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A Testing Framework Architecture Concept for Automotive

Intrusion Detection Systems
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Abstract: Vehicles are the target of a rising number of hacking attacks. The integration of in-vehicle
intrusion detection systems is a common approach to increase the overall system security. However,
testing and evaluating these systems is difficult due to the lack of tools to generate realistic benign
and malicious workloads as well as sharing these workloads with other researchers. Currently, test-
ing tools are predominantly intended for Network Intrusion Detection System (NIDS) in company or
industrial networks where their usefulness became apparent. Yet, in the automotive domain, develop-
ment of testing tools is still in the early stages. Existing non-commercial automotive tools only focus
on one specific bus technology each. However, in-vehicle communication exceeds bus technology
boundaries and a testing tool must cover multiple technologies. We propose a framework architec-
ture concept for in-vehicle NIDS testing and evaluation to enable the creation of realistic network
traffic and attacks in consideration of automotive specific challenges. Our concept provides the op-
portunity to share data without additional anonymization effort therefore improving cooperation and
reproducibility of testing results.
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1 Introduction

Automotive networks are essential for both driver assistance and future trends such as
autonomous driving. With increasing complexity and rising numbers of network devices,
the possible impact of malicious manipulation and malfunction also increases. Additional
network bandwidth is mandatory to cover new functional requirements and cannot be met
with traditional bus systems such as the Controller Area Network (CAN). Automotive
Ethernet is designed to tackle these problems and — in addition to the necessary band-
width — provides greater flexibility with regard to higher layer protocols.

A rising number of attacks on vehicles (e.g. [MV15],[RM15]) emphasizes the need for
more security precautions and extended protection mechanisms in upcoming automobiles.
Embedding Intrusion Detection Systems (IDS) into in-vehicle networks is an applicable
approach to enhance overall vehicle security complementary to encryption and authenti-
cation mechanisms. Evaluating and testing IDS is a difficult task. Realistic datasets that
are compliant to the automotive domain specific requirements are necessary for testing
but hard to obtain. Furthermore, there is no standardized methodology for the evaluations
which in turn leads to a lack of comparability of the results.

1 Audi AG, 85045 Ingolstadt, christopher.corbett@audi.de
2 TU Darmstadt, Department of Computer Science, fi59eged@rbg.informatik.tu-darmstadt.de
3 Ulm University, Institute of Distributed Systems, {firstname}.{lastname}@uni-ulm.de



90 Christopher Corbett et. al.

In this paper, we show that most commonly available tools do not meet the requirements
for automotive NIDS evaluations and we introduce our architecture concept to cover those
needs. With our approach, we are not only able to test network intrusion detection systems
or generate custom network traffic, but — through separation of the evaluation scenario
definition from specific network parameters — scenarios can be shared among interest
groups without the necessity to anonymize traces or the risk of exposing real network
topologies and information.

The remainder of this paper is structured as follows: In Section 2, we provide an overview
of automotive domain specific protocols and topologies. We present related work in Sec-
tion 3 and then give an overview of common in-vehicle network attack scenarios in Section
4. Necessary intrusion detection evaluation steps are described in section 5 and the derived
requirements can be found in Section 6. Our framework architecture concept is described
in Section 7; followed by our conclusion in Section 8.

2 Background

The automotive industry introduced a variety of bus technologies over the years. Local In-
terconnect Network (LIN), Media Oriented Systems Transport (MOST), Controller Area
Network (CAN) and Flexray are well established in in-vehicle networks. With new feature
sets, bandwidth requirements increased rapidly and therefore new technologies such as
the enhanced CAN — Controller Area Network Flexible Data Rate (CAN-FD) — and the
Ethernet (IEEE 802.3) protocol gained attention. As in-vehicle networks are very hetero-
geneous, data exchange between Electronic Control Units (ECUs) exceeds bus technology
boundaries and translations (e.g. transporting CAN frames via Ethernet) are commonly
used. To start off with a decent framework feature set to generate testing workload we ex-
amined attributes, parameters and characteristics of automotive Ethernet, CAN and CAN-
FD.

2.1 Automotive Protocols

With each bus technology and feature set, new automotive protocols were introduced or
enhanced over time, from which some are used in industrial networks (e.g. CAN proto-
cols) and for others it is thinkable to be used in company networks (e.g. remote vehicle
diagnostics). Figure 1 shows the classification of CAN and Ethernet protocols in the layers
of the Open Systems Interconnection Model (OSI).
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Figure 1: Protocol overview

Zimmermann and Schmidgall [ZS14] give an in depth overview of most of the standard-
ized automotive protocols. In Table 1 we provide a brief summary of protocols we analyzed
to derive requirements for the testing framework architecture.

Protocol Standard Description

Unified Diagnostic Ser-
vices (UDS)

ISO 14229 An application client-server protocol to remotely call
diagnose procedures in ECUs and transport information
back to the requester.

ISO Transport Protocol
(ISO-TP)

ISO 15765-2 Protocol to transport payloads larger than the maximum
payload size on CAN/CAN-FD.

Diagnose over Internet
Protocol (DoIP)

ISO 13400 An automotive transport layer protocol to transport
UDS messages between the client and the server using
port 13400 (UDP/TCP).

Universal Measurement
and Calibration Proto-
col (XCP)

ASAM
MCD-1 XCP
V1.3.0 [AS15]

A bus-independent master-slave communication proto-
col to exchange information between ECUs and a cali-
bration software on a external device (e.g. PC, Vehicle
Tester, Laptop).

Scalable Service-
Oriented Middleware
over Internet Protocol
(SOME/IP)

AUTOSAR
[AU15][AU14]

A service oriented protocol that supports remote pro-
cedures calls, data serialization and a service discovery
and publish/subscribe mechanism.

XoverEthernet AUTOSAR
[AU15][AU14]
/ Proprietary

Frames of one bus system are transported as payload via
Ethernet (e.g. CAN over Ethernet).

Proprietary Proprietary Besides standardized and established protocols, car
manufacturers make use of own or third party propri-
etary protocols.

Table 1: List of analyzed protocols

2.2 Communication patterns

Communication patterns in in-vehicle networks are based on design rules which rest upon
applied bus technologies as well as application and protocol requirements. Therefore, each
Original Equipment Manufacturer (OEM) network acts differently and a general descrip-
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tion can not be given. However, several suppliers provide development tools to cover re-
quirements across OEMs and provide a decent overview of CAN bus communication pat-
terns in their documentation (e.g. Vector Informatik GmbH [Ve15]). These patterns are
extended by common Ethernet behavior (e.g. fire and forget) as it is not an exclusive re-
placement for legacy bus systems in the foreseeable future. As a result we derived several
factors from CAN and Ethernet communications that result in different patterns. These
are:

∙ time triggering
∙ events
∙ fire and forget
∙ request and response
∙ state premises (stateful)
∙ no state premises (stateless)

3 Related Work

3.1 Automotive IDS

The challenges of designing tests of intrusion detection systems are widely understood.
Milenkoski et al. [Mi15] provide a very extensive survey of common practices for tests of
different kinds of intrusion detection systems. They discuss the three main components of
IDS testing: workloads, metrics and measurement methodology. For each of the compo-
nents, the authors provide a common terminology. For our work, we adopt this terminology
and propose an architecture for workload generation in automotive networks.

There has been previous work that deals with designing intrusion detection systems for in-
vehicle networks that employ CAN as main bus technology [Ha14][SKK16][KK16][CS16].
However, to the best of our knowledge, there is no work that deals with intrusion detection
in modern in-vehicle architectures that also employ Ethernet as a backbone technology
for the in-vehicle network. Nonetheless, Herold et al. [He16] have explored anomaly de-
tection for the Scalable Service Oriented Middleware over Internet Protocol (SOME/IP)
using complex event processing. To test their anomaly detection regarding performance,
they implemented a SOME/IP packet generator, featuring four kinds of simple attacks:
1) malformed packets 2) protocol violations 3) system-specific violations and 4) timing
issues. However, they only investigated anomaly detection for SOME/IP, which is an ap-
plication layer protocol that is employed in upcoming Ethernet-based vehicle networks.
The automotive protocol stack for Ethernet-based networks is much more diverse. In our
work, we look at all the protocols and designed an architecture that is able to test an NIDS
in modern Ethernet-based in-vehicle networks.

Moreover, there has been a lot of works that deal with the generation of workloads for
testing IDS [Mi15]. Antonatos et al. [AAM04] have provided an extensible framework for
the generation of realistic workloads in their work. Their generator is, however limited to
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application layer traffic, and focuses on the generation of payloads for these protocols. We
do aim for a similar approach for our architecture, but want to provide more flexibility re-
garding developing and describing different scenarios. Our architecture also supports the
generation of traffic down to layer 2. Furthermore, we extend our architecture to fulfill
automotive requirements (cf. Section 6).

3.2 State of the Art Tools

There is a variety of tools which can be used to perform specific attacks or scans, such
as Nmap, Nessus and Metasploit. However, most of them are limited to very specific use
cases such as port scanning in the case of Nmap. While Metasploit can be used to generate
traffic, its main purpose is to generate pure malicious traffic with the help of its integrated
exploit database.

Manual testing is a very time consuming task. It involves manually generating traffic with
a collection of tools, capture the traffic using e.g. Wireshark, and then modifying and
replaying the traffic. Furthermore, none of these tools have been adapted for the automotive
domain. The manually generated traffic would have to be adjusted to represent realistic
traffic in an in-vehicle network for effective testing of automotive NIDS. This adjustment
process can also take a substantial amount of time as the traffic model has to be modified
for every model and vehicle setup.

Packet generation tools are meant as a solution to the manual generation problem. They
facilitate the automated generation of packets, which can be used to test intrusion de-
tection systems. However, they do not provide the functionality required to reliably test
automotive NIDS. Most tools do not fulfill our requirements as they do not support traf-
fic generation, modification, and forwarding across multiple interfaces, which e.g. allows
man-in-the-middle attacks on layer 2.

We have explored the feature sets of 10 existing packet generation tools and have found
that none of them provide support for automotive protocols such as SOME/IP or UDS and
DoIP. None of them provide the ability to prioritize traffic when capturing and modifying
the response, or when capturing and sending a response to a captured packet. Additionally,
a large chunk of the tools did not provide the flexibility to write scripts in order to automate
certain tasks and re-use them for further tasks.

Due to the cyclic nature of a lot of messages sent in an in-vehicle network, we also require
a packet generation tool to send packets at steady intervals with an insignificant amount of
jitter. None of the tools provided a similar feature except Ostinato and packETH. Ostinato
only allowed setting an interval of a packet per X seconds; packETH, however, offered mil-
lisecond and even nanosecond resolution for interval generation, but lacks other features,
such as multiple interface support. Moreover, as the Ethernet layer is more important in
in-vehicle networks compared to company networks, we need full flexibility when craft-
ing and modifying Ethernet packets. Only some of the packet generation tools allowed
receiving packets on layer 2. A summary of our findings can be found in Table 2.
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Tomahawk ✓ ✓ ✓

Bit-Twist ✓ ✓ ✓ ✓ ✓

Hping2 ✓ ✓

Hping3 ✓ ✓ ✓ ✓

Nemesis ✓ ✓ ✓ ✓

Ostinato ✓ (✓) ✓ ✓ ✓ ✓ ✓ (✓)

packETH ✓ ✓ ✓ ✓ ✓

Yersinia ✓ (✓) ✓

netsniff-ng ✓ ✓ ✓ ✓ ✓

pktgen ✓ (✓) ✓ ✓ ✓ ✓ ✓ ✓

Table 2: An overview of available packet generation tools and their capabilities.

4 In-Vehicle Network Attack Scenarios

There are different types of attack scenarios for in-vehicle networks. Figure 2 shows how
we set up an example network topology with a centralized component (e.g. a gateway or a
routing unit) and four network participants. The following scenarios are feasible ways to
inject malicious traffic or to modify existing network traffic in vehicular networks.

1. Man in the middle: In this scenario a malicious network participant (E) is posi-
tioned between the devices d and r to eavesdrop, manipulate or forge network traffic.

2. Compromised device: In this scenario, device (a) gets compromised with a piece of
malicious software (F) to forge authentic communication or modify communication
behavior.

3. Attached device: A new malicious network participant (G) is attached to the net-
work and forges network traffic on an existing connection between network partici-
pants b and r.
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4. Device replacement: An existing device (c) gets replaced by a malicious device
(H).

5. Compromised central network device: Similar to scenario 2) a malicious piece of
software is placed into a central network device (I) to modify network behavior or
traffic.

Figure 2: Overview of in-vehicle network attack scenarios.

5 IDS Testing Parameters and Metrics

This section gives a short introduction to different types of intrusion detection systems,
general testing metrics and parameters as well as automotive domain specific parameters.

5.1 Categorization

Fallstrand et al. [FL15] state that intrusion detection and prevention systems are commonly
categorized based on four properties:

∙ Scope — What kind of entity or entities does the system protect?

∙ Location and Distribution — Where and how are the system components deployed?

∙ Detection method — How does the system identify intrusions?

∙ Post-detection — How does the system respond to detected intrusions?

In this paper, we focus both on centralized and distributed in-vehicle network intrusion
detection systems with a focus on misuse or anomaly based detection algorithms.
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5.2 Metrics

IDS testing metrics can be categorized into performance- and security-related metrics
which can again be grouped by commonly used basic attributes such as false-negative,
true-positive, false-positive, true-negative, positive predictive value and negative predic-
tive value, but also in composite values such as expected cost and intrusion detection ca-
pability [MC14]. In addition to the metrics used in prior research, we add detection latency
to the list of metrics. Especially for automotive intrusion detection systems, timeliness of
the attack detection can be crucial for the applicability in the field.

5.3 Requirements for NIDS Testing

The design of NIDS depends on numerous factors such as the network topology, the pro-
tocols, or the detection mechanisms used. These factors also need to be considered when
designing a testing architecture. The testing architecture needs to be able to be agnostic
to differences in NIDS architectures — i.e. it should not inherently favor one architecture
over the other — while still acknowledging specific strengths and weaknesses of NIDS ar-
chitecture types. For instance, some machine learning based NIDS need a certain time to
build their specific neuronal network. A data set with a certain minimal size with labels
for both benign traffic and attacks needs to be available both for training and testing the
NIDS.

Milenkoski et al. [MC14] showed that workloads are mandatory for intrusion detection
system testing and can be divided into three different types: purely benign, purely mali-
cious and mixed workload sets. The acquirement or generation of workloads are either
achieved by executables (e.g. manual generation, exploit databases, vulnerability and at-
tack injection or workload drivers) or traces (e.g. through acquisition or generation). Us-
able training data is scarce and — as these data sets are recorded from real networks —
they also show the characteristics of the original network without the possibility to adjust
to the network configuration of the NIDS application site. Therefore, a dynamic testing
system that can generate traffic on the fly and can generate an unlimited amount of data is
advantageous.

Test runs have to be repeatable to ensure scientifically valid results, while the test environ-
ment also needs to offer the dynamic of real networks in the form of random changes in
the network behavior. For this to work efficiently, automation must be possible.

5.4 Automotive Specific Challenges

An in-vehicle network combines different bus technologies which cannot be strictly sep-
arated and influence each other. Therefore, a comprehensive NIDS needs to consist of a
combination of bus specific NIDS which adds complexity to the NIDS itself and to the
tests of such a system. Currently, research focuses more on NIDS and Network Intrusion
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Detection and Prevention Systems (NIDPS) for CAN networks while Ethernet is starting
to gain some attention.

The unavailability of automotive specific attacks is another factor that complicates testing
of an automotive NIDS. In comparison to attacks on company networks, attacks on ve-
hicles are very vehicle and OEM specific. There is no comprehensive database of known
attacks available that could be shared among car manufacturers.

To develop, test, and evaluate automotive NIDS — independent of the chosen detection
method — valid and realistic data sets of network traffic must be available. Usually, traces
of existing traffic or manually generate traffic are used. However, if no real traffic trace is
available, the generated traffic cannot be proven to be realistic.

6 Framework Requirements

Considering attack scenarios, traffic generation, and IDS metrics, we derived a set of es-
sential requirements. The architecture has to meet these requirements to facilitate the gen-
eration of realistic automotive workloads.

Protocol support The architecture must provide the ability to parse, manipulate and forge
packets sent using protocols used in the automotive protocol stack described in Sec-
tion 2. This facilitates the communication with other members in the automotive
network as a legit as well as a malicious entity, depending on the scenario.

Frame manipulation A lot of network management, such as Virtual Local Area Network
(VLAN) segmentation, happens on the Ethernet layer. Therefore, in addition to the
previous requirement, the given tool must be able to manipulate packets on layer 2,
including the VLAN tag.

Response time In order to deal with real-time applications in automotive networks, the
tool has to be able to respond to a packet within the defined deadline for the cor-
responding vehicle domain. This ranges from 10ms for safety-critical sytems up to
150ms for audio/video streams in the infotainment domain [LP13].

Bandwidth The tool must provide a bandwidth of 100 Mbit/s (better yet 1 Gbit/s). Current
automotive applications employ 100 MBit Ethernet, however, in future applications
Gbit Ethernet is going to be employed in vehicles.

Time interval support ECUs are very sensitive regarding the interval at which they ex-
pect a certain signal or packet to arrive at their interface. Hence, the tool must be
able to send and forward packets and frames at steady intervals while keeping the
jitter as low as possible.

Fuzzing support Due to the long lifetime of automobiles, they are continuously exposed
to new kinds of attacks. The tool must provide a fuzzing functionality to be able to
simulate previously unknown scenarios and attacks.
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State handling State handling is the ability to establish a certain state in a protocol. For
example, messages A,B,C are sent according to specification and then deviate from
the specification or modify messages. The state machine is also required to perform
e.g. Transmission Control Protocol (TCP) Session Hijacking attacks.

Frame and packet scheduling The prioritization of packets and frames is of higher im-
portance in automotive networks compared to company networks. The architecture
therefore both has to be able to deal with incoming packets of different priority, and
has to be capable to prioritize their processing accordingly.

Multiple interface support Several interfaces must be usable in parallel. Some devices
communicate on several buses such as Ethernet and CAN. The architecture and tool
must be able to replicate this behavior.

Scenario and parameter separation The separation of evaluation scenarios and data or
value sets is important to enable the exchange and verification of results with and by
third parties.

7 Testing Tool Architecture Concept

We propose an architecture for a testing tool that facilitates the proper evaluation of auto-
motive IDS by satisfying all the requirements which we have defined in the previous sec-
tion. Fulfilling the requirements ensures the generation of realistic automotive workloads.
It also overcomes various shortcomings of existing tools. While our goal was to design a
tool for the evaluation of automotive IDS, it can also be used to perform functional testing
as well as security testing of an (automotive) network.

7.1 Architecture

The tool architecture is divided into three layers: user, developer, and system. This makes
the tool’s underlying framework easy to extend for those, who have the technical knowl-
edge and easy to use for those, who just want to set up a test quickly using the pre-defined
scenarios.

From a user’s perspective, either pre-defined testing and attack scenarios or a self-designed
scenario description can be used and configured. The configuration file contains various
parameters exposed by the scenario, such as interfaces, protocols, layers, and packet val-
ues. Furthermore, it includes timing as well as priority information, if needed. Additional
parameters can be exposed through the developer layer.

The tool’s developer layer offers an extensible framework with which testing and attack
scenarios can be developed. It provides three basic modules: function blocks, core and
network abstraction. A developer can implement a function block (e.g. SYN scan attack)
with custom logic and a defined parameter set. These function blocks can then be used by
users to describe scenarios, which resemble malicious, benign, or mixed traffic.
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Figure 3: An architecture for an automotive testing tool.

Some simple example scenarios can be:

1. Pure benign traffic: We simulate an ECU that sends out a signal at a pre-defined
interval.

2. Pure malicious traffic: We send out a TCP SYN scan to determine open ports on
an ECU.

3. Mixed traffic: We combine function blocks 1) and 2) to disguise our attack in reg-
ular traffic, and provide a more realistic and challenging scenario.

The core of the framework provides essential functionality such as frame interaction, a
configuration parser, a statistics manager, and a data handler. An Application Programming
Interface (API) can be used by function blocks to interact with the core’s submodules. The
data handler submodule provides means to interact with a list of provided payloads for a
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function block. Moreover, the frame interaction submodule enables parsing, crafting, and
manipulation of frames and packets.

The framework’s network abstraction module provides functionality to interface with dif-
ferent kinds of networking sockets, such as raw sockets or custom implementations (e.g.
ring-buffer based implementations such as PF RING[PF]) of the system layer. Further-
more, it takes care of the prioritization of frames to meet defined timing constraints. It
also maps the physical interfaces of the executing host to logical interfaces defined in the
scenario description.

Figure 3 shows the architecture of our proposed testing and workload generation frame-
work for the evaluation of automotive NIDS.

7.2 Discussion

Existing tools shown in 3.2 cover only some features required to create workloads for an
automotive NIDS testing. Either several tools must be combined or they lack necessary
protocol support. Our architecture concept remedies these shortcomings and provides the
ability to generate, modify, and analyze automotive-compliant traffic. Through scenario
descriptions, it is possible to generate both benign and malicious traffic, and easily apply
these scenarios to different vehicle setups. As our approach supports several interfaces, it
is possible to implement more complex scenarios, such as man-in-the-middle attacks on
layer 2. Additionally, setups can be shared among other research groups to verify results
or to be used in their own research.

8 Conclusion

Evaluating and testing network intrusion detection systems is essential for improving
NIDS. Workloads are necessary for testing the NIDS’ crucial detection capabilities. For
automotive Ethernet, such workloads are not currently available. For our malicious work-
load model, we consider five attack scenarios as presented in Section 4. We then derived
several requirements that are necessary to be able to generate realistic traffic in Ethernet-
based in-vehicle networks. In particular, the most important requirements are the ability to
handle multiple interfaces and the ability to prioritize the handling of different streams of
traffic.

We have analyzed several packet generation tools. We have found that none of the tools we
analyzed fulfilled our requirements. The most prominent finding from our analysis showed
that none of the tools provided support for multiple interfaces or traffic prioritization. With
an extensive amount of features missing in all analyzed tools, we have come to the con-
clusion, that extending existing tools is not a viable option and that a new architecture has
to be designed with the specific challenges of in-vehicular networks in mind.

We have proposed a novel architecture concept for a tool that remedies these shortcomings.
Furthermore, we made sure that our proposed architecture is extensible. New scenarios
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and attacks can be added easily through scenario descriptions. The provided functionality
can be extended through additional function blocks, or by extending the framework. Our
architecture fulfills the set requirements described in Section 6 by providing the necessary
modules in the framework.

A proof of concept implementation of the framework has to be provided to determine
whether our architecture proves usable in a realistic scenario. Said implementation then
has to be evaluated with regard to our identified requirements by implementing the attack
scenarios as described in Section 4. Furthermore, using said implementation to evaluate
a given automotive NIDS requires implementation of further scenarios to build a realistic
workload model. All these steps are left for future work.
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