Theory. Commun. ACM, 57(2):31–35, February 2014.

Peter Dencker et. al.; Automotive Safety & Security 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 163

Towards the Use of Controlled Natural Languages in

Hazard Analysis and Risk Assessment

Paul Chomicz1 Armin Müller-Lerwe2 Götz-Philipp Wegner2 Rainer Busch2

Stefan Kowalewski1

Abstract: New safety-critical and software-controlled systems of automobiles have to be developed
according to the functional safety standard ISO 26262. A hazard analysis and risk assessment has
to be performed for such systems. The sub-activities of this analysis technique are defined by the
standard, but informative definitions leave room for subjective variation, and documentation details
are left to the car manufacturer. Usually, natural languages are used for the documentation, which
are powerful and expressive but also complex and ambiguous. We propose the usage of controlled
natural languages for the documentation of the results of the hazard analysis and risk assessment. In
a first step, we developed a controlled natural language for the description of the hazardous events.
The language reduces ambiguity and improves the consistency across hazard analyses and risk as-
sessments.

Keywords: Controlled Natural Language, Hazard Analysis and Risk Assessment, Functional Safety,

ISO 26262, Hazardous Event

1 Introduction

In the automotive industry, new safety-critical functions that are realized by software-
controlled electric or electronic systems have to be developed in accordance with the func-
tional safety standard ISO 26262 [IS11]. Its safety lifecycle encompasses principal safety
activities during the concept phase, product development, and after start of production.

The hazard analysis and risk assessment (HARA) is a safety activity which is performed
during the concept phase. The objective is to identify and categorize the potential hazards
of functions and to derive safety goals for the prevention or mitigation of these hazards.
The hazard analysis and risk assessment comprises three steps. The first step is the situa-
tion analysis and hazard identification. Potential unintended behaviors have to be identified
that could lead to a hazard within a specific situation (hazardous event). Afterwards, the
risk classification of the hazardous events takes place. The risk of each hazardous event is
classified by determining the severity (S), the probability of exposure (E), and the control-
lability (C). According to these three parameters, the required automotive safety integrity
level (ASIL) is assigned in the last step. The ASIL specifies the level of risk reduction for
achieving an acceptable residual risk with ASIL D representing the highest and ASIL A
the lowest level [IS11].

1 RWTH Aachen University, Lehrstuhl Informatik 11 – Embedded Software, Ahornstraße 55, 52074 Aachen,
{chomicz, kowalewski}@embedded.rwth-aachen.de

2 Ford Research & Innovation Center Aachen, Süsterfeldstraße 200, 52072 Aachen,
{amuell12, gwegner2, rbusch1}@ford.com

164 Paul Chomicz et al.

The ISO 26262 standard describes which sub-activities are part of the hazard analysis and
risk assessment, but it does not describe, for example, how to record the unintended behav-
iors or how to determine one of the risk parameters. The standard defines severity, expo-
sure, and controllability in a qualitative way that leaves room for subjective interpretation.
Due to the fact that usually mutiple new functions use the same actuators, malfunctions
could often cause similar hazards. Since new functions and systems are developed by dif-
ferent teams, it is a challenge to assure consistency of the risk classifications between the
hazard analyses and risk assessments developed for different vehicle functions. Inconsis-
tency might lead to different levels of safety measures for similar hazardous events.

In analysis techniques like hazard analysis and risk assessment, a natural language is usu-
ally used for the documentation. On the one hand, natural languages are powerful and
expressive, but on the other hand, they are complex and ambiguous. Same or similar haz-
ardous events and rationales for the classification are often described using different word-
ings and phrases. This makes it difficult to check for consistency especially across HARAs
that are developed by different teams. In order to approach these problems, controlled nat-
ural languages are a promising way.

A controlled natural language (CNL) is a subset of a natural language [Ku14]. CNLs
are obtained by restricting the vocabulary or the grammar. These restrictions aim to in-
crease terminological consistency and to reduce ambiguity and complexity. Numerous
controlled natural languages have been developed for various domains, e.g. Airbus Warn-
ing Language [SBC03], Attempto Controlled English (ACE) [FKK08], or Bio-Query-CNL
[EY09].

The controlled natural languages for the hazard analysis and risk assessment should allow
the description of hazardous events and the rationales of the risk parameters in such a
way that it supports the engineers in the development of HARAs, e.g. by a more efficient
search for existing ratings of similar hazardous events. It should also reduce the possibility
of formulating similar hazardous events or rationales with different wordings and phrases,
and additionally, the language should enable or simplify an automatic consistency check
between different HARAs.

The remainder of this paper is structured as follows. The next section describes a particular
controlled natural language in detail, which was developed and put into operation at Ford
Motor Company. Then, the formalization of the hazardous events is explained including
the process to accomplish it. The fourth section gives details on the evaluation of the newly
created language and first experiences about a productive usage. The last section presents
an outlook on future work.

2 Related Work

There are numerous controlled natural languages in various domains [Ku14]. In gen-
eral, CNLs can be divided into general-purpose languages and domain-purpose languages
[Sc10]. A general-purpose language has not been designed for a specific scenario or ap-
plication domain. An example of such a language is Attempto Controlled English (ACE)

Towards Controlled Natural Languages in Hazard Analysis and Risk Assessment 165

[FKK08]. On the contrary, domain-purpose languages have been developed for a partic-
ular application area. The Airbus Warning Language [SBC03] and the Bio-Query-CNL
[EY09] are such languages.

To the best of our knowledge, no controlled natural language has been developed specifi-
cally for hazard analysis and risk assessment. Some work was done in the area of applying
CNLs to (safety) requirements engineering in the automotive domain [PMP11, HMM11,
FH14]. In the following, a controlled natural language will be introduced that was devel-
oped at the Ford Motor Company. The structure of the language is similar to ours, and
especially, the experiences that were made during the development and the productive us-
age at Ford are of great value.

The Standard Language (SLANG) is a controlled natural language that was developed
to write process build instructions for a vehicle [Ry02]. Before using this controlled lan-
guage, build instructions were written in a natural language causing problems such as am-
biguity and inconsistency. Furthermore, Ford’s vehicle assembly plants are spread all over
the world, and threrefore, several different natural languages were used for the process
sheets.

In addition to the language, the Direct Labor Management System (DLMS) was developed
to address these problems [O’89]. The tool assists the vehicle assembly process planning.
As input, process sheets written in the Standard Language are taken to produce detailed
work tasks for each step of the assembly process. Before releasing these tasks to the as-
sembly plants, they are translated into the corresponding language automatically by the
system. The usage of the controlled natural language enables or simplifies the automatic
machine translation and the precise determination of all work tasks, since the language is
constructed in such a way that it can be processed by the system.

Instruction

VP

NP

PP

Insert heater assembly into right rear core plug hose

VB IN NP

Fig. 1: Instruction written in SLANG [Ry05]

Instructions written in the Standard Language are in an imperative form including a verb
phrase (VP), which contains a noun phrase (NP) that serves as the object of the verb.
The level of detail can be increased by adding adverbs, adjuncts, or prepositional phrases
(PP). The verb is the key word of every instruction, and every verb describes a particular,
precisely defined action. The number of verbs in the vocabulary is limited, and certain
prepositions have also a specific meaning that will be handled in a pre-determined manner
by the system. Every part of the text that is delimited by brackets is ignored by the system

166 Paul Chomicz et al.

and does not have to conform to the Standard Language. Thus, it is possible to add com-
ments or remarks to the build instructions. Figure 1 shows an example instruction written
in SLANG.

The vocabulary of the language is limited to a certain set of words. Since, the vehicle as-
sembly process is very dynamic, it is necessary to extend the vocabulary along with new
vehicles and assembly plants that are added to the system. Therefore, process engineers
have to request changes which need to be approved by an internal Ford systems organiza-
tion before they will be added into the language and the system.

As the system simply flags any errors, the process engineers need an enhanced knowl-
edge about the language to be able to fix the errors or to write correct build instructions in
the first place. Along with the introduction of the controlled natural language for the pro-
ductive usage, the process engineers were trained to write the process sheets in SLANG.
During the initial implementation, the users resisted to use the language until they were
trained and learned how to use it effectively. Another problem that was encountered was
the misuse of the commentary function. This feature was used by users to bypass the pro-
cess of adding new terms into the language [Ry06].

The Standard Language is a controlled natural language that was never designed to pro-
duce correct grammatical sentences with respect to the English language [Ry02]. The goals
of the language were to develop consistent and precisely defined means of communicating
and to enable or to simplify machine translation. Therefore, the process sheets get more
precise and simpler in terms of automatic processing, but the language is less expressive
and loses a part of its naturalness compared to the English language. As a consequence,
instructions become less readable and less understandable for humans, especially for un-
trained users. However, the restrictions on the vocabulary and the grammar improve the
quality of the translations. To counteract the negative effects of the newly created language,
effort needs to be made to train the process engineers.

SLANG is a domain-purpose language. It is too domain-specific so that it could be reused
for our purpose. Whereas, the usage of a general-purpose language would be in general
possible, but it would have also some drawbacks. Such a language is not optimized to our
domain-specific application. Certainly, the vocabulary would have to be adapted to the
automotive domain. Furthermore, the structure of the language might not be suitable with
respect to how the descriptions were written before by the safety engineers. Therefore, we
decided to develope an own language that is close to existing hazardous event descriptions.

3 Controlled Natural Language for Hazardous Event Descriptions

In this section, the process of the formalization of the hazardous event descriptions and
the formalization itself are described. For this purpose, we have analyzed existing hazard
analysis and risk assessment documents provided by the Ford Motor Company. Based on
this analysis, the controlled natural language was created. Furthermore, the translation of
hazardous event descriptions that do not conform to the CNL is explained by means of two
examples.

Towards Controlled Natural Languages in Hazard Analysis and Risk Assessment 167

3.1 Analysis Process

To achieve a formalization of the hazardous event description, existing hazard analyses and
risk assessments provided by the Ford Motor Company were analyzed. Our approach is
bottom-up and iterative. In the first iteration, nine HARA documents have been analyzed.
The documents describe the hazard analysis and risk assessment of, among others, an
emergency braking system and an electronic controlled differential. The HARAs were
performed by different teams and in different countries. However, the English language
was used in all cases for the documentation.

From the provided documents, 208 different hazardous event descriptions were extracted,
and the structure of the descriptions and the used wording were analyzed to create the
controlled language. Table 1 contains an exemplary set of such descriptions that represents
how hazardous events are currently described.3 A hazardous event description consists of
at least one hazardous event, which might be caused by another event. Thus, it is possible
to construct causal chains.

The structure of the hazardous event descriptions can be divided into two categories. The
first category contains descriptions that were written in a bullet-point manner. The haz-
ardous events in the second category were formulated using full sentences. The descrip-
tions 1 and 4 of Table 1 are written in a bullet-point manner, and the other two are part of
the second category. Overall, 141 descriptions belong to the bullet-point manner category
(67.8 %) and 45 descriptions are part of the full sentence category (21.6 %). 22 hazardous
events were formulated using both full sentences and bullet-point descriptions (10.6 %).
The categorization was performed manually.

No. Hazardous Event Description

1 Fire outside passenger compartment.

2 The driver is not alerted to a credible threat.

3 The system is active at high speed and may not detect objects in

relevant distance (due to sensor performance).

4 Unintended and unlimited system activation leading to loss of

vehicle steerability due to blocked wheels without ABS.

Tab. 1: Exemplary set of hazardous event descriptions

The intermediate formalization for the first set of HARA documents was reviewed in a
second iteration, where seven different documents have been analyzed. Again, the pro-
vided data fulfilled the same properties as the first one, e.g. the HARAs were performed
by different teams. The data set contains the documentation of the hazard analysis and risk
assessment for an electronic clutch and a park assist.

3 The examples are slightly modified to avoid the disclosure of proprietary information about the analyzed sys-
tems.

168 Paul Chomicz et al.

93 additional hazardous events that are different compared to the first set were extracted
from this set. The structure of the descriptions is the same as in the first set, and the
used wording is similar apart from system-related words. 76 hazardous events are written
in a bullet-point manner (81.7 %) and 12 descriptions are formulated using full sentences
(12.9 %). Again, a small portion of the descriptions is formulated using both full sentences
and bullet-point descriptions (5.4 %).

unintended
vehicle(s)
no hazard

loss of
the
in

due to
braking

behaviour
acceleration; and

brake(s); driver(s); is; yaw
a; speed; unexpected

driving; propulsion; with
300250200150100500

Fig. 2: Most frequently used words and phrases in hazardous event descriptions

Figure 2 depicts a frequency count of the words and phrases that were mostly used for
the description of hazardous events. Most of the words are conjunctions, prepositions,
adjectives, and nouns. Verbs were rarely used for the descriptions since most of them were
written in a bullet-point manner and not as full sentences.

unintended
unexpected

undue
undesired

not expected

braking
brake

brakes

unintended yaw behavio(u)r
unexpected yaw behavio(u)r

300250200150100500

behaviour
behavior

Fig. 3: Synonyms and similar words and phrases in hazardous event descriptions

In addition to this frequency count, an exemplary set of synonyms and words with the
same or similar meaning but different spelling, e.g. American and British English, are

Towards Controlled Natural Languages in Hazard Analysis and Risk Assessment 169

depicted in Figure 3. The first group contains words and phrases that are synonyms. The
meaning might be slightly different between these words and phrases, but in our context,
the differences can be ignored. An example is contained in the second group. This group
consists of two different hazardous event descriptions that share nearly the same meaning.
Another syntactically different description with the same semantic that is not contained in
the analyzed HARAs is “unintended steering input”.

The third group contains words with the same word stem. The hazardous event “unin-
tended braking” and “unintended brake activation” describe the same event using different
wordings based on a word with the same word stem. The last group shows an example of
the difference between American English and British English. Same words with slightly
different spelling are contained in either language. This is an additional fact that has to be
considered during the creation of a CNL.

3.2 Formalization

In this subsection, the results of the formalization of the hazardous event descriptions are
presented. The restrictions for the developed controlled natural language are made on both
the structure of the descriptions, so the grammar of the language, and the vocabulary. The
language was developed in a bottom-up approach, and therefore, it is closely related to the
provided data.

The grammar only allows to write the hazardous event descriptions in a bullet-point man-
ner. Noun phrases are used to describe an event or a characteristic of a system. The phrase
has a noun as its headword and can contain additional adnominals, like adverbs, adjectives,
or noun adjuncts. The usage of pronouns and clauses in these noun phrases is prohibited.
Certain prepositions and conjunctions are used to connect single hazardous events to build
up more complex descriptions and to be able to create causal chains. The prepositions
are divided into semantical categories, e.g. the prepositions “between” and “in front of”
indicate position information or “by” and “to” indicates the point of view.

The controlled natural language does not provide the possibility to use full sentences for
the descriptions. Therefore, verbs are not needed and not part of the language. This restric-
tion further reduces the complexity of the language in comparison to the complete English
language. Without verbs, the distinction between active and passive voice does not have to
be considered, and further on, grammatical tenses are also omitted.

The first example from Table 1 conforms already to the grammar of the controlled lan-
guage. The description consists of a noun phrase with a single noun and a prepositional
phrase giving additional position information. Figure 4 depicts the example along with the
classification of the part of speeches.

The last example from Table 1 is almost a correct description according to the controlled
language. The description starts with a noun phrase consisting of additional adjectives
followed by two causal phrases (CP). Causal phrases are phrases that start with a causal

170 Paul Chomicz et al.

linking phrase (CLP) followed by a noun phrase. Such phrases enable the user to formulate
causal relationships.

Hazardous Event Description

NP PP

Fire outside passenger compartment.

IN NP

Fig. 4: Correct example with regard to the CNL

In this case, two different causal linking phrases have been used describing slightly differ-
ent causal relationships. “A leading to B” expresses that an event A is the cause of an event
B, whereas “A due to B” expresses that an event B is the cause of an event A. Both can be
used interchangeably. However, describing a situation with more than one cause and using
both expressions together might lead to a lack of causal relationship information.

In the example depicted in Figure 5, the structure of the description is “A leading to B due
to C”. From this formulation, it can be interpreted that the events A and C are the causes
of event B but nothing is said about the relationship between A and C. Considering the
events in more detail, the event A (“unintended and unlimited system activation”) happens
before the event C (“blocked wheels without ABS”). To avoid such a lack of information
and to reduce misunderstandings, we restrict the controlled natural language to use only
the causal linking phrase “due to”.

Hazardous Event Description

NP

NP

Unintended and unlimited system activation leading to loss of vehicle steerability due to blocked wheels without ABS.

NPCLP CLP

CPCP

Fig. 5: Almost correct example with regard to the CNL

Since the usage of such a new controlled natural language might be difficult at the be-
ginning, a commentary functionality is introduced to enable the user to write parts of the
description using the complete English language. The users should be able to write the
first ideas of the description or parts of it in the language they know and afterwards to
translate it into the required form. This functionality is rather intended for the productive
usage of the language than being a part of the language itself. Still it can be used to pro-
vide additional information, which is related to the hazardous event but is not part of its
description.

The vocabulary of the CNL is restricted to the words that have been used in the provided
documents and which were not removed during the formalization. In this context, words
have been identified that share the same semantics. For example, the words “unintended”,

Towards Controlled Natural Languages in Hazard Analysis and Risk Assessment 171

“unexpected”, “unwanted”, and “undesired” are semantically equivalent in our context
as already mentioned above. Only one of the words (“unintended”) is contained in our
vocabulary, and the other synonyms are prohibited.

3.3 Translation

Hazardous event descriptions that were formulated using full sentences can be translated
into bullet-point manner descriptions which are semantically equal and conform to the
developed controlled natural language. In this subsection, the hazardous events 2 and 3 of
Table 1 will be exemplarily translated into our language.

The general translation procedure is as follows. First, the determination of the part of
speech of every word has to be performed [Br00]. Based on the given parts of speech, the
translation is performed by removing words with certain parts of speech or transforming
words into related words with a different part of speech. Some of the transformations will
be explained by the two following examples.

Sentence

DT

The driver is not alerted to a credible threat.

NN VB RB JJ IN DT JJ NN

PPVPNP

Fig. 6: Incorrect hazardous event description as a full sentence

The first example is shown in Figure 6 along with the classification of the parts of speech.
The first part of the description is a simple sentence with a subject, verb, and adjective. In
such a case, the “to be” verb can be simply removed and the order of noun and adjective
switched resulting in “not alerted driver”. If the adjective is modified by an adverb, then
this will be moved along with the adjective just like in this example. The prepositional
phrase consisting of a preposition and a noun phrase can remain unchanged. As a result,
the hazardous event description “not alerted driver to a credible threat.” conforms to the
controlled natural language.

Conjoined Sentence

DT

The system is active at high speed and may not detect objects in relevant distance (due to sensor performance).

NN VB

PPVPNP

CCJJ IN JJ NN VB RB VB NNS IN JJ NN NN NNIN

PP PPVP

Sentence

Fig. 7: Incorrect hazardous event description as a conjoined sentence

172 Paul Chomicz et al.

Figure 7 displays a more complex example. The first part of the conjoined sentence can
be translated accordingly to the first example to “active system at high speed”. The second
part contains an object after the verb followed by a prepositional phrase. The verb needs
to be translated into an adjective that describes the effect on the object. The object is used
as the noun phrase resulting in a passive description. This leads to “undetected objects”.
The prepositional phrase can be simply taken as it is and added at the end. The last part
of the description is written in brackets. The intention behind the usage of the brackets is
not defined and gives room for various interpretations. In this case, it might be additional
information or an assumption for the root of the hazard. A complete translation of this
example might be “active system at high speed and undetected objects in relevant distance
by the system due to sensor performance.”.

4 Evaluation

In total, 301 hazardous event descriptions were extracted from 16 different hazard analysis
and risk assessment documents. 217 descriptions were already written in a bullet-point
manner (72.1 %), and 57 hazardous events were described in full sentences (18.9 %). The
remaining 27 descriptions were written in a mixed version (9.0 %).

The newly created controlled natural language for the hazardous event descriptions has
been evaluated against the provided data. 156 out of the 217 descriptions that were written
in a bullet-point manner are already in line with the CNL (71.9 %). Another 48 hazardous
events could be translated into a correct form by replacing a synonym with the correct
word that is part of the vocabulary (22.1 %). The other descriptions, including those that
were written in full sentences or a mixed version, could be all translated into semanti-
cally equivalent hazardous event descriptions that conform to the language, as exemplarily
shown in subsection 3.3. These results show that the language is closely related to the pro-
vided data but still expressive enough to describe every hazardous event that has arised in
the considered HARAs.

Furthermore, the new language was prototypically applied in hazard analyses and risk as-
sessments for new systems to make first experiences in a productive usage. Different engi-
neers use the CNL during the development of three new HARAs within the domains steer-
ing, fuel cell, and powertrain. By extending the vocabulary with domain-specific terms,
it was feasible to describe all hazardous events according to the CNL. It turned out that
using the language leads to more consistent descriptions within the HARAs compared to
existing HARAs.

On the other hand, it is difficult to write valid descriptions according to the CNL without
good knowledge about the vocabulary and the grammar. Therefore, instantaneous support
while entering data seems to be essential to enable engineers to use the controlled language
effectively when performing hazard analyses and risk assessments.

As a last point, two examples are presented to show in which way the controlled natu-
ral language is able to avoid inconsistency. The vocabulary does not contain synonyms.
Therefore, it reduces the possibility to write semantically equal descriptions syntactically

Towards Controlled Natural Languages in Hazard Analysis and Risk Assessment 173

differently. For example, the two descriptions “unintended acceleration.” and “unwanted
speed-up.” have the same meaning. The words “unintended” and “acceleration” are part of
the vocabulary, but “unwanted” and “speed-up” are not, since these are synonyms of the
other two words.

The second example concerns the structure of the descriptions. Using the English lan-
guage, the two descriptions “vehicle may pull towards the opposite lane or the side of the
road due to understeering behavior.” and “lane departure due to understeering.” with the
same meaning were permitted, but only the second one conforms to the controlled natural
language. The restrictions on the vocabulary and on the structure of the descriptions are
intended to unify the descriptions and to reduce ambiguity and complexity.

5 Conclusion and Outlook

The formalization of the hazardous event descriptions is the first step towards the utiliza-
tion of controlled natural languages for the hazard analysis and risk assessment according
to ISO 26262. The controlled natural language defines a restricted common structure for
the descriptions along with a limited vocabulary. Therefore, the complexity and ambiguity
are reduced in the documentation of the HARA resulting in less inconsistency. Further-
more, the common structure simplifies the search for existing same or similar hazardous
event descriptions.

The evaluation shows that all existing hazardous event descriptions of the provided HARA
documents can be translated into the controlled language. Furthermore, a large portion of
the descriptions was already compliant with the language. The CNL was prototypically
applied to three newly created HARAs at the Ford Research & Innovation Center Aachen.
It turned out that the language was applicable after extending the vocabulary with domain-
specific terms, and all hazardous events could be described in that language. Currently,
the vocabulary is restricted to the used words in the analyzed HARAs, and it needs to be
extended beyond the scope of the provided documents.

Besides the description of the hazardous events, the rationales for the ratings of the pa-
rameters severity, exposure, and controllability are an essential part of the documentation
of the hazard analysis and risk assessment. Therefore, controlled natural languages for the
three rationales shall be provided to complete the set of languages. After the completion,
all the languages shall be implemented in a prototype tool to further examine the usage of
such languages for the HARA. Based on the prototype tool, a case study will be performed
to gather more user experiences that shall help to improve the languages and their usage.

References

[Br00] Brill, Eric: Part-of-Speech Tagging. Handbook of Natural Language Processing, pp.
403–414, 2000.

[EY09] Erdem, Esra; Yeniterzi, Reyyan: Transforming Controlled Natural Language Biomedical
Queries into Answer Set Programs. In: Proceedings of the Workshop on Current Trends

174 Paul Chomicz et al.

in Biomedical Natural Language Processing. Association for Computational Linguistics,
pp. 117–124, 2009.

[FH14] Fockel, Markus; Holtmann, Jörg: A Requirements Engineering Methodology Combining
Models and Controlled Natural Language. In: Model-Driven Requirements Engineering
Workshop (MoDRE), 2014 IEEE 4th International. IEEE, pp. 67–76, 2014.

[FKK08] Fuchs, Norbert E.; Kaljurand, Kaarel; Kuhn, Tobias: Attempto Controlled English for
Knowledge Representation. In: Reasoning Web, pp. 104–124. Springer, 2008.

[HMM11] Holtmann, Jörg; Meyer, Jan; Meyer, Matthias: A Seamless Model-Based Development
Process for Automotive Systems. In: Software Engineering (Workshops). pp. 79–88,
2011.

[IS11] ISO: , ISO 26262-3: Road Vehicles – Functional Safety – Part 3: Concept Phase, 2011.

[Ku14] Kuhn, Tobias: A Survey and Classification of Controlled Natural Languages. Computa-
tional Linguistics, 40(1):121–170, 2014.

[O’89] O’Brien, John; Brice, Henry; Hatfield, Scott; Johnson, Wayne P; Woodhead, Richard:
The Ford Motor Company Direct Labor Management System. In: Innovative Applica-
tions of Artificial Intelligence. volume 1, 1989.

[PMP11] Post, Amalinda; Menzel, Igor; Podelski, Andreas: Applying Restricted English Gram-
mar on Automotive Requirements – Does It Work? A Case Study. In: International
Working Conference on Requirements Engineering: Foundation for Software Quality.
Springer, pp. 166–180, 2011.

[Ry02] Rychtyckyj, Nestor: An Assessment of Machine Translation for Vehicle Assembly Pro-
cess Planning at Ford Motor Company. In: Conference of the Association for Machine
Translation in the Americas. Springer, pp. 207–215, 2002.

[Ry05] Rychtyckyj, Nestor: Ergonomics Analysis for Vehicle Assembly Using Artificial Intelli-
gence. AI Magazine, 26(3):41, 2005.

[Ry06] Rychtyckyj, Nestor: Standard Language at Ford Motor Company: A Case Study in Con-
trolled Language Development and Deployment. Cambridge, Massachussets, 2006.

[SBC03] Spaggiari, Laurent; Beaujard, Florence; Cannesson, Emmanuelle: A Controlled Lan-
guage at Airbus. Proceedings of EAMT-CLAW03, pp. 151–159, 2003.

[Sc10] Schwitter, Rolf: Controlled Natural Languages for Knowledge Representation. In: Pro-
ceedings of the 23rd International Conference on Computational Linguistics: Posters.
Association for Computational Linguistics, pp. 1113–1121, 2010.

P-1 Gregor Engels, Andreas Oberweis, Albert
Zündorf (Hrsg.): Modellierung 2001.

P-2 Mikhail Godlevsky, Heinrich C. Mayr
(Hrsg.): Information Systems Technology
and its Applications, ISTA’2001.

P-3 Ana M. Moreno, Reind P. van de
Riet (Hrsg.): Applications of Natural
Lan-guage to Information Systems,
NLDB’2001.

P-4 H. Wörn, J. Mühling, C. Vahl, H.-P.
Meinzer (Hrsg.): Rechner- und sensor-
gestützte Chirurgie; Workshop des SFB
414.

P-5 Andy Schürr (Hg.): OMER – Object-
Oriented Modeling of Embedded Real-
Time Systems.

P-6 Hans-Jürgen Appelrath, Rolf Beyer, Uwe
Marquardt, Heinrich C. Mayr, Claudia
Steinberger (Hrsg.): Unternehmen Hoch-
schule, UH’2001.

P-7 Andy Evans, Robert France, Ana Moreira,
Bernhard Rumpe (Hrsg.): Practical UML-
Based Rigorous Development Methods –
Countering or Integrating the extremists,
pUML’2001.

P-8 Reinhard Keil-Slawik, Johannes Magen-
heim (Hrsg.): Informatikunterricht und
Medienbildung, INFOS’2001.

P-9 Jan von Knop, Wilhelm Haverkamp
(Hrsg.): Innovative Anwendungen in
Kommunikationsnetzen, 15. DFN Arbeits-
tagung.

P-10 Mirjam Minor, Steffen Staab (Hrsg.): 1st
German Workshop on Experience Man-
agement: Sharing Experiences about the
Sharing Experience.

P-11 Michael Weber, Frank Kargl (Hrsg.):
Mobile Ad-Hoc Netzwerke, WMAN
2002.

P-12 Martin Glinz, Günther Müller-Luschnat
(Hrsg.): Modellierung 2002.

P-13 Jan von Knop, Peter Schirmbacher and
Viljan Mahni_ (Hrsg.): The Changing
Universities – The Role of Technology.

P-14 Robert Tolksdorf, Rainer Eckstein
(Hrsg.): XML-Technologien für das Se-
mantic Web – XSW 2002.

P-15 Hans-Bernd Bludau, Andreas Koop
(Hrsg.): Mobile Computing in Medicine.

P-16 J. Felix Hampe, Gerhard Schwabe
(Hrsg.): Mobile and Collaborative Busi-
ness 2002.

P-17 Jan von Knop, Wilhelm Haverkamp
(Hrsg.): Zukunft der Netze –Die Verletz-
barkeit meistern, 16. DFN Arbeitstagung.

P-18 Elmar J. Sinz, Markus Plaha (Hrsg.):
Modellierung betrieblicher Informations-
systeme – MobIS 2002.

P-19 Sigrid Schubert, Bernd Reusch, Norbert
Jesse (Hrsg.): Informatik bewegt – Infor-
matik 2002 – 32. Jahrestagung der Gesell-
schaft für Informatik e.V. (GI) 30.Sept.-3.
Okt. 2002 in Dortmund.

P-20 Sigrid Schubert, Bernd Reusch, Norbert
Jesse (Hrsg.): Informatik bewegt – Infor-
matik 2002 – 32. Jahrestagung der Gesell-
schaft für Informatik e.V. (GI) 30.Sept.-3.
Okt. 2002 in Dortmund (Ergänzungs-
band).

P-21 Jörg Desel, Mathias Weske (Hrsg.):
Promise 2002: Prozessorientierte Metho-
den und Werkzeuge für die Entwicklung
von Informationssystemen.

P-22 Sigrid Schubert, Johannes Magenheim,
Peter Hubwieser, Torsten Brinda (Hrsg.):
Forschungsbeiträge zur “Didaktik der
Informatik” – Theorie, Praxis, Evaluation.

P-23 Thorsten Spitta, Jens Borchers, Harry M.
Sneed (Hrsg.): Software Management
2002 – Fortschritt durch Beständigkeit

P-24 Rainer Eckstein, Robert Tolksdorf
(Hrsg.): XMIDX 2003 – XML-
Technologien für Middleware – Middle-
ware für XML-Anwendungen

P-25 Key Pousttchi, Klaus Turowski (Hrsg.):
Mobile Commerce – Anwendungen und
Perspektiven – 3. Workshop Mobile
Commerce, Universität Augsburg,
04.02.2003

P-26 Gerhard Weikum, Harald Schöning,
Erhard Rahm (Hrsg.): BTW 2003: Daten-
banksysteme für Business, Technologie
und Web

P-27 Michael Kroll, Hans-Gerd Lipinski, Kay
Melzer (Hrsg.): Mobiles Computing in
der Medizin

P-28 Ulrich Reimer, Andreas Abecker, Steffen
Staab, Gerd Stumme (Hrsg.): WM 2003:
Professionelles Wissensmanagement –
Er-fahrungen und Visionen

P-29 Antje Düsterhöft, Bernhard Thalheim
(Eds.): NLDB’2003: Natural Language
Processing and Information Systems

P-30 Mikhail Godlevsky, Stephen Liddle,
Heinrich C. Mayr (Eds.): Information
Systems Technology and its Applications

P-31 Arslan Brömme, Christoph Busch (Eds.):
BIOSIG 2003: Biometrics and Electronic
Signatures

 GI-Edition Lecture Notes in Informatics

P-32 Peter Hubwieser (Hrsg.): Informatische
Fachkonzepte im Unterricht – INFOS
2003

P-33 Andreas Geyer-Schulz, Alfred Taudes
(Hrsg.): Informationswirtschaft: Ein
Sektor mit Zukunft

P-34 Klaus Dittrich, Wolfgang König, Andreas
Oberweis, Kai Rannenberg, Wolfgang
Wahlster (Hrsg.): Informatik 2003 –
Innovative Informatikanwendungen
(Band 1)

P-35 Klaus Dittrich, Wolfgang König, Andreas
Oberweis, Kai Rannenberg, Wolfgang
Wahlster (Hrsg.): Informatik 2003 –
Innovative Informatikanwendungen
(Band 2)

P-36 Rüdiger Grimm, Hubert B. Keller, Kai
Rannenberg (Hrsg.): Informatik 2003 –
Mit Sicherheit Informatik

P-37 Arndt Bode, Jörg Desel, Sabine Rath-
mayer, Martin Wessner (Hrsg.): DeLFI
2003: e-Learning Fachtagung Informatik

P-38 E.J. Sinz, M. Plaha, P. Neckel (Hrsg.):
Modellierung betrieblicher Informations-
systeme – MobIS 2003

P-39 Jens Nedon, Sandra Frings, Oliver Göbel
(Hrsg.): IT-Incident Management & IT-
Forensics – IMF 2003

P-40 Michael Rebstock (Hrsg.): Modellierung
betrieblicher Informationssysteme – Mo-
bIS 2004

P-41 Uwe Brinkschulte, Jürgen Becker, Diet-
mar Fey, Karl-Erwin Großpietsch, Chris-
tian Hochberger, Erik Maehle, Thomas
Runkler (Edts.): ARCS 2004 – Organic
and Pervasive Computing

P-42 Key Pousttchi, Klaus Turowski (Hrsg.):
Mobile Economy – Transaktionen und
Prozesse, Anwendungen und Dienste

P-43 Birgitta König-Ries, Michael Klein,
Philipp Obreiter (Hrsg.): Persistance,
Scalability, Transactions – Database Me-
chanisms for Mobile Applications

P-44 Jan von Knop, Wilhelm Haverkamp, Eike
Jessen (Hrsg.): Security, E-Learning.
E-Services

P-45 Bernhard Rumpe, Wofgang Hesse
(Hrsg.): Modellierung 2004

P-46 Ulrich Flegel, Michael Meier (Hrsg.):
Detection of Intrusions of Malware &
Vulnerability Assessment

P-47 Alexander Prosser, Robert Krimmer
(Hrsg.): Electronic Voting in Europe –
Technology, Law, Politics and Society

P-48 Anatoly Doroshenko, Terry Halpin,
Stephen W. Liddle, Heinrich C. Mayr
(Hrsg.): Information Systems Technology
and its Applications

P-49 G. Schiefer, P. Wagner, M. Morgenstern,
U. Rickert (Hrsg.): Integration und Daten-
sicherheit – Anforderungen, Konflikte und
Perspektiven

P-50 Peter Dadam, Manfred Reichert (Hrsg.):
INFORMATIK 2004 – Informatik ver-
bindet (Band 1) Beiträge der 34. Jahresta-
gung der Gesellschaft für Informatik e.V.
(GI), 20.-24. September 2004 in Ulm

P-51 Peter Dadam, Manfred Reichert (Hrsg.):
INFORMATIK 2004 – Informatik ver-
bindet (Band 2) Beiträge der 34. Jahresta-
gung der Gesellschaft für Informatik e.V.
(GI), 20.-24. September 2004 in Ulm

P-52 Gregor Engels, Silke Seehusen (Hrsg.):
DELFI 2004 – Tagungsband der 2.
e-Learning Fachtagung Informatik

P-53 Robert Giegerich, Jens Stoye (Hrsg.):
German Conference on Bioinformatics –
GCB 2004

P-54 Jens Borchers, Ralf Kneuper (Hrsg.):
Softwaremanagement 2004 – Outsourcing
und Integration

P-55 Jan von Knop, Wilhelm Haverkamp, Eike
Jessen (Hrsg.): E-Science und Grid Ad-
hoc-Netze Medienintegration

P-56 Fernand Feltz, Andreas Oberweis, Benoit
Otjacques (Hrsg.): EMISA 2004 – Infor-
mationssysteme im E-Business und
E-Government

P-57 Klaus Turowski (Hrsg.): Architekturen,
Komponenten, Anwendungen

P-58 Sami Beydeda, Volker Gruhn, Johannes
Mayer, Ralf Reussner, Franz Schweiggert
(Hrsg.): Testing of Component-Based
Systems and Software Quality

P-59 J. Felix Hampe, Franz Lehner, Key
Pousttchi, Kai Ranneberg, Klaus
Turowski (Hrsg.): Mobile Business –
Processes, Platforms, Payments

P-60 Steffen Friedrich (Hrsg.): Unterrichtskon-
zepte für inforrmatische Bildung

P-61 Paul Müller, Reinhard Gotzhein, Jens B.
Schmitt (Hrsg.): Kommunikation in ver-
teilten Systemen

P-62 Federrath, Hannes (Hrsg.): „Sicherheit
2005“ – Sicherheit – Schutz und Zuver-
lässigkeit

P-63 Roland Kaschek, Heinrich C. Mayr,
Stephen Liddle (Hrsg.): Information Sys-
tems – Technology and ist Applications

P-64 Peter Liggesmeyer, Klaus Pohl, Michael
Goedicke (Hrsg.): Software Engineering
2005

P-65 Gottfried Vossen, Frank Leymann, Peter
Lockemann, Wolffried Stucky (Hrsg.):
Datenbanksysteme in Business, Techno-
logie und Web

P-66 Jörg M. Haake, Ulrike Lucke, Djamshid
Tavangarian (Hrsg.): DeLFI 2005: 3.
deutsche e-Learning Fachtagung Infor-
matik

P-67 Armin B. Cremers, Rainer Manthey,
Peter Martini, Volker Steinhage (Hrsg.):
INFORMATIK 2005 – Informatik LIVE
(Band 1)

P-68 Armin B. Cremers, Rainer Manthey,
Peter Martini, Volker Steinhage (Hrsg.):
INFORMATIK 2005 – Informatik LIVE
(Band 2)

P-69 Robert Hirschfeld, Ryszard Kowalcyk,
Andreas Polze, Matthias Weske (Hrsg.):
NODe 2005, GSEM 2005

P-70 Klaus Turowski, Johannes-Maria Zaha
(Hrsg.): Component-oriented Enterprise
Application (COAE 2005)

P-71 Andrew Torda, Stefan Kurz, Matthias
Rarey (Hrsg.): German Conference on
Bioinformatics 2005

P-72 Klaus P. Jantke, Klaus-Peter Fähnrich,
Wolfgang S. Wittig (Hrsg.): Marktplatz
Internet: Von e-Learning bis e-Payment

P-73 Jan von Knop, Wilhelm Haverkamp, Eike
Jessen (Hrsg.): “Heute schon das Morgen
sehen“

P-74 Christopher Wolf, Stefan Lucks, Po-Wah
Yau (Hrsg.): WEWoRC 2005 – Western
European Workshop on Research in
Cryptology

P-75 Jörg Desel, Ulrich Frank (Hrsg.): Enter-
prise Modelling and Information Systems
Architecture

P-76 Thomas Kirste, Birgitta König-Riess, Key
Pousttchi, Klaus Turowski (Hrsg.): Mo-
bile Informationssysteme – Potentiale,
Hindernisse, Einsatz

P-77 Jana Dittmann (Hrsg.): SICHERHEIT
2006

P-78 K.-O. Wenkel, P. Wagner, M. Morgens-
tern, K. Luzi, P. Eisermann (Hrsg.): Land-
und Ernährungswirtschaft im Wandel

P-79 Bettina Biel, Matthias Book, Volker
Gruhn (Hrsg.): Softwareengineering 2006

P-80 Mareike Schoop, Christian Huemer,
Michael Rebstock, Martin Bichler
(Hrsg.): Service-Oriented Electronic
Commerce

P-81 Wolfgang Karl, Jürgen Becker, Karl-
Erwin Großpietsch, Christian Hochberger,
Erik Maehle (Hrsg.): ARCS´06

P-82 Heinrich C. Mayr, Ruth Breu (Hrsg.):
Modellierung 2006

P-83 Daniel Huson, Oliver Kohlbacher, Andrei
Lupas, Kay Nieselt and Andreas Zell
(eds.): German Conference on Bioinfor-
matics

P-84 Dimitris Karagiannis, Heinrich C. Mayr,
(Hrsg.): Information Systems Technology
and its Applications

P-85 Witold Abramowicz, Heinrich C. Mayr,
(Hrsg.): Business Information Systems

P-86 Robert Krimmer (Ed.): Electronic Voting
2006

P-87 Max Mühlhäuser, Guido Rößling, Ralf
Steinmetz (Hrsg.): DELFI 2006: 4.
e-Learning Fachtagung Informatik

P-88 Robert Hirschfeld, Andreas Polze,
Ryszard Kowalczyk (Hrsg.): NODe 2006,
GSEM 2006

P-90 Joachim Schelp, Robert Winter, Ulrich
Frank, Bodo Rieger, Klaus Turowski
(Hrsg.): Integration, Informationslogistik
und Architektur

P-91 Henrik Stormer, Andreas Meier, Michael
Schumacher (Eds.): European Conference
on eHealth 2006

P-92 Fernand Feltz, Benoît Otjacques, Andreas
Oberweis, Nicolas Poussing (Eds.): AIM
2006

P-93 Christian Hochberger, Rüdiger Liskowsky
(Eds.): INFORMATIK 2006 – Informatik
für Menschen, Band 1

P-94 Christian Hochberger, Rüdiger Liskowsky
(Eds.): INFORMATIK 2006 – Informatik
für Menschen, Band 2

P-95 Matthias Weske, Markus Nüttgens (Eds.):
EMISA 2005: Methoden, Konzepte und
Technologien für die Entwicklung von
dienstbasierten Informationssystemen

P-96 Saartje Brockmans, Jürgen Jung, York
Sure (Eds.): Meta-Modelling and Ontolo-
gies

P-97 Oliver Göbel, Dirk Schadt, Sandra Frings,
Hardo Hase, Detlef Günther, Jens Nedon
(Eds.): IT-Incident Mangament & IT-
Forensics – IMF 2006

P-98 Hans Brandt-Pook, Werner Simonsmeier
und Thorsten Spitta (Hrsg.): Beratung
in der Softwareentwicklung – Modelle,
Methoden, Best Practices

P-99 Andreas Schwill, Carsten Schulte, Marco
Thomas (Hrsg.): Didaktik der Informatik

P-100 Peter Forbrig, Günter Siegel, Markus
Schneider (Hrsg.): HDI 2006: Hochschul-
didaktik der Informatik

P-101 Stefan Böttinger, Ludwig Theuvsen,
Susanne Rank, Marlies Morgenstern (Hrsg.):
Agrarinformatik im Spannungsfeld
zwischen Regionalisierung und globalen
Wertschöpfungsketten

P-102 Otto Spaniol (Eds.): Mobile Services and
Personalized Environments

P-103 Alfons Kemper, Harald Schöning, Thomas
Rose, Matthias Jarke, Thomas Seidl,
Christoph Quix, Christoph Brochhaus
(Hrsg.): Datenbanksysteme in Business,
Technologie und Web (BTW 2007)

P-104 Birgitta König-Ries, Franz Lehner,
Rainer Malaka, Can Türker (Hrsg.)
MMS 2007: Mobilität und mobile
Informationssysteme

P-105 Wolf-Gideon Bleek, Jörg Raasch,
Heinz Züllighoven (Hrsg.)
Software Engineering 2007

P-106 Wolf-Gideon Bleek, Henning Schwentner,
Heinz Züllighoven (Hrsg.)
Software Engineering 2007 –
Beiträge zu den Workshops

P-107 Heinrich C. Mayr,
Dimitris Karagiannis (eds.)
Information Systems
Technology and its Applications

P-108 Arslan Brömme, Christoph Busch,
Detlef Hühnlein (eds.)
BIOSIG 2007:
Biometrics and
Electronic Signatures

P-109 Rainer Koschke, Otthein Herzog, Karl-
Heinz Rödiger, Marc Ronthaler (Hrsg.)
INFORMATIK 2007
Informatik trifft Logistik
Band 1

P-110 Rainer Koschke, Otthein Herzog, Karl-
Heinz Rödiger, Marc Ronthaler (Hrsg.)
INFORMATIK 2007
Informatik trifft Logistik
Band 2

P-111 Christian Eibl, Johannes Magenheim,
Sigrid Schubert, Martin Wessner (Hrsg.)
DeLFI 2007:
5. e-Learning Fachtagung
Informatik

P-112 Sigrid Schubert (Hrsg.)
Didaktik der Informatik in
Theorie und Praxis

P-113 Sören Auer, Christian Bizer, Claudia
Müller, Anna V. Zhdanova (Eds.)
The Social Semantic Web 2007
Proceedings of the 1st Conference on
Social Semantic Web (CSSW)

P-114 Sandra Frings, Oliver Göbel, Detlef Günther,
Hardo G. Hase, Jens Nedon, Dirk Schadt,
Arslan Brömme (Eds.)
IMF2007 IT-incident
management & IT-forensics
Proceedings of the 3rd International
Conference on IT-Incident Management
& IT-Forensics

P-115 Claudia Falter, Alexander Schliep,
Joachim Selbig, Martin Vingron and
Dirk Walther (Eds.)
German conference on bioinformatics
GCB 2007

P-116 Witold Abramowicz, Leszek Maciszek
(Eds.)
Business Process and Services Computing
1st International Working Conference on
Business Process and Services Computing
BPSC 2007

P-117 Ryszard Kowalczyk (Ed.)
Grid service engineering and manegement
The 4th International Conference on Grid
Service Engineering and Management
GSEM 2007

P-118 Andreas Hein, Wilfried Thoben, Hans-
Jürgen Appelrath, Peter Jensch (Eds.)
European Conference on ehealth 2007

P-119 Manfred Reichert, Stefan Strecker, Klaus
Turowski (Eds.)
Enterprise Modelling and Information
Systems Architectures
Concepts and Applications

P-120 Adam Pawlak, Kurt Sandkuhl,
Wojciech Cholewa,
Leandro Soares Indrusiak (Eds.)
Coordination of Collaborative
Engineering - State of the Art and Future
Challenges

P-121 Korbinian Herrmann, Bernd Bruegge (Hrsg.)
Software Engineering 2008
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-122 Walid Maalej, Bernd Bruegge (Hrsg.)
Software Engineering 2008 -
Workshopband
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-123 Michael H. Breitner, Martin Breunig, Elgar
Fleisch, Ley Pousttchi, Klaus Turowski
(Hrsg.)
Mobile und Ubiquitäre
Informationssysteme – Technologien,
Prozesse, Marktfähigkeit
Proceedings zur 3. Konferenz Mobile und
Ubiquitäre Informationssysteme
(MMS 2008)

P-124 Wolfgang E. Nagel, Rolf Hoffmann,
Andreas Koch (Eds.)
9th Workshop on Parallel Systems and
Algorithms (PASA)
Workshop of the GI/ITG Speciel Interest
Groups PARS and PARVA

P-125 Rolf A.E. Müller, Hans-H. Sundermeier,
Ludwig Theuvsen, Stephanie Schütze,
Marlies Morgenstern (Hrsg.)
Unternehmens-IT:
Führungsinstrument oder
Verwaltungsbürde
Referate der 28. GIL Jahrestagung

P-126 Rainer Gimnich, Uwe Kaiser, Jochen
Quante, Andreas Winter (Hrsg.)
10th Workshop Software Reengineering
(WSR 2008)

P-127 Thomas Kühne, Wolfgang Reisig,
Friedrich Steimann (Hrsg.)
Modellierung 2008

P-128 Ammar Alkassar, Jörg Siekmann (Hrsg.)
Sicherheit 2008
Sicherheit, Schutz und Zuverlässigkeit
Beiträge der 4. Jahrestagung des
Fachbereichs Sicherheit der Gesellschaft
für Informatik e.V. (GI)
2.-4. April 2008
Saarbrücken, Germany

P-129 Wolfgang Hesse, Andreas Oberweis (Eds.)
Sigsand-Europe 2008
Proceedings of the Third AIS SIGSAND
European Symposium on Analysis,
Design, Use and Societal Impact of
Information Systems

P-130 Paul Müller, Bernhard Neumair,
Gabi Dreo Rodosek (Hrsg.)
1. DFN-Forum Kommunikations-
technologien Beiträge der Fachtagung

P-131 Robert Krimmer, Rüdiger Grimm (Eds.)
3rd International Conference on Electronic
Voting 2008
Co-organized by Council of Europe,
Gesellschaft für Informatik and E-Voting.
CC

P-132 Silke Seehusen, Ulrike Lucke,
Stefan Fischer (Hrsg.)
DeLFI 2008:
Die 6. e-Learning Fachtagung Informatik

P-133 Heinz-Gerd Hegering, Axel Lehmann,
Hans Jürgen Ohlbach, Christian
Scheideler (Hrsg.)
INFORMATIK 2008
Beherrschbare Systeme – dank Informatik
Band 1

P-134 Heinz-Gerd Hegering, Axel Lehmann,
Hans Jürgen Ohlbach, Christian
Scheideler (Hrsg.)
INFORMATIK 2008
Beherrschbare Systeme – dank Informatik
Band 2

P-135 Torsten Brinda, Michael Fothe,
Peter Hubwieser, Kirsten Schlüter (Hrsg.)
Didaktik der Informatik –
Aktuelle Forschungsergebnisse

P-136 Andreas Beyer, Michael Schroeder (Eds.)
German Conference on Bioinformatics
GCB 2008

P-137 Arslan Brömme, Christoph Busch, Detlef
Hühnlein (Eds.)
BIOSIG 2008: Biometrics and Electronic
Signatures

P-138 Barbara Dinter, Robert Winter, Peter
Chamoni, Norbert Gronau, Klaus
Turowski (Hrsg.)
Synergien durch Integration und
Informationslogistik
Proceedings zur DW2008

P-139 Georg Herzwurm, Martin Mikusz (Hrsg.)
Industrialisierung des Software-
Managements
Fachtagung des GI-Fachausschusses
Management der Anwendungs entwick-
lung und -wartung im Fachbereich
Wirtschaftsinformatik

P-140 Oliver Göbel, Sandra Frings, Detlef
Günther, Jens Nedon, Dirk Schadt (Eds.)
IMF 2008 - IT Incident Management &
IT Forensics

P-141 Peter Loos, Markus Nüttgens,
Klaus Turowski, Dirk Werth (Hrsg.)
Modellierung betrieblicher Informations-
systeme (MobIS 2008)
Modellierung zwischen SOA und
Compliance Management

P-142 R. Bill, P. Korduan, L. Theuvsen,
M. Morgenstern (Hrsg.)
Anforderungen an die Agrarinformatik
durch Globalisierung und
Klimaveränderung

P-143 Peter Liggesmeyer, Gregor Engels,
Jürgen Münch, Jörg Dörr,
Norman Riegel (Hrsg.)
Software Engineering 2009
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-144 Johann-Christoph Freytag, Thomas Ruf,
Wolfgang Lehner, Gottfried Vossen
(Hrsg.)
Datenbanksysteme in Business,
Technologie und Web (BTW)

P-145 Knut Hinkelmann, Holger Wache (Eds.)
WM2009: 5th Conference on Professional
Knowledge Management

P-146 Markus Bick, Martin Breunig,
Hagen Höpfner (Hrsg.)
Mobile und Ubiquitäre
Informationssysteme – Entwicklung,
Implementierung und Anwendung
4. Konferenz Mobile und Ubiquitäre
Informationssysteme (MMS 2009)

P-147 Witold Abramowicz, Leszek Maciaszek,
Ryszard Kowalczyk, Andreas Speck (Eds.)
Business Process, Services Computing
and Intelligent Service Management
BPSC 2009 · ISM 2009 · YRW-MBP
2009

P-148 Christian Erfurth, Gerald Eichler,
Volkmar Schau (Eds.)
9th International Conference on Innovative
Internet Community Systems
I2CS 2009

P-149 Paul Müller, Bernhard Neumair,
Gabi Dreo Rodosek (Hrsg.)
2. DFN-Forum
Kommunikationstechnologien
Beiträge der Fachtagung

P-150 Jürgen Münch, Peter Liggesmeyer (Hrsg.)
Software Engineering
2009 - Workshopband

P-151 Armin Heinzl, Peter Dadam, Stefan Kirn,
Peter Lockemann (Eds.)
PRIMIUM
Process Innovation for
Enterprise Software

P-152 Jan Mendling, Stefanie Rinderle-Ma,
 Werner Esswein (Eds.)
 Enterprise Modelling and Information

Systems Architectures
 Proceedings of the 3rd Int‘l Workshop

EMISA 2009

P-153 Andreas Schwill,
Nicolas Apostolopoulos (Hrsg.)
Lernen im Digitalen Zeitalter
DeLFI 2009 – Die 7. E-Learning
Fachtagung Informatik

P-154 Stefan Fischer, Erik Maehle
Rüdiger Reischuk (Hrsg.)
INFORMATIK 2009
Im Focus das Leben

P-155 Arslan Brömme, Christoph Busch,
Detlef Hühnlein (Eds.)
BIOSIG 2009:
Biometrics and Electronic Signatures
Proceedings of the Special Interest Group
on Biometrics and Electronic Signatures

P-156 Bernhard Koerber (Hrsg.)
Zukunft braucht Herkunft
25 Jahre »INFOS – Informatik und
Schule«

P-157 Ivo Grosse, Steffen Neumann,
Stefan Posch, Falk Schreiber,
Peter Stadler (Eds.)
German Conference on Bioinformatics
2009

P-158 W. Claupein, L. Theuvsen, A. Kämpf,
M. Morgenstern (Hrsg.)
Precision Agriculture
Reloaded – Informationsgestützte
Landwirtschaft

P-159 Gregor Engels, Markus Luckey,
Wilhelm Schäfer (Hrsg.)
Software Engineering 2010

P-160 Gregor Engels, Markus Luckey,
Alexander Pretschner, Ralf Reussner
(Hrsg.)
Software Engineering 2010 –
Workshopband
(inkl. Doktorandensymposium)

P-161 Gregor Engels, Dimitris Karagiannis
Heinrich C. Mayr (Hrsg.)
Modellierung 2010

P-162 Maria A. Wimmer, Uwe Brinkhoff,
Siegfried Kaiser, Dagmar Lück-
Schneider, Erich Schweighofer,
Andreas Wiebe (Hrsg.)
Vernetzte IT für einen effektiven Staat
Gemeinsame Fachtagung
Verwaltungsinformatik (FTVI) und
Fachtagung Rechtsinformatik (FTRI) 2010

P-163 Markus Bick, Stefan Eulgem,
Elgar Fleisch, J. Felix Hampe,
Birgitta König-Ries, Franz Lehner,
Key Pousttchi, Kai Rannenberg (Hrsg.)
Mobile und Ubiquitäre
Informationssysteme
Technologien, Anwendungen und
Dienste zur Unterstützung von mobiler
Kollaboration

P-164 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2010: Biometrics and Electronic
Signatures Proceedings of the Special
Interest Group on Biometrics and
Electronic Signatures

P-165 Gerald Eichler, Peter Kropf,
Ulrike Lechner, Phayung Meesad,
Herwig Unger (Eds.)
10th International Conference on
Innovative Internet Community Systems
(I2CS) – Jubilee Edition 2010 –

P-166 Paul Müller, Bernhard Neumair,
Gabi Dreo Rodosek (Hrsg.)
3. DFN-Forum Kommunikationstechnologien
Beiträge der Fachtagung

P-167 Robert Krimmer, Rüdiger Grimm (Eds.)
4th International Conference on
Electronic Voting 2010
co-organized by the Council of Europe,
Gesellschaft für Informatik and
E-Voting.CC

P-168 Ira Diethelm, Christina Dörge,
Claudia Hildebrandt,
Carsten Schulte (Hrsg.)
Didaktik der Informatik
Möglichkeiten empirischer
Forschungsmethoden und Perspektiven
der Fachdidaktik

P-169 Michael Kerres, Nadine Ojstersek
Ulrik Schroeder, Ulrich Hoppe (Hrsg.)
DeLFI 2010 - 8. Tagung
der Fachgruppe E-Learning
der Gesellschaft für Informatik e.V.

P-170 Felix C. Freiling (Hrsg.)
Sicherheit 2010
Sicherheit, Schutz und Zuverlässigkeit

P-171 Werner Esswein, Klaus Turowski,
Martin Juhrisch (Hrsg.)
Modellierung betrieblicher
Informationssysteme (MobIS 2010)
Modellgestütztes Management

P-172 Stefan Klink, Agnes Koschmider
Marco Mevius, Andreas Oberweis (Hrsg.)
EMISA 2010
Einflussfaktoren auf die Entwicklung
flexibler, integrierter Informationssysteme
Beiträge des Workshops
der GI-Fachgruppe EMISA
(Entwicklungsmethoden für Infor-
mationssysteme und deren Anwendung)

P-173 Dietmar Schomburg,
Andreas Grote (Eds.)
German Conference on Bioinformatics
2010

P-174 Arslan Brömme, Torsten Eymann,
Detlef Hühnlein, Heiko Roßnagel,
Paul Schmücker (Hrsg.)
perspeGKtive 2010
Workshop „Innovative und sichere
Informationstechnologie für das
Gesundheitswesen von morgen“

P-175 Klaus-Peter Fähnrich,
Bogdan Franczyk (Hrsg.)
INFORMATIK 2010
Service Science – Neue Perspektiven für
die Informatik
Band 1

P-176 Klaus-Peter Fähnrich,
Bogdan Franczyk (Hrsg.)
INFORMATIK 2010
Service Science – Neue Perspektiven für
die Informatik
Band 2

P-177 Witold Abramowicz, Rainer Alt,
Klaus-Peter Fähnrich, Bogdan Franczyk,
Leszek A. Maciaszek (Eds.)
INFORMATIK 2010
Business Process and Service Science –
Proceedings of ISSS and BPSC

P-178 Wolfram Pietsch, Benedikt Krams (Hrsg.)
 Vom Projekt zum Produkt
 Fachtagung des GI-

Fachausschusses Management der
Anwendungsentwicklung und -wartung
im Fachbereich Wirtschafts-informatik
(WI-MAW), Aachen, 2010

P-179 Stefan Gruner, Bernhard Rumpe (Eds.)
FM+AM`2010
Second International Workshop on
Formal Methods and Agile Methods

P-180 Theo Härder, Wolfgang Lehner,
Bernhard Mitschang, Harald Schöning,
Holger Schwarz (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW)
14. Fachtagung des GI-Fachbereichs
„Datenbanken und Informationssysteme“
(DBIS)

P-181 Michael Clasen, Otto Schätzel,
Brigitte Theuvsen (Hrsg.)
Qualität und Effizienz durch
informationsgestützte Landwirtschaft,
Fokus: Moderne Weinwirtschaft

P-182 Ronald Maier (Hrsg.)
6th Conference on Professional
Knowledge Management
From Knowledge to Action

P-183 Ralf Reussner, Matthias Grund, Andreas
Oberweis, Walter Tichy (Hrsg.)
Software Engineering 2011
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-184 Ralf Reussner, Alexander Pretschner,
Stefan Jähnichen (Hrsg.)
Software Engineering 2011
Workshopband
(inkl. Doktorandensymposium)

P-185 Hagen Höpfner, Günther Specht,
Thomas Ritz, Christian Bunse (Hrsg.)
MMS 2011: Mobile und ubiquitäre
Informationssysteme Proceedings zur
6. Konferenz Mobile und Ubiquitäre
Informationssysteme (MMS 2011)

P-186 Gerald Eichler, Axel Küpper,
Volkmar Schau, Hacène Fouchal,
Herwig Unger (Eds.)
11th International Conference on
Innovative Internet Community Systems
(I2CS)

P-187 Paul Müller, Bernhard Neumair,
Gabi Dreo Rodosek (Hrsg.)
4. DFN-Forum Kommunikations-
technologien, Beiträge der Fachtagung
20. Juni bis 21. Juni 2011 Bonn

P-188 Holger Rohland, Andrea Kienle,
Steffen Friedrich (Hrsg.)
DeLFI 2011 – Die 9. e-Learning
Fachtagung Informatik
der Gesellschaft für Informatik e.V.
5.–8. September 2011, Dresden

P-189 Thomas, Marco (Hrsg.)
Informatik in Bildung und Beruf
INFOS 2011
14. GI-Fachtagung Informatik und Schule

P-190 Markus Nüttgens, Oliver Thomas,
Barbara Weber (Eds.)
Enterprise Modelling and Information
Systems Architectures (EMISA 2011)

P-191 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2011
International Conference of the
Biometrics Special Interest Group

P-192 Hans-Ulrich Heiß, Peter Pepper, Holger
Schlingloff, Jörg Schneider (Hrsg.)
INFORMATIK 2011
Informatik schafft Communities

P-193 Wolfgang Lehner, Gunther Piller (Hrsg.)
IMDM 2011

P-194 M. Clasen, G. Fröhlich, H. Bernhardt,
K. Hildebrand, B. Theuvsen (Hrsg.)
Informationstechnologie für eine
nachhaltige Landbewirtschaftung
Fokus Forstwirtschaft

P-195 Neeraj Suri, Michael Waidner (Hrsg.)
Sicherheit 2012
Sicherheit, Schutz und Zuverlässigkeit
Beiträge der 6. Jahrestagung des
Fachbereichs Sicherheit der
Gesellschaft für Informatik e.V. (GI)

P-196 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2012
Proceedings of the 11th International
Conference of the Biometrics Special
Interest Group

P-197 Jörn von Lucke, Christian P. Geiger,
Siegfried Kaiser, Erich Schweighofer,
Maria A. Wimmer (Hrsg.)
Auf dem Weg zu einer offenen, smarten
und vernetzten Verwaltungskultur
Gemeinsame Fachtagung
Verwaltungsinformatik (FTVI) und
Fachtagung Rechtsinformatik (FTRI)
2012

P-198 Stefan Jähnichen, Axel Küpper,
Sahin Albayrak (Hrsg.)
Software Engineering 2012
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-199 Stefan Jähnichen, Bernhard Rumpe,
Holger Schlingloff (Hrsg.)
Software Engineering 2012
Workshopband

P-200 Gero Mühl, Jan Richling, Andreas
Herkersdorf (Hrsg.)
ARCS 2012 Workshops

P-201 Elmar J. Sinz Andy Schürr (Hrsg.)
Modellierung 2012

P-202 Andrea Back, Markus Bick,
Martin Breunig, Key Pousttchi,
Frédéric Thiesse (Hrsg.)
MMS 2012:Mobile und Ubiquitäre
Informationssysteme

P-203 Paul Müller, Bernhard Neumair,
Helmut Reiser, Gabi Dreo Rodosek (Hrsg.)
5. DFN-Forum Kommunikations-
technologien
Beiträge der Fachtagung

P-204 Gerald Eichler, Leendert W. M.
Wienhofen, Anders Kofod-Petersen,
Herwig Unger (Eds.)
12th International Conference on
Innovative Internet Community Systems
(I2CS 2012)

P-205 Manuel J. Kripp, Melanie Volkamer,
Rüdiger Grimm (Eds.)
5th International Conference on Electronic
Voting 2012 (EVOTE2012)
Co-organized by the Council of Europe,
Gesellschaft für Informatik and E-Voting.CC

P-206 Stefanie Rinderle-Ma,
Mathias Weske (Hrsg.)
EMISA 2012
Der Mensch im Zentrum der Modellierung

P-207 Jörg Desel, Jörg M. Haake,
Christian Spannagel (Hrsg.)
DeLFI 2012: Die 10. e-Learning
Fachtagung Informatik der Gesellschaft
für Informatik e.V.
24.–26. September 2012

P-208 Ursula Goltz, Marcus Magnor,
Hans-Jürgen Appelrath, Herbert Matthies,
Wolf-Tilo Balke, Lars Wolf (Hrsg.)
INFORMATIK 2012

P-209 Hans Brandt-Pook, André Fleer, Thorsten
Spitta, Malte Wattenberg (Hrsg.)
Nachhaltiges Software Management

P-210 Erhard Plödereder, Peter Dencker,
Herbert Klenk, Hubert B. Keller,
Silke Spitzer (Hrsg.)
Automotive – Safety & Security 2012
Sicherheit und Zuverlässigkeit für
automobile Informationstechnik

P-211 M. Clasen, K. C. Kersebaum, A.
Meyer-Aurich, B. Theuvsen (Hrsg.)
Massendatenmanagement in der
Agrar- und Ernährungswirtschaft
Erhebung - Verarbeitung - Nutzung
Referate der 33. GIL-Jahrestagung
20. – 21. Februar 2013, Potsdam

P-212 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2013
Proceedings of the 12th International
Conference of the Biometrics
Special Interest Group
04.–06. September 2013
Darmstadt, Germany

P-213 Stefan Kowalewski,
Bernhard Rumpe (Hrsg.)
Software Engineering 2013
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-214 Volker Markl, Gunter Saake, Kai-Uwe
Sattler, Gregor Hackenbroich, Bernhard Mit
schang, Theo Härder, Veit Köppen (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW) 2013
13. – 15. März 2013, Magdeburg

P-215 Stefan Wagner, Horst Lichter (Hrsg.)
Software Engineering 2013
Workshopband
(inkl. Doktorandensymposium)
26. Februar – 1. März 2013, Aachen

P-216 Gunter Saake, Andreas Henrich,
Wolfgang Lehner, Thomas Neumann,
Veit Köppen (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW) 2013 –
Workshopband
11. – 12. März 2013, Magdeburg

P-217 Paul Müller, Bernhard Neumair, Helmut
Reiser, Gabi Dreo Rodosek (Hrsg.)
6. DFN-Forum Kommunikations-
technologien
Beiträge der Fachtagung
03.–04. Juni 2013, Erlangen

P-218 Andreas Breiter, Christoph Rensing (Hrsg.)
DeLFI 2013: Die 11 e-Learning
Fachtagung Informatik der Gesellschaft
für Informatik e.V. (GI)
8. – 11. September 2013, Bremen

P-219 Norbert Breier, Peer Stechert,
Thomas Wilke (Hrsg.)
Informatik erweitert Horizonte
INFOS 2013
15. GI-Fachtagung Informatik und Schule
26. – 28. September 2013

P-220 Matthias Horbach (Hrsg.)
INFORMATIK 2013
Informatik angepasst an Mensch,
Organisation und Umwelt
16. – 20. September 2013, Koblenz

P-221 Maria A. Wimmer, Marijn Janssen,
Ann Macintosh, Hans Jochen Scholl,
Efthimios Tambouris (Eds.)
Electronic Government and
Electronic Participation
Joint Proceedings of Ongoing Research of
IFIP EGOV and IFIP ePart 2013
16. – 19. September 2013, Koblenz

P-222 Reinhard Jung, Manfred Reichert (Eds.)
 Enterprise Modelling

and Information Systems Architectures
(EMISA 2013)

 St. Gallen, Switzerland
September 5. – 6. 2013

P-223 Detlef Hühnlein, Heiko Roßnagel (Hrsg.)
Open Identity Summit 2013
10. – 11. September 2013
Kloster Banz, Germany

P-224 Eckhart Hanser, Martin Mikusz, Masud
Fazal-Baqaie (Hrsg.)
Vorgehensmodelle 2013
Vorgehensmodelle – Anspruch und
Wirklichkeit
20. Tagung der Fachgruppe
Vorgehensmodelle im Fachgebiet
Wirtschaftsinformatik (WI-VM) der
Gesellschaft für Informatik e.V.
Lörrach, 2013

P-225 Hans-Georg Fill, Dimitris Karagiannis,
Ulrich Reimer (Hrsg.)
Modellierung 2014
19. – 21. März 2014, Wien

P-226 M. Clasen, M. Hamer, S. Lehnert,
B. Petersen, B. Theuvsen (Hrsg.)
IT-Standards in der Agrar- und
Ernährungswirtschaft Fokus: Risiko- und
Krisenmanagement
Referate der 34. GIL-Jahrestagung
24. – 25. Februar 2014, Bonn

P-227 Wilhelm Hasselbring,
Nils Christian Ehmke (Hrsg.)
Software Engineering 2014
Fachtagung des GI-Fachbereichs
Softwaretechnik
25. – 28. Februar 2014
Kiel, Deutschland

P-228 Stefan Katzenbeisser, Volkmar Lotz,
Edgar Weippl (Hrsg.)
Sicherheit 2014
Sicherheit, Schutz und Zuverlässigkeit
Beiträge der 7. Jahrestagung des
Fachbereichs Sicherheit der
Gesellschaft für Informatik e.V. (GI)
19. – 21. März 2014, Wien

P-229 Dagmar Lück-Schneider, Thomas
Gordon, Siegfried Kaiser, Jörn von
Lucke,Erich Schweighofer, Maria
A.Wimmer, Martin G. Löhe (Hrsg.)
Gemeinsam Electronic Government
ziel(gruppen)gerecht gestalten und
organisieren
Gemeinsame Fachtagung
Verwaltungsinformatik (FTVI) und
Fachtagung Rechtsinformatik (FTRI)
2014, 20.-21. März 2014 in Berlin

P-230 Arslan Brömme, Christoph Busch (Eds.)
 BIOSIG 2014
 Proceedings of the 13th International

Conference of the Biometrics Special
Interest Group

 10. – 12. September 2014 in
 Darmstadt, Germany

P-231 Paul Müller, Bernhard Neumair,
Helmut Reiser, Gabi Dreo Rodosek
(Hrsg.)
7. DFN-Forum
Kommunikationstechnologien
16. – 17. Juni 2014
Fulda

P-232 E. Plödereder, L. Grunske, E. Schneider,
D. Ull (Hrsg.)

 INFORMATIK 2014
 Big Data – Komplexität meistern
 22. – 26. September 2014
 Stuttgart

P-233 Stephan Trahasch, Rolf Plötzner, Gerhard
Schneider, Claudia Gayer, Daniel Sassiat,
Nicole Wöhrle (Hrsg.)

 DeLFI 2014 – Die 12. e-Learning
 Fachtagung Informatik
 der Gesellschaft für Informatik e.V.
 15. – 17. September 2014
 Freiburg

P-234 Fernand Feltz, Bela Mutschler, Benoît
Otjacques (Eds.)

 Enterprise Modelling and Information
Systems Architectures

 (EMISA 2014)
 Luxembourg, September 25-26, 2014

P-235 Robert Giegerich,
Ralf Hofestädt,

 Tim W. Nattkemper (Eds.)
 German Conference on
 Bioinformatics 2014
 September 28 – October 1
 Bielefeld, Germany

P-236 Martin Engstler, Eckhart Hanser,
Martin Mikusz, Georg Herzwurm (Hrsg.)

 Projektmanagement und
Vorgehensmodelle 2014

 Soziale Aspekte und Standardisierung
 Gemeinsame Tagung der Fachgruppen

Projektmanagement (WI-PM) und
Vorgehensmodelle (WI-VM) im
Fachgebiet Wirtschaftsinformatik der
Gesellschaft für Informatik e.V., Stuttgart
2014

P-237 Detlef Hühnlein, Heiko Roßnagel (Hrsg.)
 Open Identity Summit 2014
 4.–6. November 2014
 Stuttgart, Germany

P-238 Arno Ruckelshausen, Hans-Peter
Schwarz, Brigitte Theuvsen (Hrsg.)
Informatik in der Land-, Forst- und
Ernährungswirtschaft
Referate der 35. GIL-Jahrestagung
23. – 24. Februar 2015, Geisenheim

P-239 Uwe Aßmann, Birgit Demuth, Thorsten
Spitta, Georg Püschel, Ronny Kaiser
(Hrsg.)
Software Engineering & Management
2015
17.-20. März 2015, Dresden

P-240 Herbert Klenk, Hubert B. Keller, Erhard
Plödereder, Peter Dencker (Hrsg.)
Automotive – Safety & Security 2015
Sicherheit und Zuverlässigkeit für
automobile Informationstechnik
21.–22. April 2015, Stuttgart

P-241 Thomas Seidl, Norbert Ritter,
Harald Schöning, Kai-Uwe Sattler,
Theo Härder, Steffen Friedrich,
Wolfram Wingerath (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW 2015)
04. – 06. März 2015, Hamburg

P-242 Norbert Ritter, Andreas Henrich,
Wolfgang Lehner, Andreas Thor,
Steffen Friedrich, Wolfram Wingerath
(Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW 2015) –
Workshopband
02. – 03. März 2015, Hamburg

P-243 Paul Müller, Bernhard Neumair, Helmut
Reiser, Gabi Dreo Rodosek (Hrsg.)

 8. DFN-Forum
Kommunikationstechnologien
06.–09. Juni 2015, Lübeck

P-244 Alfred Zimmermann,
Alexander Rossmann (Eds.)
Digital Enterprise Computing
(DEC 2015)
Böblingen, Germany June 25-26, 2015

P-245 Arslan Brömme, Christoph Busch ,
Christian Rathgeb, Andreas Uhl (Eds.)
BIOSIG 2015
Proceedings of the 14th International
Conference of the Biometrics Special
Interest Group
09.–11. September 2015
Darmstadt, Germany

P-246 Douglas W. Cunningham, Petra Hofstedt,
Klaus Meer, Ingo Schmitt (Hrsg.)
INFORMATIK 2015
28.9.-2.10. 2015, Cottbus

P-247 Hans Pongratz, Reinhard Keil (Hrsg.)
DeLFI 2015 – Die 13. E-Learning
Fachtagung Informatik der Gesellschaft
für Informatik e.V. (GI)
1.–4. September 2015
München

P-248 Jens Kolb, Henrik Leopold, Jan Mendling
(Eds.)
Enterprise Modelling and Information
Systems Architectures
Proceedings of the 6th Int. Workshop on
Enterprise Modelling and Information
Systems Architectures, Innsbruck, Austria
September 3-4, 2015

P-249 Jens Gallenbacher (Hrsg.)
Informatik
allgemeinbildend begreifen
INFOS 2015 16. GI-Fachtagung
Informatik und Schule
20.–23. September 2015

P-250 Martin Engstler, Masud Fazal-Baqaie,
Eckhart Hanser, Martin Mikusz,
Alexander Volland (Hrsg.)
Projektmanagement und
Vorgehensmodelle 2015
Hybride Projektstrukturen erfolgreich
umsetzen
Gemeinsame Tagung der Fachgruppen
Projektmanagement (WI-PM) und
Vorgehensmodelle (WI-VM) im
Fachgebiet Wirtschaftsinformatik
der Gesellschaft für Informatik e.V.,
Elmshorn 2015

P-251 Detlef Hühnlein, Heiko Roßnagel,
Raik Kuhlisch, Jan Ziesing (Eds.)
Open Identity Summit 2015
10.–11. November 2015
Berlin, Germany

P-252 Jens Knoop, Uwe Zdun (Hrsg.)
Software Engineering 2016
Fachtagung des GI-Fachbereichs
Softwaretechnik
23.–26. Februar 2016, Wien

P-253 A. Ruckelshausen, A. Meyer-Aurich,
T. Rath, G. Recke, B. Theuvsen (Hrsg.)
Informatik in der Land-, Forst- und
Ernährungswirtschaft
Fokus: Intelligente Systeme – Stand der
Technik und neue Möglichkeiten
Referate der 36. GIL-Jahrestagung
22.-23. Februar 2016, Osnabrück

P-254 Andreas Oberweis, Ralf Reussner (Hrsg.)
Modellierung 2016
2.–4. März 2016, Karlsruhe

P-255 Stefanie Betz, Ulrich Reimer (Hrsg.)
Modellierung 2016 Workshopband
2.–4. März 2016, Karlsruhe

P-256 Michael Meier, Delphine Reinhardt,
Steffen Wendzel (Hrsg.)
Sicherheit 2016
Sicherheit, Schutz und Zuverlässigkeit
Beiträge der 8. Jahrestagung des
Fachbereichs Sicherheit der
Gesellschaft für Informatik e.V. (GI)
5.–7. April 2016, Bonn

P-257 Paul Müller, Bernhard Neumair, Helmut
Reiser, Gabi Dreo Rodosek (Hrsg.)
9. DFN-Forum
Kommunikationstechnologien
31. Mai – 01. Juni 2016, Rostock

P-258 Dieter Hertweck, Christian Decker (Eds.)
Digital Enterprise Computing (DEC 2016)
14.–15. Juni 2016, Böblingen

P-259 Heinrich C. Mayr, Martin Pinzger (Hrsg.)
INFORMATIK 2016
26.–30. September 2016, Klagenfurt

P-260 Arslan Brömme, Christoph Busch,
Christian Rathgeb, Andreas Uhl (Eds.)
BIOSIG 2016
Proceedings of the 15th International
Conference of the Biometrics Special
Interest Group
21.–23. September 2016, Darmstadt

P-261 Detlef Rätz, Michael Breidung, Dagmar
Lück-Schneider, Siegfried Kaiser, Erich
Schweighofer (Hrsg.)
Digitale Transformation: Methoden,
Kompetenzen und Technologien für die
Verwaltung
Gemeinsame Fachtagung
Verwaltungsinformatik (FTVI) und
Fachtagung Rechtsinformatik (FTRI) 2016
22.–23. September 2016, Dresden

P-262 Ulrike Lucke, Andreas Schwill,
Raphael Zender (Hrsg.)
DeLFI 2016 – Die 14. E-Learning
Fachtagung Informatik
der Gesellschaft für Informatik e.V. (GI)
11.–14. September 2016, Potsdam

P-263 Martin Engstler, Masud Fazal-Baqaie,
Eckhart Hanser, Oliver Linssen, Martin
Mikusz, Alexander Volland (Hrsg.)
Projektmanagement und
Vorgehensmodelle 2016
Arbeiten in hybriden Projekten: Das
Sowohl-als-auch von Stabilität und
Dynamik
Gemeinsame Tagung der Fachgruppen
Projektmanagement (WI-PM) und
Vorgehensmodelle (WI-VM) im
Fachgebiet Wirtschaftsinformatik
der Gesellschaft für Informatik e.V.,
Paderborn 2016

P-264 Detlef Hühnlein, Heiko Roßnagel,
Christian H. Schunck, Maurizio Talamo
(Eds.)
Open Identity Summit 2016
der Gesellschaft für Informatik e.V. (GI)
13.–14. October 2016, Rome, Italy

P-265 Bernhard Mitschang, Daniela
Nicklas,Frank Leymann, Harald
Schöning, Melanie Herschel, Jens
Teubner, Theo Härder, Oliver Kopp,
Matthias Wieland (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW 2017)
6.–10. März 2017, Stuttgart

P-266 Bernhard Mitschang, Norbert Ritter,
Holger Schwarz, Meike Klettke, Andreas
Thor, Oliver Kopp, Matthias Wieland
(Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW 2017)
Workshopband
6.–7. März 2017, Stuttgart

P-267 Jan Jürjens, Kurt Schneider (Hrsg.)
Software Engineering 2017
21.–24. Februar 2017
Hannover

P-268 A. Ruckelshausen, A. Meyer-Aurich,
W. Lentz, B. Theuvsen (Hrsg.)
Informatik in der Land-, Forst- und
Ernährungswirtschaft
Fokus: Digitale Transformation –
Wege in eine zukunftsfähige
Landwirtschaft
Referate der 37. GIL-Jahrestagung
06.–07. März 2017, Dresden

P-269 Peter Dencker, Herbert Klenk, Hubert
Keller, Erhard Plödereder (Hrsg.)
Automotive – Safety & Security 2017
30.–31. Mai 2017
Stuttgart

The titles can be purchased at:

Köllen Druck + Verlag GmbH
Ernst-Robert-Curtius-Str. 14 · D-53117 Bonn
Fax: +49 (0)228/9898222
E-Mail: druckverlag@koellen.de

