

Ina Schaefer, Dimitris Karagiannis, Andreas Vogelsang,
Daniel Méndez, Christoph Seidl (Hrsg.)

Modellierung 2018

21.02.2018 – 23.02.2018

Braunschweig, Deutschland

Gesellschaft für Informatik e.V. (GI)

Lecture Notes in Informatics (LNI) - Proceedings

Series of the Gesellschaft für Informatik (GI)

Volume P-280

ISBN 978-3-88579-674-9
ISSN 1617-5468

Volume Editors

Prof. Dr.-Ing. Ina Schaefer
 TU Braunschweig
 Mühlenpfordtstr. 23, 38106 Braunschweig
 i.schaefer@tu-braunschweig.de
o. Univ.-Prof. Dr. Dimitris Karagiannis

Universität Wien
Währinger Straße 29, 1090 Wien
dimitris.karagiannis@univie.ac.at

Series Editorial Board

Heinrich C. Mayr, Alpen-Adria-Universität Klagenfurt, Austria
(Chairman, mayr@ifit.uni-klu.ac.at)
Torsten Brinda, Universität Duisburg-Essen, Germany
Dieter Fellner, Technische Universität Darmstadt, Germany
Ulrich Flegel, Infineon, Germany
Ulrich Frank, Universität Duisburg-Essen, Germany
Michael Goedicke, Universität Duisburg-Essen, Germany
Ralf Hofestädt, Universität Bielefeld, Germany
Wolfgang Karl, KIT Karlsruhe, Germany
Michael Koch, Universität der Bundeswehr München, Germany
Thomas Roth-Berghofer, University of West London, Great Britain
Peter Sanders, Karlsruher Institut für Technologie (KIT), Germany
Andreas Thor, HFT Leipzig, Germany
Ingo Timm, Universität Trier, Germany
Karin Vosseberg, Hochschule Bremerhaven, Germany
Maria Wimmer, Universität Koblenz-Landau, Germany
Dissertations

Steffen Hölldobler, Technische Universität Dresden, Germany
Thematics

Andreas Oberweis, Karlsruher Institut für Technologie (KIT), Germany

 Gesellschaft für Informatik, Bonn 2018
printed by Köllen Druck+Verlag GmbH, Bonn

This book is licensed under a Creative Commons BY-SA 4.0 licence.

Vorwort

Die derzeit im zweijährigen Rhythmus stattfindende Fachtagung „Modellierung“ ist eine
Plattform zur inhaltlichen Diskussion für eine große Anzahl von Fachgruppen in der
Gesellschaft für Informatik (GI), die sich mit unterschiedlichsten Perspektiven des
Themas Modellierung beschäftigen. Sie stellt somit ein zentrales Forum für den
Erfahrungsaustausch zu akademischen wie auch praxisbezogenen Modellierungsansätzen
dar.

Die Fachtagung „Modellierung“ umfasst traditionell ein wissenschaftliches Programm
begleitet durch Workshops, Tutorien, Praxisforum, sowie ein Doktorandensymposium
und die Präsentation von Tools/Demos. Dabei dienen die Workshops dazu, Spezialthemen
der Modellierung im Detail zu beleuchten, während in den Tutorien praktische
Anwendungen aktueller Modellierungsansätze vorgestellt werden. Den Tutoriums-
Teilnehmerinnen und -Teilnehmern wird dadurch die Möglichkeit eröffnet, nicht nur
einen theoretischen Einblick in die Modellierung zu bekommen, sondern den Einsatz der
entsprechenden Werkzeuge und Methoden auch in Aktion zu erleben. Abgerundet wird
das Programm durch ein Praxisforum zur Vorstellung der Anwendung und Umsetzung
von Modellierungsmethoden, -techniken und -werkzeugen in der betrieblichen Praxis
sowie ein Doktorandensymposium zur Vorstellung von aktuellen Dissertationsvorhaben.
Eine Fokussierung auf die Präsentation von innovativen Werkzeugen wird seit 2016 in
dem Tools/Demos Bereich gegeben.

Für das wissenschaftliche Programm der Modellierung 2018 wurden von insgesamt 24
Einreichungen die besten 13 Beiträge ausgewählt. Dies entspricht einer Annahmequote
von 54%. Jede Einreichung wurde von drei GutachterInnen evaluiert. Die akzeptierten
Beiträge behandeln aktuelle wissenschaftliche Erkenntnisse zu einer breiten Palette von
Themen in den Bereichen Modellierungssprachen, -methoden und -ansätze,
Prozessmanagement, sowie zur Modellierung im Software- und System-Engineering.

Im Rahmen der diesjährigen Tagung finden zwei eingeladene Vorträge statt: Prof. Dr.
Andy Schürr (TU Darmstadt) spricht über die korrekte Entwicklung von Algorithmen für
die Adaption von Netzwerktopologien und Nikolaus Regnat (Siemens AG) berichtet über
die Verwendung von Modellierungssprachen, wie SysML in der industriellen Praxis.

Wir danken allen Autoren für ihre Beiträge und den Mitgliedern des Programmkomitees
und den weiteren Gutachterinnen und Gutachtern für die Begutachtung. Weiterhin
bedanken wir uns bei allen Beteiligten aus dem Organisationsteam.

Braunschweig, im Februar 2018

Ina Schaefer, TU Braunschweig

Dimitris Karagiannis, Universität Wien

Christoph Seidl, TU Braunschweig

Sponsoren

Wir danken den folgenden Unternehmen und Institutionen für die Unterstützung der
Konferenz.

Querschnittsfachausschuss Modellierung

Die Plattform der GI zur Diskussion und zum Erfahrungsaustausch über aktuelle und
zukünftige Themen der Modellierungsforschung . Beteiligte GI-Gliederungen:

 EMISA, Entwicklungsmethoden für Informationssysteme und deren Anwendung
 FoMSESS Formale Methoden und Modellierung für SichereSysteme
 ILLS Intelligente Lehr- und Lernsysteme
 MMB Messung, Modellierung und Bewertung von Rechensystemen
 OOSE, Objektorientierte Software-Entwicklung
 PN Petrinetze
 RE Requirements Engineering
 ST Softwaretechnik
 SWA Softwarearchitektur
 WI-MobIS Informationssystem-Architektur: Modellierung betrieblicher

Informationssysteme
 WI-VM Vorgehensmodelle für die Betriebliche Anwendungsentwicklung
 WM/KI Wissensmanagement

Tagungsleitung

Gesamtleitung: Ina Schaefer, TU Braunschweig
Leitung des Programmkomitees: Dimitris Karagiannis, Universität Wien
Leitung der Organisation: Christoph Seidl, TU Braunschweig
Praxisforum: Andreas Vogelsang, TU Berlin
 Daniel Méndez Fernández, TU München
Workshops: Leok Cleophas, TU Eindhoven
 Michael Felderer, Universität Innsbruck
Tutorien: Malte Lochau, TU Darmstadt
 Timo Kehrer, HU Berlin
Tools & Demos: Hans-Georg Fill, Universität Wien
 Agnes Koschmider, Karlsruher Institut für Technologie
Lokale Organisation: Michael Nieke, TU Braunschweig
 Sven Schuster, TU Braunschweig

Programmkomitee

Jörg Desel Fernuniversität in Hagen
Jürgen Ebert Universität Koblenz
Gregor Engels Universität Paderborn
Ulrich Frank Universität Duisburg-Essen
Holger Giese Hasso-Plattner-Institut Potsdam
Martin Glinz Universität Zürich
Jan Jürjens TU Dortmund & Fraunhofer ISST
Gerti Kappel Technische Universität Wien
Thomas Kuehne Victoria University of Wellington
Florian Matthes Technische Universität München
Heinrich C. Mayr Alpen-Adria-Universität Klagenfurt
Jan Mendling Wirtschaftsuniversität Wien
Günther Müller-Luschnat iteratec GmbH
Friedericke Nickl Swiss Life
Markus Nüttgens Universität Hamburg
Andreas Oberweis Karlsruher Institut für Technologie
Sven Overhage Universität Bamberg
Barbara Paech Universität Heidelberg
Henderik Proper Luxembourg Institute of Science and Technology
Ulrich Reimer Fachhochschule St. Gallen
Wolfgang Reisig Humboldt-Universität zu Berlin
Anne Remke Universität Münster
Matthias Riebisch Universität Hamburg
Bernhard Rumpe RWTH Aachen
Andy Schürr TU Darmstadt

Elmar J. Sinz Universität Bamberg
Friedrich Steimann Fernuniversität in Hagen
Stefan Strecker Fernuniversität in Hagen
Bernhard Thalheim Christian-Albrechts-Universität Kiel
Mathias Weske HPI, Universität Potsdam

Inhaltsverzeichnis

Eingeladene Vorträge

Andy Schürr
Graph-Transformation-Driven Correct-by-Construction Development of

Communication System Topology Adaptation Algorithms 15

Nikolaus Regnat
Why SysML does often fail – and possible solutions 17

Wissenschaftliche Beiträge

Julian Dörndorfer, Christian Seel
A Framework to Model and Implement Mobile Context-Aware Business

Applications . 23

Stefan Tomaszek, Erhan Leblebici, Lin Wang, Andy Schürr
Model-driven Development of Virtual Network Embedding Algorithms . . 39

Benedikt Pittl, Hans-Georg Fill
Transforming Enterprise Models to Linked Data 55

Zoltán Ádám Mann, Andreas Metzger, Stefan Schoenen
Towards a run-time model for data protection in the cloud 71

Ralf Laue
Nutzung von Bilddatenbanken zur Erstellung von Symbolen 87

Andreas Grosche, Burkhard Igel, Olaf Spinczyk
Exploiting Modular Language Extensions in Legacy C Code 103

Tobias Wägemann, Ramin Tavakoli Kolagari, Klaus Schmid
Optimal Product Line Architectures for the Automotive Industry 119

Khanh-Hoang Doan, Marti Gogolla
Extending a UML and OCL Tool for Meta-Modeling 135

Alexander Rauh, Wolfgang Golubski, Stefan Queins
Measuring the Quality of System Specifications in Use Case Driven

Approaches . 151

Daniel Gritzner, Joel Greenyer
Synthesis of Cost-optimized Controllers from Scenario-based GR(1)

Specifications . 167

Dilshod Kuryazov, Andreas Winter, Ralf Reussner
Collaborative Modeling enabled by Versioning 183

Peter de Lange, Petru Nicolaescu, Thomas Winkler, Ralf Klamma
Enhancing MDWE with Collaborative Live Coding 199

Tilmann Stehle, Matthias Riebisch
Modellierung plattformübergreifender Quellcode-Entsprechungen für die

koordinierte Co-Evolution portierter Software-Systeme 215

Praxisforum – Eingeladene Industriebeiträge

Harald Störrle
Implementing Knowledge Management in Agile Projects by Pragmatic

Modeling . 233

Markus Grabowski, Bernhard Kaiser, Yu Bai
Systematic Refinement of CPS Requirements 245

Oscar Slotosch, Mohammad Abu-Alqumsan
Modeling and Safety-Certification of Model-based Development Processes 261

Christian Reuter
Controlled Complexity for Future Mobility – Methodology, Guidelines and

Tooling . 275

Daniel Ratiu, Holger Nehls, Robert Walter, Jochen Michel
Taming the Software Development Complexity with Domain Specific

Languages . 281

Tutorials

Thomas Thüm, Sebastian Krieter, Thomas Leich
Feature Modeling and Development with FeatureIDE 297

Daniel Strüber, Alexandru Burdusel, Stefan John, Steffen Zschaler
Henshin: A Model Transformation Language and its Use for Search-Based

Model Optimisation in MDEOptimiser 299

Lars Fritsche, Géza Kulcsár
eMoflon: A Tool for Tools and Transformations 301

Werkzeugpräsentation

Prof. Dr. Gabriele Roth-Dietrich, Prof. Dr. Rainer Gerten, André
Schäfer
Graphical App Designer . 307

Santiago Velasco, Jan Reich, Maxime Tchangou
Interactive information zoom on Component Fault Trees 311

Andreas Drescher
Eine musterbasierte Kontrollflusssemantik zur interaktiven Simulation . . 315

Sven Jannaber, Benedikt Zobel, Lisa Berkemeier, Oliver Thomas
Development of a prototype for Smart Glasses-based process modelling . 321

Benjamin Ternes, Stefan Strecker
A web-based modeling tool for studying the learning of conceptual modeling 325

Autorenverzeichnis

Eingeladene Vorträge

Graph-Transformation-Driven Correct-by-Construction

Development of Communication System Topology

Adaptation Algorithms

Andy Schürr1

Extended Abstract: How will the Internet of the future look like? Which communication
mechanisms - as we know them today - will prevail, which novel forms of communication
will emerge, and what are the challenges faced regarding the constantly increasing mobile use
of communication networks? The Collaborative Research Center 1053 MAKI (Multi-
Mechanism-Adaptation for the Future Internet) addresses these questions with a specific
focus on the development of offline/online adaptation and optimization concepts for all kinds
of communication mechanisms. Twelve subprojects, clustered in three project areas, study for
this purpose communication system construction and adaptation mechanisms on different
network layers for application domains such as Complex Event Processing, Wireless Sensor
Networks, … .

In the Wireless Sensor Network domain (as well as in many other application domains), a
large research area focuses on Topology Control (TC), which aims at optimizing the network
topology (i.e., the graph-based structure of a communication network) to achieve certain
optimization goals (e.g., reducing energy consumption and increasing lifetime of battery-
powered nodes) while preserving crucial integrity constraints (e.g., connectivity of the
topology or coverage of an observed area). A TC algorithm takes a "raw" topology as input
and returns a topology as output that consists of the same nodes but only a subset of the edges
(connections) of the input topology. The output topology should perform "better" w.r.t. the
specified optimization goals while still fulfilling its integrity constraints.

A typical development workflow for TC algorithms (i) starts with a more or less formal
specification (e.g., based on atomic graph operations or constraints that the output topology
takes into account) that is then employed to prove its desired and required properties on a
high level of abstraction. Afterwards, (ii) the TC algorithm is implemented (often in some
general-purpose language such as C/C++ or Java) and tested inside a network simulator or -
less often, unfortunately - in a hardware testbed. While numerous approaches exist that
facilitate the way from simulation to testbed (e.g., using platform-independent APIs or UML-
based code generation), only few attempts have been made to ensure that the implemented
Topology Control algorithm is still correct w.r.t. the specified set of integrity constraints!

We propose a model-based approach to overcome this reliability problem of TC algorithms
by (i) specifying their desired/required properties using graph constraints, (ii) turning these
graph constraints into correct-by construction programmed graph transformations, (iii)
adjusting the graph-transformation-based specification to the particularities of the target
platform (e.g., limited local knowledge of nodes), and (iv) generating finally platform-
specific Java code for simulation and C code for testbed evaluation purposes.

1 Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik, Fachgebiet

Echtzeitsysteme, Merckstr. 25, 64283 Darmstadt, andy.schuerr@es.tu-darmstadt.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 15

https://creativecommons.org/licenses/by-sa/4.0/

Why SysML does often fail – and possible solutions

Nikolaus Regnat1

Extended Abstract: Did you try to bring model based development into your
organization and had a hard time? Did you work hard preparing the process, methods
and tools but despite all trainings and support, users did not adopt your model based
development approach as expected? Did you experience low model quality and keep
struggling to provide the needed model quality assurance? Well, you are probably not
alone. Let us use the SysML as a prominent example to describe why modeling
languages often do not live up to their expectations and why introducing them into an
organization frequently fails.

It typically starts with a system architect who read or heard about model-based
approaches and SysML. She/he may start talking with some of her/his colleagues and
together they may convince their management that they should get rid of their hand-
written, often huge and inconsistent, system architecture documents and replace them by
a model-based approach. System architects are typically domain experts but very rarely
modeling experts so they start to research the topic further. There are countless books
regarding model-based development in general and the SysML in particular. There are
numerous trainings available; big companies like Siemens may even offer in-house
trainings. Let’s assume that the system architects will get such trainings and have at least
time to skim over one or two books. The best outcome they can get is that they now
know a little bit more regarding the SysML language and realize that they would have to
define how to apply the SysML in their organization. In other words: they know they
need to develop a method that deals with their particular needs and describes how to
apply the SysML in their specific use case. There are several possible scenarios that
might follow; unfortunately most of them will often lead to failure.

The first scenario would be that the system architects try to introduce the SysML into
their organization by themselves. This is a typical situation when the management is
hesitant to invest larger amounts of money or the system architect is convinced (after
reading those books and attending trainings) that he can do it by her/himself. Based on
our experience this will not turn out right most of the time. While the definition of a
method how to apply SysML is a hard task in itself one has also to consider countless
other things: What is the purpose and goal of the modeling approach? Who are the
stakeholders that directly or indirectly have impact on the approach? What are the skills
of the potential users? How to train these users? How does the approach fit to the
existing organizational structure and processes? How does the approach integrate into
the existing tool landscape? Failure to consider these (and many other) things will
typically lead to a modeling approach that does not fulfill all requirements of the

1 Siemens AG, Corporate Technology, Research in Digitalization and Automation, Architecture Definition and

Management, Otto-Hahn-Ring 6, 81739 München, nikolaus.regnat@siemens.com

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 17

https://creativecommons.org/licenses/by-sa/4.0/

organization and therefore is destined to fail.

The second scenario would be that the system architects realize that they need help to
accomplish the task. If the management can be convinced to invest more money that
typically means some consultants are hired. If these consultants are worth their money
they will surely think about the above topics and define a modeling approach that fulfills
all requirements of the organization. Unfortunately that does not mean that the
introduction is successful in the long term. The worst situation is often when the
consultants are also hired to do the creation of the models themselves. This is
unfortunately still happening far too often, typically when the system architects are busy
with their daily project work and the management thinks it is a good idea to “help” them
this way. Not only will this successfully prevent any knowledge building within the
organization itself, it will also often lead to a low acceptance of the approach: it often
leads to the not-invented-here-syndrome of the organization. And when the contract with
the consultants is not longer extended this usually means that there is no one taking care
of the models any longer and the whole approach is soon to be ignored and forgotten.

The third scenario would be that either the system architects (first scenario) or the hired
consultants (second scenario) did such an awesome job that all organizational
requirements have been considered and a feasible modeling approach has been defined.
Surely this will lead to a huge success and lead to another example of a successful
introduction of a model based approach into an organization? Unfortunately, more often
than not this is still not the case. Let’s go through the three most important reasons why
the introduction of a model-based approach into an organization might still fail.

Lack of management support is one of the main reasons. Without the management
actively contributing to the success of the approach failure is often inevitable. People
need to be both motivated (in regards to their goals; e.g. “we want to replace our hand-
written documents within the next fiscal year”) as well as given enough time to get
accustomed to the new way of working. However, more often than not system architects
do not get enough time to actively work with the modeling approach as their day-to-day
business is taken priority. Moreover, the model-based approach has to be constantly
tailored and improved to suit the changing needs of the organization and the
management has to actively support this too.

Lack of proper model quality assurance is another main reason. It typically does not
cause short-term issues but will often lead to failure in the long-term. Unfortunately
many organizations realize this too late: models that are not constantly monitored using
both a combination of automated checks and manual reviews will massively degrade
over time. It often results in something we call “model graveyards”: an unstructured
collection of data, often with unreadable and unexpressive diagrams, unused model
elements (deleted only from diagrams but not from the model) that is inconvenient to
extend and hard to maintain. Fixing these issues will often cost so much time that it is
not feasible to do it.

The third most prominent reason for failure unfortunately is the SysML and

18 Nikolaus Regnat

accompanying tools themselves. It is the prominent lack of focus on the end users. The
SysML was built by modeling experts for modeling experts ignoring the fundamental
fact that most end users are not and probably never will be modeling experts. To make
things worse, the typical SysML tools were also built with a focus on modeling experts
in mind. This combination of a general purpose language that lacks any method with a
tool that is focused on expert users leads to a situation that is the downfall of many
modeling approaches. Users will find themselves very often in a similar situation. They
have gotten training on SysML and training on the method developed for their
organization. However, most users will not use the modeling environment on a day-to-
day basis and thus will only very rarely become modeling experts. They therefore
struggle every single time they use the modeling language and accompanying tool. Users
will typically have to go back and forth between guideline and tool to find out how to
model, resulting in a massive productivity loss. Instead of being able to work on their
original task (i.e. describing their system architecture) they struggle to handle the
language and tool. This typically leads to frustrated users, lowering the acceptance of the
modeling approach massively. Users will try to avoid using the modeling language and
tool and find creative ways to circumvent the approach. Things that cannot be expressed
properly in SysML are not improved in the modeling approach but instead other tools are
used to draw “pretty” pictures. Existing models will get out of date and in the long run
will not be used any more. This goes on until one got back to the point where all started:
hand-written documents with some pictures or diagrams in it.

Knowing all that what can be done to improve the situation and successfully introduce a
model-based development approach into an organization? Based on our experience
regarding model based development in industry one has to focus on the three main
aspects mentioned above. From day one ensure that the management supports the
approach and make clear what is needed. Establish a model quality assurance process as
soon as possible. And focus on the user experience. This cannot be stressed enough:
even with proper management support and established quality assurance it is the
acceptance of users that make or break the success of a model-based approach.

But what can be done immediately so that both modeling languages and tools improve
on the situation? We think that it is the main responsibility when defining a modeling
approach for an organization to improve the user experience as much as possible. The
language has to focus on the user’s needs and do not provide unnecessary things. The
tool has to support the defined method and guideline as much as possible. Every
stumbling block for the users that can be removed has to be removed.

Some tool vendors have built their tools so that this can be already done in a sensible
way. Unfortunately other tools only provide very limited capabilities to do so. As
always: you have to choose the right tool for the right job. We are currently focusing on
MagicDraw, as it supports a wide range of customizations that enhance the user
experience. During the last years we have systematically worked on correcting both
language and tool shortcomings. We’ve started with the easy things: we provided model
templates for our users. These templates match both the structure defined in the

Why SysML does often fail Ű and possible solutions 19

guideline as well as the generated documents as far as possible. We then used the tool
customization possibilities of MagicDraw to guide the user wherever possible: instead of
allowing to create every element and diagram everywhere the context menu only allow
to do the things that are sensible in that context. We did not force users to remember (or
read in the guideline) what additional stereotypes they have to add to various SysML
elements. Instead we created new element as well as diagram types for them. We also
worked on improving the visualization of model information. Elements may change their
color, show icons etc. based on properties of the model. We even let users setup these
things in an easy and consistent way: the user can define a connection type (e.g. CAN
Bus) by himself and give that new type a distinct color. The tool will take care of this
and ensure that both icons and diagram elements show this color whenever the type is
used. Did you ever model a SysML Block with 10 ports an instantiate that block?
Depending on the used tool the user might end up with a cluster of ports that one has to
manually arrange again, every time an instance is created. This is just an awfully bad
user experience, and SysML tools did it this way since they have been made available.
Using the tool API we’ve implemented a very small extension that allows defining the
port layout of elements once and whenever an instance of such an element is created the
ports show up as defined. It is such a small thing but modeling experts and tool vendors
alike ignored it and nobody told the tool vendors to change this (well, we did and
MagicDraw now has such an option built in). When putting a strong focus on the user
experience one can easily identify dozens of things that should have been improved a
long time ago. And it is often a combination of small things that lead to a bad user
experience.

The attentive reader might have already guessed it: ultimately we went the long road of
implementing domain specific languages (DSLs) based on the UML/SysML using
MagicDraw. We went even further and created a set of building blocks that allow us to
efficiently create new DSLs with manageable effort. Our experiences in various projects
over the last 5 years are more than promising: the user acceptance is very high and the
overall model quality is far better at a reduced effort than anything we’ve done with
SysML. All of this also helps to convince the management that the approach leads to an
increased productivity and improved quality; in other words to a good return on invest.

Now, we don’t propagate that everyone should go this route; instead we want to show
that with a strong focus on the end users we could have been much further regarding the
widespread acceptance of modeling languages and accompanying tools. Our approach
shows what is already possible when customizing and adapting both languages and tools.
What could we do if languages and tools would have been better at this? To re-enforce
my former statement: both the modeling community and tool vendors need to step back
and re-think what has been done in the past. It is not the goal to train domain experts to
be modeling, language and tool experts just to be able to do something meaningful. The
goal is to enable domain experts to focus on their challenges by providing modeling
languages and tools that empower them to do so. Without us focusing on the user
experience the introduction of modeling approaches into organization will continue to
fail.

20 Nikolaus Regnat

Wissenschaftliche Beiträge

A Framework to Model and Implement Mobile Context-

Aware Business Applications

Julian, Dörndorfer1 and Christian Seel1

Abstract: The success and ubiquity of mobile devices like smartphones and tablets changed the
daily work activities of many employees and employers. With the data provided by mobile devices
in combination with external data from databases or web services, it is possible to recognize the
context of a business process. Context recognition allows to adapt the business process by selecting
the next process step or providing the necessary data, like the next customer near the current location.
However, to use the advantages of context recognition, mobile business processes have to be
designed, implemented and executed in a context-aware manner. Therefore, this paper presents a
comprehensive framework for modeling context-aware business processes, which comprise the
business process as well as the information collection to evaluate the needed context. Furthermore,
it presents an architecture for the realization of context-aware applications.

Keywords: Context-aware Business Processes, BPMN, Domain Specific Modeling Language
(DSML), Mobile Architecture

1 Introduction

With the introduction of the iPhone ten years ago a boost of mobile devices like
smartphones or tablets took place, which increasingly leads to a disruption of “traditional”
work conditions and executions [Pr16], [In13b], [Mo14], [KK14], [Rh13], such as waiters
using smartphones to accept orders from the customer and billing the meal with it. The
emerging generation of digital natives which are entering more and more the job market
will further drive this change from stationary to mobile working conditions [Pr16]. The
widespread use of mobile devices is leading to business processes being executed
independent of the location.

The design, implementation, execution and controlling of business processes is a standard
approach in theory and practice [HC93], [BKR11], [VR10], [Sc00], [Bi16]. The nearly
ubiquitous presence of mobile devices can be used to support the execution of business
processes. The use of mobile devices improves the quality and flexibility of business
processes, and also saves time and costs during the execution [FL14], [HL15]. Another
aspect is that mobile devices are providing many sensors and can be additionally equipped
via Bluetooth or other proprietary protocols with more sensors. Moreover, mobile devices
are capable to request additional data from other sources, like databases or web services,
via their internet connection.

1University of Applied Sciences Landshut, Computer Sciences, Am Lurzenhof 1, 84036 Landshut,

julian.doerndorfer|christian.seel@haw-landshut.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 23

https://creativecommons.org/licenses/by-sa/4.0/

The aggregation and interpretation of sensor data enable detecting the context of the users
and support them during the execution of a business process. DEY [De01] describes
context as “any information that can be used to characterize the situation of an entity.”
Therefore, context recognition can be used to automatically present useful information for
the user or adapt the application behavior and moreover pre-select the next possible
process steps. To support the design and implementation of supportive mobile context-
aware applications, the business process languages also have to consider contextual
influences [DS16]. In addition, the aggregation of context through sensor data can be
complex. For instance, the context parameter weather basically consists of the sensor data
humidity, wind speed and temperature. Moreover, weather can also be a sensor for another
context parameter, like the street conditions in a navigation system. To use the
opportunities of context recognition via mobile devices and ease the design of mobile
context-aware business processes, this paper answers the following research questions.

RQ.1: How can a modeling framework for mobile context-aware applications be
designed?

RQ.2: How can the architecture of a mobile context-aware application be built?

The remainder of this paper is structured as follows: In section 2 a brief overview of the
existing literature will be given. Afterwards, the modeling approach will be presented,
which comprises a Business Process Model and Notation (BPMN) extension and a sensor
modeling language (RQ.1). Section 3.3 discusses an approach for an architecture for
mobile context-aware applications (RQ.2). Hereafter, section 4 shows an example
application which supports the business process from the previous section. The paper ends
with a conclusion and outlook to further research in mobile context-aware applications.

2 Related Work

Besides DEY context was also defined by others [SAW94], [SBG99], [We91]. Not only is
DEY’s definition well known and accepted in the scientific community, but he also
declares when an application is context-aware. It is context-aware “if it uses context to
provide relevant information and/or services to the user, where relevancy depends on the
user’s task” [De00]. Some approaches to make business processes more flexible have been
made. ROSEMANN et al. [RRF08] claim that modeling languages have to be more flexible
to model context. Further, they state that an increased attention on flexibility took place in
the research area, which leads to a decreasing time-to-market for products [RRF11].
Therefore, the result is a demand for higher process flexibility [So05]. In particular,
ROSEMANN et al. show the limitation of the actual event-driven process chain (EPC)
language and the lack of supporting context modeling. However, they do not present an
appropriate way to integrate the identified context in business processes. The extension C-
EPC is an approach to make EPC more configurable for decisions at runtime, but it doesn’t
address the context in particular [Rv07]. The approach from LA VARA et al. aims to reveal
all possibilities of a business process and integrate them into one process model. However,
this leads to large and complex models. In [SN07] an approach to identify and apply

24 Julian Dörndorfer, Christian Seel

context in a business process is introduced, but it is more of a theoretical framework to
identify context and does not show how a context-aware business process could be
designed. In [HS15] HEINRICH and SCHÖN mention that business processes have to
consider “not-static” context events that change the process execution. Moreover, they
present an algorithm which supports automated process planning for context-aware
processes, but no modeling representation in BPMN. CONFORTI et al. present an approach
to manage process risks by sensor evaluation [Co13]. Furthermore, they show a way to
model these risks and when they occur. They only consider sensor data and context
evaluation for process risks, but context and its evaluation can be used for more than risk
analysis for business processes. DÖRNDORFER and SEEL present in their paper a BPMN
extension for business processes, which is able to model context in business processes via
a complete modeling technique [DS17]. They also developed a context-free grammar to
state brief context expression for decisions depending on context. Furthermore, two
extensions for UML are published by AL-ALSHUHAI and SIEWE. In the first paper, they
are extending the class diagram with additional annotations [AS15b]. The second paper
[AS15a] expands the activity diagram to mark context-aware areas or sequences. All the
presented papers do not consider how complex context evaluation is and how context-
aware business processes can be designed. Furthermore, the implementation of supportive
mobile applications is not supported by the modeling languages. The area of domain
specific (modeling) languages (DS(M)L) is partly covered by the following articles. A
DSL for multiple mobile platforms [KCO10] and for context modeling in the context-
aware system [HGB13] were found. Both articles introduce a DSL which enables a
description of context. However, both approaches do not present a possibility to model the
context aggregation graphically. SHENG and BENATALLAH [SB05] are introducing an
adapted UML to enable context modeling. In addition, BERARDINELLI et al. [BCD10] also
present an extension for the UML. However, both approaches are not integrated into
BPMN, which seems to be difficult. Therefore, they cannot be used for further
development.

For the architecture of mobile context-aware applications two main paradigms exist.
Firstly, the client approach, which is to recognize context information on the mobile
device. The architecture reminds of a traditional model view controller (MVC) approach
[BA11], [Ch08], [KKC11], [Sh12]. Recognizing and preparing context information on a
server is the second approach. All devices which can collect data via sensors send their
information to a backend application that evaluates the context information [VL12],
[JKR01], [DAS01], [He05]. Both approaches have specific disadvantages. With the server
approach all collected data have to be sent to the server, the data have to be evaluated and
at last the result (context) has to be sent back to the mobile device. This requires an internet
connection, which is not always available for a mobile device. In addition, the described
data transmission sometimes leads to unnecessary delays, when the context evaluation can
also be conducted on the mobile device. The client approach, on the other hand, is limited
to the resources of these devices. If big data packages have to be evaluated, the processor
or the memory can be pushed to their limits, thus delaying the process. In addition, some
information relevant to evaluate the correct context, might not be accessed from a mobile
device.

A Framework to Model and Implement Mobile Context-Aware Business Applications 25

Therefore, this paper presents a context-aware framework which firstly enables to design
mobile context-aware business processes. Secondly, it shows a modeling language for
evaluation of context. And thirdly it shows how context-aware application can be designed
to support the conduction of context-aware business processes. Thus, this paper presents
a new artifact in the design science paradigm by HEVNER et al. [He04].

3 Modeling a Mobile Context-aware Application

To increase the efficiency of business processes and ease the planning and implementation
of mobile context-aware applications, this paper introduces a framework (RQ.1). On the
left side of Fig. 1 are the context parameter which influences the process. The first step is
to create a context-aware business process (first layer). The modeling language of choice
is Context4BPMN [DS17] because it extends the standard BPMN to enable the creation
of context-aware business processes. It uses so-called Context Expressions as conditions
for paths or elements depending on context. To evaluate the Context Expression the
domain specific modeling language SenSoMod can be used (second layer). It enables to
model how information from sensors can be aggregated to context information (cf. section
3.2). The model hereafter can be used to create a mobile context-aware application which
supports the execution of the context-aware business process (third layer).

Fig. 1. The framework to model and create a mobile context-aware application

An example of a mobile context-aware business process are traveling salespersons in a
sales department of a company. They partly work at the customer’s to sell the products
from the company as well as in the company to participate in meetings or further training.
Moreover, some paperwork can also be done at home. Therefore, in this example the first
context parameter is the location with three states at the customer, at the office and at

home. Other parameters are the season and the weather because some goods can be better
sold in specific seasons or in certain weather condition [Mu10], [Bu12]. In addition, with
the context parameter customer history, the mobile application is capable to adapt the list
of goods to the preferences of the customer. For instance, the non-food products can be

26 Julian Dörndorfer, Christian Seel

deactivated if the customer only bought food-related products so far. Therefore, we use
this example to demonstrate the framework.

3.1 Context-Aware Business Processes

To reach higher flexibility in business processes, context has to be considered in modeling
languages. BPMN is a standard modeling language for business processes [In13a] and has
a built-in extension mechanism [Ob11]. The mechanism was used to create the
Context4BPMN extension [DS17]. Fig. 2 depicts the business process of the salesperson
mentioned in section 3 at design time.

Locate
salesperson

Particpate in the
meeting

Wait for
location signal

Customer
visit = today

Weather
forecast =
available

Location = At
Work &&

Appointment =
meeting

Location = At
Customer

Location =
unkown

Login into
application

Attending the
training

Location = At
Work &&

Appointment =
training

Start working

Location = At Work
&& Appointment =

false || Location = At
Home &&

Appointment = false

Prepare
customer visit

Finish customer
related workCustomer

visit =
finished

Sell products

Offer season
related goods

Offer customer
bestsellers

Customer
history =
available

Offer season
related goods
and customers

bestsellers

Offer common
goods

Customer history
= available &&

Weather forecast
= available

Fig. 2. The salesperson business process designed with the BPMN extension Context4BPMN

The first action after starting the application is log in. Hereafter, a dotted line marks the
ongoing business process sequence as context depending. After the login, the application
locates the salesperson. Attached to the task locate salesperson is the context event
symbolized through an eye. It is a non-interrupting context event which is triggered when
the location is undefined. The activation condition is stated in the hexagon with a context-
free grammar to formalize the conditions. A parallel activity starts in which the application

A Framework to Model and Implement Mobile Context-Aware Business Applications 27

tries to determine the location of the salesperson. If a location is identified, four different
tasks are possible. They all mainly depend on location. For example, the salesperson takes
part in the sales training if s/he is at work and a training is noted on the calendar. A
different path is when the salesperson is at the customer. Obviously, s/he wants to sell the
products of the company to the customer. Depending on the accessible data, the mobile
application can support this process by showing the customer’s bestsellers and/or seasonal
depending goods. The first action needs the customer history which can be queried via a
connection to the customer’s relationship management system (CRM). The seasonal
goods can be shown when the weather forecast for the local area is available.

No. Context Run-time business process

1

Location = At Customer
&& Customer history =
available && Weather
forecast = available

Locate salesperson
Login into
application

Sell products

Offer season
related goods and

customers
bestsellers

2

Location = At Customer
&& Customer history =
unknown && Weather
forecast = unknown

Locate salesperson
Login into
application

Sell products
Offer common

goods

3
Location = At Work &&
Appointment = meeting

Particpate in the
meeting

Locate salesperson
Login into
application

Tab. 1: Variations of the salesperson business process at run-time

The business process will be transformed at run-time into a standard BPMN workflow.
Tab. 1 depicts three variations of the business process for three different context
situations. The first row depicts the process when the salesperson is at the customer, the
customer history is available and also the weather forecast is available. Therefore, the
salesperson offers the customer his bestsellers and seasonal related goods. In the second
row, the only determined context is that the salesperson is at the customer. Hence, s/he
sells the common goods of the company. In the third variation, the customer is at work
and has an appointment with colleagues on the calendar. So s/he participates in the
meeting.

3.2 Sensor Modeling

The extension of the BPMN enables to consider static and non-static context events. It is
therefore possible to design context-aware business processes. However, the extension of
the BPMN does not specify how context can be evaluated by sensors. For instance, how
can the context location be measured? This sounds like an easy task because the obvious

28 Julian Dörndorfer, Christian Seel

answer would be via GPS, but where is the location at home? When can it switch to at

work? To address these questions the sensor modeling language has been developed. To
further ease the design and implementation of mobile context-aware applications which
support the execution of context-aware business processes, an additional language is
needed.

Notation of SenSoMod

Context is measured through sensors. We understand a sensor as any source of information
for context. This can be a “usual” physical sensor, – like a hygrometer or a temperature
sensor – a database, or an application from which information could be requested. Even a
machine in an assembly hall that is accessible through a network connection can be a
source of information. Therefore, different types of sensors have to be distinguished. There
are atomic sensors which cannot be aggregated from other sensors. Two kinds of atomic
sensors exist: Physical sensors, which measure physical quantities like temperature or
humidity, and virtual sensors which are dedicated to non-physical quantities like
databases, machines or stock states. Besides the atomic sensor, there is the computed
sensor. It is a sensor that relies on other sensors, which could be atomic sensors or other
computed sensors. For example, the sensor weather could be the combination of the
atomic sensors humidity and temperature. To address the different kind of sensor types we
gave each of them a graphical representation (cf. Tab. 2).

Element Notation Element Notation

Physical
atomic sensor

SensornameSensorname

Out Variablename:Type
• Element

Context

ContextnameContextnameContextname

DL

Out
Variablename:Type
• Element

If(Expression)
then(Assignment)
Else(Assignment)

Virtual atomic
sensor

Sensor-
name

Sensor-
name

Out

Sensor-
name

Out Variablename:Type
• Element

Context
description

[Context Expression]

A Framework to Model and Implement Mobile Context-Aware Business Applications 29

Element Notation Element Notation

Computed
sensor

SensornameSensornameSensorname

DL

Out
Variablename:Type
• Element

If(Expression)
then(Assignment)
Else(Assignment)

Flow

Multiple
Instances III

Tab. 2: The notation of SenSoMod

 The physical sensor is designated to depict physical quantities, whereas the virtual

sensors are dedicated to non-physical quantities. To differentiate these two atomic sensors,
the virtual sensors are marked by a database symbol to the left of the sensor name field.
Beneath the name is the output area marked with Out. The area is intended to describe the
structure of the outgoing objects of the sensor like the type and elements of it. First the
name and – separated by a colon – the type of the return object have to be stated. If the
object type has specific values – like enums, arrays or lists – they can be stated in a bullet
list. Alternatively, the return values can be specified in the JavaScript Object Notation
(JSON) RFC-7159 [In14] notation. Next to the two atomic sensors is the computed sensor.
It can be used to combine different atomic sensors and/or computed sensors. Weather, for
example, can be aggregated from different types of sensors. Computed sensors also have
an area for describing outgoing elements. Furthermore, they have a DL area dedicated to
describing the decision logic for their outgoing objects. This is necessary to express when
a certain state from the Out area of a sensor will be returned. For example, the location at

work will be returned when the logged-in network name is companyNetwork. The accurate
description of the decision logic language is presented in Fig. 3. The context notation is
the next element in the table. The name of the element has to match with the name of the
involved context in the context description. Only context elements can be connected with
a context description. Like the sensors, the context has the DL and Out areas. A context is
based on at least one sensor, of some type. The context description is the graphical
representation of an expression to describe a contextual influence in a business process.
The context expression language is part of the Context4BPMN extension [DS17]. To
connect the different elements and show the sequence stream, the flow element has to be
used. Multiple instances is the last element in the table and is an attribute for any type of
sensors. It indicates that a sensor occurs in more than one instance, and is placed to the
right of a sensor name. An example, using the introduced elements, is given in Fig. 4. Fig.

3 depicts the logical decision language which has been developed. The language is a
context-free grammar in the Extended Backus Naur Form (EBNF) [Ba60] and serves to
briefly and precisely express the decision in the DL area of the sensor and context
elements. A decision logic consists of a LogicTerm and can have a default assignment.
The LogicTerm itself is built out of an Expression and an Assignment. If the expression is

30 Julian Dörndorfer, Christian Seel

evaluated as true, the variable will be assigned to the designated value. The assigned
variable has to exist in the output area of the computed sensor or context. To shorten some
basic definitions, like integer numbers or date, we link with “-->” to standards, like strings.
In order to express the structure of the object which a sensor returns to a request, the “Out”
area is provided. First the name and – separated by a colon – the type of the return object
have to be stated. Optionally, the values of the type (if existing) could be stated in a bullet
list. Alternatively, the return values could be specified in the JSON notation.

<Decisionlogic>::= <LogicTerm> ["else(" <Assignment> ")"] |

 <LogicTerm>", "<LogicTerm> ["else(" <Assignment> ")"]

<LogicTerm>::= "If(" <Expression> ")then(" <Assignment> ")"

<Assignment> ::= <Variable> "=" <Value>

<Expression>::= <Variable> [<MathematicalOperator> <Constant>]

 <Comparison> <Value> | <Expression> <LogicOperator> <Expression>

<Comparison>::= "=" | "!=" | "<=" | ">=" | "<" | ">"

<MathematicalOperator>::= "*" | "/" | "+" | "-"

<LogicOperator>::= "&&" | "||"

<Constant>::= --> "DoubleNumber"

<Interval>::= -->"IntegerNumber" "msec" | "sec" |"min" | "hours" | "days"

<Variable>::= -->"StringIdentifier in UTF-8"

<Value>::= -->"StringIdentifier in UTF-8"

Fig. 3. EBNF Grammar for the Decision Logic (DL)

Fig. 4 shows the sensor model for the example from section 3. At the bottom line, the
sensors are represented. For the context location, which is represented in the dotted
rectangle above, the physical sensors WiFi, GPS and the virtual sensor Location-DB are
needed. The GPS sensor returns an object consisting of a long- and latitude double, to
compute the position of the salesperson. In the center of the figure, the context elements
are represented. The DL areas show when an appointment is a meeting or training,
respectively when the location is at work, at home, at the customer or unknown. For
example if the calendar entry is today and the entry description contains the name training,
the salesperson should be part of the training. At the top of the figure are the context
expressions related to the context elements. They are also the connection to the related
context-aware business process. This example shows that it is possible to model the
context evaluation for mobile context-aware business processes with SenSoMod. It
enables to model the aggregation of information from the basic sensor information to the
context expressions.

A Framework to Model and Implement Mobile Context-Aware Business Applications 31

Router:Object
• Routername:String

Wifi

Out

Location = At Work &&

Appointment = meeting

Position:Object
• Longitude:double
• Latitude:double

GPS

Out Building:Object
• Location:String,
• Longtitude:double,
• Latitude:double,
• Router:Object

• RouterList:ArrayList
• Employees:Object

• EmployeeList:
ArrayList

Location-DB

Out

Location

Building:Enum
• At Work
• At Home
• At Customer
• unkown

If (routerName=“name1“) || (long=24.49
&& lat=48.84) then (location =“At
Work“),…
Else(location=“unkown“)

DL

Out

Appointment

State:Enum
• Meeting
• Training
• none

If (calenderEntry.Date= today &&
calenderEntry.Name.contains(training) then
(appointment = “training“), ...
Else(appointment =“none“)

DL

Out

CalendarEntry:Object
• Name:String
• Date:date

Calendar

Out

Location = unknown
Location = At Work &&
Appointment = training

Location = At Work &&
Appointment = false ||

Location = At Home &&
Appointment = false

Fig. 4. Sensor model for the contexts location and appointment

3.3 Architecture of the Mobile Context-Aware Application

To implement a mobile application an architecture for context-aware applications has to
be designed (RQ.2). Unfortunately, the standard architectures of the operating systems for
mobile applications do not support context-awareness [Go17], [Ap17]. Therefore, to
implement the application, an architecture considering context has to be created. The
context recognition allows adapting the application to the context, which means that
certain parts of the application have to be activated, whereas other parts can be deactivated
to reduce the information overload for the user. The result is that logical components have
to be encapsulated. Fig. 5 shows the architecture of the supportive mobile context-aware
application. The application is divided into a server and a client part. The server contains
the normal logic and data layer to exchange data with the client applications and handle
the data storage. In some cases, the server also has a graphical user interface (GUI) layer,
but this does not matter for the architecture of mobile context-aware devices. In a separated
part the evaluation of the context and the storage of the context relevant data is
encapsulated. This is necessary because not every context can be evaluated on the mobile
device. For instance, the context weather will be evaluated by sensors in a weather station.
The evaluated context on the server side will be sent to the mobile context-aware
application. The client is usually separated into a 3-layer architecture consisting of a user-

32 Julian Dörndorfer, Christian Seel

interface (UI), logic, and data-layer. To realize the adaptive components, the layers are
divided vertically. The vertical parts are context components which can be activated or
deactivated depending on the evaluated context. The context components also have a UI-,
logic- and data-layer dedicated to their specific task, but they have to be independent of
the other context components to achieve activation or deactivation.

Fig. 5. Schematics of the architecture of the mobile context-aware application

Context, which can be evaluated on the mobile devices, is encapsulated in the context

evaluation component which also has its own sensor data. A typical example for this is
location. It can be evaluated via the GPS or WiFi sensor. The decision taken when a certain
context is recognized can be seen in the sensor model in the DL areas. Furthermore, the
model supports the programmer by showing how many different context objects exist and
what the return values of the context objects are. The evaluated context from the mobile
device and the server will be sent to the context filter component. It decides to activate or
deactivate a certain context component depending on the evaluated context.

4 Implementation of a Prototype

The designed mobile context-aware business processes and its sensor model eases the
implementation of a supportive mobile application. The sensor model can be used as a
blueprint for the sensor and context classes which will be needed to evaluate the context
of the user. Furthermore, the return types of the sensor and context objects, as well as the
decision logic, can be used in the source code of the context evaluation. The context-aware
business process can be used to derive the scope of the application and which parts of the
application are needed under which condition.

Proof of Concept

Based on the modeled mobile context-aware business process, the sensor model and the
architecture of the application were developed. In Fig. 6 three screenshots are depicted
demonstrating how the mobile application reacts to the context recognition. Screenshot a)
shows the home screen when the context at work was recognized. It supports the user with

A Framework to Model and Implement Mobile Context-Aware Business Applications 33

his tasks to prepare a customer visit or finish customer related work. The first task will be
supported by researching the customer to get relevant data, like address, contact or sell
history. By showing the visited customers the user can finish related work like editing
customer details, confirm discounts or set shipping dates. The next screenshot shows a
pop-up when a new context was recognized. The mobile application does not force the
adaption of the UI, instead the pop-up lets the user decide to adapt the UI. If the user
declines, the mobile application remains unchanged, otherwise the UI will be changed.
The home screen when the context at customer was recognized is depicted in screenshot
c). In contrast to the screenshot a) the component visited customer is deactivated and the
components create customer, view customer and selling proposition are activated. The
user will be supported to sell the company’s products by the component selling

proposition. By clicking on it, a submenu will be shown and depending on the availability
of the weather data and customer history it then recommends products.

The mobile context-aware application shows how the user can be supported in executing
their tasks. Furthermore, the modeling languages help to implement these kinds of
applications by clarifying how the context will be evaluated (SenSoMod) and what the
user needs during the execution of the business process (Context4BPMN).

5 Outlook and Further Research

The main contribution of this article is to show how the framework helps to model mobile
context-aware application to support the execution of business processes. This comprises
an extension of the BPMN, a domain specific modeling language and an architecture for
mobile context-aware applications. It provides the possibility for model engineers to plan
such processes in a precise, detailed and comprehensive way. It also enables programmers
to reuse the decision logic in the sensor model in the source code of the application.

34 Julian Dörndorfer, Christian Seel

Therefore, it can improve the interaction between modelers and programmers and
accelerate the adaption of business processes. There are some tasks for further research in
this area. The introduced framework need an evaluation with practitioners to get feedback
from the target group and improve its usefulness. Since mobile context-aware business
processes obviously need to measure context and are supported by an application on smart
devices, an automated or semi-automated way to generate code from the business process
would be helpful to increase the flow between modeling and implementation phase. The
logical context expressions can be used to generate decisions in the application program.
Furthermore, the sensor model can be utilized to pre-generate classes and interfaces. In an
additional step, the use of the gathered context data from the execution of a business
process will be investigated. The data could be used to identify problems in the execution
and therefore be interesting for the controlling phase.

Literaturverzeichnis

[Ap17] Apple: About the iOS Technologies.
https://developer.apple.com/library/content/documentation/Miscellaneous/Concept
ual/iPhoneOSTechOverview/Introduction/Introduction.html, 03.03.2017.

[AS15a] Al-alshuhai, A.; Siewe, F.: An Extension of UML Activity Diagram to Model the
Behaviour of Context-Aware Systems: Computer and Information Technology;
Ubiquitous Computing and Communications; Dependable, Autonomic and Secure
Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM),
2015; S. 431–437.

[AS15b] Al-alshuhai, A.; Siewe, F.: An Extension of Class Diagram to Model the Structure
of Context-Aware Systems: The Sixth International Joint Conference on Advances
in Engineering and Technology (AET), 2015.

[BA11] Barrenechea, E. S.; Alencar, P. S.C.: An Adaptive Context-Aware and Event-
Based Framework Design Model. In Procedia Computer Science, 2011, 5; S. 593–
600.

[Ba60] Backus, J. W. et al.: Report on the algorithmic language ALGOL 60. In
Communications of the ACM, 1960, 3; S. 299–314.

[BCD10] Berardinelli, L.; Cortellessa, V.; Di Marco, A.: Performance Modeling and
Analysis of Context-Aware Mobile Software Systems. In (Rosenblum, D. S.;
Taentzer, G. Hrsg.): Fundamental approaches to software engineering. 13th
international conference, FASE 2010, held as part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus,
March 20 - 28, 2010 ; proceedings. Springer, Berlin, 2010; S. 353–367.

[Bi16] Bichler, M. et al.: Erratum to. Theories in Business and Information Systems
Engineering. In Business & Information Systems Engineering, 2016.

[BKR11] Becker, J.; Kugeler, M.; Rosemann, M. Hrsg.: Process management. A guide for
the design of business processes. Springer, Berlin, 2011.

A Framework to Model and Implement Mobile Context-Aware Business Applications 35

[Bu12] Busse, M. et al.: Projection Bias in the Car and Housing Markets. National Bureau
of Economic Research, Cambridge, MA, 2012.

[Ch08] Choi, J.: Context. From Birth to Design.: International Conference on Advanced
Language Processing and Web Information Technology, 2008; S. 347–352.

[Co13] Conforti, R. et al.: Real-time risk monitoring in business processes. A sensor-based
approach. In Journal of Systems and Software, 2013, 86; S. 2939–2965.

[DAS01] Dey, A.; Abowd, G.; Salber, D.: A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications. In Human-
Computer Interaction, 2001, 16; S. 97–166.

[De00] Dey, A. K.: Providing Architectural Support for Building Context-aware
Applications. Georgia Institute of Technology, Atlanta, GA, USA, 2000.

[De01] Dey, A. K.: Understanding and Using Context. In Personal and Ubiquitous
Computing, 2001, 5; S. 4–7.

[DS16] Dörndorfer, J.; Seel, C.: The impact of mobile devices and applications on business
process management. In (Barton, T. et al. Hrsg.): Prozesse, Technologie,
Anwendungen, Systeme und Management 2016. Angewandte Forschung in der
Wirtschaftsinformatik, 2016; S. 10–19.

[DS17] Dörndorfer, J.; Seel, C.: A Meta Model Based Extension of BPMN 2.0 for Mobile
Context Sensitive Business Processes and Applications. In (Leimeister, J. M.;
Brenner, W. Hrsg.): Proceedings der 13. Internationalen Tagung
Wirtschaftsinformatik (WI), St. Gallen, 2017; S. 301–315.

[FL14] Falk, T.; Leist, S.: Effects of mobile solutions for improving business processes. In
(Avital, M.; Leimeister, J. M.; Schultze, U. Hrsg.): ECIS 2014 proceedings. 22th
European Conference on Information Systems ; Tel Aviv, Israel, June 9-11, 2014,
AIS Electronic Library, 2014.

[Go17] Google: Android Platform Architecture.
https://developer.android.com/guide/platform/index.html, 03.03.2017.

[HC93] Hammer, M.; Champy, J.: Reengineering the corporation. A manifesto for business
revolution. Harper Business, New York, NY, 1993.

[He04] Hevner, A. R. et al.: Design Science in Information Systems Research. In MIS Q,
2004, 28; S. 75–105.

[He05] Henricksen, K. et al.: Middleware for Distributed Context-Aware Systems. In
(Hutchison, D. et al. Hrsg.): On the Move to Meaningful Internet Systems 2005.
CoopIS, DOA, and ODBASE. Springer Berlin Heidelberg, Berlin, Heidelberg,
2005; S. 846–863.

[HGB13] Hoyos, J. R.; García-Molina, J.; Botía, J. A.: A domain-specific language for
context modeling in context-aware systems. In Journal of Systems and Software,
2013, 86; S. 2890–2905.

[HL15] Heinrich, B.; Lewerenz, L.: A Novel Concept for the Usage of Mobile Information
Services. In (Linnhoff-Popien, C.; Zaddach, M.; Grahl, A. Hrsg.): Marktplätze im
Umbruch. Digitale Strategien für Services im mobilen Internet. Springer Vieweg,
Berlin, 2015; S. 319–329.

36 Julian Dörndorfer, Christian Seel

[HS15] Heinrich, B.; Schön, D.: Automated Planning of Context-aware Process Models.
University of Münster, Münster, Germany, 2015.

[In13a] International organization for standardization (iso): Information technology. Object
Management Group Business Process Model and Notation, 2013.

[In13b] Intel IT Center: Mobile Computing Trends: Insight into Today’s Workforce, 2013.

[In14] Internet Engineering Task Force: The JavaScript Object Notation (JSON) Data
Interchange Format, 2014.

[JKR01] Jang, S.-I.; Kim, J.-H.; Ramakrishna, R. S.: Framework for Building Mobile
Context-Aware Applications. In (Kim, W. et al. Hrsg.): The Human Society and
the Internet Internet-Related Socio-Economic Issues. First International
Conference, Human.SocietyInternet 2001 Seoul, Korea, July 4-6, 2001
Proceedings. Springer, Berlin, Heidelberg, 2001; S. 139–150.

[KCO10] Kramer, D.; Clark, T.; Oussena, S.: MobDSL. A Domain Specific Language for
multiple mobile platform deployment: 2010 IEEE International Conference on
Networked Embedded Systems for Enterprise Applications. IEEE, 2010; S. 1–7.

[KK14] Kerr, D.; Koch, C.: A Creative and Useful Tension? Large Companies Using
“Bring Your Own Device”. In (Bergvall-Kåreborn, B.; Nielsen, P. A.
Hrsg.): Creating Value for All Through IT. IFIP WG 8.6 International Conference
on Transfer and Diffusion of IT, TDIT 2014, Aalborg, Denmark, June 2-4, 2014.
Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, s.l., 2014; S. 166–
178.

[KKC11] Kim, S.; Kim, E.; Choi, Y.: Composite context information design and model
approach for adaptive service decision: 13th International Conference on
Advanced Communication Technology (ICACT), 2011. 13 - 16 Feb. 2011,
Phoenix Park, Gangwon-Do, Republic of Korea ; proceeding. IEEE, Piscataway,
NJ, 2011; S. 1593–1598.

[Mo14] Morabito, V. Hrsg.: Trends and challenges in digital business innovation. Springer,
Cham, 2014.

[Mu10] Murray, K. B. et al.: The effect of weather on consumer spending. In Journal of
Retailing and Consumer Services, 2010, 17; S. 512–520.

[Ob11] Object Management Group (OMG): Business Process Model and Notation
(BPMN), Version 2.0, 2011.

[Pr16] Prümper, J. et al.: Abschlussbericht der Studie: „Mobiles Arbeiten”. spring Messe
Management GmbH, Frankfurt am Main, 2016.

[Rh13] Rhee, K. et al.: High-Level Design for a Secure Mobile Device Management
System. In (Marinos, L.; Askoxylakis, I. Hrsg.): Human aspects of information
security, privacy, and trust. First international conference, HAS 2013, held as part
of HCI International 2013, Las Vegas, NV, USA, July 21 - 26, 2013 ; proceedings.
Springer, Berlin, 2013; S. 348–356.

[RRF08] Rosemann, M.; Recker, J. C.; Flender, C.: Contextualisation of business processes.
In International Journal of Business Process Integration and Management, 2008, 3
(1); S. 47–60.

A Framework to Model and Implement Mobile Context-Aware Business Applications 37

[RRF11] Rosemann, M.; Recker, J.; Flender, C.: Designing context-aware Business
Processes. In (Siau, K.; Chiang, R.; Hardgrave, B. C. Hrsg.): Systems analysis and
design. People, processes and projects. M.E. Sharpe, Armonk, NY u.a, 2011; S.
51–73.

[Rv07] Rosemann, M.; van der Aalst, W.M.P.: A configurable reference modelling
language. In Information Systems, 2007, 32; S. 1–23.

[SAW94] Schilit, B.; Adams, N.; Want, R.: Context-Aware Computing Applications: First
Workshop on Mobile Computing Systems and Applications (WMCSA), 1994; S.
85–90.

[SB05] Sheng, Q. Z.; Benatallah, B.: ContextUML: A UML-Based Modeling Language
for Model-Driven Development of Context-Aware Web Services
Development: International Conference on Mobile Business (ICMB), 2005; S.
206–212.

[SBG99] Schmidt, A.; Beigl, M.; Gellersen, H.-W.: There is more to context than location.
In Computers & Graphics, 1999, 23; S. 893–901.

[Sc00] Scheer, A.-W.: ARIS - Business Process Modeling. Springer, Berlin u.a., 2000.

[Sh12] Shrestha, A. et al.: A Framework for Building and Operating Context-Aware
Mobile Applications. In (Venkatasubramanian, N. Hrsg.): Mobile wireless
middleware, operating systems, and applications. 4th international ICST
conference, Mobilware 2011, London, UK, June 22 - 24, 2011 ; revised selected
papers. Springer, Heidelberg, 2012; S. 135–142.

[SN07] Saidani, O.; Nurcan, S.: Towards Context Aware Business Process
Modelling: Workshop on Business Process Modelling, Development, and Support,
Norway, 2007; S. 1.

[So05] Soffer, P.: On the Notion of Flexibility in Business Processes: Proceedings of the
CAiSE’05 Workshops, 2005; S. 35–42.

[VL12] Verclas, S.; Linnhoff-Popien, C. Hrsg.: Smart Mobile Apps. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[VR10] Vom Brocke, J.; Rosemann, M. Hrsg.: Handbook on Business Process
Management 2. Strategic Alignment, Governance, People and Culture. Springer-
Verlag Berlin Heidelberg, Berlin, Heidelberg, 2010.

[We91] Weiser, M.: The Computer for the 21st Century. In Scientific American, 1991,
265; S. 94–104.

38 Julian Dörndorfer, Christian Seel

Model-driven Development of Virtual Network Embedding
Algorithms with Model Transformation and Linear
Optimization Techniques

Stefan Tomaszek1, Erhan Leblebici1, Lin Wang 2, Andy Schürr1

Abstract: Enhancing the scalability and utilization of data centers, virtualization is a promising
technology to manage, develop and operate network functions in a Ćexible way. For the placement of
virtual networks in the data center, many approaches and algorithms are discussed in the literature
to optimize solving the so-called virtual network embedding problem with respect to various
optimization goals. This paper presents a new approach for the model-driven speciĄcation, simulation-
based evaluation, and implementation of possible mapping algorithms that respect a set of given
constraints and using linear optimization solving techniques to select one almost optimal mapping.
Rule-based model transformation techniques are used to translate a given mapping problem into a linear
optimization problem by taking domain speciĄc knowledge into account. The resulting framework thus
supports the design and evaluation of (correct-by-construction) virtual network embedding algorithms
on a high level of abstraction. Well-deĄned model transformation rule reĄnement strategies can be
used to reduce the search space for the employed linear optimization techniques.

Keywords: Model-driven development; virtual network embedding; triple graph grammar; integer
linear programming; data center

1 Introduction and Motivation

With the rapid evolvement of the Internet, online services such as social networking, e-
commerce, and online gaming have become ubiquitous. These online services are constantly
generating a huge amount of data that is managed and analyzed by service providers like
Google, Facebook or Amazon. To this end, cloud computing has become the norm as it
can provide the required availability, scalability, and cost-effectiveness and can support
rapid development and operation cycles. Data centers (DCs) are major facilities for cloud
computing and usually host a large number of computing or storage servers interconnected by
a dedicated communication network. To operate these very large and complex environments,

1 Technische Universität Darmstadt, Real-Time Systems Lab, Merckstr. 25, 64283 Darmstadt, Germany, {stefan.
tomaszek,erhan.leblebici,andy.schuerr}@es.tu-darmstadt.de

2 Technische Universität Darmstadt, Telecooperation Lab, Hochschulstraße 10, 64289 Darmstadt, Germany,
wang@tk.tu-darmstadt.de
Acknowledgment
This work has been funded by the German Research Foundation (DFG) as part of project A1 within the
Collaborative Research Center (CRC) 1053 Ű MAKI.

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 39

https://creativecommons.org/licenses/by-sa/4.0/

virtualization has become a key technology, decoupling the underlying infrastructure and the
upper-layer application and increasing the management Ćexibility so that economy-of-scale
can be easily achieved. As services are encapsulated in virtual machines (VMs) and are
interconnected with virtual networks (VNs), cloud operators can consolidate multiple VMs
on the same physical machine in the substrate network (SN), migrate the VM at runtime,
and span VNs regardless of the underlying network cabling details. This Ćexibility makes it
possible to enact a fast development process, to unify the conĄguration, and to reduce the
energy consumption of the DC, which is a signiĄcant cost factor for the cloud operators.

However, the virtualization and thus the uniĄcation of the conĄguration is accompanied
by a high complexity, which manifests itself especially in the virtual network embedding
(VNE) problem. The VNE problem is deĄned as the embedding of VNs in the SN with
various constraints respected and with multiple metrics optimized on both the computing
nodes and the network. When considering modern frameworks like OpenStack [SAE12] for
the VNE problem, administrators often perform these embeddings manually.

In recent years, research into automating VNE has been greatly intensiĄed. A variety of
algorithms and methodologies has been developed to improve the distribution of virtual
servers and networks within DCs. These algorithms and methodologies depend on speciĄc
optimization objectives such as higher resource utilization or lower energy consumption
and speciĄc structures of the underlying infrastructure [Gu10]. Performing a customized
embedding algorithm is generally an NP-hard optimization problem with a substantial search
space [Fi13]. Therefore, many different approaches and methods have been proposed to
reduce the search space with customized embedding algorithms and optimization heuristics.
Unfortunately, most of these algorithms are difficult to expand and adapt to different
environments and constraints because they are highly tailored for speciĄc infrastructures,
frameworks, or application scenarios.

A typical development cycle for VNE is shown in Figure 1. Taken as a rule, the development
of a new dedicated VNE algorithm starts with the informal documentation or formal
speciĄcation of a set of requirements and actions. According to this speciĄcation, a prototype
is implemented and evaluated in a simulation framework. Only when the simulation has
been successful, the algorithm is integrated and tested in a realistic testbed before it goes into
production. In the classical way of developing new embedding algorithms, the speciĄcation
is often manually encoded and often manually integrated into a simulation environment,
which brings time-consuming, error-prone tasks.

Prototype of the
embedding algortihm

Specification of the
embedding algorithm

Simulation/validation
in a simulation
environment

Production and
deployment in a DC

Simulation/validation
in a testbed

Fig. 1: Typical development cycle for VNE.

40 Stefan Tomaszek, Erhan Leblebici, Lin Wang, Andy Schürr

In this paper, we target this issue and propose a new methodology for model-driven
virtual network embedding (MdVNE). In the model-driven development, executable
code for different platforms can be automatically generated, an integrated simulation
framework can fasten the prototyping of new algorithms by using the generated code
and the correct implementation of speciĄcations can be ensured. The MdVNE combines
model transformation in the form of so-called triple graph grammars (TGGs) and integer
linear programming (ILP) techniques with an optimization goal with linear equalities and
inequalities which represent constraints in this paper. In the Ąrst step model transformation
techniques are used to reduce the search space by pattern matching methods that generate
families of possible mappings of VNs to SN elements. These mappings respect a set of
given constraints handling rather structural or attribute conditions described via single
graph patterns. In the second step, the ILP solving techniques take further decisions among
the matched mapping candidates by selecting an optimal mapping with respect to a given
set of constraints and optimization goals. On the contrary to the TGG constraints, the
ILP constraints with a global scope go beyond single graph patterns and describe rather
mathematical constraints over available resources.
Compared to existing solutions, the beneĄts of the proposed MdVNE approach include

• Developers specify embedding algorithms on a rather abstract level using a combina-
tion of Ąrst order logic constraints, inequalities, and model transformation rules.

• Prototypes of implementations are then generated from the high-level speciĄcation,
leveraging state-of-the-art incremental pattern matching, model transformation, and
ILP solving technologies.

• The generated low-level implementation respects the high-level speciĄcations of
embedding constraints and optimization goals by construction.

• The selected implementation techniques simplify the development of incremental
reconĄguration of embeddings even including scenarios where embedding constraints
and optimization goals are modiĄed at runtime.

• The offered algorithm development and simulation framework supports the design of
rather different categories of embedding and optimizing algorithms by combination
and weighting of purely ILP-based and model transformation based approaches.

The remainder of this paper is organized as follows. After introducing the related work
in Section 2 a running example is introduced in Section 3. The new mapping approach
MdVNE is presented in detail in Section 4, followed by the evaluation in Section 5. Finally,
the paper is concluded in Section 6.

2 Related Work

Virtualization of DC networks has been widely explored and a survey can be found in
[Ba13]. As a result, many different algorithms [Gu10], [Ze15], [Xi12], [Zh13] for VNE
have been proposed to maximize the resource utilization or minimize the cost for DCs. As
the embedding problem is actually a case of the multi-way separator problem, it is NP-hard

Model-driven Development of Virtual Network Embedding Algorithms 41

and, therefore, not scalable without reducing the space size by heuristics or meta-heuristics
[Fi13]. Guo et al. propose SecondNet [Gu10], which introduces a heuristic approach to map
a subset of virtualized data centers (VDCs) to a tree-based DC. However, the authors only
consider constraints on bandwidth and the number of virtual machines per physical server
for reduced complexity. Zeng et al. [Ze15] consider the DC architecture and the traffic
between virtual machines to minimize the overall communication costs between virtual
servers and employs the commercial ILP solver Gurobi [Gu16] to solve the optimization
problem. In addition, Xie et al. [Xi12] incorporate the time dimension into the VNE process
and Zhani et al. [Zh13] include dynamic migration to adapt embedding decisions over time.
The major advantage of MdVNE over the above-mentioned algorithms is that different
architectures, constraints for resources, demands, and various optimization goals can be
integrated and embedding decisions can be smoothly adapted in accordance to constraint
changes on the Ćy.

In other network areas such as software-deĄned networks (SDNs) or wireless networks, the
model-driven development is already used with promising results in order to increase the
abstraction level, to create applications and algorithms independently of existing technologies
and to verify them during development. In the SDN area, which makes the control and
forwarding level independent of the physical network and can be a part of virtualization in
DCs, Lopes et al. [Lo16] describe a model-driven approach to develop, verify and generate
application-, controller- and network-independent code for SDN applications. In the area
of wireless networks, Kluge et al. [Kl17] describe a model-driven approach to develop
topology control algorithms with graph transformations while ensuring compliance with
user-deĄned constraints and consistencies. However, none of the proposals can support both
server- and network-end constraints simultaneously and thus are not directly suitable for
VNE in complex DC environments.

3 Running Example

A typical scenario for DC operators consists of requests from customers for a customized
VN infrastructure with switches, servers or network functions like Ąrewalls. One typical VN
request is a virtual cluster in which servers are connected to one central switch for creating
a network environment [Ba11]. Such a topology is common in many enterprise scenarios
e.g. to build a web application with clustered web servers. These network topologies may
have different properties, resources, and constraints to be integrated and mapped by the DC
that entails a high degree of conĄguration diversity.

In the following sections of the paper, a simpliĄed example for a virtual cluster and DC is
used to introduce the new mapping approach called MdVNE. The used scenario (Figure
2) and the metamodel for modeling the environment and generating the network instances
(Figure 3) are now described in detail. Starting with Figure 2 (a), a snapshot of a DC with
a queue of VNs, which should be mapped to the DC, is shown. Let us assume that some
VNs are already mapped and all available positions (slots) to embed are occupied except

42 Stefan Tomaszek, Erhan Leblebici, Lin Wang, Andy Schürr

(d) SSwitch 1

(c)

VServer 3

VLink 3

VServer 4

VLink 4

VSwitch 2
bandwidth = BV
latency = LOW

VServer 1

VLink 1

VServer 2

VLink 2

VSwitch 1
bandwidth = BV
latency = HIGH

(b)

(a)

SLink 1
bandwidth = BS
freeBandwidth = BS

SLink 2
bandwidth = BS
freeBandwidth = BS

SLink 3
bandwidth = BS
freeBandwidth = 1

SServer 1
slots = 2
freeSlots = 2

SServer 2
slots = 2
freeSlots = 1

SServer 3
slots = 2
freeSlots = 0

SSwitch

B B

(e)

B

SServer 2

VServer 1

SServer 1

VServer 3
VServer 4

SServer 3

VServer 2

SSwitch

B B

(f)

B

SServer 2

VServer 2

SServer 1

VServer 1

SServer 3

After
Mapping

Fig. 2: Running example: (a) DC with multiple VNs in the mapping queue; (b) and (c) are examples
for a virtual cluster; (d) is a subtree of the DC; (e) and (f) are two exemplary mapping solutions.

SSwitch SLink

- bandw idth: Double
- /freeBandwidth: Double

SServer

- /freeS lots: Integer
- s lots: Integer

VSwitch

- bandw idth: Double
- latency: Enum

VLink VServer (b)(a)
1 0 ..*

0 ..* 1
0 ..* 11 0 ..*

Fig. 3: Metamodels for (a) the VN and (b) the DC/SN.

the marked subtree. In the following, we only focus on the marked subtree from Figure 2
(d), which is called SN in the following. The mapping queue contains the VNs as shown
in Figure 2 (b) and (c). Every VN has a central switch (VSwitch) with two links (VLink)
each connected to a server (VServer). The bandwidth for these links is denoted as BV

(VSwitch.bandwidth) and the global VN has the service level agreement (SLA) that the
latency must be HIGH or LOW (VSwitch.latency). A LOW latency means that the whole
VN must be mapped to one substrate server in order to minimize the traffic delay whereas a
HIGH latency has no restrictions. The SN is similar except that the bandwidth is deĄned
for every SLink (SLink.bandwidth), every SServer owns a number of slots, each slot being
able to host a virtual server and the bandwidth for the server internal traffic is assumed as
unlimited. We further assume that every link in the SN has the same bandwidth BS .

After deĄning the networks, the mappings of the VN to the SN are speciĄed. These mapping
constraints must be strictly adhered at all times because they represent e.g. technical
conditions or SLAs with the customers. In this paper, the following constraints are deĄned:

(1) Every virtual switch must be mapped to one substrate switch or server.
(2) Every virtual server must be mapped to one substrate server.
(3) Every virtual link must be mapped to a substrate server or to one substrate link.
(4) Virtual networks with latency LOW must completely be mapped to one substrate server.
(5) The sum of all bandwidths of virtual links mapped to a substrate link must not exceed

the available bandwidth of the substrate link.
(6) The sum of all virtual servers mapped to a substrate server must not exceed the available

number of slots of the substrate server.

Model-driven Development of Virtual Network Embedding Algorithms 43

In Figure 2, two exemplary results (e) and (f) after the mapping process of both VNs to the
SN are shown. In (e), the VN (b) with HIGH latency is mapped to SServer 2 and 3, and the
VN (c) to SServer 1. Result (f) presents that VN (c) with latency LOW must be rejected
because it cannot be mapped to one server after VN (b) is mapped to SServer 1 and 2.

While our set of constraints reĆects a subset of requirements from real-world scenarios,
further types of resources include CPU or storage capacity. Further constraint types include
quality of service regarding response times and security levels reducing allowed mappings
to certain subtrees in DC.

4 Mapping Approach

A typical workĆow for a mapping process is presented in Figure 4, which consists of three
phases: a preparation, mapping and deployment phase. In the preparation phase customers
deĄne the VN requests with their network functions, demands, SLAs, or change already
existing virtual networks e.g. bandwidth. Furthermore, changes of the DC can be executed
(add, remove, change server, switches,...) or the migration and shutting down of virtual
networks. After that, the mapping phase is started in which the new mappings for the VN
request are planned and activated/deployed in the deployment phase. This paper only focuses
on the mapping phase while other phases rather concern technical details of communication
networks.

Having deĄned and exempliĄed VNs and SN separately, our next goal is an explicit modeling
of their mapping relationships. TGGs [Sc95] meet this requirement to specify the mappings
between two graph-like structures via graph transformation rules. The combination of TGGs
and ILP [LAS17] can be used to generate families of possible mapping candidates between
two graphs that respect a set of given structural constraints and transfer this search space to
an ILP solver for solving the optimization problem. The ILP solving techniques have been
used to solve the resulting optimization problem (e.g., minimizing energy consumption)
expressed as linear inequalities. The advantages over a classical VNE algorithm like [Ba11]
or [Ze15] is that different constraints for resources, demands or optimization goals can
be combined and easily added or extended so that a very wide range of applications are
supported. Because TGG offer support for incremental updates of models, it is possible to
adapt the incremental methods for this embedding approach in order to be able to efficiently
deal with the highly dynamic system.

Fig. 4: WorkĆow for embedding of VN request.

44 Stefan Tomaszek, Erhan Leblebici, Lin Wang, Andy Schürr

4.1 Triple Graph Grammar

TGG is an approach to specify graph grammars, whose languages are sets of graph triples.
Each graph triple consists of a so-called source and target graph plus a correspondence
graph with traceability information between source and target. Given such a speciĄcation,
the source graph contains the VNs, the target graph the SN and the correspondence graph
the mapping relationships. For generating the mapping candidates between the VNs and
the SN two steps are needed: (i) Creation of the SN and (ii) creation of the VNs with their
(mapping) correspondences between the VNs and the SN. In the following, we assume that
the SN is already created by the TGGs so we describe part (ii) now in detail.

In Figure 5, the TGG rules for generating the virtual networks and the mapping candidates
are shown. Black elements are required context elements for executing the rule, whereas
green elements marked by ++ are created by the rule. The naming convention for the
elements and the correspondences are as follows: The name indicates the type e.g. Sw is an
element of type Switch and SwSw is the correspondence between a virtual and a substrate
Switch. The subscript letter V or S indicates if the element is part of the virtual or the
substrate network, the letters e.g. a represent an index of the speciĄc type. Two types of
tuples are deĄned, one for the links and one for the correspondences. The Ąrst type of the
tuples are for links and the letters a and b represent the source and target node e.g. for
LV (a,b) SwVa is the source and SrVb is the target element (Figure 5 d). The second type is
for the correspondences and the Ąrst part represents virtual and the second the substrate
element e.g. for LSr(a,b),c L(a,b) is in the VN and Src in the SN.

Rule (a) creates a new virtual switch (SwVa) and mapping candidate (SwSw(a,b)) to an
existing substrate switch (SwSb). Rule (b) and (c) are similar to rule (a) except that in rule (c)
an attribute constraint SrSb .freeSlots≥ 1 is added which means that this rule only matches
if the attribute constraint is fulĄlled. FreeSlots represent, similar to freeBandwidth, the
number of slots that are not occupied by an active mapping before the mapping phase has

SwVa : VSwitch
++

SrSb : SServerSwSr(a,b)

++

(b) Mapping of a virtual switch to a substrate server

(a) Mapping of a virtual to a substrate switch

SwVa : VSwitch
++

SwSb : SSwitchSwSw(a,b)

++

SrSb.freeSlots >= 1

(c) Mapping of a virtual to a substrate server

SrVa : VServer
++

SrSb : SServerSrSr(a,b)

++

LSr(a,b),c

++

SrSr(b,c)

SwSr(a,c)

SrSc : SServer

LV(a,b) : VLink
++

SrVb : VServer

SwVa : VSwitch

++

++

(d) Mapping of a virtual link to a substrate server (e) Mapping of a virtual to a substrate link

LL(a,b),(c,d)

++

SrSr(b,d)

SwSw(a,c)

LS(c,d) : SLink

SrSd : SServer

SwSc : SSwitch

LV(a,b) : VLink
++

SrVb : VServer

SwVa : VSwitch

++
++

LS(c,d).freeBandwidth > 0
SwVa.latency != LOW

Fig. 5: TGG rules for creating the mapping of the VN to the SN.

Model-driven Development of Virtual Network Embedding Algorithms 45

started. Rule (d) creates a virtual link (LV (a,b)) with a mapping candidate (LSr(a,b),c) to
an existing substrate server (SrSc), if the mappings SwSr(a,c) and SrSr(b,c) already exist.
The last rule (e) creates a mapping of a virtual link (LV (a,b)) to a substrate link (LS(c,d)) if
the mappings SwSw(a,c) and SrSr(b,d) exist, freeBandwidth of LS(c,d) is greater than 0 and
the latency of the switch SwVa is not LOW. This implicates that if SwVa has latency LOW

only rule (d) can produce a link mapping. After the TGG rules are explained in detail, the
connection of the constraints from section 3 to the TGG rules are summarized in Table 1.

Constraint TGG rule Annotation

(1) (a) and (b) A virtual switch can be mapped to a substrate server or switch.

(2) (c) A substrate server must have a free slot to map a virtual server.

(3) (d) and (e) A virtual link can be mapped to a substrate server or link.

(4) (d) and (e) Rule (d) must be executed to map a virtual link because rule (e)
cannot be executed if latency = LOW.

(5), (6) - Is not represented by TGG rules

Tab. 1: Representation of the constraints from section 3 by the TGG rules from Figure 5.

To generate all mapping candidates, the TGG rules are executed on the example instance
from Figure 2. An example of these mapping candidates of VN (c) from Figure 2 is shown
in Figure 6, which shows a subset of all created elements and neglects VLink 2 and VServer

2 for brevity. During the creation of all correspondences e.g. SwSr(1,1) further constraints
are internally created as integer (in-)equalities. These constraints are described and listed in
the next subsection.

LL(1,1),(1,2)

SrSr(1,2)

SwSw(1,1)

SrSr(1,1)

SwSr(1,1)

SwSr(1,2)

LSr(1,1),1

LSr(1,1),2

LL(1,1),(1,1)

SwS1

SrS1

LS(1,1)

LS(1,2)

SrS2

LS(1,3)

SrS3

SwV1

SrV1

LV(1,1)

Fig. 6: All possible mappings after executing the TGG rules for the VN (c) from Figure 2. The VLink

2 and VServer 2 are neglected to avoid diagram clutter.

46 Stefan Tomaszek, Erhan Leblebici, Lin Wang, Andy Schürr

4.2 Linear inequalities

The execution of the TGG rules generates all potential candidates of mappings and integer
variables that match the required graph structures and attribute constraints as speciĄed in
the rules. Additionally, ILP constraints are generated to ensure that each virtual network
element is mapped to one and only one substrate element. In the next step, the linear
optimization problem is solved by establishing linear inequalities for all constraints and
passing them to the ILP solver. These linear inequalities specify which mappings will be
activated and which are discarded e.g. if SwSw(1,1) is activated, SwSr(1,1) is discarded as
they map the same virtual element and are thus mutually exclusive. To show the relationship
between the mapping candidates and their integer variables in the inequalities, the name
of the mapping candidate variables are retained with lowercase letters e.g. swsw(1,1) for
their integer variables with the value 0 or 1. Other necessary parameters for establishing the
linear inequalities are given in Table 2.

Variables for virtual network Variables for substrate network

MV Number of all virtual switches MS Number of all substrate switches

NV Number of all virtual servers NS Number of all substrate servers

KV Number of all virtual links KS Number of all substrate links

Tab. 2: Different parameters for the linear inequalities.

Some of the advantages of this approach are the reduction of the search space by using
graph grammars, and the inequalities automatically derived from the TGG rules if executed,
which prevent a virtual element from being mapped several times, or that the dependencies
between different mappings, e.g. lsr(1,1),2 and swsr(1,2) are taken into account.

In the following, the constraints and their linear inequalities are described in detail and
shown in a compact form in Table 3.

Constraint (1) is represented by TGG rule (a) and (b) (Table 1) and after their execution,
the generated inequalities are presented in Table 3. The Ąrst line is generated by rule (a)
considering that after the generation of all possible mappings between one virtual switch
and all substrate switches, a maximum of one mapping can be selected. Therefore, the
sum of all integer variables swsw(i, j) must be smaller or equal to 1 e.g. swsw(1,1) ≤ 1.
The inequalities generated by rule (b) are very similar to rule (a) with the only difference
that instead of a substrate switch a substrate server is used which leads to the following
exemplary inequality e.g. swsr(1,1) + swsr(1,2) ≤ 1.

Constraint (2) is represented by TGG rule (c) which leads to similar inequalities like rule
(a) and (b) e.g. srsr(1,1)+ srsr(1,2) ≤ 1. The additional attribute condition SrSb .freeSlots ≥ 1
is not included in the linear inequalities because the pattern matching checks this condition
before executing the rule and creating a potential mapping. Assuming that this constraint
is not encoded in the TGG rules, this attribute condition would be manually encoded and
added to the inequalities.

Model-driven Development of Virtual Network Embedding Algorithms 47

Constraint Inequalities TGG rules

(1)
∀i, 1 ≤ i ≤ MV |

∑MS

j=1 swsw(i, j) ≤ 1 (a)

∀i, 1 ≤ i ≤ MV |
∑NS

j=1 swsr(i, j) ≤ 1 (b)

(2) ∀i, 1 ≤ i ≤ NV |
∑NS

j=1 srsr(i, j) ≤ 1

(3)
∀i, j, 1 ≤ i ≤ MV , 1 ≤ j ≤ NV |

∑NS

p=1 lsr(i, j),p ≤ 1;

∀i, j, p, 1 ≤ i ≤ MV , 1 ≤ j ≤ NV , 1 ≤ p ≤ NS |

lsr(i, j),p ≤ swsr(i,p), lsr(i, j),p ≤ srsr(j,p)

(d)

∀i, j, 1 ≤ i ≤ MV , 1 ≤ j ≤ NV |
∑MS

p=1

∑NS

q=1 ll(i, j),(p,q) ≤ 1,

ll(i, j),(p,q) ≤ swsw(i,p), ll(i, j),(p,q) ≤ srsr(j,q)

(e)

(4) No additional inequalities are needed. -

(5) ∀i, j, 1 ≤ i ≤ MS, 1 ≤ j ≤ NS |LS(i, j).bandwidth −
∑MV

p=1

∑NV

q=1 ll(i, j),(p,q) ∗ SwVp .bandwidth ≥ 0

-

(6) ∀i, 1 ≤ i ≤ KS |SrSi .slots −
∑j=1

NV
srsr(i, j) ≥ 0 -

Tab. 3: Representing linear inequalities for the constraints (section 3) and the TGG rules (Figure 5).

Constraint (3) is represented by TGG rule (d) to map a virtual link to a substrate server
and rule (e) to map it to a substrate link. Compared to the previous constraints these rules
have implications to express that the context elements and mappings are already selected. In
rule (d) the implication is that a virtual switch and virtual server are already mapped to the
same substrate server. The result are two additional inequalities e.g. lsr(1,1),2 ≤ swsr(1,2),
lsr(1,1),2 ≤ srsr(1,2) meaning that if lsr(1,1),2 is selected then swsr(1,2) must also be chosen
because the link LV (1,1) can only be mapped to server SrS2 if the switch SwV1 is already
mapped to SrS2. The inequalities for rule (e) are similar except that a virtual link is mapped to
a substrate link and and a virtual switch to a substrate switch e.g. ll(1,1),(1,1) + ll(1,1),(1,2) ≤ 1,
ll(1,1),(1,1) ≤ swsw(1,1), ll(1,1),(1,1) ≤ srsr(1,1), and ll(1,1),(1,2) ≤ srsr(1,2).

Constraint (4) is represented by the combination of TGG rule (d) and (e) because if latency

= LOW then rule (e) is not executed (SwVa .latency , LOW) and, therefore, the virtual
network must be mapped to one server (rule (d)), if possible. Consequently, no additional
inequalities are needed to realize this constraint.

Constraint (5) cannot not be expressed by TGG rules because adding all mapping candidates
is (actually) not expressible by eMoĆon, the used to tool to specify TGGs and generate
executable code. Therefore, these must be manually added to the generated inequalities. The
constraint requires that the bandwidth of all mapped virtual links to a substrate link must no
exceed the available bandwidth of this substrate link e.g. LS(1,1).bandwidth − ll(1,1),(1,1) ∗

SwV1.bandwidth ≥ 0.

Constraint (6) is realized in a similar way as constraint (5) except that the sum of all virtual
servers mapped to a substrate server must not exceed the available slots of the substrate
server e.g. SrS1.slots − srsr(1,1) ≥ 0.

48 Stefan Tomaszek, Erhan Leblebici, Lin Wang, Andy Schürr

After the generation of all linear inequalities, these inequalities are handed over to Gurobi,
the selected ILP solver, with the optimization goal to maximize the number of mapped
virtual elements. Depending on the application or scenario, the optimization goal can also
be modiĄed and, e.g. be designed to minimize energy consumption.

Comparing the search space for this running example for a brute-force method and the
TGG approach to generate all inequalities shows that the number of integer variables and
inequalities could be reduced signiĄcantly. Generating all mapping candidates without
checking additional attribute constraints result in more integer variables, e.g. SrSr(1,3)
cannot exist because SrS3 has no free slots, which implicates that the link mapping candidate
LSr(1,1),3 and LL(1,1),(1,3) can also not exist. The same holds for SrSr(2,3), LSr(1,2),3 and
LL(1,2),(1,3). In a brute-force approach, all attribute constraints freeSlots and freeBandwidth

must additionally be encoded as inequalities while the pattern matcher did already check
these constraints during the executing of the TGG rules. At the end, checking the latency

during the generation of the mapping candidates reduces the number of integer variables
and inequalities signiĄcantly. Looking at VN (c) from Figure 2 the TGG rule (e) is never
executed and, therefore, no mapping candidates for LL(a,b),(c,d), no inequalities to express
the implications for the source switch and target server and no attribute constraints have to
be encoded as inequalities.

5 Evaluation

In this section, the presented MdVNE approach is evaluated and compared with a brute force
and the Oktopus algorithm [Ba11], an established VNE algorithm for DCs, in relation to the
runtime and the number of ILP variables and constraints. After introducing the simulation
setup, the following three research questions are discussed:

RQ (1): How does the runtime, ILP constraints and variables change if the number of
servers in the SN increases?

RQ (2): How does the runtime behave in comparison to a brute force mapping approach
and the Oktopus algorithm in a speciĄc scenario?

RQ (3): Does the reduction of the search space for the mapping candidates by MdVNE offer
advantages with respect to the total runtime compared to a brute force mapping
approach?

5.1 Simulation setup

The structure and underlying scenario for the evaluation is based on the presented running
example. As shown in Figure 2, a DC with a two-tier network infrastructure is used in
which virtual networks are stored in a queue and mapped one after the other to the DC. The
two-tier DC infrastructure consists of two aggregation switches each connected to a varying

Model-driven Development of Virtual Network Embedding Algorithms 49

number of racks (marked area in Figure 2 (a)), each with a top of the rack switch (ToR
switch) and 10 servers with four slots. Each server is connected to the ToR switch with a
bandwidth of 10, and the ToR switches with a bandwidth of 100 to each aggregation switch.
The virtual networks are implemented as virtual clusters [Ba11], which have a central switch
connected to all virtual servers with a bandwidth of two. The following evaluation will
vary the number of racks in the DC and the number of virtual servers. All other parameters
remain constant. In order to obtain a wide range of virtual server distribution conĄgurations,
a random sequence of virtual networks with virtual servers between 2 and 10 is generated
and used for all further evaluations to map one virtual network after the other to the DC. The
evaluation is done on an Intel Core i7-7700HQ with 2.80 GHz with Windows 10 (version
1703) and the Java SE Development Kit 8u141.

In the following, three approaches are presented and compared with each other. The Ąrst and
second approach are the presented MdVNE and a brute force ILP mapping approach. They
are quite similar to each other except that in the brute force approach no attribute constraints
are used further restricting the execution of the rules, e.g. SrSb ≥ f reeSlots (Figure 5 c).
These attribute constraints are encoded into the ILP problem by additional inequalities
after variables and formulas have been generated for all possible mappings of virtual to
substrate elements. As a last comparison, the established Oktopus algorithm [Ba11] is
executed and evaluated. Because this algorithm is not based on graph transformations or
the Eclipse Modeling Framework (EMF), other data structures in the background are used
which makes the comparison more difficult. In addition, Oktopus uses heuristics to map the
virtual networks in contrast to the MdVNE approach. A qualitative comparison of the three
algorithms is nevertheless out of scope of this paper.

5.2 Results

In the following, the results in combination with the research questions are presented and
discussed.

RQ (1): To answer the Ąrst research question, the MdVNE approach is used to map 40
virtual networks and increases the number of racks from 2 to 50. This corresponds to a
total server count of 20 to 500. After all 40 virtual networks are mapped, an average value
for the total runtime of the mapping process, the runtime of Gurobi, the ILP solver, the
number of ILP variables and constraints are being calculated. The mapping process of the
Ąrst network is ignored in this calculation, as many Java and EMF initializations take place
and the system is not in a steady state. In order to obtain reliable results all simulations were
performed three times with a maximum percentage deviation from the average value of 9 %.
The evaluation of the runtime for the MdVNE approach over the number of racks can be
found in Figure 7. The complete mapping process seems to have a polynomial growth that
can be explained by the fact that the distribution of the virtual servers to different substrate
servers generates mapping candidates in a combinatorial manner. The growth of the ILP
solver runtime values depends on the internal heuristics of the solver but it seems to be

50 Stefan Tomaszek, Erhan Leblebici, Lin Wang, Andy Schürr

0

5000

10000

15000

0 10 20 30 40 50

A
ve

ra
ge

 r
un

ti
m

e
[m

s]

Number of racks

Complete mapping runtime Runtime ILP solving

Fig. 7: MdVNE: Runtime of the complete map-
ping process and the ILP solver in ms over the
number of racks in the SN.

10%

20%

30%

40%

50%

0 10 20 30 40 50

R
at

io

Number of racks

Ratio of ILP solving to complete mapping runtime

Fig. 8: MdVNE: Percentage of the ILP solver
runtime of the complete mapping runtime over
the number of racks in the SN.

a polynomial growth in this scenario. The inĆuence of the ILP solver for the complete
runtime of the MdVNE approach grows continuously from 15 % for three racks to 48 % at
50 racks (Figure 8) because the number of the generated ILP constraints and variables is
also growing proportionally to the number of racks (Figure 9). The linear growth of both
parameters can be explained by the steady increase of the elements in the model that are
proportional to the number of combinatorial pairs of virtual servers as mapping candidates.

RQ (2): To answer the next two research questions the evaluation was modiĄed to a scenario
of 6 racks, which makes it possible to map the Ąrst 40 virtual networks from the queue
into the DC. The result of the average runtime measurement is shown in Figure 10 with
a logarithmic scaled runtime in ms over the number of mapped virtual networks e.g. 30
mapped virtual networks mean that 29 networks are already mapped.
As expected, the optimized and for this application scenario tailored Oktopus algorithm
has the lowest constant runtime between 2 ms to 5 ms in this comparison. The efficient
hand-tailored background data structure (in contrast to the usage of EMF models as data
structures for the MdVNE and brute force algorithm) minimizes the internal Java overhead

0

10000

20000

30000

40000

0 10 20 30 40 50

N
um

be
r

of
 c

on
st

ra
in

ts
/v

ar
ia

bl
es

Number of racks

ILP constraints ILP variables

Fig. 9: MdVNE: Number of ILP integer variables
and constraints over the number of racks in the
SN.

1

100

10.000

1.000.000

1 11 21 31 41

R
un

ti
m

e
[m

s]

Number of mapped virtual networks

Brute force MdVNE Oktopus

Fig. 10: Runtime of the MdVNE, brute force and
Oktopus approach over the number of mapped
virtual networks.

Model-driven Development of Virtual Network Embedding Algorithms 51

and, therefore, reduces the runtime, too. The MdVNE approach has also an almost constant
runtime in a range of 140 ms to 500 ms, which is two magnitudes higher than the Oktopus
algorithm e.g. 184 ms for MdVNE and 2 ms for Oktopus. This overhead is mainly caused
by the usage of EMF as model framework. In both approaches, the higher values indicate
that a virtual network had to be distributed on several substrate servers because all positions
inside the tree have to be taken into account in a combinatorial manner. For the brute force
mapping approach, a polynomial growth can be approximately assumed because for every
combinatorial pair of elements in the increasing model an ILP variable is generated. This
can be seen in more detail for the MdVNE and the brute force approach in Figure 11.

100

1000

10000

100000

1000000

1 11 21 31 41N
um

be
r

of
 c

on
st

ra
in

ts
/v

ar
ia

bl
es

Number of mapped virtual networks

Brute Force - ILP Problem Constraints Brute Force - ILP Integer Variables

TGG - ILP Problem Constraints TGG - ILP Integer Variables

Fig. 11: ILP constraints and variables for the MdVNE and brute force approach over the number of
mapped virtual networks.

RQ(3): We can see in Figure 11 that the ILP variables and constraints can be signiĄcantly
reduced by using a more sophisticated ILP variable and constraint generation approach,
which uses attributed graph transformations (TGGs) to Ąlter/eliminate unfeasible mapping
conĄgurations early on in the MdVNE optimization algorithm. The result is a reduction in
the runtime of the mapping process by two orders of magnitude (Figure 10). Generally, as
many constraints as possible should be integrated into the TGG rules to reduce the complete
mapping process.

5.3 Conclusion

In this section, we see that using the MdVNE approach it is possible to specify algorithms for
the generation of ILP formulas to solve an optimization problem on a high level of abstraction
(TGGs). The VNE problem to map a varying number of virtual clusters into a two-tier
DC network by respecting constraints, attribute conditions and structural patterns could
be realized and evaluated. The algorithm scales because of the linear runtime complexity
and is thus in the same complexity class as the optimal tailored Oktopus algorithm. The
overhead of the TGG execution phase is acceptable against the ILP solver phase especially
when the number of servers increases in the DC. Furthermore, we see that with very little
implementation effort (adapting the TGG rules) the search space of the ILP problem and,

52 Stefan Tomaszek, Erhan Leblebici, Lin Wang, Andy Schürr

therefore, the complete runtime of the mapping process can be signiĄcantly reduced. In the
evaluation and running example only conservative structural and attribute constraints were
speciĄed in the TGG rules, but it is also possible to deĄne more domain speciĄc complex
constraints to deĄne sort of heuristic algorithm to reduce the search space even more and to
improve the scalability.

6 Conclusion and Future Work

This paper presents a new methodology called model-driven virtual network embedding
(MdVNE) combining model transformation and integer linear programming techniques to
solve virtual network embedding problems. The model transformation and pattern matching
techniques are used to generate families of possible mappings and reduce the search space
by respecting a set of given constraints. Afterwards ILP solving techniques are used to select
optimal mapping candidates. The advantage of this methodology is that the embedding
algorithm can be speciĄed on a rather abstract level and a prototypical implementation
is automatically generated from this high-level speciĄcation. The development of new
algorithms with this method can be fastened and, therefore, easily adjusted to other
environments, applications and scenarios.

The evaluation has shown that it is possible to specify an algorithm for the VNE problem by
using TGGs and an ILP solver. This algorithm scales in the range of 20 to 500 servers in a
two-tier data center network with a linear runtime complexity. The reduction of the search
space by the usage of pattern matching techniques reduces the runtime signiĄcantly.

To develop and evaluate different algorithms, the simulation framework and the metamodel
of the DC and the VNs will be extended to support the deĄnition of new types of constraints
that take resources like e.g. CPU or demands e.g. latency into account. In addition, metrics
to measure the qualitative properties of different algorithms will be added. Because of
the high dynamics in this system, which requires a re-embedding or migration of existing
mappings, e.g. changes in the DC or the virtual networks, incremental mapping scenarios
are studied right now and will be supported in future versions of MdVNE.

References

[Ba11] Ballani, H.; Costa, P.; Karagiannis, T.; Rowstron, A.: Towards Predictable
Datacenter Networks. ACM SIGCOMM Computer Communication Review
41/4, pp. 242Ű253, 2011.

[Ba13] Bari, M. F.; Boutaba, R.; Esteves, R.; Granville, L. Z.; Podlesny, M.; Rab-
bani, M. G.; Zhang, Q.; Zhani, M. F.: Data Center Network Virtualization: A
Survey. IEEE Communications Surveys & Tutorials 15/2, pp. 909Ű928, 2013.

Model-driven Development of Virtual Network Embedding Algorithms 53

[Fi13] Fischer, A.; Botero, J. F.; Beck, M. T.; de Meer, H.; Hesselbach, X.: Virtual
Network Embedding: A Survey. IEEE Communications Surveys & Tutorials
15/4, pp. 1888Ű1906, 2013.

[Gu10] Guo, C.; Lu, G.; Wang, H. J.; Yang, S.; Kong, C.; Sun, P.; Wu, W.; Zhang, Y.:
SecondNet: A Data Center Network Virtualization Architecture with Bandwidth.
In: Proceedings of the 6th International Conference. Co-NEXT, pp. 1Ű15, 2010.

[Gu16] Gurobi Optimization, I.: Gurobi Optimizer Reference Manual; 2015. URL
http://www. gurobi. com/, 2016.

[Kl17] Kluge, R.; Stein, M.; Varró, G.; Schürr, A.; Hollick, M.; Mühlhäuser, M.: A
Systematic Approach to Constructing Families of Incremental Topology Control
Algorithms using Graph Transformation. Software & Systems Modeling/, pp. 1Ű
41, 2017.

[LAS17] Leblebici, E.; Anjorin, A.; Schürr, A.: Inter-model Consistency Checking Using
Triple Graph Grammars and Linear Optimization Techniques. In: Fundamental
Approaches to Software Engineering. FASE, pp. 191Ű207, 2017.

[Lo16] Lopes, F. A.; Lima, L.; Santos, M.; Fidalgo, R.; Fernandes, S.: High-Level
Modeling and Application Validation for SDN. In: Network Operations and
Management Symposium. NOMS, pp. 197Ű205, 2016.

[SAE12] Sefraoui, O.; Aissaoui, M.; Eleuldj, M.: OpenStack: Toward an Open-Source
Solution for Cloud Computing. International Journal of Computer Applications
55/3, pp. 38Ű42, 2012.

[Sc95] Schürr, A.: SpeciĄcation of Graph Translators with Triple Graph Grammars.
In: Graph-Theoretic Concepts in Computer Science. Vol. 903. Lecture Notes in
Computer Science, pp. 151Ű163, 1995.

[Xi12] Xie, D.; Ding, N.; Hu, Y. C.; Kompella, R.: The Only Constant is Change:
Incorporating Time-Varying Network Reservations in Data Centers. In: Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication.
SIGCOMM, pp. 199Ű210, 2012.

[Ze15] Zeng, D.; Guo, S.; Huang, H.; Yu, S.; Leung, V. C.: Optimal VM Placement in
Data Centers with Architectural and Resource Constraints. International Journal
of Autonomous and Adaptive Communications Systems 8/4, pp. 392Ű406, 2015.

[Zh13] Zhani, M. F.; Zhang, Q.; Simona, G.; Boutaba, R.: VDC Planner: Dynamic
Migration-Aware Virtual Data Center Embedding for Clouds. In: Integrated
Network Management. IM, pp. 18Ű25, 2013.

54 Stefan Tomaszek, Erhan Leblebici, Lin Wang, Andy Schürr

Transforming Enterprise Models to Linked Data via
Semantic Annotations

Benedikt Pittl1, Hans-Georg Fill2

Abstract: The use of conceptual models in enterprises is today a well-known fact. This includes many
different types of models ranging from process models, organizational models, and infrastructure
models to various types used in software engineering and technical systems development. Although
these models are largely speciĄed in a formal or at least semi-formal way, the knowledge contained
in them is often only accessible via manual inspection. The primary reason for this shortcoming is
the use of different formats for expressing models and the lack of machine-processable semantic
speciĄcations of the model content. In this paper we present a Ćexible approach for transforming
information from such enterprise models to RDF. Thereby, we use a model weaving technique to
annotate conceptual models with concepts from ontologies. For assessing its technical feasibility, the
approach has been prototypically implemented on the SeMFIS platform and applied to a use case in
the area of business process management.

Keywords: Conceptual Model; RDF; Ontology; Semantic Annotation

1 Introduction

Today, enterprises heavily rely on conceptual models such as business process models,
organization models or infrastructure models, thus potentially leading to hundreds if not
thousands of models just within one organization [Ro06, WH01]. Such models are often
created with the aim of fostering communication and understanding [My92] and are an
important source of knowledge. Usually, these models are stored in the databases of the
used modeling tools [vDDM13]. For analyzing these models using query techniques and
benchmarks [APW08, EKO07, vDDM13], or for executing them [Fi12], models need to be
available in a machine-processable format that is ideally based on a standard representation.
In the context of the Web of Data, conceptual models were recently identiĄed as a valuable
source for data repositories [BK16]. Thereby, the model content is transformed to ontologies -
usually in RDF format. The transformation to ontologies has two main beneĄts: (i) Exchange

of Model Information. Standardized formats such as RDF foster the exchange of models
across different tools and platforms. (ii) Semantic Processing. The usage of ontology formats

1 University of Vienna, Faculty of Computer Science, Waehringerstrasse 29, 1090 Vienna, Austria; benedikt.
pittl@univie.ac.at

2 University of Bamberg, Department for Information Systems - System Development and Database Application
Group, An der Weberei 5, 96047 Bamberg, Germany; hans-georg.Ąll@uni-bamberg.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 55

https://creativecommons.org/licenses/by-nc/3.0/
benedikt.pittl@univie.ac.at
benedikt.pittl@univie.ac.at
hans-georg.fill@uni-bamberg.de
https://creativecommons.org/licenses/by-sa/4.0/

enables semantic processing based on reasoning and query techniques, especially through
linking the model information to other ontologies and linked data repositories. This enables
the linkage, querying and merging of different data sources with information contained in
the models [BHB09].

The scientiĄc community proposed two main paradigms for the transformation from
conceptual models to ontologies used in the Web of Data: (i) Hinkelmann [Hi15] presented
seven approaches which describe how to establish a linkage between conceptual models and
ontologies. These approaches range from simple links Ű through adding textual attributes in
model elements which contain a URI to an ontology element Ű over semantic tunnels where
semantic information for model elements is retrieved via webservices Ű to semantic transit

models where models contain references to an ontology. However, a concrete approach
for transforming models to RDF was not described. Additionally, all seven approaches
have the drawback that a new modeling language is required that permits to link elements
to ontology concepts. Based on the assumption that enterprises already have large model
repositories [WH01], the requirement of such a new modeling language would lead to
a considerable effort for remodeling or at least migrating the existing models. (ii) For
overcoming these drawbacks, an RDFizer has been presented for transforming conceptual
models to RDF [BK16]. Thereby, static transformation patterns were deĄned that are
applicable to arbitrary models. While this approach is comprehensive in the sense that each
model element and attribute is serialized according to the pattern, it is not easily adaptable
to speciĄc needs e.g. to deĄne how model concepts are serialized to RDF. Furthermore, the
modeling languages of the models to be transformed has to be altered if additional RDF
information is to be represented.

The research question which we want to answer in this paper is "How to semantically enrich

and process existing visual models in standardized semantic formats?". Thereby, we pursue
the following three goals: (i) The approach has to be generic so that it is applicable for
models created with different modeling languages. (ii) The approach has to be simple so
that business users are able to do the enrichment (iii) The approach has to be adaptive
so that modiĄcations of the enrichment are possible. Hence, in this paper we present
a customized model weaving approach for transforming the content of conceptual models
to RDF. Our approach does not require an adaptation of existing modeling languages but
allows referring to existing ontology concepts. Thereby, our weaving approach is based
on semantic annotations for linking model elements and their attributes with ontology
schema concepts. The annotations can be created, removed or modiĄed without affecting
the conceptual models nor the ontology, which makes our approach useful for semantically
enriching and processing already existing models. For easing the speciĄcation of the
semantic annotations, we provide a domain-speciĄc visual language. We conceptualized
and evaluated the approach following three steps: (i) SpeciĄcation of a visual language
for conĄguring Ćexible transformations via annotations (ii) SpeciĄcation of generic rules
for conducting the transformation to RDF (iii) Implementation of the approach using the
SeMFIS platform [Fi17].

56 Benedikt Pittl, Hans-Georg Fill

The remainder of the paper is structured as follows. An overview of existing paradigms
for semantically enriching models is presented in section 2. Our transformation approach
based on visual annotations is explained in section 3. Section 4 describes the technical
implementation followed by a use case based evaluation in section 5. A discussion is
described in section 6. The paper closes with a conclusion in section 7.

2 Background and Related Work

In the literature there are currently two research directions being investigated for linking
ontologies with conceptual models: model transformation and model weaving [Fi11]. We
will thus Ąrst describe the differences between model transformation and model weaving.
Second, we will review existing weaving approaches which deĄne how models can be
semantically enriched. In the third part we will investigate existing approaches for the
model-to-ontology transformation with a special focus on RDF ontologies.

The transformation between different types of models has been discussed to a large extent in
the context of Model Driven Engineering [DFBV06]. Thereby, transformation models are
models which describe operations for transferring source models to target models. These
operations are executed by a transformation engine. Prominent examples of this approach
are transformations via Query View Transformation (QVT) or the ATL Transformation
Language. An overview of the model transformation approach from a generic perspective
is shown in Figure 1a. The source model (Ma) and the target model (Mb) conform-to

the metamodels MMa and MMb which is illustrated with the ct connectors. Similarly,
the transformation models (TM) conform to a metamodel (TMM). All three metamodels
conform to a meta-metamodel. The transformation operations are part of the transformation
model which references elements of the metamodels MMa and MMb . This is illustrated with
the based-on (bo) connector. For example, the ATL rules used for a model transformation
are grouped to a transformation model TM which is executed by an ATL transformation
engine.

The second research direction for linking models and ontologies is to use weaving models.
The main difference between model weaving and model transformation is that transformation
metamodels have fixed semantics that can be implemented by transformation engines,
whereas weaving models have user-defined semantics [DFBV06]. The model weaving
approach is illustrated in Figure 1b. For model weaving, three metamodels are used whereby
WMM is the weaving metamodel. Weaving models (WM) are models which use domain
speciĄc link types for establishing references between two metamodels (MMa and MMb).
The overall goal of model weaving is just to establish links between elements of two models.
The weaving model can be used for model transformations but it is not limited to it. Hence,
the illustration in Figure 1b does not show a transformation example as Figure 1a. Weaving
approaches are e.g. used for model traceability as well as for model alignment. According
to [DFBV06] model weaving fulĄlls the following requirements: (i) the weaving model
supports the expression of links between two model elements, (ii) different types of links

Transforming Enterprise Models to Linked Data 57

have to be supported whereby the link type provides the semantics, (iii) the links support
different arities, (iv) and the links have references to the model elements.

4 Pittl and Fill

MMM

ct ct

MMa

>

TMM

∧
ct

MMb

<

bo bo

TM

∧
ct

>
<

Ma

∧
ct

> Mb

∧
ct

(a) Model transformation based on [15]

MMM

ct ct

MMa

>

WMM

∧
ct

MMb

<

WM

∧
ct

>
<

(b) Model weaving from [6]

Fig. 1: Model transformation vs model weaving

(a) Model transformation based on [Jo06]

   



 














 














 




     



 






















    

      

            
            
          
          
           

           
          
           
          
            
           
              

        
          
     

             
          
          
             
             
              
           

     

        
      

            
           
          
         
       
           

    
           
          
         
         
            
              
            
  

          

        
         
        

          

   

            
            
             

           

       

  

  


          
           
            

         
          
          

(b) Model weaving from [DFJ05]

Fig. 1: Model transformation and model weaving

Based on these foundations we can now investigate approaches that make use of these
concepts for linking conceptual models and ontologies. Two main reasons can be stated
why such connections are beneĄcial: First, the use of standardized exchange formats such as
RDF and OWL permits the easy transfer of model information across different tools and
platforms. Second, ontology formats permit semantic processing based on reasoning and
query techniques, especially through linking the model information to other ontologies and
linked data repositories.

Following the direction of model transformations, it is often being referred to the XML
Metadata Interchange (XMI) format as a starting point for transforming models to ontologies.
XMI is a standardized format maintained by the OMG3 which fosters the exchange of
models between different modeling tools. For example, [Ga04] describe a transformation
approach for models represented in XMI to OWL via XSLT. Similar approaches are
described in [BB12] and [Cr01]. In [TF07] Event driven Process Chains (EPC) models
are transformed to an RDF ontology. Thereby, the authors assume that the EPC model is
stored in the XML-based format EPML so that the transformation to RDF-XML can also
revert to XSLT. However, all these XSLT transformations are static. They are predeĄned and
cannot be adapted by end users. Furthermore, such direct XSLT transformations consider
metamodels only implicitly. Linkages to other ontologies or linked data repositories are not
foreseen.

In [BK16] a transformation approach from models to RDF is introduced, denoted as RDFizer.
It supports three different ways for Ąrst linking existing URIs to model elements: (i) Linking

by Equivalence: This way is very similar to the direct linkage approach presented in [Hi15].
It expects a string attribute in each model element which contains a URI of an equivalent
ontology concept. (ii) Linking by Modeling Properties: Similar to the previous approach,

3 http://www.omg.org/spec/XMI/

58 Benedikt Pittl, Hans-Georg Fill

URIs are entered into string attributes of model elements. However, the interpretation is
different. The entered URI does not represent the model element which contains the attribute.
Instead, it refers to related concepts. (iii) Linking by Arbitrary Properties or Types: For
adding additional information to model elements, an attribute Table can be added. This
Table is used for generating customized RDF triples. Thereby, the model element which
contains the Table is either the subject or the object of the triple. In a second step, [BK16]
then apply static patterns for the transformation of the conceptual models to RDF ontologies.
These patterns are pre-deĄned generic rules which determine how model information is
transformed to RDF triples. Using this approach, customization is possible ex-post, e.g. using
the external Java component ŤRDF export customizerŤ as shown in [KB16] and [BK15]. It
allows adding, removing or modifying RDF triples created with the patterns. In addition
to the RDFizer several related approaches exist. For example, in [Ka06] an approach for
semantic lifting of metamodels was introduced. Thereby, the authors transfer metamodels
to ontologies using mapping patterns. Based on this mapping metamodels are transferred to
ontologies.

In the following we investigate approaches which make use of the model weaving paradigm.
The previously mentioned seven different approaches by Hinkelmann [Hi15] do not fulĄll
all described requirements for model weaving as stated above - a detailed discussion of
them is out of the scope of this paper. However, they are closely related to this direction. In
the following, we focus on the three most relevant types. In all of them it is implied that
model elements contain references to ontology concepts: (i) Indirect Linkage: Following
this approach, the whole ontology is represented as a visual model called semantic transit

model. The connections between the model and the ontology are established using additional
hyperlink attributes in the model. (ii) Direct and Indirect Linkage: This is a combination
of the indirect linkage approach and the so-called semantic tunnel approach. It retrieves
ontology concepts via a webservice (semantic tunnel). Thereby, only selected concepts
are represented in the semantic transit model. The model elements have again hyperlink
attributes for referencing ontology concepts. Based on these references additional ontology
concepts can be retrieved and offered to the user. (iii) Loose Coupling: This approach
introduces an intermediate ontology that acts as a reference for connecting it to model
elements.

In summary it can be stated that existing approaches have achieved various ways for
transforming conceptual models to ontology formats. However, an approach for transforming
conceptual models to RDF with a special focus on (i) adaptability (ii) semantic enrichment for
linking them to existing ontology and data repositories and (iii) adequacy for non-technical
users is missing so far.

3 Transformation via Visual Annotations

The main motivation for our work is based on the assumption that potentially large
repositories of conceptual models already exist in an organization which are used by

Transforming Enterprise Models to Linked Data 59

human actors and technical systems alike, cf. [WH01]. These models are usually stored in
vendor-speciĄc formats and there is a lack of machine-processable semantic speciĄcations of
the model content. Rather than remodelling all existing models with an adequate modeling
language - which would be costly - we could semantically enrich the existing models.
Therefore, we Ąrst need to provide means for a semantic enrichment of these models to
align them with existing data and ontology schemas. Semantic annotations have been shown
as a solution that does not require changes in the models nor the underlying modeling
language [Fi11]. As depicted in Figure 2, we use annotations that are stored in visual
Annotation Models on the Configuration Layer of our approach. Thereby, they conĄgure
the RDF serialization of conceptual models. The annotations have references to both,
model concepts and ontology schema concepts. The RDF serialization itself belongs to the
second layer called Standardized Semantic Representation Layer. The resulting RDF can
subsequently be merged with other ontologies or queried, which is foreseen in the Analysis

Layer.

Activity 1

Activity 3

Activity I Activity II

Activity 2
Model A

Model B

Conceptual Models Annotation Models

Mapping Model A

Modeling

Element

Modeling

Element

Modeling

Element

Semantic

Element

Semantic

Element

Semantic

Element

Class A

OWL Model A

OWL Model B

Ontology Models

Property I Property II

Class A

Property II

Class B

Atom C

Rule Models

Atom B

Atom A

V

Atom CAtom B V

Export to RDF

Export to OWL 2 (incl. SWRL Rules)

SeMFIS-
SWRL

RDFizer

D2RQ

Rule-based Application

SWRL Modelling Method

OWL SWRL

RDFizer

Instances

Rules

OWL

URI
Reference

Rule Model A

Rule Model B

Business
Process

Rule

Risk
Knowledge

Base
Annotationis input for is input for

Ontology

exported to

Ontology

exported to

generatesSimulation

Reports

Productive
Systems

input for

applied on

External
Ontology

used for

improvement

referse to

elements

Business
Process

Risk
Knowledge

Base
Annotationis input for is input for

Risk Aware
Busines Process

Ontology

Rule based Report
Configuration

Risk Report
OntologyReports

used for
improvement

input for

generates
References
to elments

generates External
Ontology

1 23

5 4

78

6a 7a

Ask customer for written
explanation or make

official note

Forward all forms to IT
department for scanning

Opening a Bank account

BPMS Models Annotation Models

Opening a Bank account –
Risk Knowledge base

Modeling

Element

Modeling

Element

Modeling

Element

Semantic

Element

Semantic

Element

Semantic

Element

Annotated

Element

OWL Risk Knowledge Base

Ontology Models

hasProgram(?activity,?code)

Rule Models

TechnicalFailure(?risk)

AnnotatedElement(?activity)

Report Configuration Rules

Deposit amount
greater than
100.00EUR?

Perform final check of
information

6

...

...

<<Human Failure>>

Human Risk 1

<<Technical Failure>>

IT Risk 1

<<Triangular

Distribution>>

Distribution 1

<<Triangular

Distribution>>

Distribution 2

Technical

Failure

Human

Failure

Triagular

Distribution

hasRisk(?activity,?risk)

V

hasRiskDistribution(?risk,?dist
ribution)

...

Business
Process

Risk
Knowledge

Base
Annotationis input for is input for

Rule

referse to

elements

OWL/RDF
Ontology

OWL
Ontology

Risk Aware Busines
Process OWL Ontology

+ SWRL Rules

Risk Report OWL
Ontology Database

SeMFIS

OWL-XML
Export

OWL Ontology
Merge

Inference Rules for
Risk Report
generation

SeMFISReport

XSLT

OWLAPI

SWRLAPI
OWLAPI

Report Generation

S
e

M
F

IS

Activity Risk Distribution

Forward all... IT Risk 1
Triangular

Distribution

...

Activity Risk Distribution

Forward all... IT Risk 1
Triangular

Distribution

...

generates

SeMFIS

JavaRule/Ontology Processing

Business
Process
Model

Risk
Knowledge

Base
Annotationis input for is input for

Risk Aware
Business Process
Representation

Rule based Report
Configuration

Risk Report
DatabaseReports

used for
improvement

input for

generates
references

to elements

generates

1 23

5 4

78

6

generates

Opening a Bank account

BPMS Models

Annotation Models

Opening a Bank account –
Risk Knowledge base

OWL Ontology

Ontology Models

JavaRule/Ontology Processing

Deposit amount
greater than
100.00EUR?

Ask customer
for written

explanation or
make official

note

Forward all forms to
IT department for

scanning

Perform final
check of

information

Class: instance
Instance:
HumanRisk

Class: Class
Instance:
AnnotatedEle
ment

Class: Activity
Instance:
Perform final
check of
information

HumanRisk1IT-Risk1

Human FailureTechnical Failure

Annotated ElementTriangular Distribution

Distribution 1 Distribution 2

Conceptual
Model

Ontology
Model

Annotation
Model

is input for

is input for

used for
improvement

generates

References
to elements

23

RDFizer
XSLT

OWL/RDF Ontology
RDF-XML

 OWL
XSLT

OWL Ontology
OWL-XML

OWLAPI
Java Library

SPARQL/SQWRL

is input for is input for

export to export to

merge

1

2

SeMFIS

Conceptual
Model

Ontology
Model

Annotation
Model

is input for is input for

Class: Activity
Instance: applies to
all instances

Class: Activity
Instance: Forward all
forms to IT
department for
scanning

Class: Activity
Instance: Perform
final check of
information

Class: Class
Instance:
BPMNActivity

Class: Class
Instance:
ForwardingActivity

Class: Property
Instance:
hasSubsequent
Activity

Class: Property
Instance:
hasExecutionTime

RelationClass:
Subsequent
Instance: applies to
all instances

Class: Activity
Instance: applies to
all instances
Attribute:
Execution time

11

44

55 66

77

Analysis Layer

Standardized Semantic Representation Layer

Configuration Layer

Analysis Layer

Standardized Semantic
Representation Layer

Configuration Layer

Fig. 2: Overview of the Three-layered Approach for Transforming Conceptual Models to
RDF

As the annotations are created as visual models, the provision of a corresponding visual
modeling language is required. For describing the visual modeling language as well
as the transformations to RDF in a non-ambiguous way we will revert to the FDMM
formalism [FRK12] in the following. A summary of the notation and the elements of the
visual language - which are described using FDMM - is given in Table 1.

3.1 FDMM Core Concepts

For formally describing modeling languages, different formalisms have been introduced Ű
e.g. for EMF [Sc08] or in the OCL speciĄcation4. We decided to use the FDMM formalism
as it aligns well with the concepts used in the ADOxx metamodeling platform, which we
used later for the implementation and evaluation of our approach [FRK12].

FDMM describes metamodels MM using four components MM=〈MT, �
, domain, range, card〉. Each metamodel consists of a set model types MT which
are used to create a set of model instances mt. Each model type MTi consists of a set of
object types OT

i , which have in turn a set of attributes Ai. Each attribute is assigned a datatype

4 http://www.omg.org/spec/OCL/2.0/

60 Benedikt Pittl, Hans-Georg Fill

from the set DT
i . So, in FDMM a model type is described as follows: MTi=〈OT

i ,D
T
i Ai〉. �

is an ordering on the set of object types OT
i for deĄning an object type hierarchy similar to

inheritance hierarchies in object-orientation. domain is a function which assigns attributes
to object types. The range function assigns datatypes to attributes while the card function
deĄnes the cardinality of attribute values. Models mti consist of triples τ representing
the model content. The Ąrst element of a triple t ∈ τ represents an instance of an object
type, the second component represents an attribute,and the last component represents the
attribute value. Due to limited space we do not describe FDMM in more detail here - for
more information we refer to [FRK12].

3.2 Formalizing Visual Annotations in FDMM

The visual modeling language for annotations consists of a single model type MTAnnot .
This model type has a set of object types OT

Annot
which have a set of attributes AAnnot

which have in turn data types DT
Annot

. The object types used in the model type are described
in the following equation. In FDMM, model connectors such as isInputFor and refersTo are
also considered as object types.

OT
Annot ={ModelRef erence,ConnectorRef erence, AttributeRef erence,

OntologyRef erence, Annotator, AnnotationElement,

ModelRef erences, isInputFor, re f ersTo}

(1)

All the attributes used in the object types are part of the set AAnnot .

AAnnot ={Name, AllClassInstances, InstanceRef erence, AttributeName,

ConnectorName, AnnotationType, isInputFor- f rom,

isInputFor-to,OntologySchemaConceptRef erence,

re f ersTo- f rom, re f ersTo-to}

(2)

The datatypes of the attributes are summarized in the set DT
Annot

. Enumanntype represents an
enumeration list.

DT
Annot ={String, Enumanntype = {instanceOf , isEqualTo, isBroaderThan,

isNarrowerThan, isSubclassOf , isSuperclassOf ,

isInstanceUsingFromClass, isInstanceUsingToClass}}

(3)

We have deĄned an ordering of the object types similar to an inheritance hierarchy to avoid
the duplicate speciĄcation of attributes:

AnnotationElement � InstanceType

OntologyRef erence � AnnotationElement

Annotator � AnnotationElement

ModelRef erences � AnnotationElement

ConnectorRef erence � ModelRef erences

ModelRef erence � ModelRef erences

AttributeRef erence � ModelRef erence

(4)

Transforming Enterprise Models to Linked Data 61

The object type InstanceType can be considered as a super-object type
similar to the class Object in Java - so we did not list it explicitly in
OT

Annot
. Attributes and their value ranges were speciĄed using the FDMM

domain and range functions [FRK12]: domain(Name) = {AnnotationElement },

domain(AllClassInstances) = {ModelRef erences}, domain(InstanceRef erence) =

{ModelRef erences}, domain(AttributeName) = {AttributeRef erence}, domain

(AnnotationType) = {Annotation}, domain(OntologySchemaConceptRef erence) =

{OntologyRef erence}, domain(isInputFor- f rom) = {isInputFor }, domain (isInputFor-to)

= {isInputFor }, domain(re f ersTo- f rom) = {re f ersTo}, domain (re f ersTo-to) = {re f ersTo}.

range(Name) = {String}, range(AllClassInstances) = {true, f alse}, range(InstanceRef erence)

= {InstanceType}, range(AttributeName) = {Enumattribute names }, range(AnnotationType) =

{Enumannotation type }, range(OntologySchemaConceptRef erence) = {InstanceType}, range(

isInputFor- f rom) = {ModelRef erences}, range(isInputFor-to) = {Annotator }, range(

re f ersTo- f rom) = {Annotator }, range(re f ersTo-to) = {OntologyRef erence}. In FDMM the
cardinality function - abbreviated with card - deĄnes how many attribute values an object
type can have. In our modeling type all attributes have at most one value. Therefore, we do
not list the cardinality functions explicitly here.

3.3 Graphical Notation

The graphical notation of the described object types is depicted in Table 1. There are
three different object types which have hyperlinks to classes, connectors and attributes of
conceptual models: The Model Reference (MREF) object type has a hyperlink to model
elements (instances of object types except connectors). The Attribute Reference (AREF)
object type has a hyperlink to attributes of model elements and the Connector Reference
(CREF) object type has a hyperlink to instances of connectors, which are object types in
FDMM. All three object types have further attributes for a more precise description of the
type of linkage which should be established. For example, the MREF, AREF as well as
the CREF object type have an attribute applies to all instances. This attribute indicates
if the reference is only representative for the model element to which the MREF, AREF
or CREF instances points to, or if it is representative for all instances of the same object
type in the conceptual model. Instances of the object type Annotator are the connecting
link between CREF, AREF and MREF elements which reference to contents of conceptual
models and elements which reference to ontology schema concepts. The latter are instances
of the OREF object type in our visual language. Annotator elements contain additional
information regarding the type of linkage which is established. The connectors shown on the
lower right corner of Table 1 are the connectors for constructing annotations. An example
of an annotation created with our visual language is shown in the use case (section 5).

Similar to the transit model approach described in [Hi15] we make use of visual ontology
models. This means that we represent ontologies such as OWL ontologies or frames
ontologies as visual models. To ensure interoperability with applications such as Stanford

62 Benedikt Pittl, Hans-Georg Fill

Graphical Notation Description Graphical Notation Description

MREF- references
to instances of
model object types
(non-connectors)
FDMM:
ModelReference∈

OT
Annot

AREF- references
to attributes of
instances of object
types
FDMM:
AttributeReference∈

OT
Annot

CREF- references
to instances of
model object types
(connectors)
FDMM:
ConnectorReference∈

OT
Annot

OREF- references
to ontology schema
concepts
FDMM:
OntologyReference∈

OT
Annot

Connector between
MREF, CREF or
AREF and Annota-
tor
FDMM:
isInputFor∈ OT

Annot

Annotator- connecting
MREF, AREF, CREF
elements with OREF
elements
FDMM:
Annot∈ OT

Annot
Connector between
Annotator and
OREF
FDMM:
refersTo∈ OT

Annot

Tab. 1: Overview of the Object Types Used in the Visual Language for Creating Annotations

Protégé we developed an import as well as an export function to standardized ontology
serialization syntaxes (e.g. OWL-XML).

3.4 Transformation Rule in FDMM

After the annotations are created they are used in the standardized semantic representation
layer to transform the annotated conceptual models to an RDF ontology. For a better
understanding of how the transformation works we present in the following an exemplary
transformation rule for annotations. It is assumed that an annotation model is present in
which an MREF element is connected with an OREF element via an annotator element of
type instanceOf. The MREF elements reference elements in the conceptual model and the
OREF element corresponding ontology concepts.

The function get AttributeValue returns the attribute value t3 (third component) of a
triple t ∈ τ whereby mti ∈ µMT(MTAnnotation). We used FDMM also for describing OWL
ontologies (mtOWL ∈ µMT(MTOWL)) as well as the resulting RDF ontologies (mtRDF ∈

µMT(MTRDF)). Similarly, we described the conceptual model mtREF ∈ µMT(MTREF) to
which the MREF element refers to in FDMM. The Id attribute of the referenced elements

Transforming Enterprise Models to Linked Data 63

represents a unique identiĄer. A sample transformation rule is then speciĄed as follows (the
structure of the other rules is similar):

Transformation Rule to RDF described in FDMM: Annotation which connects MREF
elements with OREF elements via an annotator of type instanceOf
∀mt ∈ µMT(MTAnnotation)
∀mref ∈ µO(MREF, MTAnnotation) |(mref, AllClassInstances, f alse) ∈ β(mt)
∀schemaConcept ∈ O |(

∃inputConnector |(inputConnector, isInputFor- f rom, mref) ∈ β(mt)∧
∃annotation |(inputConnector, isInputFor-to, annotation) ∈ β(mt)∧
∃re f ersToConnector |(re f ersToConnector, re f ersTo- f rom, annotation) ∈ β(mt)∧
∃ore f |(re f ersToConnector, re f ersTo-to, ore f) ∈ β(mt)∧
(ore f ,OntologySchemaConceptRef erence, schemaConcept) ∈ β(mt)
)

∀modelElement ∈ {getAttributeValue(i) |i ∈ {β(mt) |t1 = mref
∧ t2 = InstanceRef erence}}

=⇒
∃mtRDF ∈ µMT(MTRDF)∧
∃t ∈ β(mtRDF) |(
t1 ∈ µO(Description, MTRDF)∧
(t1, rd f : about, y) ∈ β(mtRDF) |(modelElement, Id, y) ∈ β(mtREF)∧
(t1, rd f : type, x) ∈ β(mtRDF) |(schemaConcept, Id, x) ∈ β(mtOWL)
)

In the same way we created FDMM-based rules for all kinds of annotations, i.e. with CREF
elements for referencing connectors and AREF elements for referencing attributes. Due to
the space limit these are omitted here.

4 Technical Implementation

Based on the FDMM speciĄcations we prototypically implemented the approach using
the SeMFIS platform [Fi17] to evaluate its technical feasibility. The reasons for using
the ADOxx based SeMFIS platform are besides familiarity due to previous projects with
this platform twofold: (i) ADOxx is open and (ii) ADOxx is widely used in the modeling
community e.g. for the process modeling toolkit ADONIS. We extended SeMFIS with our
RDF transformation approach. Additionally, we implemented an OWL-XML import/export
function. The implementation follows a three-layer approach as shown in Figure 3. The
model types were implemented using the ADOxx development toolkit underlying SeMFIS.
The transformation rules were encoded using XSLT. In addition, a Java component was
created for merging the OWL and RDF ontologies.

The following numbers correspond to the numbers used in Figure 3. (1,2) First, the
conceptual models are created or loaded. Additionally, the visual ontology model is created
from scratch or imported from an existing ontology Ąle. (3) After the conceptual model as
well as the ontology model are in place, annotations are created using the visual language

64 Benedikt Pittl, Hans-Georg Fill

Activity 1

Activity 3

Activity I Activity II

Activity 2
Model A

Model B

Conceptual Models Annotation Models

Mapping Model A

Modeling

Element

Modeling

Element

Modeling

Element

Semantic

Element

Semantic

Element

Semantic

Element

Class A

OWL Model A

OWL Model B

Ontology Models

Property I Property II

Class A

Property II

Class B

Atom C

Rule Models

Atom B

Atom A

V

Atom CAtom B V

Export to RDF

Export to OWL 2 (incl. SWRL Rules)

SeMFIS-
SWRL

RDFizer

D2RQ

Rule-based Application

SWRL Modelling Method

OWL SWRL

RDFizer

Instances

Rules

OWL

URI
Reference

Rule Model A

Rule Model B

Business
Process

Rule

Risk
Knowledge

Base
Annotationis input for is input for

Ontology

exported to

Ontology

exported to

generatesSimulation

Reports

Productive
Systems

input for

applied on

External
Ontology

used for

improvement

referse to

elements

Business
Process

Risk
Knowledge

Base
Annotationis input for is input for

Risk Aware
Busines Process

Ontology

Rule based Report
Configuration

Risk Report
OntologyReports

used for
improvement

input for

generates
References
to elments

generates External
Ontology

1 23

5 4

78

6a 7a

Ask customer for written
explanation or make

official note

Forward all forms to IT
department for scanning

Opening a Bank account

BPMS Models Annotation Models

Opening a Bank account –
Risk Knowledge base

Modeling

Element

Modeling

Element

Modeling

Element

Semantic

Element

Semantic

Element

Semantic

Element

Annotated

Element

OWL Risk Knowledge Base

Ontology Models

hasProgram(?activity,?code)

Rule Models

TechnicalFailure(?risk)

AnnotatedElement(?activity)

Report Configuration Rules

Deposit amount
greater than
100.00EUR?

Perform final check of
information

6

...

...

<<Human Failure>>

Human Risk 1

<<Technical Failure>>

IT Risk 1

<<Triangular

Distribution>>

Distribution 1

<<Triangular

Distribution>>

Distribution 2

Technical

Failure

Human

Failure

Triagular

Distribution

hasRisk(?activity,?risk)

V

hasRiskDistribution(?risk,?dist
ribution)

...

Business
Process

Risk
Knowledge

Base
Annotationis input for is input for

Rule

referse to

elements

OWL/RDF
Ontology

OWL
Ontology

Risk Aware Busines
Process OWL Ontology

+ SWRL Rules

Risk Report OWL
Ontology Database

SeMFIS

OWL-XML
Export

OWL Ontology
Merge

Inference Rules for
Risk Report
generation

SeMFISReport

XSLT

OWLAPI

SWRLAPI
OWLAPI

Report Generation

S
e

M
F

IS

Activity Risk Distribution

Forward all... IT Risk 1
Triangular

Distribution

...

Activity Risk Distribution

Forward all... IT Risk 1
Triangular

Distribution

...

generates

SeMFIS

JavaRule/Ontology Processing

Business
Process
Model

Risk
Knowledge

Base
Annotationis input for is input for

Risk Aware
Business Process
Representation

Rule based Report
Configuration

Risk Report
DatabaseReports

used for
improvement

input for

generates
references

to elements

generates

1 23

5 4

78

6

generates

Opening a Bank account

BPMS Models

Annotation Models

Opening a Bank account –
Risk Knowledge base

OWL Ontology

Ontology Models

JavaRule/Ontology Processing

Deposit amount
greater than
100.00EUR?

Ask customer
for written

explanation or
make official

note

Forward all forms to
IT department for

scanning

Perform final
check of

information

Class: instance
Instance:
HumanRisk

Class: Class
Instance:
AnnotatedEle
ment

Class: Activity
Instance:
Perform final
check of
information

HumanRisk1IT-Risk1

Human FailureTechnical Failure

Annotated ElementTriangular Distribution

Distribution 1 Distribution 2

Conceptual
Model

Ontology
Model

Annotation
Model

is input for

is input for

used for
improvement

generates

References
to elements

23

RDFizer
XSLT

OWL/RDF Ontology
RDF-XML

 OWL
XSLT

OWL Ontology
OWL-XML

OWLAPI
Java Library

SPARQL/SQWRL

is input for is input for

export to export to

merge

1

2

SeMFIS

Conceptual
Model

Ontology
Model

Annotation
Model

is input for is input for

Class: Activity
Instance: applies to
all instances

Class: Activity
Instance: Forward all
forms to IT
department for
scanning

Class: Activity
Instance: Perform
final check of
information

Class: Class
Instance:
BPMNActivity

Class: Class
Instance:
ForwardingActivity

Class: Property
Instance:
hasSubsequent
Activity

Class: Property
Instance:
hasExecutionTime

RelationClass:
Subsequent
Instance: applies to
all instances

Class: Activity
Instance: applies to
all instances
Attribute:
Execution time

11

44

55 66

77

Analysis Layer

Standardized Semantic Representation Layer

Configuration Layer

Analysis Layer

Standardized Semantic
Representation Layer

Configuration Layer

Fig. 3: Overview of the Technical Implementation

introduced in the previous section. Thereby, the content of conceptual models is linked with
ontology schema constructs using annotations. (4) The annotations created with the visual
language are used to conĄgure the RDF serialization. Therefore transformation rules as
exemplary introduced in the previous section are applied. (5) The transformation results in
an RDF ontology containing the model elements for which we created annotations. The
RDF ontology does not contain schema constructs but only instances. (6) It is thus possible
to export the visual ontology model to which the annotations reference as an OWL ontology.
(7) Then we get two ontologies: an RDF ontology (see (5)) and an OWL ontology (see (6)).
Both ontologies can be merged. This is accomplished using the Java library OWLAPI. The
resulting ontology then contains both, the OWL ontology including the schema constructs,
as well as the instances stored as RDF triples. This ontology can then be processed using
further semantic tools and techniques such as reasoners, query or rule engines.

5 Evaluation through a Use Case

In addition to the evaluation of the technical feasibility, we applied the approach to a use
case to assess whether it can be used in a practical scenario.

For this purpose we reverted to an account opening business process that has been previously
used within the Open Models Initiative5 - see [KMM16] for more information. Figure 4
shows an excerpt of the process model which was created with the domain-speciĄc modeling
language BPMS [KJS96]. Typically, models in such domain-speciĄc languages are stored
in an internal, platform-dependent serialization format, which makes machine-processing
difficult. Therefore, the use of a standardized format is beneĄcial. Hence, we annotated
the process model with OWL ontologies as shown in the right part in Figure 4. The
depicted OntoRule Ontology ontology is an excerpt of the process ontology developed

5 http://www.semĄs-platform.org/

Transforming Enterprise Models to Linked Data 65

within the OntoRules project6. We further created an ontology called user ontology with
the data property hasExecutionTime. The lines shown in Figure 4 depict references as used
in the MREF, CREF and OREF elements. To keep the Figure simple we have not shown
the references of the AREF elements. As the annotation model shows, the process activity
of the process model is annotated with the OWL class Task. Further, we used an AREF
element for the annotation of the execution time attribute. It is annotated with the OWL
dataproperty hasExecutionTime. The connector of the type Subsequent, which connects
activities in a business process model, is annotated with the follows OWL property.

<rdf:Description rdf:about= "NS#Forward all forms to IT department for scanning">

 <follows rdf:resource= NS#Perform final check of information
</rdf:Description>

<rdf:Description rdf:about= "NS#Perform final check of information">

 <follows rdf:resource=[
</rdf:Description>

Activity 1

Activity 3

Activity I Activity II

Activity 2
Model A

Model B

Conceptual Models Annotation Models

Mapping Model A

Modeling

Element

Modeling

Element

Modeling

Element

Semantic

Element

Semantic

Element

Semantic

Element

Class A

OWL Model A

OWL Model B

Ontology Models

Property I Property II

Class A

Property II

Class B

Atom C

Rule Models

Atom B

Atom A

V

Atom CAtom B V

Export to RDF

Export to OWL 2 (incl. SWRL Rules)

SeMFIS-
SWRL

RDFizer

D2RQ

Rule-based Application

SWRL Modelling Method

OWL SWRL

RDFizer

Instances

Rules

OWL

URI
Reference

Rule Model A

Rule Model B

Business
Process

Rule

Risk
Knowledge

Base
Annotationis input for is input for

Ontology

exported to

Ontology

exported to

generatesSimulation

Reports

Productive
Systems

input for

applied on

External
Ontology

used for

improvement

referse to

elements

Business
Process

Risk
Knowledge

Base
Annotationis input for is input for

Risk Aware
Busines Process

Ontology

Rule based Report
Configuration

Risk Report
OntologyReports

used for
improvement

input for

generates
References
to elments

generates External
Ontology

1 23

5 4

78

6a 7a

Ask customer for written
explanation or make

official note

Forward all forms to IT
department for scanning

Opening a Bank account

BPMS Models Annotation Models

Opening a Bank account –
Risk Knowledge base

Modeling

Element

Modeling

Element

Modeling

Element

Semantic

Element

Semantic

Element

Semantic

Element

Annotated

Element

OWL Risk Knowledge Base

Ontology Models

hasProgram(?activity,?code)

Rule Models

TechnicalFailure(?risk)

AnnotatedElement(?activity)

Report Configuration Rules

Deposit amount
greater than
100.00EUR?

Perform final check of
information

6

...

...

<<Human Failure>>

Human Risk 1

<<Technical Failure>>

IT Risk 1

<<Triangular

Distribution>>

Distribution 1

<<Triangular

Distribution>>

Distribution 2

Technical

Failure

Human

Failure

Triagular

Distribution

hasRisk(?activity,?risk)

V

hasRiskDistribution(?risk,?dist
ribution)

...

Business
Process

Risk
Knowledge

Base
Annotationis input for is input for

Rule

referse to

elements

OWL/RDF
Ontology

OWL
Ontology

Risk Aware Busines
Process OWL Ontology

+ SWRL Rules

Risk Report OWL
Ontology Database

SeMFIS

OWL-XML
Export

OWL Ontology
Merge

Inference Rules for
Risk Report
generation

SeMFISReport

XSLT

OWLAPI

SWRLAPI
OWLAPI

Report Generation

S
e

M
F

IS

Activity Risk Distribution

Forward all... IT Risk 1
Triangular

Distribution

...

Activity Risk Distribution

Forward all... IT Risk 1
Triangular

Distribution

...

generates

SeMFIS

JavaRule/Ontology Processing

Business
Process
Model

Risk
Knowledge

Base
Annotationis input for is input for

Risk Aware
Business Process
Representation

Rule based Report
Configuration

Risk Report
DatabaseReports

used for
improvement

input for

generates
references

to elements

generates

1 23

5 4

78

6

generates

Annotation Models

Opening a Bank account –
Risk Knowledge base

OntoRule Ontology

Ontology Processing

Forward all forms to
IT department for

scanning

Perform final
check of

information

Class: instance
Instance:
HumanRisk

Class: Class
Instance:
AnnotatedEle
ment

Class: Activity
Instance:
Perform final
check of
information

HumanRisk1IT-Risk1

Human FailureTechnical Failure

Annotated ElementTriangular Distribution

Distribution 1 Distribution 2

Conceptual
Model OntologyAnnotation

is input for

is input for

used for
improvement

generates

References
to elements

1 23

SeMFIS
RDFizer

OWL/RDF
Ontology

SeMFIS
OWL

Export

OWL
Ontology

OWLAPI

Conceptual Model as
Ontology

5 6

7

is input for is input for

export to
export to

merge to

Conceptual
Model OntologyAnnotationis input for is input for

Class: Activity
Instance: applies to
all instances

Class: Activity
Instance: Forward all
forms to IT
department for
scanning

Class: Class
Instance: Task

Class: Class
Instance:
ForwardingActivity

Opening a Bank account

BPMS Model

Annotation Model Ontology Models

follows

hasExecutionTime

Task

Standardized Semantic Representation Layer

Configuration Layer

Analysis Layer

SELECT ?predecessor WHERE {

?predecessor er:follows er:Forward all forms to IT department for scanning}

Class: Property
Instance: follows

RelationClass:
Subsequent
Instance: applies to
all instances

Class: Activity
Instance: applies to
all instances
Attribute:
Execution time

Class: Property
Instance:
hasExecutionTime

User Ontology

<rdf:Description rdf:about= "NS#Forward all forms to IT department for scanning">

 <follows rdf:resource= NS#Perform final check of information
</rdf:Description>

<rdf:Description rdf:about= "NS#Perform final check of information">

 <follows rdf:resource=[
</rdf:Description>

OntoRule Ontology

Forward all forms to
IT department for

scanning

Perform final
check of

information

Class: Activity
Instance: applies to
all instances

Class: Class
Instance: Task

Opening a Bank account

BPMS Model

Annotation Model Ontology Models

follows

hasExecutionTime

Task

Standardized Semantic

Representation Layer

Configuration Layer

Analysis LayerSELECT ?predecessor WHERE {

?predecessor er:follows er:Forward all forms to IT department for scanning}

Class: Property
Instance: follows

RelationClass:
Subsequent
Instance: applies to
all instances

Class: Activity
Instance: applies to
all instances
Attribute:
Execution time

Class: Property
Instance:
hasExecutionTime

User Ontology

Fig. 4: Overview of Use Case Showing Excerpts of an Annotation Model Instance (left),
of a Process Model in BPMS Notation (top right), Two Ontology Models (mid right), the
Resulting RDF Representation, and a Sample Query in SPARQL

Based on these visual annotations, the XSLT stylesheets together with the Java component
as described in the previous section transform the process model into an RDF serialization.
This is depicted in the standardized semantic representing layer in Figure 4. Listing 1 shows
a more detailed excerpt of the resulting RDF. For all annotated model elements, RDF
resources are created including the corresponding types. The connector reference leads
to the creation of the follows property. Similarly, the annotation of the attribute leads to
the creation of the hasE xecutionTime property. The serialized RDF can be analyzed as
shown in the last layer of Figure 4. An example query using the SPARQL query language is

6 http://ontorule-project.eu/resources/assembler/process-ontology-and-facts.owl

66 Benedikt Pittl, Hans-Georg Fill

Listing 1: Excerpt of the RDF Serialization of the Use Case Example - namespaces were neglected

<rdf:Description rdf:about= "NS#Forward all forms to IT department for scanning" >

<rdf:type rdf:resource= "NS#Task" />

<follows rdf:resource= "NS#Perform final check of information" />

<hasExecutionTime rdf:datatype="http://www.w3.org/2001/XMLSchema#string" >
00:000:00:03:00

</hasExecutionTime>
</rdf:Description>
<rdf:Description rdf:about= "NS#Perform final check of information" >

<rdf:type rdf:resource= "NS#Task" />

<follows rdf:resource= "NS#Forward remaining forms to inspection department" />

<hasExecutionTime rdf:datatype="http://www.w3.org/2001/XMLSchema#string" >
00:000:00:02:00

</hasExecutionTime>
</rdf:Description>

shown in Listing 2. This query selects all predecessor activities of the Perform final check

of information activity.

Listing 2: Example of SPARQL Query on an RDF Representation of a Model from the Use Case

SELECT ?predecessor WHERE {
?predecessor ns:follows ns:Perform Ąnal check of information
}
Result: ns:Forward all forms to IT department for scanning

6 Discussion

With the technical realization of the approach and its application to a use case we can
conclude that the presented approach is useful for semantically enriching existing visual
models ex-post. Thereby, neither the models nor the used ontologies have to be modiĄed
with the creation of annotations. Thus, the annotations are not limited by the type of model
or ontology. However, in the described implementation, the ontologies have to be imported
as visual models in order to use our annotation approach. The described weaving approach
requires however that the modeling tool used for it supports model references. Hence, tools
which do not support model references have to be adapted to realize the loosely coupled
semantic annotation approach. A performance analysis is part of our further research.

In summary we can derive a number of beneĄts as well as also some drawbacks of the
approach in its current version. These are listed in Table 2.

Transforming Enterprise Models to Linked Data 67

Benefits Drawbacks

⊕ Customization of RDF generation with
visual annotations

⊖ Visual annotations may become complex
to handle

⊕ Independent of the used modeling lan-
guage for conceptual models

⊖ Direct annotation references to ontology
concepts not implemented yet

⊕ Types of annotations are extendable ⊖ Semantics of annotation types needs to be
provided separately via rules

⊕ Annotations are re-usable ⊖ Ontology schema concepts are required

⊕ OWL import/export options exist ⊖ RDF-serialization for non-OWL ontolo-
gies not implemented yet

Tab. 2: BeneĄts and drawbacks of the introduced approach

Usability test and economical analysis are two aspects which are out of the scope of this
paper but which have to be done before implementing the approach in industry modeling
tools. The linking mechanism - from the visual annotation to model elements - is probably
the most challenging feature. This is because the linking mechanism has to be generic so
that model elements created with different modeling languages and tools can be referenced.
Further, we see the support of different ontologies - as described in Table 2 - as an important
feature to make the approach feasible.

The introduced approach enables institutions to semantically enrich their existing models
created with different modeling tools. Hence, they save costs for remodelling and stan-
dardizing the existing models. However, the introduced approach requires human-created
annotations so that institutions face a trade-off between costs for remodelling and costs for
creating semantic annotations.

7 Conclusion and Further Research

In this paper we introduced a model weaving approach for transforming conceptual models
to RDF. For this purpose we introduced a visual modeling language for creating model
annotations. The annotations are neither limited to a speciĄc kind of conceptual model nor
to a speciĄc kind of ontology. The technical feasibility of the approach has been shown by
implementing it on the SeMFIS platform and applying it to a use case.

In our future research we want to develop further types of annotations and introduce ontology
references which point directly to ontology schema constructs, e.g. as contained in an
ontology repository. In this way the transformation of ontologies to visual models could be
omitted. Another aspect that will be investigated will be the usability of the approach. For
this purpose especially the procedures of annotating existing models will have to be tested
with users to judge whether the used modeling language is adequate in a practical setting.
Economical as well as usability analysis are part of our further research.

68 Benedikt Pittl, Hans-Georg Fill

References

[APW08] Awad, Ahmed; Polyvyanyy, Artem; Weske, Mathias: Semantic querying of business pro-
cess models. In: Enterprise Distributed Object Computing Conference, 2008. EDOCŠ08.
12th International IEEE. IEEE, pp. 85Ű94, 2008.

[BB12] Belghiat, Aissam; Bourahla, Mustapha: Transformation of UML models towards OWL
ontologies. In: Sciences of Electronics, Technologies of Information and Telecommuni-
cations (SETIT), 2012 6th International Conference on. IEEE, pp. 840Ű846, 2012.

[BHB09] Bizer, Christian; Heath, Tom; Berners-Lee, Tim: Linked Data - The Story So Far. Int. J.
Semantic Web Inf. Syst., 5(3):1Ű22, 2009.

[BK15] Buchmann, Robert Andrei; Karagiannis, Dimitris: Pattern-based Transformation of
Diagrammatic Conceptual Models for Semantic Enrichment in the Web of Data. In:
19th International Conference in Knowledge Based and Intelligent Information and
Engineering Systems, KES 2015, Singapore, 7-9 September 2015. pp. 150Ű159, 2015.

[BK16] Buchmann, Robert A.; Karagiannis, Dimitris: Enriching Linked Data with Semantics from
Domain-SpeciĄc Diagrammatic Models. Business & Information Systems Engineering,
58(5):341Ű353, 2016.

[Cr01] CraneĄeld, Stephen: Networked Knowledge Representation and Exchange using UML
and RDF. J. Digit. Inf., 1(8), 2001.

[DFBV06] Del Fabro, M. Didonet; Bézivin, Jean; Valduriez, Patrick: Weaving Models with the
Eclipse AMW plugin. In: Eclipse Modeling Symposium, Eclipse Summit Europe. volume
2006, 2006.

[DFJ05] Del Fabro, Marcos Didonet; Jouault, Frédéric: Model transformation and weaving in the
AMMA platform. Proceedings of GTTSE, 2006, 2005.

[EKO07] Ehrig, Marc; Koschmider, Agnes; Oberweis, Andreas: Measuring similarity between
semantic business process models. In: Proceedings of the fourth Asia-PaciĄc conference
on Comceptual modelling-Volume 67. Australian Computer Society, Inc., pp. 71Ű80,
2007.

[Fi11] Fill, Hans-Georg: On the Conceptualization of a Modeling Language for Semantic Model
Annotations. In: Advanced Information Systems Engineering Workshops - CAiSE 2011
International Workshops, London, UK, June 20-24, 2011. Proceedings. pp. 134Ű148,
2011.

[Fi12] Fill, Hans-Georg: An Approach for Analyzing the Effects of Risks on Business Processes
using Semantic Annotations. In: 20th European Conference on Information Systems,
ECIS 2012, Barcelona, Spain, June 10-13, 2012. p. 111, 2012.

[Fi17] Fill, Hans-Georg: SeMFIS: A Ćexible engineering platform for semantic annotations of
conceptual models. Semantic Web, 8(5):747Ű763, 2017.

[FRK12] Fill, Hans-Georg; Redmond, Timothy; Karagiannis, Dimitris: FDMM: A Formalism for
Describing ADOxx Meta Models and Models. In: ICEIS 2012 - Proceedings of the
14th International Conference on Enterprise Information Systems, Volume 3, Wroclaw,
Poland, 28 June - 1 July, 2012. pp. 133Ű144, 2012.

Transforming Enterprise Models to Linked Data 69

[Ga04] Gasevic, Dragan; Djuric, Dragan; Devedzic, Vladan; Damjanovic, Violeta: Converting
UML to OWL ontologies. In: Proceedings of the 13th international conference on World
Wide Web - Alternate Track Papers & Posters, WWW 2004, New York, NY, USA, May
17-20, 2004. pp. 488Ű489, 2004.

[Hi15] Hinkelmann, Knut: Modeling Framework for BPaaS. CloudSocket, December
2015. https://www.cloudsocket.eu/documents/10182/20690/CloudSocket-D3.1-
BPaaS+Design+Environment+Research/91a3c2ae-6394-482a-940e-d0186e82f7f6, Ac-
cessed on 13-04-2017.

[Jo06] Jouault, Frédéric; Allilaire, Freddy; Bézivin, Jean; Kurtev, Ivan; Valduriez, Patrick: ATL:
a QVT-like transformation language. In: ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications. ACM, pp. 719Ű720, 2006.

[Ka06] Kappel, Gerti; Kapsammer, Elisabeth; Kargl, Horst; Kramler, Gerhard; Reiter, Thomas;
Retschitzegger, Werner; Schwinger, Wieland; Wimmer, Manuel: Lifting metamodels to
ontologies: A step to the semantic integration of modeling languages. In: International
Conference on Model Driven Engineering Languages and Systems. Springer, pp. 528Ű542,
2006.

[KB16] Karagiannis, Dimitris; Buchmann, Robert Andrei: Linked Open Models: Extending
Linked Open Data with conceptual model information. Inf. Syst., 56:174Ű197, 2016.

[KJS96] Karagiannis, Dimitris; Junginger, Stefan; Strobl, Robert: Introduction to Business Process
Management Systems Concepts. In: Business process modelling, pp. 81Ű106. Springer,
1996.

[KMM16] Karagiannis, Dimitris; Mayr, Heinrich C.; Mylopoulos, John, eds. Domain-SpeciĄc
Conceptual Modeling, Concepts, Methods and Tools. Springer, 2016.

[My92] Mylopoulos, John: Conceptual modelling and Telos. Conceptual Modelling, Databases,
and CASE: an Integrated View of Information System Development, New York: John
Wiley & Sons, pp. 49Ű68, 1992.

[Ro06] Rosemann, Michael: Potential pitfalls of process modeling: part A. Business Process
Management Journal, 12(2):249Ű254, 2006.

[Sc08] Schätz, Bernhard: Formalization and rule-based transformation of EMF Ecore-based
models. In: International Conference on Software Language Engineering. Springer, pp.
227Ű244, 2008.

[TF07] Thomas, Oliver; Fellmann, Michael: Semantic EPC: Enhancing Process Modeling Using
Ontology Languages. In: Proceedings of the Workshop on Semantic Business Process and
Product Lifecycle Management SBPM 2007, held in conjunction with the 3rd European
Semantic Web Conference (ESWC 2007), Innsbruck, Austria, June 7, 2007. 2007.

[vDDM13] van Dongen, Boudewijn F.; Dijkman, Remco M.; Mendling, Jan: Measuring Similarity
between Business Process Models. In: Seminal Contributions to Information Systems
Engineering, 25 Years of CAiSE, pp. 405Ű419. 2013.

[WH01] Whitman, Larry; Huff, Brian: On the Use of Enterprise Models. International Journal of
Flexible Manufacturing Systems, 13(2), 2001.

70 Benedikt Pittl, Hans-Georg Fill

https://www.cloudsocket.eu/documents/10182/20690/CloudSocket-D3.1-BPaaS+Design+Environment+Research/91a3c2ae-6394-482a-940e-d0186e82f7f6
https://www.cloudsocket.eu/documents/10182/20690/CloudSocket-D3.1-BPaaS+Design+Environment+Research/91a3c2ae-6394-482a-940e-d0186e82f7f6

Towards a run-time model for data protection in the cloud

Zoltán Ádám Mann, Andreas Metzger, and Stefan Schoenen 1

Abstract: The protection of sensitive data in the cloud is a challenge of increasing importance. It
is made particularly difficult by the complex and dynamic interactions of many entities (hardware
and software, as well as organizations and individuals). A model-based approach can be used to
reason about these interactions and their impact on data protection during deployment and at run
time. The basis for such an approach is a model of all relevant socio-technical cloud entities, which is
created during deployment and kept alive at run-time to support adaptations. In this paper, we focus
on the meta-model of this model. The meta-model is created during design and instantiated during
deployment. We discuss what entities must be present in the meta-model to allow reasoning about data
protection. In particular, we discuss to what extent the results of previous cloud modeling efforts can
be reused and what extensions are necessary because of the particular requirements of data protection.

Keywords: Models@runtime; cloud computing; data protection; privacy

1 Introduction

The compelling advantages of cloud computing, such as the instantaneous access to services
and seemingly inĄnite compute power without the need for costly IT equipment, have made
the cloud the platform of choice in many domains. The cloud is a complex and highly
dynamic environment. For example, the active user base of cloud services is continuously
changing, and so is the intensity with which cloud users use the services. Also the speciĄc
requirements of the users keep changing. New services are added, existing services upgraded,
old services removed, and so on. To adapt to changes in the workload, software components
are scaled in or out or migrated between servers.

The Ćexibility and dynamism offered by cloud computing is an advantage for cloud users, as
they can access and pay for compute and software resources on demand [Ma15b]. Yet, at the
same time, this Ćexibility and dynamism implies data protection risks. Protecting sensitive
data in the cloud is becoming an important limiting factor of cloud adoption [Mo13]. Also
requirements and constraints regarding data protection2 can change continuously. As an
example, users may change their preferences regarding how their personal data is handled
by cloud services. The General Data Protection Regulation (GDPR) of the European Union

1 The authors are with paluno Ű The Ruhr Institute for Software Technology, University of Duisburg-Essen
2 In this paper, we use the term data protection to refer to the protection of sensitive data. This includes privacy

(protection of personal data). Security concerns are included, as long as they relate to the protection of sensitive
data (but security issues that do not impact sensitive data are not relevant here).

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 71

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-sa/4.0/

[Co16] increases the breadth and depth of control that users (in this context called data
subjects) have about their data. This makes it easier for users to withdraw their consent
to processing and storage of their data, but in turn exhibits new challenges for cloud
service providers. In the Ćexible and dynamic setting of cloud systems, the applicability of
traditional security mechanisms that were designed to keep the system in a stable secure
state is limited [BKW14]. In particular, security-by-design methodologies are not sufficient
anymore, due to uncertainty at design time of how the cloud and privacy requirements may
dynamically evolve and change at run time.

A possible approach to cope with continuously changing data protection requirements in
a dynamic cloud environment is to apply run-time monitoring and adaptation. This way
the system can adapt at run time to changes in both the cloud and the data protection
requirements, ensuring that requirements are met in the presence of changes, with minimal
impact on other quality metrics like performance and costs [Ma15a]. To enable effective
adaptation at run time, a run-time model, i.e., a model of the system and its environment
available for reasoning at run time, is of central importance [Am12].

Therefore, our aim is to devise a run-time model of the cloud, which is useful for detecting
and mitigating data protection violations. More speciĄcally, we focus on the key modeling
concepts required to cover the main elements of a cloud system in a run-time model of the
cloud, leading to a cloud meta-model for data protection. The challenge in devising the
meta-model of the cloud is to determine a sufficient level of detail as well as the necessary
scope of modeled entities. Data protection concerns relate to all layers of the cloud stack,
including, for example, secure hardware capabilities, co-location of virtual machines of
different tenants on the same server, encryption of the communication between application
components, and data anonymization. Moreover, the actors (organizations and individuals)
as well as their goals and relations may play an important role. The challenge, therefore, is
to devise a holistic model encompassing all relevant entities.

The approach followed in this paper can be summarized as follows. (i) We identify the types
of information that the meta-model must contain in order to serve as a basis for assessing
data protection issues. (ii) We specify the entities and their most important relations in a
possible cloud meta-model. (iii) A scenario from an industrial context is used to validate
the applicability of the suggested meta-model.

2 Industrial cloud scenario

To devise an appropriate model, it is important to Ąrst understand the purpose of modeling.
In our case, this means that we need to understand the types of data protection violations
that we want to be able to detect. To this end, we look at an industrial cloud setup and its
implications on data protection. This scenario has been deĄned in the context of the project
ŞRestAssured Ű Secure Data Processing in the CloudŤ3 jointly with several industry partners.

3 https://restassuredh2020.eu/

72 Zoltán Ádám Mann, Andreas Metzger, Stefan Schoenen

https://restassuredh2020.eu/

IaaS Cloud

Provider X

FR

Component
A

DB

PaaS Cloud

provider

US

Data Controller B

New Component B deployed

in a non-EU geo-location;
access violates GDPR

wrt. geo-location policies.

Data transferred to SaaS

provided by untrusted entity,
thus threat to data protection

Component deployed on non-secure infrastructure,

thus data may be compromised

Data deployed in non-

secure DB and thus may be
compromised

SaaS Cloud
Provider Z

= Data Processor

with Services

= Data Controller C

Data Protection

Violation

Data Consumer

IaaS Cloud

Provider Y

DataData Subject

Legislative Organ

Data Controller A

(= Provider of Component

Services A)

Com-
ponent

C

Component
B

Flow of Data

Direct

Relation

Untrusted

(“Black Hat“)

Indirect

Relation

Trusted

(“White Hat“)

Fig. 1: An industrial cloud scenario

While the scenario abstracts from speciĄc applications, it has been validated to reĆect the
typical data protection concerns of practical cloud systems.

In Fig. 1 we see a typical cloud scenario where multiple parties are involved. In this scenario,
personal data about individual users (Data Subject4) are captured by a company (Data
Controller A), with explicit consent of the users and under legislative control. The company
stores the data in an unencrypted database (DB) operated by a PaaS (Platform as a Service)
provider and deploys its application (Component A) using the infrastructure (including a
virtual machine in which Component A runs and a physical machine in which this virtual
machine runs) provided by IaaS (Infrastructure as a Service) provider X. Another actor
(Data Consumer) uses an application (Component C) to communicate with Component A
and get access to the data. Component C is run by SaaS (Software as a Service) provider
Z. Another company (Data Controller B) uses an application (Component B) run on the
infrastructure of IaaS provider Y that accesses the same database DB.

It is important to note that Data Controller A and Data Consumer are trusted by Data Subject,
as shown by their white hats5 in the Ągure. Nevertheless, as the data traverse between the
trusted parties, several untrusted actors (PaaS provider, IaaS provider X, SaaS provider

4 The names of the roles are based on the terminology of the GDPR
5 Note that here white and black hats encode trustworthiness and do not refer to white-hat / black-hat hackers.

Towards a run-time model for data protection in the cloud 73

Z) may get unauthorized access to the data along the way. Moreover, other cloud tenants
using the same public database offering (DB) can also get access to the data. The access by
Component B also poses a further problem because Component B is hosted in the US, but
European regulations prohibit processing personal data of EU citizens outside the EU.

As we can see, a cloud setup can be complex and dynamic, with many different socio-
technical interactions, posing a wide-ranging set of threats to data protection.

3 Related work

Multi-layer cloud meta-models Shao et al. proposed a model-based approach for
cloud monitoring [Sh10]. Their approach, called RMCM (Runtime Model for Cloud
Monitoring), differentiates between three roles: cloud operator, service developer, and
end user. Monitoring is used to adjust a model of the cloud consisting of four layers: (i)
infrastructure, (ii) middleware, (iii) application, and (iv) interactions between the roles and
the cloud. The models inside the layers are not speciĄed; the focus of that work was rather
on how the different layers can be monitored.

The NIST Cloud Computing Reference Architecture [Na11] also deĄnes a kind of model of
cloud computing. It mainly focuses on the deĄnition of roles (cloud service provider, cloud
service consumer, cloud broker, cloud auditor, cloud carrier) and the associated activities.
In connection with the service provisioning and orchestration activities, the model foresees
three layers: (i) physical resource layer, (ii) resource abstraction and control layer, (iii)
service layer. However, the model does not include the actual components that make up a
cloud system. Privacy is mentioned as an important requirement, but no details are provided.

Marquezan et al. [Ma14] developed a conceptual model of all the key entities relevant for
adaptations in the cloud, based on a survey of the literature, discussions with industrial
partners, and the analysis of commercial solutions. The resulting model consists of four layers:
(i) The physical layer contains the physical equipment, like servers. (ii) The virtualization

layer consists of virtual resources, like virtual machines. (iii) The logical application

architecture layer is composed of the software components needed to support the logical
architecture of the application, like application servers. (iv) The application business logic

layer contains the components actually implementing the business logic of the application.
Since the model of [Ma14] focuses on the adaptation possibilities of the cloud, it contains
beside the actual cloud entities also the adaptation techniques (e.g., load balancing) in the
same model. On the other hand, data protection was not in focus, so that the model does not
support reasoning about pieces of data, actors, and relations among them.

Meta-models for cloud applications Several works focused on the highest cloud layer,
i.e., the application layer. Chapman et al. addressed the problem of deĄning the architecture
of multi-cloud software systems and proposed a model-based approach [Ch12]. The resulting

74 Zoltán Ádám Mann, Andreas Metzger, Stefan Schoenen

models target the application layer and only include some references to lower layers. The
language deĄned in that paper relies on the Open Virtualization Format (OVF), but extends
it with several new concepts, e.g., for elasticity rules. Nagel et al. presented a meta-model
supporting the adaptation of business processes realized as cloud services [Na12]. The
meta-model focused on the business process models, their adaptation and their mapping on
cloud services, and abstracted from the technical infrastructure underlying the cloud services.
However, some important threats to data protection relate to the underlying technology
stack.

Heinrich proposed an architectural run-time model-based approach for analyzing cloud
applications [He16]. That work uses a megamodel to connect a design-time architecture
model, an architectural run-time model, and the actual implementation to enable correct
interpretation of monitoring events and keeping the run-time model in sync with the state
of the program. That method could be combined with our approach to provide effective
monitoring for analyzing data protection issues. Bergmayr et al. proposed the Cloud
Application Modeling Language (CAML) to facilitate expressing cloud-based deployments
directly in UML [Be14]. Later on, that approach has also been extended to enable application
provisioning by means of TOSCA [Be16]. That approach underlines the applicability of
UML for modeling not only applications but also cloud environments. However, the
approach lacks support for several concepts related to data protection, like the trust among
stakeholders.

Model-based approaches for cloud security and privacy Similarly to our approach, the
work of Schmieders et al. also applies model-based adaptive methods to data protection
in the cloud [SMP15a, SMP15b]. That work, however, is limited to one speciĄc type of
privacy goals: geo-location constraints. Our work, in contrast, addresses data protection
goals in a much broader sense.

Kritikos and Massonet proposed a domain-speciĄc modeling language for modeling security
aspects in cloud computing [KM16]. This includes security controls, security properties,
security metrics, and security capabilities. In contrast, our work focuses on modeling the
cloud Ű in particular, the possible attack surfaces and the conĄgurations that may lead to
data protection violations.

Other cloud models The MODAClouds project proposed a model-based approach to
design, deploy, and maintain cloud applications [Ar12]. To enable multi-cloud deployments
and migrations between clouds, MODAClouds adopted a model-driven approach: a
Cloud-enabled Computation Independent Model (CIM) is transformed semi-automatically
via a Cloud-Provider Independent Model (CPIM) to a Cloud-Provider SpeciĄc Model
(CPSM). Unfortunately, the approach gives little support on what exactly needs to be in the
models.

Towards a run-time model for data protection in the cloud 75

Industry cooperation resulted in TOSCA, a standard for cloud deployment topology and
orchestration speciĄcation [OA13]. TOSCA advocates a generic template-based speciĄcation
approach, in which services are speciĄed in terms of node templates and relationship
templates, and deployed by applying a deployment plan. While the generality of TOSCA
allows the speciĄcation of any service, it lacks support for explicitly reasoning about
data-protection-relevant aspects, like the location of data. Lejeune et al. took an even more
generic approach and developed an abstract service model [LAL17]. This allows to describe
any cloud service in terms of used services and components and offered SLAs. However, the
abstract model hides the underlying technical components and their interrelations, which
can be important for assessing the fulĄllment of data protection policies.

Model-based approaches have also been proposed for evaluating the design of cloud systems.
Relating to privacy, Ahmadian et al. devised a methodology based on the concept of Privacy
Level Agreements [Ah17]. Such approaches are orthogonal to ours and an interesting path
for future research is to investigate the integration of design models and run-time models.

Recently, we have introduced a method for detecting violations of data protection policies
in cloud systems at run time [SMM17]. Our method is based on identifying Şrisk patternsŤ
Ű conĄgurations that would lead to unacceptably high risks of data protection violations
Ű in a model of the cloud. Thus, having an appropriate run-time model of the cloud is a
prerequisite for the method to work.

4 Design considerations for the meta-model

Based on the requirements from the example of Sec. 2 and the analysis of related work in
Sec. 3, the cornerstones for an appropriate meta-model can be established as follows.

• Often, data protection violation is not conĄned to a speciĄc cloud layer, but arises
from the interplay of entities belonging to different cloud layers. For instance, a
data record accessed by an application hosted by a virtual machine on a physical
machine might constitute a data protection violation because it potentially allows the
administrator of the physical machine to access the data. However, if the data are
encrypted, or the application is protected by appropriate access control mechanisms,
or the physical machine supports secure hardware enclaves, data protection can still
be ensured [MM17]. Therefore, it is important to model the attributes of as well as
interactions among entities on different cloud layers.

• Beyond technical entities like physical and virtual machines, also actors and their
attributes and relationships need to be modeled. For example, if the data belonging to
actor A can get accessed by actor B, this may or may not constitute a data protection
violation depending on whether A trusts B or not.

• In existing cloud models, data was also missing. For reasoning about data protection,
we need to add support for modeling data. This is not to be confused with Şdata

76 Zoltán Ádám Mann, Andreas Metzger, Stefan Schoenen

modeling,Ť which is about modeling the logical concepts captured by the data. For our
purposes, other attributes of data objects matter, like their sensitivity (e.g., personal
data) and where they are stored and processed.

• UML provides sufficient expressiveness to model cloud systems, as shown by [Be14].
Although there are also alternatives, we stick to UML because of its wide-spread
adoption and the available tool support. More speciĄcally, we will use UML class
diagrams for the meta-model and object diagrams for the model of the cloud.

• Beyond the mere detection of data protection violations, the model should also
support Ąnding the right mitigation action. For this purpose, it is vital to also model
the possible data protection mechanisms and their impact on security attributes.
Moreover; there may be multiple mechanisms that can be used to achieve the same
security goal; in this case it is useful to select the one that has the smallest impact on
other goals like performance or costs. For supporting such decisions, it is important
to also model the impact of the available security mechanisms on those other goals.

• To be useful, the cloud meta-model needs to mirror the used technologies. However,
there are several different technologies used in cloud computing and the technologies
are also subject to change. For example, some cloud systems use virtual machines,
others use containers, and a combination of the two is also possible. Therefore it is not
feasible to strive for a cloud meta-model that is generic enough to capture all possible
technical cloud realizations and at the same time also detailed and speciĄc enough to
allow reasoning about data protection impacts of a given cloud conĄguration. Rather,
we argue that the exact cloud meta-model has to be created during system design,
taking into account the speciĄc technologies that are foreseen for the given system.
We support that process by identifying the sorts of entities that need to be modeled,
resulting in a framework for the meta-model, and giving examples of the modeling of
entities that play an important role in most cloud systems.

5 Proposed meta-model

Based on the considerations of Sec. 4, we now propose a cloud meta-model for data
protection. This meta-model can be seen as an extension of the existing multi-layer models
of cloud systems discussed in Sec. 3. We extend those models with several concepts that are
vital for data protection, like explicitly modeling data and actors.

5.1 Structure of the meta-model

Independently from the used technologies, our meta-model framework is structured into
four high-level packages as shown in Fig. 2 and explained below:
Assets: conĄguration of the cloud, including all the physical and virtual entities that are

Towards a run-time model for data protection in the cloud 77

access

impact

own

trust

Data

Applications

Middleware

Infrastructure

Assets

Actors

Goals &

metrics
Mechanisms

Fig. 2: The structure of the proposed meta-model

important for data protection
Actors: stakeholders and their roles relevant for data protection in the cloud at run time
Goals & metrics: non-functional properties that the system should fulĄll
Mechanisms: possibilities for adaptation, including structural changes and changes to
speciĄc attributes

Fig. 2 also highlights the most important relations between the packages. In particular,
assets may be owned and/or Ű independently from that Ű accessed by actors. In terms of
relations among actors, trust is of special importance. We use a white-list approach to trust,
i.e., every trust relation must be explicitly established (e.g., by means of a contract). Also,
trust relations can be limited to speciĄc types of actions on speciĄc data. Goals & metrics
relate to some assets, e.g., by specifying a response time constraint on an application. The
mechanisms change some assets and impact the goals & metrics. For example, encrypting a
piece of data changes an attribute of that data object and it has some given positive impact
on conĄdentiality but negative impact on performance.

The Assets package is further subdivided into Infrastructure, Middleware, Applications, and
Data. Traditionally, cloud models include only the Ąrst three of those, but we also included
data because of its obvious importance to data protection. Data is the primary asset at risk,
but the other layers are also important because they act as additional attack surface.

Altogether, the proposed meta-model consists of seven sub-models: the four packages within
Assets, plus Actors, Goals & metrics, and Mechanisms. These sub-models are detailed next.

78 Zoltán Ádám Mann, Andreas Metzger, Stefan Schoenen

Goals & metrics

Data object

Data set

Data Actors

Data-specific role

Middleware Applications

Stored data set Database

Record

Data flow Connector

Data protection

Attribute

Attribute value

Component

*
* *

*

* 1 * *

* 1

*

*

1

1

*

*

1

1

DBMS

*1

Mechanisms Infrastructure

Encryption
1

*

Fig. 3: The sub-model Data and its relations to the other sub-models

5.2 Contents of the sub-models

The structure of the meta-model presented above is technology-independent and hence
it can be expected to remain stable for a wide range of cloud systems. In contrast, the
contents of the sub-models may depend on speciĄc technologies and hence may differ
from system to system. For example, the contents of the Data sub-model may depend
on whether structured, semi-structured, or non-structured data are used; the contents of
the Infrastructure sub-model will be different depending on whether virtual machines or
containers are used etc. Therefore in the following we show examples of what the contents
of the sub-models may be. Still, we try to be generic enough so that these models likely
apply to many different cloud systems with no or little modiĄcation and can be used as
starting point for modeling other cloud systems as well.

The Data sub-model shown in Fig. 3 is based on a relational model (like in [Ri13]) but
abstracts from details that are not important for us (e.g., domains of attributes) and adds
others that are important (e.g., relating to the storage of data). The smallest unit of data
is the ŞAttribute value,Ť corresponding to a cell in a relational table. Attributes (columns)
and Records (rows) contain multiple Attribute values; a Data set (table) contains multiple
Attributes and multiple Records. A Data set can either be stored or transferred, represented
by the entities Stored data set and Data Ćow inheriting from Data set. A database consists
of multiple stored data sets. A Stored data set can be stored either in a local Database
associated with a speciĄc application Component or using a database management system
(DBMS) provided by the Middleware. Attribute Values, Attributes, Records and Data Sets
are all considered ŞData objects.Ť For each Data object there can be multiple Data protection
requirements. Data objects may be accessed by different Actors in Data-speciĄc roles.
Encryption can be used to alter the security attributes of a Data object.

Towards a run-time model for data protection in the cloud 79

Goals & metrics

Application template

Component template

Applications Actors

SaaS operator

SaaS developer

SaaS user

Connector template

Application

Component

Connector

Goal *

*

Infrastructure

VM 1

*

1..*

*
*

1

*
*

Data

Data flow*

1

*

*

* 1

1

1

1

*

*

2

1

*

2

*

Mechanisms Middleware

Authentication
1

*

Application server*
1

DBMS

*

*

Fig. 4: The sub-model Applications and its relations to the other sub-models

Infrastructure

Web server

Application server

Middleware Actors

PaaS operator

PaaS developer

PaaS user

DBMS

Web server pool

Application server pool

Load balancer

VM 1

*

Data

Stored data set

1

1..*

*
1

*

*

Mechanisms

*

* 0..1

0..1
*

*

*

*

Applications Goals & metrics

Component

1

*

High performance

*

1

0..1

0..1

1

1

*

1

*

Middleware element

LB configuration1

*

*

*

Fig. 5: The sub-model Middleware and its relations to the other sub-models

Applications (Fig. 4) consist of multiple Components that are linked by Connectors. The
logical structure of an Application is deĄned by an Application template, from which
the speciĄc Application, Component, and Connector instances are derived and scaled
as necessary. SaaS (Software as a Service) developers work with Application templates.
Applications are managed by SaaS operators and used by SaaS users. Certain Goals may
apply to an Application and Authentication mechanisms can be turned on or off for an
Application. Each Component is deployed in a VM (Virtual Machine) and controlled by an
Application server. A Connector may accommodate Data Ćows.

The Middleware sub-model (Fig. 5) supports multi-tier web applications with Web server,
Application server, and DBMS entities. Web servers and Application servers can be clustered
into Web server pools and Application server pools, respectively, which can be associated to
a Load balancer. All these are Middleware elements, which are created, operated, and used

80 Zoltán Ádám Mann, Andreas Metzger, Stefan Schoenen

Goals & metrics

Goal *

VM

PM

DC

IaaS cloud

*

1

*

1

*
1

Private IaaS interface

Public IaaS interface*
0..1

*
0..1

Infrastructure

0..1

1

*

Actors

IaaS user*

*

*

*

IaaS developer
1..*

*

Applications Data

Component

1

*

IaaS operator

*

1

Middleware

Infrastructure element

Web server

Application server

1

*

*

Mechanisms

Vertical scaling

Migration

1

*

1

Node

Link

Switch RouterStorage

2

*
*

DBMS
1

*
*

Fig. 6: The sub-model Infrastructure and its relations to the other sub-models

by PaaS (Platform as a Service) developers, PaaS operators, and PaaS users, respectively.
Web servers and Application servers are hosted by VMs, Application servers manage
application Components, and DBMS store data sets. A Load balancer has an associated
Performance goal and can be conĄgured by an appropriate conĄguration mechanism.

In the sub-model Infrastructure (Fig. 6), an IaaS (Infrastructure as a Service) cloud consists
of multiple data centers (DC); each DC consists of multiple network nodes, connected
by links. Nodes include storage, switches, routers, and physical machines (PM); each PM
may host multiple virtual machines (VM). IaaS clouds, DCs, Nodes, Links, and VMs are
considered Infrastructure elements. An IaaS cloud can be accessed through a Public or
Private cloud interface. The former allows access to VMs only, while the latter allows
access to all Infrastructure elements. Different Goals may apply to Infrastructure elements.
Application Components as well as Web and Application servers are hosted on VMs. An
IaaS user can access VMs by using a Public IaaS interface, whereas IaaS developers and
operators have access to any Infrastructure element. VMs can be scaled using Vertical
scaling and their mapping to PMs can be changed by Migration.

To improve visibility, reduce redundancy, and save space, for the following sub-models
we do not show their relations to the other sub-models. In the sub-model Actors (Fig.
7a), each Party can have multiple cloud-speciĄc or data-speciĄc Roles. As Cloud-speciĄc
roles we differentiate users, developers and operators on SaaS, PaaS, or IaaS level. Within
Data-speciĄc roles, we differentiate Data subjects, Data producers, Data processors, and
Data controllers, as stipulated by the GDPR. Cloud-speciĄc roles may relate to different
Application, Middleware, and Infrastructure elements. Similarly, Data-speciĄc roles relate
to Data objects. A Party in a speciĄc Role may have multiple Goals.

The sub-model Goals & metrics (Fig. 7b) contains the non-functional requirements that

Towards a run-time model for data protection in the cloud 81

Role

Actors

Cloud-specific role

SaaS developer SaaS operator SaaS user

PaaS developer PaaS operator PaaS user

IaaS developer IaaS operator IaaS user

Party

Data-specific role

Data subject Data producer

Data processorData controller

* *

(a)

Goal

User-friendliness

Goals & metrics

Short resp. time

Data protection

High throughput

High performance

Low resource cons.

Low cost Low power cons. Low memory cons.

Confidentiality Integrity Authenticity

Availability

(b)

Fig. 7: The sub-models (a) Actors and (b) Goals & metrics. The dashed boxes indicate that
all contained classes inherit from the same superclass

Mechanism

Mechanisms

Encryption Authentication

Configuration

Structural change

Migration Horizontal scaling

Integrity protection Anonymization

Vertical scaling

Fig. 8: The sub-model Mechanisms

the system must fulĄll. This includes High performance, Low resource consumption, Data
protection, User-friendliness, and Availability. These high-level goals can be decomposed
into more speciĄc goals; in particular, Data protection is decomposed into ConĄdentiality,
Integrity, and Authenticity. Goals may relate to different Assets. In particular, Data protection
goals relate to Data objects. A Goal is posed by a Party in a speciĄc Role and may be
impacted by different Mechanisms.

As shown in Fig. 8, Mechanisms can be of two kinds: ConĄguration or Structural change.
ConĄguration may mean that a feature such as Encryption within an application Component

82 Zoltán Ádám Mann, Andreas Metzger, Stefan Schoenen

M
id
d
le
w
a
re

D
a
ta

A
p
p
li
c
a
ti
o
n
s

A
c
to
rs

In
fr
a
s
tr
u
c
tu
re

: Data_SubjectX : IaaS_Provider : PaaS_Provider A : Data_Controller : Data_ConsumerZ : SaaS_Provider B : Data_Controller

: Record

sensitive=yes

encrypted=no

A : Component

encrypted=no

C : Component

encrypted=no

: DBMS

encrypted=no

: VM : VM

: Connector

encrypted=no

: Record

sensitive=yes

encrypted=no

: Data_Flow

encrypted=no

B : Component

encrypted=no

Y : IaaS_Provider

: PM

location=FR

: PM

location=US

: Stored_Data_Set

encrypted=no

Fig. 9: Object model resulting from applying the meta-model of Sec. 5 to the example of
Sec. 2

is switched on or off or some more subtle parameter change, e.g., the key length of the
encryption algorithm is changed. Similar mechanisms are Authentication, Integrity protection
(e.g., using cryptographic hashes), Anonymization of data, or Vertical scaling of VMs.
Structural changes, on the other hand, create or remove entities or change interconnections
among entities. In particular, Horizontal scaling of VMs creates or removes VM instances,
whereas Migration of VMs between PMs changes the interconnection between the affected
PMs and VM. These are powerful mechanisms to achieve several different Goals, including
Data protection (e.g., by means of co-locating Components so that the Data Ćow between
them does not have to traverse the network).

6 Application to the industrial cloud scenario

To validate the applicability of the proposed meta-model, we revisit the industrial cloud
scenario from Sec. 2. We modeled that example using the proposed meta-model. An excerpt
of the resulting model is shown in Fig. 9, consisting of the four Assets and the Actors
sub-models and their interconnections.

The resulting model captures all details that are necessary to automatically identify all data
protection issues that were previously identiĄed by experts in Fig. 1. For example, Fig. 9
shows that the data subject trusts data controller A and the data consumer, but all other

Towards a run-time model for data protection in the cloud 83

parties are not trusted. We can see the different actors that can access components A, B, and
C, the data record containing sensitive data of the data subject, the joint use of the DBMS,
as well as the used infrastructure elements and the associated providers. On the basis of this
model, the problems marked in Fig. 1 can be identiĄed using the run-time model (instance
of the meta-model). The run-time model is shown as an object model in Fig. 9. The model
shows that the PaaS provider has access to the DBMS, which contains a sensitive data
record of a data subject in an unencrypted form, and the PaaS provider is not trusted by the
data subject. This clearly constitutes a high risk of data protection violation. Such violations
can be found automatically based on a pre-deĄned set of forbidden subgraphs using graph
pattern matching algorithms [Ma11], as discussed in [SMM17].

Once a data protection violation has been detected, the model may also be used to investigate
the available mechanisms. For each of them, it can be checked whether (i) it is applicable in
the given situation, (ii) it would break the forbidden subgraph found in the run-time model,
and (iii) it would not introduce another forbidden subgraph. In our example, turning on
encryption would be such a mechanism. If multiple appropriate mechanisms are available,
the one with the best (i.e., least disadvantageous) impact on the other goals is selected and
applied, thus automatically solving the identiĄed problem. If no appropriate adaptation
action can be found, a human operator needs to be alerted. A more detailed discussion on
the process of applying the run-time model for identifying data protection violations can be
found in the companion paper [SMM17].

7 Conclusions and future work

In this paper, we argued that data protection in a dynamic cloud setting should be addressed
by automatically conĄguring the system at deployment time and dynamically re-conĄguring
it at run time. A central element of such an approach is a run-time model of the relevant
entities. We have presented a way of determining and structuring the corresponding meta-
model. Similarly to previous approaches to cloud modeling, cloud assets like infrastructure,
middleware, and applications need to be modeled. However, for data protection purposes,
more is needed, and hence we introduced further sub-models for data, actors, goals, and
mechanisms. We have presented an initial validation of our meta-model by applying it to an
industrial case study and found that the resulting model contains all necessary information
for detecting and automatically mitigating data protection violations.

The next step will be to implement the proposed model together with the reasoning technique
for Ąnding risk patterns described in [SMM17]. This can then be used to carry out a more
realistic evaluation of the proposed approach, also showing how much the meta-models of
the run-time model of different cloud systems differ from each other. Moreover, it should be
investigated how other, more sophisticated mechanisms to protect privacy, such as controlled
interaction [BMZ16] can be incorporated.

84 Zoltán Ádám Mann, Andreas Metzger, Stefan Schoenen

Acknowledgments. This work received funding from the European UnionŠs Horizon 2020
research and innovation programme under grant 731678 (RestAssured). Useful discussions
with project partners are gratefully acknowledged.

References

[Ah17] Ahmadian, Amir Shayan; Strüber, Daniel; Riediger, Volker; Jürjens, Jan: Model-Based
Privacy Analysis in Industrial Ecosystems. In: Proceedings of the 13th European
Conference on Modelling Foundations and Applications. pp. 215Ű231, 2017.

[Am12] Amoui, Mehdi; Derakhshanmanesh, Mahdi; Ebert, Jürgen; Tahvildari, Ladan: Achieving
dynamic adaptation via management and interpretation of runtime models. Journal of
Systems and Software, 85(12):2720Ű2737, 2012.

[Ar12] Ardagna, Danilo; Di Nitto, Elisabetta; Casale, Giuliano; Petcu, Dana; Mohagheghi,
Parastoo; Mosser, Sébastien; Matthews, Peter; Gericke, Anke; Ballagny, Cyril; DŠAndria,
Francesco et al.: MODAClouds: A model-driven approach for the design and execution of
applications on multiple clouds. In: Proceedings of the 4th International Workshop on
Modeling in Software Engineering. IEEE Press, pp. 50Ű56, 2012.

[Be14] Bergmayr, Alexander; Troya, Javier; Neubauer, Patrick; Wimmer, Manuel; Kappel, Gerti:
UML-based Cloud Application Modeling with Libraries, ProĄles, and Templates. In:
CloudMDE@MoDELS. pp. 56Ű65, 2014.

[Be16] Bergmayr, Alexander; Breitenbücher, Uwe; Kopp, Oliver; Wimmer, Manuel; Kappel,
Gerti; Leymann, Frank: From Architecture Modeling to Application Provisioning for
the Cloud by Combining UML and TOSCA. In: Proceedings of the 6th International
Conference on Cloud Computing and Services Science. pp. 97Ű108, 2016.

[BKW14] Busch, Marianne; Koch, Nora; Wirsing, Martin: SecEval: An Evaluation Framework for
Engineering Secure Systems. In: Modellierung. pp. 337Ű352, 2014.

[BMZ16] Biskup, Joachim; Menzel, Ralf; Zarouali, Jaouad: Controlled Management of
ConĄdentiality-Preserving Relational Interactions. In: International Workshop on Data
Privacy Management. pp. 61Ű77, 2016.

[Ch12] Chapman, Clovis; Emmerich, Wolfgang; Márquez, Fermin Galán; Clayman, Stuart; Galis,
Alex: Software Architecture DeĄnition for On-demand Cloud Provisioning. Cluster
Computing, 15(2):79Ű100, 2012.

[Co16] Council of the European Union: , General Data Protection Regulation. http://data.
consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf, 2016.

[He16] Heinrich, Robert: Architectural run-time models for performance and privacy analysis
in dynamic cloud applications. ACM SIGMETRICS Performance Evaluation Review,
43(4):13Ű22, 2016.

[KM16] Kritikos, Kyriakos; Massonet, Philippe: An integrated meta-model for cloud application
security modelling. Procedia Computer Science, 97:84Ű93, 2016.

[LAL17] Lejeune, Jonathan; Alvares, Frederico; Ledoux, Thomas: Towards a generic autonomic
model to manage Cloud Services. In: 7th International Conference on Cloud Computing
and Services Science. 2017.

Towards a run-time model for data protection in the cloud 85

http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf
http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf

[Ma11] Mann, Zoltán Ádám: Optimization in computer engineering Ű Theory and applications.
ScientiĄc Research Publishing, 2011.

[Ma14] Marquezan, Clarissa Cassales; Wessling, Florian; Metzger, Andreas; Pohl, Klaus; Woods,
Chris; Wallbom, Karl: Towards exploiting the full adaptation potential of cloud applications.
In: Proceedings of the 6th International Workshop on Principles of Engineering Service-
Oriented and Cloud Systems. pp. 48Ű57, 2014.

[Ma15a] Mann, Zoltán Ádám: Approximability of virtual machine allocation: much harder than
bin packing. In: Proceedings of the 9th Hungarian-Japanese Symposium on Discrete
Mathematics and Its Applications. pp. 21Ű30, 2015.

[Ma15b] Mann, Zoltán Ádám: Modeling the virtual machine allocation problem. In: Proceedings
of the International Conference on Mathematical Methods, Mathematical Models and
Simulation in Science and Engineering. pp. 102Ű106, 2015.

[MM17] Mann, Zoltán Ádám; Metzger, Andreas: Optimized Cloud Deployment of Multi-tenant
Software Considering Data Protection Concerns. In: 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. pp. 609Ű618, 2017.

[Mo13] Modi, Chirag; Patel, Dhiren; Borisaniya, Bhavesh; Patel, Avi; Rajarajan, Muttukrishnan:
A survey on security issues and solutions at different layers of Cloud computing. The
Journal of Supercomputing, 63(2):561Ű592, 2013.

[Na11] National Institute of Standards and Technology: , NIST Cloud Computing Reference
Architecture. NIST Special Publication 500-292, https://www.nist.gov/publications/
nist-cloud-computing-reference-architecture, 2011.

[Na12] Nagel, Benjamin; Gerth, Christian; Yigitbas, Enes; Christ, Fabian; Engels, Gregor:
Model-driven speciĄcation of adaptive cloud-based systems. In: Proceedings of the 1st
International Workshop on Model-Driven Engineering for High Performance and Cloud
computing. 2012. article 4.

[OA13] OASIS: , Topology and Orchestration SpeciĄcation for Cloud Applications (TOSCA) v1.0.
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html, 2013.

[Ri13] Ristić, Sonja; Aleksić, Slavica; Čeliković, Milan; Luković, Ivan: An EMF Ecore based
relational DB schema meta-model. In: Proceedings of the 6th International Conference
on Information Technology ICIT. 2013.

[Sh10] Shao, Jin; Wei, Hao; Wang, Qianxiang; Mei, Hong: A runtime model based monitoring
approach for cloud. In: IEEE 3rd International Conference on Cloud Computing. pp.
313Ű320, 2010.

[SMM17] Schoenen, Stefan; Mann, Zoltán Ádám; Metzger, Andreas: Using Risk Patterns to Identify
Violations of Data Protection Policies in Cloud Services. In: 13th International Workshop
on Engineering Service-Oriented Applications and Cloud Services. 2017.

[SMP15a] Schmieders, Eric; Metzger, Andreas; Pohl, Klaus: Architectural runtime models for privacy
checks of cloud applications. In: Proceedings of the Seventh International Workshop on
Principles of Engineering Service-Oriented and Cloud Systems. pp. 17Ű23, 2015.

[SMP15b] Schmieders, Eric; Metzger, Andreas; Pohl, Klaus: Runtime model-based privacy checks
of big data cloud services. In: International Conference on Service-Oriented Computing.
pp. 71Ű86, 2015.

86 Zoltán Ádám Mann, Andreas Metzger, Stefan Schoenen

https://www.nist.gov/publications/nist-cloud-computing-reference-architecture
https://www.nist.gov/publications/nist-cloud-computing-reference-architecture
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

Nutzung von Bilddatenbanken zur Erstellung von Symbolen
für graphische Modellierungssprachen

Ralf Laue1

Abstract: Um graphische Modellierungssprachen effektiv für die Kommunikation zu nutzen, müssen
die verwendeten Symbole verständlich und gut erlernbar sein. Nachdem festgestellt wurde, dass
dies bei bisher entwickelten Sprachen häuĄg nicht der Fall war, wurde von mehreren Autoren als
Alternative die Methode der kollektiven Symbolerstellung untersucht. Bei dieser Methode werden
Symbolvorschläge von potentiellen Nutzern der Modellierungssprache gesammelt. Dieser Beitrag
untersucht, ob dieses aufwendige Verfahren durch die Suche nach Symbolen in Bilddatenbanken
ersetzt werden kann. Nachdem diese Frage bejaht werden kann, wird eine Methode zur Erstellung von
Notationen unter Einbeziehung einer Suche in Bilddatenbanken vorgeschlagen.

Keywords: kollektive Symbolerstellung; konkrete Syntax; Notation; graphische Modellierungsspra-
che; domänenspeziĄsche Modellierungssprache

1 Einführung

Graphische Modelle werden häuĄg für die Kommunikation zwischen Systementwicklern
und Kundenvertretern genutzt. Diese Modelle können ihren Zweck, die Kommunikation zu
unterstützen, nur erfüllen, wenn sie von allen Beteiligten gleichermaßen verstanden und
interpretiert werden können. Während bei den Systementwicklern solide Kenntnisse der
Modellierungssprache vorausgesetzt werden können, ist dies bei den Kunden oft nicht der
Fall. Folglich können vor allem solche Notationen gewinnbringend in Diskussionen mit
Kunden eingesetzt werden, die ohne größere Anwenderschulung verständlich sind.

Wichtig ist daher die Frage nach Verständlichkeit und Erlernbarkeit der Symbole in
graphischen Modellierungssprachen. Ein Blick auf die Symbole der im Requirements
Engineering verbreiteten Modellierungssprache ı∗[Yu11] und die Notation von DMN-
Entscheidungsdiagrammen [Ob16] in Abb. 1 und 2 legt jedoch nahe, dass diese Kriterien
beim Notationsentwurf derzeit noch keine vorrangige Rolle spielen. Die Folge ist, dass
die Arbeit mit Modellierungsneulingen weniger effizient verläuft, als dies bei sorgfältigem
Notationsdesign der Fall sein könnte.

Mit der zunehmenden Verbreitung domänenspeziĄscher graphischer Modellierungssprachen
in den letzten Jahren liegt der Entwurf der Sprache und ihrer Notation häuĄg nicht mehr bei

1 Westsächsische Hochschule Zwickau, Fachgruppe Informatik, Dr.-Friedrichs-Ring 2a, 08056 Zwickau ralf.
laue@fh-zwickau.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 87

https://creativecommons.org/licenses/by-nc/3.0/
ralf.laue@fh-zwickau.de
ralf.laue@fh-zwickau.de
https://creativecommons.org/licenses/by-sa/4.0/

Akteur Agent Rolle Position Ziel unscharfes

Ziel

Aufgabe Ressource Annahme Annahme

(alternative

Darstellung)

Abb. 1: Symbole der ı∗-Notation

Entscheidung

Geschäftswissen Wissensquelle Eingangsdaten

Abb. 2: Symbole in DMN-Entscheidungsdiagrammen

Akteur Agent Rolle Position Ziel unscharfes

Ziel

Aufgabe Ressource Annahme

Abb. 3: ı∗-Symbole unter Berücksichtigung der ĎPhysics of NotationsŞ

Standardisierungskomitees, sondern wird im Entwicklungsprojekt durchgeführt. Dadurch
erhöht sich noch einmal der Bedarf an einer geeigneten Methode zur Erstellung der Notation.

Dass ikonische Symbole besser verständlich sind als arbiträre Formen wie in Abb. 1 und
2 zeigten Siau und Tian [ST09] anhand der Sprache UML. In ähnliche Richtung weisen
die Ergebnisse von Weitlaner et al. Sie analysierten in [WGK13] die Verständlichkeit von
Geschäftsprozessmodellen in verschiedenen Modellierungssprachen für eine Zielgruppe mit
überwiegend geringen Modellierungskenntnissen. Das Ergebnis war, dass nichtstandardi-
sierte comicartige Darstellungen besser verständlich sind als die üblicherweise verwendeten
Modellierungssprachen BPMN, EPK und UML-Aktivitätsdiagramme.

Ein Rahmenwerk zur Bewertung der Eignung graphischer Modellierungssprachen liefert
Moodys ŞPhysics of NotationsŤ [Mo09]. Nach diesem Rahmenwerk wurde in [MHM10,
MHM09] die von Yu [Yu11] vorgeschlagene ı∗-Notation bewertet und die in Abb. 3
gezeigten Symbolalternativen vorgeschlagen. Vorteile gegenüber der Original-Notation
von Yu sind sofort erkennbar: Erstens sind die Symbole in Abb. 3 klarer voneinander
unterscheidbar. Und zweitens sind die Symbole (zumindest die meisten) durch die bildliche
Darstellung leichter zu interpretieren. So weckt das ĎAufgabeŞ-Symbol die Assoziation mit
einem Klebezettel, auf dem zu erledigende Aufgaben notiert sind.

2 Kollektive Symbolerstellung

Die in Abb. 3 dargestellten Symbole wurden von Moody als Illustration der Anwendung
seiner Prinzipien aus der ĎPhysics of NotationsŞ entworfen. Moody erhob nicht den Anspruch,
dass es sich um die optimale Wahl der Symbole handelt. Um mögliche Verbesserungen zu

88 Ralf Laue

Abb. 4: Prozess der kollektiven Symbolerstellung nach [Ge12, Ca13]

Ąnden, müssten die potentiellen Nutzer, ihre Gedankenwelt und ihre Assoziationen zu den
Konzepten der Modellierungssprache untersucht werden. Forschungen in dieser Richtung
unternahmen Genon et al. [Ge12, Ca13]. Sie baten Modellierungs-Neulinge, Symbole für
die Darstellung der in der Sprache ı∗vorhandenen Konzepte zu entwerfen.

Ein solcher Ansatz hat sich auf anderen Gebieten bewährt: Howell und Fuchs [HF68]
untersuchten am Beispiel von militärischen Piktogrammen die Entwicklung von effizienten
Symbolen für die visuelle Kommunikation. Ihre Methode der kollektiven Symbolerstellung
(engl. sign production method oder stereotype production method) sieht vor, dass Personen
aus dem Kreise der potentiellen Nutzer einer symbolischen Notation entsprechend ihrer
Intuition Vorschläge für die Gestaltung der Symbole machen. Diejenigen Symbole, die
von einem hohen Prozentsatz der befragten Personen vorgeschlagen werden, werden als
Stereotyp der Intuition der Benutzergruppe angenommen.

In der Folge wurde die Methode in den verschiedensten Bereichen genutzt, etwa für
die Erstellung von Piktogrammen auf Mobiltelefonen [SZ08], für die Information von
Bahnreisenden [ZB83] oder auf dem Bedienfeld von Fotokopierern [Ho91]. In verschiedenen
Bereichen konnte gezeigt werden, dass aus dem Kreis der potentiellen Nutzer vorgeschlagene
Symbole besser verstanden werden als Symbole, die von Einzelpersonen, Firmen oder
Normierungsgremien erstellt werden.

Genon et al. [Ge12, Ca13] nutzten die Methode der kollektiven Symbolerstellung für
die Symbole der Modellierungssprache ı∗. Ihr Vorgehen ist in Abb. 4 skizziert. Befragt
wurden 104 Studenten der Wirtschaftswissenschaften an der Universität Namur, Belgien. In
einem ersten Experiment wurden mittels kollektiver Symbolerstellung Stereotypen für die
Darstellung der einzelnen ı∗-Konzepte gewonnen. Abb. 5 zeigt diese Stereotypen2, also
diejenigen Symbole, die von den Probanden am häuĄgsten vorgeschlagen wurden.

Akteur Agent Rolle Position Ziel unschar-

fes Ziel

Aufgabe Ressource Annahme

Abb. 5: Symbole der Stereotypen (aus [Ge12, Ca13])

Es schloss sich ein zweites Experiment an, in dem 30 weiteren Studenten des selben

2 In den Abbildungen sind nur die Symbole für Knoten im Modellgraph gezeigt. Darüber hinaus wurden im
Experiment auch Symbole für drei Konzepte erfragt, die im ı∗-Modell Kanten zwischen diesen Knoten sind.

Nutzung von Bilddatenbanken zur Erstellung von Symbolen 89

Akteur Agent Rolle Position Ziel unschar-

fes Ziel

Aufgabe Ressource Annahme

Abb. 6: Symbole der Prototypen (aus [Ge12, Ca13])

Studienganges die im ersten Experiment erstellten Symbole vorgelegt wurden. Die Probanden
sollten daraus die geeignetsten Symbole benennen. Im Ergebnis dieser Abstimmung wurde
ein weiterer Symbolsatz (in [Ge12, Ca13] als ĎSymbol-PrototypenŞ bezeichnet) gewonnen.
Dieser ist in Abb. 6 dargestellt. Während also die Stereotypen in Abb. 5 die am häuĄgsten
gezeichneten Symbole zeigen, sind die Prototypen in Abb. 6 diejenigen Symbole, die am
besten bewertet wurden. Dieses Vorgehen ist sinnvoll, weil in früheren Experimenten zur
kollektiven Symbolerstellung nicht selten auch solche Symbole die größte Zustimmung
erhalten haben, die von nur einem Probanden vorgeschlagen wurden [Jo83].

Schließlich wurden in einem dritten Experiment mit 65 Studenten der Haute Ecole Robert
Schuman-Libramont sowie der Haute Ecole Marie HAPS-Bruxelles den Probanden sämtliche
bisher genannten Symbolzusammenstellungen vorgelegt. Zu jedem Symbol erhielten die
Probanden eine Liste mit den Namen und Erklärungen der ı∗-Konzepte. Die Aufgabe bestand
darin, zu jedem Symbol herauszuĄnden, welches Konzept es darstellen soll. Während für
die Standard-Notation aus Abb. 1 die Korrektheit der Antworten bei 17,4% lag (was bei
neun Symbolen nicht viel besser als zufälliges Raten ist), lagen die Prozentsätze für richtige
Antworten bei der alternativen Notation (Abb. 3) bei 38,9%. Die Stereotypen (Abb. 5)
erreichten den mit 67,4% höchsten Prozentsatz; die Symbol-Prototypen (Abb. 6) wurden zu
41,7% richtig interpretiert.

Neben Genon et al. gibt es zwei weitere Arbeiten, die das Verfahren der kollektiven
Symbolerstellung für die Symbole einer graphischen Modellierungssprache nutzten. Arning
und ZieĆe [AZ09] wendeten das Verfahren auf die Geschäftsprozessmodellierungssprache
C3 an. Abb. 7 zeigt diejenigen Symbolideen, die in [AZ09] mit einem Bild abgebildet
wurden3. Kouhen et al. [eGD14, Ko15] erstellten alternative Symbole zu grundlegenden
UML-Notationselementen. Auch Kouhen et al. stellten in Tests eine erheblich bessere
Verständlichkeit der durch die Zielgruppe entworfenen Symbole im Vergleich zur Standard-
UML-Notation fest. Die in [Ko15] gefundenen Vorschläge für UML-Modellelemente zeigt
Abb. 8.

3 Recherche in Bilddatenbanken

Schritt 1 im beschriebenen Verfahren - das Zeichnen und Zusammentragen von Sym-
bolvorschlägen - ist mit einigem Aufwand verbunden. Dieser Aufwand steigt nochmals

3 mit Ausnahme des trivialen Vorschlags ĎRechteckŞ zur Bezeichnung einer Aktivität

90 Ralf Laue

Aktivität Werkzeug Schwach-

stelle

Entscheidung

(1) und (2)

Kontroll-

fluss

Informations-

fluss

Infor-

mation

synchrone

Zusammen-

arbeit

gleichzeitige

Ausführung

(1) und (2)

Start-

bedin-

gung

End-

bedin-

gung

Abb. 7: Symbolvorschläge für C3-Modellelemente (Quelle: [AZ09])

Aufzählung

(Enumeration)

Komponente Signal Paket Abhängigkeit Zusammen-

fassen (merge)

Import

Abb. 8: Symbolvorschläge für UML-Modellelemente (Quelle: [Ko15])

beträchtlich, wenn Vorschläge von Probanden mit verschiedenem kulturellen und sprachli-
chem Hintergrund gesammelt werden sollen. In diesem Beitrag soll untersucht werden, ob
eine Recherche in Bilddatenbanken diesen ersten Schritt ersetzen kann.

Hierzu wurden die in einer Modellierungssprache abzubildenden Konzepte, die auch in
den drei Arbeiten [Ge12, AZ09, Ko15] untersucht wurden, als Abfragen für verschiedene
Bilddatenbanken genutzt. Es wurde untersucht, ob unter den gelieferten Suchergebnissen
auch die von den Probanden in den Experimenten vorgeschlagenen Symbole waren. Ist dies
der Fall, kann der Aufwand für das manuelle Zeichnen von Symbolvorschlägen eingespart
werden.

Da die Bildersuchen mitunter tausende Bilder als Ergebnis lieferten, wurden zur Verein-
fachung nur die jeweils ersten 50 Suchtreffer ausgewertet. Alle Abfragen erfolgten im
September 2017 von einem Desktop-PC in Deutschland aus. Mit Ausnahme von Pinterest,
das nur mit Benutzeranmeldung nutzbar war, erfolgten alle Abfragen ohne Anmeldung an
den Dienst und auch ohne Anmeldung an ein Google- oder Microsoft-Konto. Ein Filter
für jugendgefährdende Darstellungen war nicht eingerichtet. Bei der Suche nach Begriffen,
die aus mehreren Wörtern bestehen, wurde einerseits nach der gesamten Zeichenkette,
andererseits auch nach einzelnen Wörtern gesucht, im Falle von Ďstart conditionŞ also auch
nach ĎstartŞ.

Durchsucht wurden die folgenden Quellen:

Allgemeine Bild-Suchmaschinen: Genutzt wurden die Suche nach Bildern der Suchma-
schinen Google und Bing, zunächst jeweils mit deren Standardeinstellungen, also ohne Filter
auf Bildgröße und Bildart. Zusätzlich wurde die Google-Bildersuche mit einer Einschrän-
kung auf den Bildertyp ĎIconŞ wiederholt. Schließlich wurde Symbols.com durchsucht,
nach eigenen Angaben Ďdie größte Ressource für Symbole, Zeichen und Flaggen im WebŞ.

Nutzung von Bilddatenbanken zur Erstellung von Symbolen 91

Anbieter von Vektorgrafiken und Stockfotos: Um das Potential von (in der
Regel gut mit Schlagworten versehenen) Datenbanken kommerzieller Anbie-
ter von Bildern zu testen, wurden die Bilddatenbanken der Anbieter Freepik

(www.freepik.com), iStock (www.istockphoto.com), Fotolia (www.fotolia.com) und
Shutterstock (www.shutterstock.com) abgefragt.

Icon-Bibliotheken: Icon-Bibliotheken richten sich an Webdesigner sowie an Entwickler
graphischer BenutzeroberĆächen. Sie versprechen, sorgfältig gestaltete Symbole zur Darstel-
lung typischer Begriffe anzubieten. Durchsucht wurden die Bestände der Anbieter Iconfinder

(www.iconĄnder.com), Flaticon (www.Ćaticon.com), Icomoon (icomoon.io/app/#/select)
und Findicons (www.Ąndicons.com).

Standards: Die International Organization for Standardization bietet auf
www.iso.org/obp/ui die Möglichkeit für eine Suche nach Symbolen, die in einem
ihrer Standards festgelegt sind. In den Suchergebnissen eingeschlossen sind somit die
wichtigen Standards IEC 60417 und ISO 7000 (Graphische Symbole auf Einrichtungen),
ISO 7001 (Graphische Symbole zur Information der Öffentlichkeit) sowie ISO 7010
(Sicherheitszeichen). Zur Suche nach diesen Symbolen muss die Suchabfrage auf der
ISO-Webseite auf Ďgraphical symbolsŞ eingeschränkt werden.

Visuelle Sprachen: Visuelle Sprachen werden heute vor allem zur Kommunikation mit
Menschen mit kognitiven Schwierigkeiten eingesetzt. Sie stellen Piktogramme für mehrere
Tausend Wörter zur Verfügung. Durchsucht wurden die Online-Abfragemöglichkeiten
für die Sprachen Pictogram (www.pictogram.se/print/pictogram/view) und Sclera

(http://www.sclera.be/en/picto/). Auf die Suche nach Symbolen in der Sprache Blissymbols
wurde verzichtet, da diese nicht piktographisch aufgebaut ist, sondern Symbole nach einer
speziellen Grammatik zusammenfügt. Für die Bildsprache BETA (www.betasymbols.com/)
wurde keine kostenfrei zugängliche Symbolübersicht gefunden.

Soziale Plattformen: Unter den sozialen Plattformen wurden zwei Vertreter ausgewählt,
bei denen das Veröffentlichen von Bildern eine vorrangige Bedeutung hat, nämlich Flickr

und Pinterest. Bei der Flickr-Suche wurde nur nach Fotos (nicht nach Videos) gesucht;
der FamilienĄlter von Flickr war bei der Suche eingeschaltet. Pinterest konnte nur nach
einer Anmeldung genutzt werden. Diese erfolgte über ein Google-Konto, was Flickr

Zugriff auf die Information zu Altersgruppe und Geschlecht des Nutzers erlaubte. Nach der
Anmeldung müssen zwingend mindestens fünf Interessengebiete ausgewählt werden. Um
dem Kontext Ďtechnische ModellierungsspracheŞ möglichst gut zu entsprechen, Ąel die Wahl
auf die Interessengebiete ĎTechnologie und TechnikŞ, Ďcoole ProdukteŞ, ĎArbeitszimmerŞ,
ĎGraĄkdesignŞ und ĎBildungŞ.

92 Ralf Laue

ImageNet: ImageNet [De09] (www.image-net.org) ist ein Projekt mit dem Ziel, das
semantische Netz WordNet [Fe98] um Bilder anzureichern. Die Organisation der Daten
erfolgt dabei in Synsets, also Mengen von Begriffen, die synonym zueinander sind.

Emoji-Bibliotheken: Zum Finden von Emoji-Symbolen wurden Emojifinder (emojiĄn-
der.com) und Emojipedia (emojipedia.org) genutzt.

4 Auswertung

Tab. 1 zeigt, inwiefern die in den drei diskutierten Arbeiten per kollektiver Symbolerstellung
gefundenen Symbole auch unter den Suchergebnissen der verschiedenen Bilddatenbanken
zu Ąnden sind. Dabei besagt �, dass ein solches Symbol in den ersten 50 Suchtreffern
enthalten war; � dass dies nicht der Fall war. Das Minuszeichen steht dafür, dass die Suche
gar keine Bilder zum entsprechenden Suchwort lieferte.

Für die ı∗-Modelle wurde sowohl für die Stereotypen (Abb. 5) als auch für die Prototypen
(Abb. 6) ausgewertet, ob diese in den Treffermengen der Bildsuchen enthalten war. Sie
sind in der Tabelle mit (S) bzw. (P) gekennzeichnet. Für ĎdependencyŞ wurden in [Ca13]
zwei Prototypen mit der gleichen Zahl von Stimmen gewählt. Sie sind mit P1 und P2
gekennzeichnet. Das vierte Symbol für ĎdependencyŞ ist die in [Ko15] vorgeschlagene
Kette aus Abb. 8. Für das Konzept ĎpositionŞ wurde auf eine Unterscheidung zwischen
Stereotyp und Prototyp verzichtet, da beide eine Markierung eines Feldes in einem Raster
darstellen (vgl. Abb. 5 und 6).

Von den 42 Symbolen, die in den in [Ca13, AZ09, Ko15] beschriebenen Experimenten
gefunden wurden, fanden sich 36 unter den ersten 50 Suchtreffern bei den nichtspezialisierten
Suchmaschinen Google oder Bing oder bei der Suche mit Google eingeschränkt auf den
Bildtyp ĎClipartŞ. Nimmt man die Suchergebnisse der für unsere Zwecke ergiebigsten
Icon-Bibliothek Iconfinder hinzu, erhöht sich die Zahl auf 38. Dieses Ergebnis belegt, dass
die Suche in Bilddatenbanken eine effektive, aber zeit- und resourcensparende Alternative
zur Befragung menschlicher Probanden ist.

Die dennoch recht große Zahl von mit Ű oder � markierten Zellen in Tab. 1 ergibt sich
vor allem aus der großen Zahl untersuchter Bilddatenbanken, unter denen sich einige als
für unsere Zwecke offensichtlich ungeeignet herausgestellt haben. Im Folgenden soll die
Eignung der verschiedenen Quellen kurz bewertet werden:

Generell gute Ergebnisse lieferten die allgemeinen Bildersuchen in Google und Bing.
Es waren dort allerdings oft nicht die am häuĄgsten als Suchergebnis vorkommenden
Bildmotive, die für die Darstellung eines Konzeptes in einer Modellierungssprache geeignet
waren. Da die von diesen Suchmaschinen erfassten Inhalte keiner Einschränkung unterliegen,
gab es unter den Suchergebnissen auch viele Bildmotive, die nicht für eine graphische

Nutzung von Bilddatenbanken zur Erstellung von Symbolen 93

Modellierungssprache geeignet sind (vgl. Tab. 2). Diese ungeeigneten Motive können jedoch
problemlos ignoriert werden. Als unbrauchbar erwies sich die Suche bei symbols.com. Es
zeigte sich, dass der Schwerpunkt dieser Website auf Hoheitszeichen, Wappen, Flaggen
und historischen Symbolen liegt. Symbols.org ist somit zwar für generelle semiotische
Forschungen interessant, für unsere Problemstellung jedoch ungeeignet.

Gemischte Ergebnisse lieferten die kommerziellen Anbieter von Fotos und GraĄken. Diese
Bildersammlungen sind dadurch gekennzeichnet, dass einiger Aufwand verwendet wurde,
um die eingestellten Bilder mit Schlagworten zu versehen Ű schließlich sollen die Bilder
bei der Suche gefunden werden, um Nutzungsrechte verkaufen zu können. Wie aus Tab. 1
ersichtlich, führte das jedoch zu keinen besseren Ergebnissen als bei der Nutzung der
allgemeinen Suchmaschinen. Die Konzentration auf die Zielgruppe der Webdesigner
machte sich gelegentlich auch durch eingeschränkte Suchergebnisse bemerkbar: Lieferten
beispielsweise andere Quellen bei der Suche nach dem Stichwort ĎinformationŞ gelegentlich
auch das Symbol ĎBuchŞ, tauchten bei den kommerziellen Bildanbietern fast ausschließlich
Bilder im Kontext Computer und Internet auf.

Als nützlicher erwiesen sich die Icon-Datenbanken (mit Ausnahme von Icomoon). Die-
se richten sich an Designer von graphischen OberĆächen für Computerprogramme. Die
Ersteller der Icons haben in der Regel bereits großen Wert darauf gelegt, abstrakte Kon-
zepte verständlich darzustellen. Wenn für die visuelle Darstellung eines Begriffs bereits
allgemein bekannte Symbole existieren, ist davon auszugehen, dass diese bei der Suche
in einer Icon-Datenbank gefunden werden. Ein Beispiel hierfür ist, dass zum Suchwort
ĎStartŞ das von CD- oder MP3-Spielern bekannte ĎStartŞ-Symbol gefunden wurde. Die
Verwendung dieses Symbol zur Bezeichnung von Startereignissen in der Geschäftsprozess-
Modellierungssprache YAWL wurde in [FMS09] wegen der intuitiven Verständlichkeit
positiv hervorgehoben. Auffällig sind Schwächen der Funktionen zur Suche in den Icon-
Sammlungen. So ĎberichtigteŞ icomoon.io, die Schreibweise von ĎagentŞ in ĎmagnetŞ
und erlaubte keine Suche nach Zeichenketten aus mehreren Wörtern. Stattdessen wurden
mehrere Suchwörter oder-verknüpft, was dann etwa bei der Suche nach Ďweak spotŞ Bilder
zum Thema ĎhotspotŞ lieferte.

94 Ralf Laue

G
oo

gl
e

G
oo

gl
e

(C
li
pa

rt
)

B
in

g

sy
m

bo
ls

.c
om

F
re

ep
ik

iS
to

ck

F
ot

ol
ia

S
hu

tt
er

st
oc

k

Ic
on

Ą
nd

er

F
la

ti
co

n

Ic
om

oo
n

F
in

di
co

ns

IS
O

S
ta

nd
ar

ds

P
ic

to
gr

am

S
cl

er
a

F
li
ck

r

P
in

te
re

st

Im
ag

eN
et

E
m

oj
iĄ

nd
er

E
m

oj
ip

ed
ia

actor � � � � � � � � � � Ű Ű Ű Ű Ű � � � � �

agent (S) � � � � � � � � � � Ű � � Ű Ű � � � � �

agent (P) � � � � � � � � � � Ű � � Ű Ű � � � � �

role (S) � � � � � � � � � � Ű Ű Ű Ű Ű Ű Ű � Ű Ű

role (P) � � � � � � � � � � Ű Ű Ű Ű Ű Ű Ű � Ű Ű

position � � � � � � � � � � � � � � Ű � � Ű � �

boundary (S) � � � � � � � � � � Ű Ű � Ű Ű � � � � �

boundary (P) � � � � � � � � � � Ű Ű � Ű Ű � � � � �

goal � � � � � � � � � � � � Ű � � � � � � �

softgoal Ű Ű � Ű Ű Ű Ű Ű � Ű Ű � Ű Ű Ű Ű � Ű Ű Ű

task � � � � � � � � � � � � � Ű � � � Ű � �

resource (S) � � � � � � � � � � � � Ű � Ű � � Ű Ű Ű

resource (P) � � � � � � � � � � � � Ű � Ű � � Ű Ű Ű

belief (S) � � � � � � � � � � � Ű Ű Ű Ű � � Ű Ű Ű

belief (P) � � � � � � � � � � � Ű Ű Ű Ű � � Ű Ű Ű

means-end (S) � � � Ű Ű Ű Ű � � � Ű Ű Ű Ű Ű � � � � �

means-end (P) � � � Ű Ű Ű Ű � � � Ű Ű Ű Ű Ű � � � � �

decomposition � � � � � � � � � Ű Ű Ű Ű Ű Ű Ű � � Ű �

dependency (S) � � � � � � � � � � Ű Ű Ű Ű Ű � � Ű Ű �

dependency (P1) � � � � � � � � � � Ű Ű Ű Ű Ű � � Ű Ű �

dependency (P2) � � � � � � � � � � Ű Ű Ű Ű Ű � � Ű Ű �

dependency � � � � � � � � � � Ű Ű Ű Ű Ű � � Ű Ű �

activity � � � � � � � � � � � � � � � � � Ű Ű �

tool �

weak spot � � � Ű Ű � � � � Ű � � Ű Ű Ű � � Ű Ű Ű

decision (1) � � � � � � � � � � Ű � Ű � � � � Ű Ű Ű

decision (2) � � � � � � � � � � Ű � Ű � � � � Ű Ű Ű

control Ćow � � � Ű � Ű � � � Ű � � Ű Ű Ű � � � � �

information Ćow � � � Ű � � Ű � � Ű � � Ű Ű Ű � � � � �

information �

synchronal � � � Ű � � � � � � Ű Ű Ű Ű Ű � � Ű Ű Ű

simultaneous (1) � � � Ű Ű � � � � Ű Ű Ű � � � � � � � �

simultaneous (2) � � � Ű Ű � � � � Ű Ű Ű � � � � � � � �

start (1) �

start (2) �

end (1) � � � � � � � � � � � � � Ű Ű � � � � �

end (2) � � � � � � � � � � � � � Ű Ű � � � � �

enumeration � � � � � � � � � � � Ű Ű Ű Ű � � Ű Ű Ű

component � � � � � � � � � � � � Ű Ű Ű � � Ű Ű Ű

signal � � � � � � � � � � � � � Ű Ű � � � � �

package � � � � � � � � � � � � � Ű Ű � � � � �

merge � � � � � � � � � � � � Ű Ű Ű � � Ű � �

import � � � � � � � � � � � � Ű Ű Ű � � Ű � �

Tab. 1: Vorhandensein der in [Ge12, AZ09, Ko15] vorgeschlagenen Symbole in den Suchergebnissen

Nutzung von Bilddatenbanken zur Erstellung von Symbolen 95

Konzept HäuĄgstes gefundenes Bildmotiv

activity Kurve eines Aktivitätstrackers (IconĄnder)

end Sonnenuntergang (Flickr)

position Stellungen beim Geschlechtsverkehr (Google)

resource Nahrungsergänzungsmittel (Bing)

task Graffiti (Flickr)

tool Bilder im Bezug zur Metal-Band Tool (Google, Bing)

weak spot Schwachstellen von Panzern im Computerspiel World of Tanks (Google, Bing)

Tab. 2: ĎUnerwarteteŞ Ergebnisse der Bildersuche (Auswahl)

Entgegen der Erwartung, dass das Start-Symbol auch bei der Suche in den ISO-Standards
gefunden wird, war dies nicht der Fall. Der Grund dafür ist, dass das Symbol dort nur
unter den Stichworten Ďnormal run; normal speedŞ verschlagwortet ist. Zwar wurden bei
der Suche nach Symbolen aus ISO-Standards nur 6 Symbole gefunden, die Benutzung
dieser Datenbank scheint aber dennoch sehr ratsam. Das betrifft die Fälle, in denen es
bereits ein standardisiertes und allgemein bekanntes Symbol für ein Konzept gibt (z.B.

für ĎInformationŞ, das bereits 1975 von der International Union of Official Tourism
Organizations als internationales Symbol vorgeschlagen wurde und weltweite Verbreitung
fand). Interessant ist, dass das in [AZ09] für ĎEndbedingungŞ vorgeschlagene Symbol ⊣
bei der Suche nach Symbolen zum Stichwort ĎendŞ in den ISO-Standards gefunden wurde.
Unter den Suchergebnissen der anderen Bilddatenbanken tauchte dieses Symbol jedoch
nicht auf. Dies gibt Anlass zu der Vermutung, dass das Symbol nicht allgemein bekannt ist.

Als für unsere Zwecke unergiebig erwiesen sich die Suchergebnisse der Emoji-Sammlungen,
der Bildsprachen Pictogram und Sclera sowie der sozialen Plattformen Flickr und Pinterest.
Bei Letzteren steht die private Verwendung im Vordergrund. Daher wurden beispielsweise
bei Pinterest bei der Suche nach ĎdecisionŞ und ĎpositionŞ vorwiegend Sinnsprüche und bei
der Suche nach ĎactivityŞ vor allem Bilder vom Basteln mit Kindern gefunden.

Eine besondere Betrachtung verdient ImageNet. Da diese Ressource noch im Aufbau ist,
wurde zu vielen Suchanfragen kein Ergebnis gefunden. Für die Suchworte, wo eine Suche
bereits erfolgreich war, hat ImageNet aber einen großen Vorzug, der in keiner anderen
Bilddatenbank zu Ąnden ist: Da es sich bei ImageNet um eine Anreicherung der semantischen
Datenbank WordNet um Bilder reichert, erfolgt nämlich die Suche wie von WordNet bekannt
auf der Ebene von Synsets. Ein Synset bezeichnet eine Menge von Ausdrücken (Wörter
bzw. Wortgruppen), die die selbe Bedeutung haben. Homonyme (Wörter mit mehreren
Bedeutungen) Ąnden sich folglich in mehreren Synsets wieder. Dies führt zum Beispiel
bei der Suche nach dem Suchwort ĎactorŞ zu der Erkenntnis, dass zwischen Film- bzw.
Theaterschauspielern und den Akteuren unterschieden werden muss, die durch das Synset
Ďactor, doer, worker (a person who acts and gets things done)Ş beschrieben sind. Bei den
manuell erstellten Vorschlägen wie auch bei den vorherrschenden Suchergebnissen der
anderen Bilddatenbanken dominierte das Bild eines Schauspielers, was aber gerade nicht die

96 Ralf Laue

Bedeutung des entsprechenden Konzepts der Modellierungssprache ı∗ist. Das Suchergebnis
von ImageNet macht auf dieses potentielle Problem aufmerksam.

Tatsächlich erweist sich das ĎSchauspielerŞ-Symbol aus Abb. 5 als ungeeignet zur Beschrei-
bung des Konzepts ĎAkteurŞ, sobald es von Benutzern aus verschiedenen Sprach- und
Kulturkreisen verstanden werden soll. Bei dem in [Ge12, Ca13] beschriebenen Experiment
erhielten die Probanden Beschreibungen der zu visualisierenden Konzepte in französischer
und englischer Sprache. In beiden bezeichnet das Wort actor bzw. acteur sowohl den
Akteuer allgemein wie auch einen Schauspieler. Eine Wiederholung des Experiments mit
deutschsprachigen Studenten führte erwartungsgemäß dazu, dass das Konzept ĎAkteurŞ
nicht durch einen Schauspieler bebildert wurde [LH13].

Hieraus ergibt sich ein weiterer Vorzug, den die Nutzung von Bilddatenbanken gegenüber
herkömmlichen Ansätzen der kollektiven Symbolerstellung hat: Die Suchbegriffe können
problemlos auch in anderen Sprachen eingegeben werden. Dadurch können Symbole
bestimmt werden, die nur in manchen Sprachen verständlich sind. Auf Homonymen
beruhende Symbolvorschläge wie für ĎRolleŞ können so ebenso identiĄziert werden wie
Symbole, die aufgrund kultureller Unterschiede nicht international verständlich sind (wie
der nur in manchen Ländern übliche Hammer eines Richters als Symbol für ĎEntscheidungŞ).
Sie sind als Symbole in einer Modellierungssprache, die international verständlich sein
soll, schlecht geeignet. Wollte man solche Untersuchungen mit menschlichen Probanden
durchführen, ergäbe sich selbst bei Verwendung von Crowdsourcing-Plattformen ein
erheblicher Aufwand.

5 Vorgeschlagene Methode zur Symbolerstellung

In den Untersuchungen zeigte sich, dass bei der Recherche in Bilddatenbanken schnell
Symbolvorschläge für die Darstellung typischer Konzepte in Modellierungssprachen ge-

Abb. 9: Schritte der vorgeschlagenen Methode

Nutzung von Bilddatenbanken zur Erstellung von Symbolen 97

funden werden können. Auf diese Beobachtung baut die in Abb. 9 skizzierte Methode zur
Erstellung einer Notation auf. Sie berücksichtigt darüber hinaus Reviews und Tests einzelner
Symbole sowie der entwickelten Notation als Ganzes. Auch dies ist ein Unterschied zum
gegenwärtig üblichen Vorgehen, das in der Regel keine solchen Tests vorsieht [FB17]. An
der Abbildung ist vermerkt, in welchen Schritten auf bestehende Richtlinien und Standards
zurückgegriffen werden kann.

Schritt 0: Die Konzepte, die durch ein Symbol dargestellt werden sollen, werden festgelegt.
Empfehlungen zu dieser (keineswegs trivialen) Aufgabe liefern [Ka14, Fr10, Mo09]. Es
wird dann ein Metamodell der Modellierungssprache erstellt.

Schritt 1: Für jedes bildlich darzustellende Konzept wird untersucht, ob dafür bereits ein
standardisiertes Symbol vorhanden ist. Standardisierte Symbole Ąnden sich insbesondere
in ISO-Standards sowie dem UNICODE-Block ĎVerschiedene SymboleŞ (U+2600 bis
U+26FF). Neben Symbolen, die unabhängig von Modellierungssprachen standardisiert wur-
den, können auch bereits vorhandene und in der Zielgruppe bekannte Modellierungssprachen
wiederverwendet bzw. existierende Notationen für die eigenen Zwecke abgeändert werden
(vgl. [Ka14]). Eine Hilfe hierfür könnte eine von van der Linden et al. [vdLHZ16] vorge-
schlagene (aber bisher nicht realisierte) Bilddatenbank mit Icons für Modellierungssprachen
sein.

Schritt 2: Für die Konzepte, für die nicht bereits in Schritt 1 ein zufriedenstellendes
Symbol gefunden wurde, wird in Bilddatenbanken nach Bildvorschlägen gesucht.

Schritt 3: Aus den in Schritt 2 gefundenen Bildern wird eine Menge von Symbol-
Kandidaten ausgewählt.

Schritt 4: Wenn die Modellierungssprache international verwendet werden soll, wird die
Suche aus Schritt 2 wiederholt Ű diesmal unter Verwendung von Übersetzungen der Namen
der Konzepte in andere Sprachen.

Schritt 5: Aus den in Schritt 3 ausgewählten Symbolen werden diejenigen entfernt, die
bei der Suche in Schritt 4 nicht mehr gefunden wurden.

Schritt 6: Verständlichkeit und Erlernbarkeit der Symbol-Kandidaten werden mit Pro-
banden getestet. Ausführliche Richtlinien zur Gestaltung solcher Tests Ąnden sich in den

98 Ralf Laue

Standards ANSI Z535.3 und ISO 9186 [In14]. Das Ergebnis ist eine Rangfolge zwi-
schen den Symbol-Kandidaten für jedes Konzept. Symbol-Kandidaten mit zu schlechter
Verständlichkeit bzw. Erlernbarkeit scheiden aus.

Schritt 7: Aus den Symbol-Kandidaten wird eine Notation zusammengestellt. Hierbei
werden die Symbole nicht mehr wie bisher separat betrachtet, sondern im Zusammenspiel
miteinander. Insbesondere ist zu überprüfen, ob sich die Symbole hinreichend voneinander
entscheiden. Symbole für die Konzepte, die nach dem in Schritt 0 erstellten Metamodell der
Modellierungssprache Relationen sind, sollen zudem auch als Kanten in einem Graphen
gezeichnet werden können. Ebenso ist zu beachten, dass die Symbole konsistent zueinander
verwendet werden. Wenn beispielsweise ĎInformationsĆussŞ als Pfeil mit einem darge-
stellt wird, sollte dieses Symbol auch für das Konzept ĎInformationŞ genutzt werden. In
diesem Schritt unterstützen Moodys Prinzipien aus der Physics of Notations [Mo09, da16].
Weitere Punkte, die in diesem Schritt zu beachten sind, Ąnden sich im ETSI-Standard
EG 201 379 [Eu98]. Auch Checklisten für die Überarbeitung von Icons für graphische
BenutzeroberĆächen (vgl. [Ho94]) sind für das Review der Notation nützlich. Zusätzlich
sind aber weitere Aspekte zu beachten, die so bei Icons nicht immer auftreten: Die Symbole
sollen auch bei verkleinerter Darstellung sowie im schwarz/weiß-Druck noch erkennbar
sein und sich auch leicht per Hand skizzieren lassen.

6 Diskussion und Zusammenfassung

Die Nutzung von Bilddatenbanken als Inspiration für Designer graphischer BenutzeroberĆä-
chen ist heute allgegenwärtig. Für die Gewinnung von Symbolen für graphische Notationen
wurde diese Quelle aber bisher nicht systematisch genutzt. Im Beitrag wurde gezeigt, dass
die Suche in Bilddatenbanken ähnliche Ergebnisse liefert, wie sie auch in aufwendigeren
Experimenten gewonnen wurden, bei denen eine große Zahl von Probanden per Hand
Symbolvorschläge zeichnet. Die in diesen Experimenten vorgeschlagenen Symbole konnten
fast immer auch in Bilddatenbanken gefunden werden. Es bestätigte sich das Ergebnis
von Xiao et al. [XAB10], dass Bilddatenbanken auch für abstrakte Begriffe passende
Visualisierungen liefern. Eine Recherche in Bilddatenbanken kann daher den Prozess der
Erstellung einer graphischen Notation sinnvoll unterstützen.

Vorzüge der Suche in Bilddatenbanken sind der erheblich geringere Aufwand und die
Möglichkeit, durch die Verwendung von Suchworten in verschiedenen Sprachen bestimmte
nicht international geeignete Symbole schnell auszuschließen. Es gibt aber einen Nachteil
gegenüber der herkömmlichen kollektiven Symbolerstellung. Dort nämlich wissen die
Probanden bei der Erstellung ihrer Symbolskizzen, in welchem Kontext die Symbole
eingesetzt werden sollen. Nützlich war das beispielsweise in dem in [AZ09] beschriebenen
Experiment, wo manche Probanden die ĎSchwachstelleŞ (in einem Geschäftsprozess) mit
dem Symbol ĎFlaschenhalsŞ darstellten. In den Studien zur Verbesserung der ı∗-Notation

Nutzung von Bilddatenbanken zur Erstellung von Symbolen 99

[Ge12, Ca13] zeigte sich allerdings, dass dieser Vorteil (zumindest bei wenig motivierten
Probanden) nicht zum Tragen kommen muss. Ein Beleg dafür ist das am häuĄgsten für
belief bzw. croyance vorgeschlagenen Symbol. Das religiöse Symbol eines Kreuzes ist nicht
nur offensichtlich für einen kulturübergreifenden Einsatz ungeeignet, es stellt auch nicht die
zu ı∗passende Interpretation des Wortes belief /croyance dar. Hier wurde - wie auch bei
actor/acteur oder agent vorwiegend die Visualisierung vorgeschlagen, die mit dem Wort am
ehesten verbunden ist. Wie gezeigt wurde, leistet dies auch die Abfrage in Bilddatenbanken.

Obwohl die Ergebnisse der durchgeführten Bildersuchen schon vielversprechend waren,
sind noch Verbesserungen möglich. Die für diesen Beitrag verwendete Suchstrategie war
nämlich ausgesprochen simpel. Das Beispiel der Google-Bildersuche mit der Einschränkung
auf Cliparts zeigt, dass sich durch eine geschickte Nutzung von SuchĄltern bessere
Suchergebnisse ergeben können. Gleiches gilt für die Nutzung von logischen Ausdrücken
bei der Abfrage (Beispiel: resource NOT human) sowie bei der Verwendung zusätzlicher
passender Suchbegriffe (decomposition OR composition).

Literaturverzeichnis

[AZ09] Arning, Katrin; ZieĆe, Martina: ItŠs a bunch of shapes connected by lines. Evaluating
the Graphical Notation System of Business Process Modelling Languages. In: 9th
International Conference on Work With Computer Systems, Beijing, China. 2009.

[Ca13] Caire, Patrice; Genon, Nicolas; Heymans, Patrick; Moody, Daniel L.: Visual notation
design 2.0: Towards user comprehensible requirements engineering notations. In: 21st
IEEE International Requirements Engineering Conference (RE). IEEE Computer Society,
S. 115Ű124, 2013.

[da16] da Silva Teixeira, Maria das Graças; Quirino, Glaice Kelly; Gailly, Frederik; de Almeida
Falbo, Ricardo; Guizzardi, Giancarlo; Barcellos, Monalessa Perini: PoN-S: A Systematic
Approach for Applying the Physics of Notation (PoN). In: BMMDS/EMMSAD. Jgg.
248 in LNBIP. Springer, S. 432Ű447, 2016.

[De09] Deng, Jia; Dong, Wei; Socher, Richard; Li, Li-Jia; Li, Kai; Li, Fei-Fei: ImageNet: A
large-scale hierarchical image database. In: 2009 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. IEEE Computer Society, S. 248Ű255, 2009.

[eGD14] el Kouhen, Amine; Gherbi, Abdelouahed; Dumoulin, Cédric: Improving Semantic
Transparency of Committee-Designed Languages through Crowd-sourcing. In: 14th
Workshop on Domain-SpeciĄc Modeling SPLASH. 2014.

[Eu98] European Telecommunications Standards Institute: EG 201 379: Human Factors (HF);
Framework for the development, evaluation and selection of graphical symbols. Bericht,
1998.

[FB17] Fritsch, Andreas; Betz, Stefanie: Evaluation of Social Value Icons for a Domain-SpeciĄc
Modeling Language. In: 47. Jahrestagung der Gesellschaft für Informatik e.V. (GI). Jgg.
275 in LNI. GI, S. 2323Ű2328, 2017.

[Fe98] Fellbaum, Christiane, Hrsg. WordNet: An Electronic Lexical Database (Language,
Speech, and Communication). The MIT Press, May 1998.

100 Ralf Laue

[FMS09] Figl, K.; Mendling, J.; Strembeck, M.: Towards a Usability Assessment of Process
Modeling Languages. In: 8. GI-Workshop EPK: Geschäftsprozessmanagement mit
Ereignisgesteuerten Prozessketten. 2009.

[Fr10] Frank, Ulrich: Outline of a method for designing domain-speciĄc modelling languages.
ICB Research Reports 42, University Duisburg-Essen, Institute for Computer Science
and Business Information Systems (ICB), 2010.

[Ge12] Genon, Nicolas; Caire, Patrice; Toussaint, Hubert; Heymans, Patrick; Moody, Dani-
el Laurence: Towards a More Semantically Transparent i* Visual Syntax. In: REFSQ.
Jgg. 7195 in LNCS. Springer, S. 140Ű146, 2012.

[HF68] Howell, William C.; Fuchs, Alfred H.: Population stereotypy in code design. Organiza-
tional Behavior and Human Performance, 3(3):310 Ű 339, 1968.

[Ho91] Howard, C.; OŠBoyle, M.W.; Eastman, V.; Andre, T.; Motoyama, T.: The relative
effectiveness of symbols and words to convey photocopier functions. Applied Ergonomics,
22(4):218 Ű 224, 1991.

[Ho94] Horton, William: Das Icon-Buch. Addison Wesley, 1994.

[In14] International Organization for Standardization: ISO 9186-1 Graphical Symbols Ű Test
Methods. Bericht, 2014.

[Jo83] Jones, Sheila: Stereotypy in pictograms of abstract concepts. Ergonomics, 26(6):605Ű611,
1983.

[Ka14] Karsai, Gabor; Krahn, Holger; Pinkernell, Claas; Rumpe, Bernhard; Schindler, Martin;
Völkel, Steven: Design Guidelines for Domain SpeciĄc Languages. The Computing
Research Repository, abs/1409.2378, 2014.

[Ko15] Kouhen, Amine El; Gherbi, Abdelouahed; Dumoulin, Cédric; Khendek, Ferhat: On the
Semantic Transparency of Visual Notations: Experiments with UML. In: SDL Forum.
Jgg. 9369 in Lecture Notes in Computer Science. Springer, S. 122Ű137, 2015.

[LH13] Laue, Ralf; Hogrebe, Frank: Zur Verständlichkeit graphischer Symbole in Geschäftspro-
zessmodellierungssprachen. In: 43. Jahrestagung der Gesellschaft für Informatik e.V.
(GI). Jgg. 220 in LNI. GI, S. 693Ű705, 2013.

[MHM09] Moody, Daniel Laurence; Heymans, Patrick; Matulevicius, Raimundas: Improving the
Effectiveness of Visual Representations in Requirements Engineering: An Evaluation of
i* Visual Syntax. In: 17th IEEE International Requirements Engineering Conference. S.
171Ű180, 2009.

[MHM10] Moody, Daniel Laurence; Heymans, Patrick; Matulevicius, Raimundas: Visual syntax
does matter: improving the cognitive effectiveness of the i* visual notation. Requir. Eng.,
15(2):141Ű175, 2010.

[Mo09] Moody, Daniel L.: The Physics of Notations: Toward a ScientiĄc Basis for Constructing
Visual Notations in Software Engineering. IEEE Trans. Software Eng., 35(6):756Ű779,
2009.

[Ob16] Object Management Group: Decision Model and Notation (DMN), Version 1.1. Bericht,
2016.

Nutzung von Bilddatenbanken zur Erstellung von Symbolen 101

[ST09] Siau, Keng; Tian, Yuhong: A semiotic analysis of uniĄed modeling language graphical
notations. Requir. Eng., 14(1):15Ű26, 2009.

[SZ08] Schröder, Sabine; ZieĆe, Martina: Making a completely icon-based menu in mobile
devices to become true: a user-centered design approach for its development. In: Mobile
HCI. ACM International Conference Proceeding Series. ACM, S. 137Ű146, 2008.

[vdLHZ16] van der Linden, Dirk; Hadar, Irit; Zamansky, Anna: Towards a Marketplace of Visual
Elements for Notation Design. In: RE. IEEE, S. 353Ű358, 2016.

[WGK13] Weitlaner, Doris; Guettinger, Annemarie; Kohlbacher, Markus: Intuitive Comprehensibi-
lity of Process Models. In: S-BPM ONE. Communications in Computer and Information
Science, Band 360. Springer, S. 52Ű71, 2013.

[XAB10] Xiao, Ping; Arroyo, Ernesto; Blat, Josep: Construct Connotation Dictionary of Visual
Symbols. In (Huang, Mao Lin; Nguyen, Quang Vinh; Zhang, Kang, Hrsg.): Visual
Information Communication. Springer US, Boston, MA, S. 119Ű134, 2010.

[Yu11] Yu, Eric; Giorgini, Paolo; Maiden, Neil; Mylopoulos, John: Social Modeling for Requi-
rements Engineering. MIT Press, 2011.

[ZB83] Zwaga, H.J.; Boersema, T.: Evaluation of a set of graphic symbols. Applied Ergonomics,
14(1):43 Ű 54, 1983.

102 Ralf Laue

Exploiting Modular Language Extensions in Legacy C Code:
An Automotive Case Study

Andreas Grosche1, Burkhard Igel2, Olaf Spinczyk3

Abstract: Model-driven software development using language workbenches like JetBrains MPS
provide many advantages compared to traditional software development. Base languages can be
incrementally extended to increase the abstractness up to domain-speciĄc languages (DSLs). Changes
can be performed more efficiently in problem-oriented language extensions or DSLs, than in a
base language. In addition, formal analysis can be performed on abstract models. To beneĄt from
the model-driven approach, non-model-based legacy code has to be reusable and transformable
to language extensions and DSLs. For the development of embedded systems, mbeddr provides a
C99-like base language and extensions for MPS, such as mathematical symbols and state machines.
This paper presents a case study that shows how many legacy C code fragments of three automotive
series projects could be replaced by mbeddr language extensions. Furthermore, a proof of concept
shows the feasibility of fraction and foreach loop refactorings. This work is a Ąrst approach for future
language extension refactorings.

Keywords: Case Study, MPS, mbeddr, Automotive, Embedded Systems, Model-Driven Software
Development, Legacy C Code, Refactoring, Restructuring, Reverse Engineering, Reengineering

1 Introduction

While the software architecture of automotive embedded systems is commonly modeled
using UML, different implementation techniques exist. Code generation from UML models
and/or graphical modeling tools, such as Matlab/Simulink, hides implementation details
from the developer, and thus raises the level of abstraction. To gain transparency and control
[Gr05] over registers, memory, runtime and synchronization, especially time-critical software
and basic software modules are typically implemented using a low-level programming
language, such as C. However, the implementation of architectural and domain-speciĄc
concepts is time-consuming and error-prone in such languages. Therefore, during the past
few years there have been efforts to bridge the gap between abstract modeling and low-level
programming using extensible languages that provide multiple levels of abstraction within

1 Behr-Hella Thermocontrol GmbH, Hansastraße 40, 59557 Lippstadt, andreas.grosche@bhtc.com
2 FH Dortmund, Sonnenstraße 96, 44139 Dortmund, igel@fh-dortmund.de
3 TU Dortmund, Otto-Hahn-Str. 16, 44221 Dortmund, olaf.spinczyk@tu-dortmund.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 103

https://creativecommons.org/licenses/by-nc/3.0/
andreas.grosche@bhtc.com
igel@fh-dortmund.de
olaf.spinczyk@tu-dortmund.de
https://creativecommons.org/licenses/by-sa/4.0/

the same program. An important step in this direction has been taken with the Jetbrains
Meta Programming System (MPS)4 and mbeddr5, which will be described in the following.

Traditional integrated development environments (IDEs) provide an editor to modify the
source code of a program as plain text as shown in Fig. 1a [Ca16]. To support advanced
IDE features, such as refactoring and navigation, the source code is divided into tokens that
are further parsed to build up abstract syntax trees (ASTs) in a similar way as compilers
work. A build system invokes a compiler to build the executable output.

In contrast to traditional IDEs, JetBrains MPS enables model-driven software development
(MDSD). Instead of modifying text Ąles, the user directly edits the ASTs of the program
using a projectional editor (see Fig. 1b). An editor deĄnition for each AST node deĄnes,
how the node is presented using a concrete syntax. Different editor deĄnitions for the same
AST nodes can provide textual or graphical views and reveal different information of the
same model without the need of a tokenizer or parser.

MPS is a language workbench [Vo14] that provides a general purpose base language.
This language can be incrementally extended by user-deĄned language extensions that
abstract common and domain-speciĄc code fragments. Different abstraction levels right
up to domain-speciĄc languages (DSLs) can be realized within the same program. During
the build process, a generator transforms the DSLs and language extensions into the base
language that is further transformed to text, such as Java code or XML. A build system can
invoke a compiler to build executable code.

(a) Traditional IDE

(b) MPS IDE

Fig. 1: WorkĆows of traditional IDEs and the MPS IDE.

The open source project mbeddr [Vo12] (primarily developed by itemis and fortiss) is based
on MPS and provides a base language, which is similar to C99, for the development of
embedded systems. The language extensions supplied with mbeddr, such as mathematical
symbols and physical units, can be further extended by user-deĄned languages and DSLs

4 https://www.jetbrains.com/mps/
5 http://mbeddr.com/

104 Andreas Grosche, Burkhard Igel, Olaf Spinczyk

to close the gap between high-level modeling and low-level programming languages. For
instance, the language extension for state machines of mbeddr uses the full power of
projectional editing. It now serves as an introductory example:

State machines can be modeled graphically, textually or as a table. The graphical projection
of a state machine is shown in Fig. 2a. On reception of the evtWrite event, a transition to the
Writing state is performed. On entry of that state, a function is called that writes the passed
byte 12u via a universal asynchronous receiver/transmitter (UART). The state machine rests
in the Writing state until the event evtTxISR is received. Fig. 2b shows the textual projection
of this state machine.

(a) Graphical (b) Textual

swi tch (s t a t e) {

case I d l e :

i f (event == ev tWr i te) {

UART_Write (12u) ;

s t a t e = Wr i t i ng ;

}

break ;

case Wr i t i ng :

i f (event == evtTxISR) {

s ta t e = I d l e ;

}

break ;

}

(c) Legacy C Code

Fig. 2: The graphical and textual projections of an mbeddr state machine focus on the
problem to be solved and hide implementation details.

Introducing mbeddr into the embedded software domain offers several advantages compared
to traditional software development processes [Vo13b]:

• Projectional editors allow syntax that cannot easily be parsed by a traditional text-based
IDE, such as mathematical symbols, tables and diagrams.

• The language extensions supplied with mbeddr can be further extended. The modular
approach allows the combination of languages from different abstraction levels within
the same program and even translation unit. For example, the C-like base language
can be used for the deĄnition of state machine actions (see Fig. 2a).

• Changing the structure of a software is simpler using higher-level abstractions than
changing low-level C code, because implementation details are hidden.

• Automated domain-speciĄc C veriĄcation [MVR14] closes the gap between C
veriĄcation tools, such as CBMC [CKL04], and domain-speciĄc language extensions,
such as state machines and decision tables.

Exploiting Modular Language Extensions in Legacy C Code 105

• Specifying requirements and unit tests using mbeddr allows the creation of links to
achieve traceability between requirements, code fragments and veriĄcations.

For an automotive company like Behr-Hella Thermocontrol GmbH (BHTC), it is common
practice to reuse legacy C code in new projects, because redevelopment would be too
expensive and time-consuming. The company itemis6 developed a commercial importer
based on TypeChef [Kä11] that allows the import of legacy C code into mbeddr. However,
the imported code makes primarily use of the C99-like base language. To beneĄt from the
advantages of the model-driven approach, legacy C code fragments have to be replaced
by corresponding language extensions after the import. For example, the legacy C code
shown in Fig. 2c should be replaced by an mbeddr state machine (see Fig. 2a). This would
improve maintainability because the states, transitions and actions for different events could
be modiĄed without thinking about how state transitions and event handling are realized. In
addition, automated veriĄcations could be applied to the state machine.

To avoid time-consuming and error-prone manual replacements of base language code with
language extensions, refactorings have to be developed. The complexity of such refactorings
depends on the gap between the base language and the corresponding language extension in
terms of abstraction levels. Regarding state machines, several implementation techniques
exist, such as using switch (see Fig. 2c) statements or complex frameworks [Sa09]. The
refactoring of language extensions with a small abstraction gap may be fully automated,
while approaches with user interaction or machine learning may be required for extensions
with larger abstraction gaps, such as state machines.

Language extension refactorings could also help developers to learn how and when to use
language extensions. For example, when a developer writes a code fragment and the IDE
would propose to replace that fragment with more abstract code using a language extension,
the developer would learn when to use that language extension without the need of reading
the language manual.

As languages evolve over time, it is likely that new language extensions will be added to
mbeddr in the future. In addition, new language extensions can be developed by the user.
Semi-automatic language extension refactorings could help to modify existing mbeddr code
to use the new language extensions.

This paper presents a case study that shows the amount of code fragments in automotive
legacy C code that could be replaced by language extensions supplied with mbeddr to assess
the importance of language extension refactorings. We also provide a proof of concept to
show that, at least in many cases, fully automated refactorings are possible.

The case study and the examined language extensions are introduced in Sect. 2. The proof
of concept is shown in Sect. 3. After the presentation of related work in Sect. 4, we conclude
and show future work in Sect. 5.

6 https://www.itemis.com/

106 Andreas Grosche, Burkhard Igel, Olaf Spinczyk

2 Case Study

The goal of this case study is to investigate the actual number of code fragments where our
automotive series projects could beneĄt from the language extensions provided by mbeddr.
Only handwritten C code in .c and .h Ąles is part of this study. Generated code, such as
from Matlab/Simulink models, is out of the scope of this case study, because refactoring
such code should be done in Matlab/Simulink instead of the generated code. We introduce
the analyzed projects in Sect. 2.1 before we present the applied method in Sect. 2.2. The
examined language extensions are introduced in Sect. 2.3 and the results are discussed in
Sect. 2.4.

2.1 Context

Our case study comprises three automotive projects with different characteristics as shown
in Tab. 1. Project A contains the software for the main controller of a human-machine
interface (HMI) control panel featuring a touch screen, capacitive buttons and acoustic
feedback. Project B contains the software for the main controller of a center infotainment
display (CID) featuring a touch screen, force sense and acoustic feedback. Project C contains
the software for a CID slave controller that processes a tactile feedback.

Tab. 1: Automotive series projects analyzed in this case study.

Project Status Microcontroller Standard Files Analyzed Files Analyzed SLOC

A Series 32 bit, 80 MHz AUTOSAR 1,189 707 (289 .c and 418 .h) 238,651

B Pre-Series 32 bit, 80 MHz AUTOSAR 1,194 734 (283 .c and 451. h) 222,203

C Development 16 bit, 32 MHz non-AUTOSAR 287 253 (101 .c and 152 .h) 15,390

Projects A and B are developed according to AUTOSAR [AU14]. The development phase of
project A is Ąnished, whereas project B is in the pre-series development phase. Both target a
32 bit microcontroller running at 80 MHz. For project A, we analyzed 707 handwritten .c
and .h Ąles containing 238,651 source lines of code7 (SLOC). For project B, we analyzed
734 handwritten .c and .h Ąles containing 222,203 SLOC. The software for project C is
not developed according to AUTOSAR. The target is a 16 bit microcontroller running at
32 MHz. This project is under rapid development and currently comprises 253 handwritten
.c and .h Ąles containing 15,390 SLOC that we analyzed.

2.2 Method

To Ąnd code fragments that could be replaced by mbeddr language extensions in the source
code of the analyzed projects, a semi-automatic approach has been chosen. In the Ąrst step,
we had to select all handwritten .c and .h Ąles from the projects to be analyzed. We did

7 According to Count Lines of Code (CLOC), http://cloc.sourceforge.net/

Exploiting Modular Language Extensions in Legacy C Code 107

this by scanning the Ąles for speciĄc keywords in the comment header of each Ąle that are
typical for handwritten and generated Ąles. Only a few Ąles had to be classiĄed manually.
The second step was to deĄne code patterns for each mbeddr language extension. A code
fragment is considered to be replaceable with a language extension, if the corresponding
pattern matches. We used Coccinelle [Pa08] to match the patterns against the examined
legacy C code. We could not specify exact patterns for all language extensions because of
their complexity. That is why we had to verify and post-Ąlter some of the results manually
to avoid false positives.

List. 1 shows an excerpt of a Coccinelle pattern that Ąnds all for loops in the analyzed code
that fulĄll the following requirements: In the initialization, an identiĄer has to be initialized
with an arbitrary expression. This identiĄer has to be less than an arbitrary expression to
enter the loop body. The same identiĄer has to be incremented on each iteration. The loop
body may contain arbitrary statements. As i is a meta variable of Coccinelle the identiĄer
can have an arbitrary name.

@ @ i d e n t i f i e r i ; @ @

∗ f o r (i = . . . ; i < . . . ; i ++)

{

. . .

}

List. 1: Excerpt of the Coccinelle pattern that we used to Ąnd code fragments that could be
replaced by for range loops.

2.3 Language Extensions

An overview of the examined language extensions is presented in Tab. 2. We give only a
small introduction while Voelter et al. [Vo13a] present more details. The second column
shows the language extensions as they can be edited in MPS. The third column shows
examples of legacy C code in MPS that could be replaced by the corresponding extension.
Except for error handling, which is explained later, the examples shown in the legacy C
code column are conceptually similar to the code generated by MPS. We have subdivided
the extensions into three categories:

Syntactic Sugar: The projectional editor allows mbeddr to provide language extensions
for graphical mathematical symbols. We grouped them to fractions, mathematical functions
as well as products (of sequences) and sums. Fractions can be used as an alternative syntax
for divisions. To Ąnd code fragments replaceable by fractions, we used a Coccinelle pattern
that looks for expressions that are divided by another expression.

Symbols for mathematical functions encapsulate calls to functions such as abs, log, pow

and sqrt for calculating absolute values, logarithms, powers and square roots. To Ąnd code

108 Andreas Grosche, Burkhard Igel, Olaf Spinczyk

Tab. 2: Screenshots of mbeddr language extensions and corresponding legacy C code in the
MPS IDE.

Lang.
Ext.

mbeddr Extension Code Legacy C Code

Fraction

Math.

Function

For

Range

Foreach

Product

and Sum

Phys.

Unit

Error

Handling

State

Machine
See Fig. 2a See Fig. 2c

Exploiting Modular Language Extensions in Legacy C Code 109

fragments that could be replaced by such symbols, we looked for calls to functions with
identiĄers that contain abs, log, pow and sqrt. This also includes variants such as labs and
user-deĄned implementations with a similar naming.

Enriched Syntax: To simplify for loops that are incremented or decremented by 1 on each
iteration, mbeddr provides for range loops as shown in Tab. 2. Only the counter variable
name, the minimum and the maximum (exclusive) have to be speciĄed. The type of the
counter variable, the compare operator in the condition as well as the increment of the
counter variable are omitted. The ++ can be replaced by −− to iterate backwards over the
speciĄed range. To Ąnd code fragments replaceable by for range loops, we looked for for

loops that assign an arbitrary expression to a counter variable. This variable has to be used
in the condition with an appropriate greater-than or less-than comparison. In addition, it has
to be incremented or decremented in the iteration by 1. Since we analyzed projects using
C90 that requires the deĄnition of the counter variable at the start of a block (e.g., a function
body) instead of in the for loop itself, we further had to analyze the usage of the variable
before and after the for loop.

The foreach language extension of mbeddr can be used to iterate through arrays. The it

expression can be used to read or write the current array element. Tab. 2 shows an example
of a foreach loop that iterates over the frame array with an array length of FRAME_SIZE. In the
body, the current element it of the array is added to the checksum variable. To Ąnd code
fragments that could be replaced by foreach loops, we looked for for loops where a counter
variable is set to 0, compared within an appropriate condition and incremented by 1. In
addition, the counter variable has to be used in the body as an index to an array. It can be
used multiple times, but only for the same array. Furthermore, calculations such as adding
an offset to the counter variable must not be performed. As for for range loops, we had to
analyze the context of the for loop, because the analyzed projects use C90.

Products and sums are expanded to for loops during the code generation. In the analyzed
code, we looked for for and while loops that add or multiply an expression to an identiĄer
using statements, such as x = x + ...; or the short form x += ...; .

Enriched Semantic: The physical units extension allows the annotation of types and
literals with unit information. The force F in newton (N) is deĄned as F = m · a. Annotating
the type of the variable f with the unit N requires assigned expressions to evaluate to the
corresponding unit. Trying to assign an expression that evaluates to another unit, e.g., kg,
leads to an error message in the IDE as shown in Tab. 2. Units are evaluated in the model and
do not add any overhead to the generated C code. As shown in the legacy C code column,
developers sometimes append a suffix containing the unit to the identiĄers. To Ąnd code
fragments that could be annotated with physical units, we looked for macro and variable
deĄnitions containing identiĄers that contain us, ms, clk, Hz, freq, etc. and further analyzed
the context.

110 Andreas Grosche, Burkhard Igel, Olaf Spinczyk

The common way in AUTOSAR to inform the caller of a function about an error is to return
a value of the type Std_ReturnType [AU15] as shown in the simpliĄed example in the legacy C
code column of Tab. 2. The standard values are E_OK for success and E_NOT_OK for errors.
These can be extended by user-deĄned values. The caller has to evaluate the return value
and perform an error handling. As a consequence, call-by-reference has to be used to get
values from functions like getter functions.

As shown in Tab. 2, mbeddr provides sophisticated error handling in the style of Java or
C++ exceptions. The example shows a getter function that is annotated with the errors that
are thrown in the function body using the error statement. The getter function is called in a try

block. The execution of the statements in the try block is aborted as soon as a function throws
an error, which is catched in the corresponding when block. During the code generation,
this error handling is expanded to goto statements and an error function argument (call by
reference). Therefore, the overhead is comparable to the AUTOSAR approach. To identify
code fragments replaceable by mbeddr error handling, we looked for functions that return a
value of type Std_ReturnType.

State machines are also examined but not shown in the table, because they have already
been introduced in Sect. 1. To Ąnd state machines in the analyzed C code, we focused
on switch and if statements. We further examined these constructs manually with typical
implementations of state machines [Sa09] in mind, such as using a variable that holds the
current state (see Fig. 2c).

The presented language extensions have been ordered by their level of abstraction. Syntactic

sugar language extensions are simple alternative syntactic representations compared to
the respective legacy C code. They do not provide notable abstractions but still improve
readability. Enriched syntax language extensions provide in-place substitutions to simplify
compound expressions or statements. They provide simple abstractions that hide implemen-
tation details and possibly provide declarative Ćavor. Enriched semantic language extensions
extend the type system, provide meta information, abstract data or control Ćow or have a
cross-cutting character. Members of all categories can make use of graphical representations
to further improve readability and maintainability.

2.4 Results

The results of this case study are presented in Tab. 3. Each row contains the number of
code fragments that could be replaced by the different mbeddr language extensions of
one analyzed project. Except for the mathematical functions, products and sums, we got
two-digit and three-digit numbers of possible replacements. The larger projects A and B

generally contain more replaceable code fragments than the smaller project C. The details
for the different language extensions are discussed in the following.

Exploiting Modular Language Extensions in Legacy C Code 111

Tab. 3: Number of possible replacements of C code fragments with mbeddr language
extensions in three automotive series projects.

Project
Frac-
tion

Math.
Func.

For
Range

For-
each

Pro-
duct

Sum
Physical

Unit
Error

Handling
State

Machine

A 150 0 483 112 6 2 54 323 58

B 243 0 462 86 6 2 45 191 75

C 16 0 40 24 0 6 69 87 21

The MISRA C:20128 rule 12.1 advises to use parentheses to make the operator precedences
of C expressions explicit [MI13]. In practice, this leads to extensive use of functionally
unnecessary parentheses to reduce possible human mistakes with the precedence rules of
C. An example of the analyzed code is shown in Fig. 3. The Ąrst line shows a simpliĄed
version of a statement of the analyzed code with parentheses around the divisions to meet
the MISRA C:2012 rule 12.1. The second line shows the same statement using fractions.
This statement is much more readable and, in our opinion, the parentheses around the
fractions can be omitted, because the precedence is obvious due to the graphical notation.
In the generated C code, parentheses are inserted to meet the MISRA rule.

Fig. 3: A statement without and with using fractions in MPS.

The small amount of code fragments replaceable by symbols for mathematical functions,
products and sums can be explained by the systematic use of Matlab/Simulink for signal
processing in the analyzed projects. The code generated by Matlab/Simulink is not part of
the analysis. The found code fragments replaceable by sums are used to calculate simple
checksums for inter-processor-communications. The calculations of products are used to
convert raw bus signals to SI values and vice versa.

For projects A and B, the for range loop is the most usable language extension. The
abstraction gap of for range loops is pretty small and the use of a for loop with a loop variable
that is incremented or decremented by 1 is very common.

Some of the found for loops that could be replaced by foreach loops could also be replaced by
sums. An example is the primitive checksum calculation over an array (e.g., bytes received
via a serial communication) as shown in Tab. 2. As we further analyzed non-matching
for loops, we found loops that iterate over multiple arrays at the same time as shown in a
simpliĄed version in Fig. 4a. These arrays store different information for the same entity. In
this example, one array stores the information whether each UART peripheral is enabled
and another array stores the current state of each UART peripheral. The counter variable of

8 Guideline for the use of the C language in critical systems published by the Motor Industry Software Reliability
Association (MISRA).

112 Andreas Grosche, Burkhard Igel, Olaf Spinczyk

the for loop is used as an index for both arrays. In addition, the counter variable is passed to
the SendByte function that uses the argument to access other arrays that store information
about the UART peripherals.

(a) Without OO (b) With OO

Fig. 4: A for loop without and a foreach loop with object-oriented Ćavor in MPS.

The attributes of all UARTs could be restructured from multiple arrays of primitive data
types to one array of structures. Each structure could hold all attributes of a UART in an
object-oriented way. The result would be a for loop that iterates over one array. This loop
could be replaced by a foreach loop as shown in Fig. 4b. The attributes of the iterated UARTs
could then be accessed using the it expression and a reference to it could be passed to a
function that could access the attributes of the UART in a convenient way.

We did not include this kind of for loops in the results, because more sophisticated analyses
would be necessary. Further replacements by foreach loops would be possible looking for
while and do ... while loops with appropriate data Ćow analysis to match the preconditions for
the counter variable incrementation.

More code fragments could be replaced by physical units, if signal processing would not
be done in Matlab/Simulink. However, physical units do not only make sense in signal
processing but also in basic software, e.g., for calculations of times and frequencies. It is
notable that more physical units could be used in the small non-AUTOSAR project C than
in the larger AUTOSAR projects A and B. This can be explained by the workĆow of code
generators that directly calculate register values to conĄgure the hardware in the AUTOSAR
projects. To allow a convenient hardware conĄguration in project C despite the lack of code
generators, calculations of register values are done in C code to allow the speciĄcation of
the hardware conĄguration parameters in physical units, such as Hz and ms.

A variety of approaches exist to implement state machines [Sa09]. In the analyzed code,
we found primarily simple approaches, which use switch or if statements to determine the
current state using a state variable. Depending on the state, corresponding actions are
implemented and the state variable is reassigned to switch to the next state. We also found
more sophisticated approaches using tables as well as code fragments that were not designed
with a state machine in mind that could be restructured to get a well-designed state machine.

Although we used complex patterns to compensate implementation variations, such as using
switch or if for state machines, the results shown in Tab. 3 are pessimistic. More relaxed
patterns in combination with program and data Ćow analysis would reveal more refactoring
possibilities. For example, we assumed that the power is calculated using the pow function.

Exploiting Modular Language Extensions in Legacy C Code 113

However, programmers also use multiplications, such as x = y ∗ y, that may even be split into
multiple statements.

Tab. 4 shows the minimum and maximum SLOC of C code that we found in the examined
projects that could be replaced with language extensions. To replace divisions by fractions
and for loops by for range loops, only one line of code has to be modiĄed. Especially for
fractions, multiple divisions may occur in one line. The replacement of for loops with foreach

loops requires the modiĄcation of the loop header and each array access using the loop
variable in the body. The code fragments of the examined projects that could be replaced by
products or sums are similar to the legacy C code outlined in Tab. 2.

The number of affected SLOC for replacements with physical units, error handling and state
machines have been determined statistically using three exemplary translation units. For
physical units, we considered the deĄnition (e.g., of a variable) and the usages. For the
context of each usage, we recursively analyzed which identiĄers and literals are involved
and how appropriate units can be applied to them. The SLOC for error handling is the
sum of lines to be modiĄed in the function that emits an error and the error handling of
all calling functions. For state machines, we counted the lines of code required for the
deĄnition and implementation of the states and transitions.

Tab. 4: Minimum and maximum SLOC of C code replaceable with mbeddr language
extensions in three automotive series projects.

Project
Frac-
tion

Math.
Func.

For
Range

For-
each

Pro-
duct

Sum
Physical

Unit
Error

Handling
State

Machine

A 1 0 1 2 . . . 10 4 4 1 . . . 16 2 . . . 9 36 . . . 215

B 1 0 1 2 . . . 10 4 4 1 . . . 22 2 . . . 30 18 . . . 187

C 1 0 1 2 . . . 4 0 4 1 . . . 28 2 . . . 9 67 . . . 161

In general, larger abstraction gaps between language extensions and the base language
require more complex patterns to Ąnd possible replacements. For example, the most complex
Coccinelle pattern for the examined syntactic sugar language extensions took seven lines of
code and no manual post-Ąltering was needed. In contrast to that, the enriched semantic

language extensions required up to 234 lines of Coccinelle pattern and manual post-Ąltering.

3 Proof of Concept

As a proof of concept, we implemented refactorings that transform divisions to fractions
and for loops to foreach loops in MPS. We used a simple approach that relies on the MPS
base language with predeĄned extensions for model queries and transformations. The
applicability of a refactoring is determined recursively using a set of preconditions. If
all preconditions match, a model transformation is performed to replace divisions with
fractions or for with foreach loops keeping the required properties and child elements.

114 Andreas Grosche, Burkhard Igel, Olaf Spinczyk

Fig. 5 shows a statement for the calculation of the USART baudrate register of an Atmel
ATmega8 microcontroller. Performing the refactoring for fractions on this statement replaces
the division with a fraction bar. In addition, the parentheses around the fraction and around
the denominator are removed because they are not required anymore.

Fig. 5: Screenshots of the ATmega8 USART baudrate register calculation before and after
the fractions refactoring in MPS.

An example for the foreach refactoring is shown in Fig. 6. The for loop is replaced with a foreach

loop. The upper bound UARTS of the condition is reused in the new loop and all occurrences
of an array indexed by the loop variable are replaced by the it expression. The number
of preconditions to be checked for this refactoring is very large compared to the fractions
refactoring, because many variations can occur. For example, one precondition ensures that
the loop index is incremented by 1 on each iteration. To check this single precondition,
multiple variations of the incrementation, such as i++, ++i and i = i + 1, have to be considered.
Using data and control Ćow analysis could additionally enable the replacement of while and
do..while loops.

Fig. 6: Screenshots of a for loop before and after the refactoring to a foreach loop in MPS.

4 Related Work

Several case studies exist regarding the use of model-driven software development with
mbeddr for embedded software. One case study deals with programming Lego Mindstorms
robots based on an OSEK operating system [VKa] using appropriate language extensions
with relevance beyond the Lego use case. Another case study approaches the Ąrst real-world
project using mbeddr [VKb]. Further case studies show how language extensions affect the
complexity, testability and runtime overhead of embedded software using mbeddr. They also
show the effort for engineering a new project [Vo15, Vo17]. Vinogradov et al. [VOR15]
describe the experience of using mbeddr in the railway domain including the integration of
the model-driven approach into the traditional product lifecycle. All of these case studies
conclude that language extensions and DSLs simplify reviews and the implementation of
changes. Our case study is the Ąrst approach to evaluate the extent of applicability of mbeddr
language extensions in existing automotive series projects.

Refactorings have been a research topic for several years [MT04] and most modern IDEs
support basic refactorings. These traditional refactorings primarily focus on the structure of
a software and improve it by restructuring, e.g., by moving statements into a new function

Exploiting Modular Language Extensions in Legacy C Code 115

[FB13]. In contrast, language extension refactorings focus on the behavior and purpose of
code fragments (considering different implementation techniques) and the replacement by
more abstract language extensions.

Like the presented approach, reverse engineering aims at the automated comprehension
of software to enhance development efficiency and maintainability. While classic reverse
engineering creates representations at a higher level of abstraction without modifying the
software [CC90], language extension refactoring transforms software fragments to a higher
level of abstraction retaining the external behavior. Reverse engineering and design recovery
techniques are a promising approach for the realization of language extension refactorings.
However, language extension refactoring should not only recover design but also support
the developer in improving the design and implementation which may require additional
semantic analysis and input of domain-speciĄc knowledge by the developer.

5 Conclusion and Future Work

Model-driven software development using mbeddr closes the gap between the programming
language C, which is close to the hardware, and modeling languages, such as UML. Several
case studies show the advantages of using mbeddr for the development of embedded software.
Siemens PLM Software made use of these advantages and released the commercial LMS
Imagine.Lab Embedded Software Designer (ESD) [Si] that is based on mbeddr.

The case study presented in this paper reĆects the usefulness of the language extensions
supplied with mbeddr in the automotive domain. It evaluates the number of possible
replacements of legacy C code fragments by mbeddr language extensions in three automotive
series projects. The extensions for products, sums and mathematical functions could rarely
or not at all be applied. All other examined language extensions (e.g., fractions, for range
loops and error handling) could be applied with a moderate to high degree. We could not
specify sufficient preconditions to cover all the language extensions shipped with mbeddr,
because of the high complexity of some of the language extensions, namely decision tables,
interfaces and components. The missing extensions could be part of future case studies.

Since a refactoring must not alter the external behavior of a program while improving the
internal structure [FB13], two major challenges have to be addressed for future language
extension refactorings. The Ąrst challenge is to determine the applicability of a refactoring on
a speciĄc code fragment to ensure that the refactoring does not change the external behavior.
The second challenge is the model-to-model transformation that replaces code fragments
with more abstract language extensions. As a proof of concept, we implemented refactorings
that transform divisions to fractions and for loops to foreach loops. Our implementation uses
a simple approach that is sufficient for small abstraction gaps between the base language
and the language extensions. However, further research is needed for refactorings of more
abstract language extensions, such as state machines.

116 Andreas Grosche, Burkhard Igel, Olaf Spinczyk

References

[AU14] AUTOSAR: AUTOSAR 4.2.1 Ű 054 Ű Main Requirements. AUTOSAR, Munich, Germany,
2014.

[AU15] AUTOSAR: AUTOSAR 4.2.2 Ű 043 Ű General Requirements on Basic Software Modules.
AUTOSAR, Munich, Germany, 2015.

[Ca16] Campagne, Fabien: The MPS Language Workbench Volume I. Campagne Laboratory
and CreateSpace Independent Publishing, New York, NY and North Charleston, South
Carolina, third edition, version 1.5.1, march 2016 edition, 2016.

[CC90] Chikofsky, E. J.; Cross, J. H.: Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Software, 7(1):13Ű17, 1990.

[CKL04] Clarke, Edmund; Kroening, Daniel; Lerda, Flavio: A Tool for Checking ANSI-C Programs.
In: International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, volume 2988 of Lecture Notes in Computer Science, pp. 168Ű176. Springer,
2004.

[FB13] Fowler, Martin; Beck, Kent: Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA, 2013.

[Gr05] Grossman, Dan; Hicks, Michael; Jim, Trevor; Morrisett, Greg: Cyclone: A Type-Safe
Dialect of C. C/C++ Users Journal, 23(1), 2005.

[Kä11] Kästner, Christian; Giarrusso, Paolo G.; Rendel, Tillmann; Erdweg, Sebastian; Ostermann,
Klaus; Berger, Thorsten: Variability-Aware Parsing in the Presence of Lexical Macros and
Conditional Compilation. In: Proceedings of the 2011 ACM international conference on
Object oriented programming systems languages and applications (OOPSLA Š11). ACM,
New York, NY, USA, pp. 805Ű824, 2011.

[MI13] MIRA Limited: MISRA C:2012. MIRA Limited, Nuneaton, UK, 2013.

[MT04] Mens, Tom; Tourwe, Tom: A Survey of Software Refactoring. IEEE Transactions on
Software Engineering, 30(2):126Ű139, 2004.

[MVR14] Molotnikov, Zaur; Voelter, Markus; Ratiu, Daniel: Automated Domain-SpeciĄc C VeriĄ-
cation with mbeddr. In: Proceedings of the 29th ACMIEEE International Conference on
Automated Software Engineering. ACM Press, New York, NY, USA, pp. 539Ű550, 2014.

[Pa08] Padioleau, Yoann; Lawall, Julia; Hansen, René Rydhof; Muller, Gilles: Documenting and
Automating Collateral Evolutions in Linux Device Drivers. In: Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Computer Systems 2008 (Eurosys Š08).
ACM Press, New York, NY, USA, pp. 247Ű260, 2008.

[Sa09] Samek, Miro: Practical UML Statecharts in C/C++. CRC Press, Boca Raton, 2. ed. edition,
2009.

[Si] Siemens PLM Software: Delivering model-based software engineering for software-
intensive systems: with LMS Imagine.Lab Embedded Software Designer.

[VKa] Voelter, Markus; Kolb, Bernd: Lego Mindstorms: an mbeddr Case Study. http://mbeddr.
com/files/mbeddr_casestudy_mindstorms.pdf.

Exploiting Modular Language Extensions in Legacy C Code 117

http://mbeddr.com/files/mbeddr_casestudy_mindstorms.pdf
http://mbeddr.com/files/mbeddr_casestudy_mindstorms.pdf

[VKb] Voelter, Markus; Kolb, Bernd: Smart Meter: an mbeddr Case Study. http://mbeddr.com/
files/mbeddr_casestudy_smartmeter.pdf.

[Vo12] Voelter, Markus; Ratiu, Daniel; Schaetz, Bernhard; Kolb, Bernd: mbeddr: an Extensible
C-based Programming Language and IDE for Embedded Systems. In: Proceedings of
the 2012 ACM Conference on Systems, Programming, and Applications: Software for
Humanity (SPLASHŠ12). Association for Computing Machinery, New York, NY, USA,
pp. 121Ű140, 2012. https://doi.org/10.1145/2384716.2384767.

[Vo13a] Voelter, Markus: DSL Engineering: Designing, Implementing and Using Domain-SpeciĄc
Languages. dslbook.org, 2013.

[Vo13b] Voelter, Markus; Ratiu, Daniel; Kolb, Bernd; Schaetz, Bernhard: mbeddr: Instantiating
a Language Workbench in the Embedded Software Domain. Automated Software
Engineering, 20(3):339Ű390, 2013.

[Vo14] Voelter, Markus: Generic Tools, SpeciĄc Languages. Ph.D. dissertation, Delft University
of Technology, 2014.

[Vo15] Voelter, Markus; van Deursen, Arie; Kolb, Bernd; Eberle, Stephan: Using C Language
Extensions for Developing Embedded Software: A Case Study. In: Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLAŠ15). SIGPLAN notices, ACM Press, New York,
NY, USA, pp. 655Ű674, 2015.

[Vo17] Voelter, Markus; Kolb, Bernd; Szabó, Tamás; Ratiu, Daniel; van Deursen, Arie: Lessons
Learned from Developing mbeddr: A Case Study in Language Engineering with MPS.
Software & Systems Modeling (SoSyM), pp. 1Ű46, 2017.

[VOR15] Vinogradov, Sergey; Ozhigin, Artem; Ratiu, Daniel: Modern model-based development
approach for embedded systems: Practical Experience. In: Proceedings of the 2015 IEEE
International Symposium on Systems Engineering (ISSE). pp. 56Ű59, 2015.

118 Andreas Grosche, Burkhard Igel, Olaf Spinczyk

http://mbeddr.com/files/mbeddr_casestudy_smartmeter.pdf
http://mbeddr.com/files/mbeddr_casestudy_smartmeter.pdf

Optimal Product Line Architectures for the Automotive
Industry

Tobias Wägemann1, Ramin Tavakoli Kolagari2, Klaus Schmid3

Abstract:

The creation of product line architectures is a difficult and complex task. The resulting architectures
must support the required system variabilities as well as further quality attributes. In the automotive
domain, product lines of software-intensive system models have a great diversity of products, which
leads to vast design spaces. Finding optimal product line architectures as part of the system design
process requires the consideration of a variety of trade-offs. In practice, this challenge cannot be solved
manually for all but the smallest problems, therefore an automated solution is required. Our contribution
is the generation of a sound mathematical formalization of the problem. This formalization makes
the product line optimization problem accessible to various established multi-objective optimization
techniques. The applicability of the chosen approach is shown by means of applying a commercial
tool for multi-criteria decision making.

Keywords: architecture optimization; multi-objective; variability; software product lines; automotive

1 Introduction

An important activity in product line engineering is the development of an adequate product
line architecture [CN01, Sc03, Ti12]. Due to the great diversity of products that must be
taken into account in this process, Ąnding an optimal product line architecture is a complex
and error-prone task. This is particularly the case when performing optimization of product
line architectures of software-intensive systems (as opposed to product line architectures of
software systems) as this must also account for objectives like weight or production cost.
Creating automated support for architecture optimization in such a context can be extremely
helpful, as it supports architects in navigating the complex and vast design space which
constitutes the basis for a multi-objective decision making problem.

In this paper, we present an approach for product line architecture optimization of software-
intensive systems based on EAST-ADL [Bl13], a domain-speciĄc architecture description

1 Technische Hochschule Nürnberg, Keßlerplatz 12, 90489 Nuremberg, Germany tobias.waegemann@th-
nuernberg.de

2 Technische Hochschule Nürnberg, Keßlerplatz 12, 90489 Nuremberg, Germany ramin.tavakolikolagari@th-
nuernberg.de

3 Universität Hildesheim, FB 4, Institut für Informatik, Universitätsplatz 1, 31141 Hildesheim, Germany
schmid@sse.uni-hildesheim.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 119

https://creativecommons.org/licenses/by-nc/3.0/
tobias.waegemann@th-nuernberg.de
tobias.waegemann@th-nuernberg.de
ramin.tavakolikolagari@th-nuernberg.de
ramin.tavakolikolagari@th-nuernberg.de
schmid@sse.uni-hildesheim.de
https://creativecommons.org/licenses/by-sa/4.0/

language for the automotive industry. As opposed to other work in this area [RRV16],
we provide a full mathematical formalization of the optimization problem. In a previous
publication we presented a concept for formalizing product line variability [WW15] as a
basis for exploring the design space. Here, we extend our previous work by including design
goals and variable realization elements (system components) in the formalization. We also
created a prototypical implementation of our approach that uses an off-the-shelf optimization
tool for solving the formalized problems. Since our approach builds on EAST-ADL system
models as the basis for optimization, we must also note that creating such a model in the
Ąrst place (including the aggregation of all relevant data) is a signiĄcant challenge in itself.
However, the language and respective system models are already in industrial use and there
are concerted efforts to further promote the industrial application of EAST-ADL by the
automotive industry.

While the ideas behind our approach are in principle generic and can be transferred to
other layered approaches for representing product line architectures, our implementation
focuses on the use of models deĄned in EAST-ADL. The EAST-ADL language was not
developed for (product line) architecture optimization in particular, but provides modeling
techniques for automotive systems, including techniques for variation modeling. As a
consequence, it contains constructs for variability representation, but not for describing an
optimization space. We therefore have to explicitly differentiate between actual product line

variability and the architectural degrees of freedom (i.e., the design space of the product line
architecture, cf. Section 3.3). Since both are represented using the same language constructs
in EAST-ADL, we introduce a method to differentiate between the two kinds of variation.

The paper is structured as follows: Section 2 gives an overview of the related work and
shows the differences between our approach and existing work. Section 3 describes the
domain-speciĄc architecture description language (EAST-ADL) used in our work. Section 4
discusses the encoding of the architecture optimization problem as a search problem. The
method used for deriving solutions is described in Section 5. Section 6 illustrates our
approach by means of a small case study. Finally, Section 7 concludes the paper and
describes our plans and ideas for future work.

2 RELATED WORK

There is a range of other work being conducted on the multi-objective optimization of
product line system architectures and search-based system design in general. In regard to
optimization approaches based on the EAST-ADL language speciĄcally, to our knowledge
only one other approach has been realized and published. Walker et al. [Wa13] present an
optimization approach based on multi-objective genetic algorithms which considers system
dependability, timing concerns and a simple cost metric. The approach uses HiP-HOPS4 for
fault tree analysis and MAST5 for response time computation and is tightly coupled to these

4 http://hip-hops.eu
5 http://mast.unican.es

120 Tobias Wägemann, Ramin Tavakoli Kolagari, Klaus Schmid

external solutions for the evaluation of objectives. A similar optimization approach for cost
and dependability is presented by Mian et al. [Mi15] for the AADL6 language, also using
HiP-HOPS for fault tree analysis.

Thüm et al. [Th12] present a classiĄcation framework for product line analysis strategies
to provide systematic access and guidance to the research in this particular Ąeld. They
divide the analysis strategies into four different categories: product-based, family-based
and feature-based analysis, as well as techniques that use combinations of these three. Our
approach operates solely on domain artifacts of the product line and can be classiĄed as a
family-based analysis strategy in regard to the classiĄcations introduced by this work.

Colanzi et al. present a number of publications in the Ąeld of search-based product line design
by means of multi-objective evolutionary algorithms. Their work includes an exploratory
study of applying search-based design methods to the SPL-context [CV12], the introduction
of a novel search-based approach for PLA-design based on PLA-speciĄc metrics by the name
of MOA4PLA [Co14], as well as the introduction of a feature-driven crossover operator for
PLA optimization using genetic algorithms [CV16].

Aleti et al. [Al13] give a broad overview of common architecture optimization methods used
in published work and present a taxonomy for the classiĄcation of existing research, based
on the three categories Problem, Solution, and Validation. Lopez-Herrejon et al. [LHLE15]
present a systematic mapping study on research regarding the application of search-based
software engineering methods to the realm of software product lines. The study focuses on the
type of employed SBSE techniques, the stage of the affected SPL life-cycle, commonly used
validation methods and the speciĄc forums for publication. Ramírez et al. [RRV16] present
a comparative study of multi-objective evolutionary algorithms for software architecture
optimization. This publication therefore centers on the internals of evolutionary architecture
optimization, including an empirical exploration of the behavior of a set of selected multi-
and many-objective algorithms in regard to predeĄned optimization problems with up to
nine objectives.

Our approach integrates aspects from three different research Ąelds: software product lines,
system architecture modeling and mathematical optimization. In light of related research in
this area, our approach is distinct by a combination of the following characteristics: (a) The
result of our optimization is not an optimal product but a product line architecture with optimal
architectural decisions. (b) The use of multi-objective integer linear programming (MOILP)
as a rigorous mathematical formulation of the optimization problem. (c) Adaptability
towards tools for optimization and multi-criteria decision making (MCDM) (cf. Section 5).

6 http://www.aadl.info

Optimal Product Line Architectures for the Automotive Industry 121

3 ARCHITECTURE MODELING APPROACH

EAST-ADL is a domain-speciĄc architecture description language with a focus on capturing
all relevant information to represent variant-rich software-intensive systems in a standardized
way. The language was developed in a series of European research projects with strong
participation of the automotive industry7 and applied/enhanced by a number of national
and international research projects8. Today the EAST-ADL is managed by the EAST-ADL
association9. The language has been tailored towards compatibility with the well-established
AUTOSAR standard10, which in turn serves as an integral part of the EAST-ADL language
by realizing one of its abstraction layers.

This section gives an overview of the EAST-ADL; details about the language can be found in
the EAST-ADL white paper [Bl13] and in the language speciĄcation11. Section 3.1 provides
an overview of EAST-ADL language; Section 3.2 examines the EAST-ADL variability
modeling approach, and Section 3.3 explains the distinction between product line variability
and architectural degrees of freedom.

3.1 EAST-ADL—an Architecture Description Language

EAST-ADL deĄnes a language for modeling automotive systems; the implementation of
these systems is then managed by AUTOSAR in the aforementioned tight coupling with
EAST-ADL. A major advantage of the EAST-ADL language is the organization of the
system model along predeĄned abstraction levels (cf. Figure 1): Abstraction is not only
supported in principleŮas is often the case for ADLsŮbut is enforced by the system
model with deĄned semantics for each level of abstraction. As a consequence, engineering
information is structured in accordance to a reference methodology based on the V-Model
that is widely used in the automotive domain. On each level of abstraction the system is
complete from a given perspective: from a very abstract representation at higher levels to
increasingly detailed representations at lower levels.

The system model is complemented by several extension packages that allow for modeling
requirements, variability, timing, and dependability (cf. Figure 1). Most of the extensions
are applicable on all levels of abstraction and are adapted to speciĄc modeling needs of the
automotive domain in general and EAST-ADL in particular; while the extensions heavily
rely on the ŞcoreŤ system model, the system model itself is independent of the extensions,

7 ITEA EAST-EEA (http://www.itea3.org/project/east-eea.html), ATESST, ATESST2 (http://www.atesst.org),
MAENAD (http://www.maenad.eu)

8 Artemis CESAR (http://www.cesarproject.eu), ITEA2 SAFE (http://www.safe-project.eu), Artemis MBAT
(http://www.mbat-artemis.eu), to name a few

9 http://www.east-adl.info
10 http://www.autosar.org
11 The EAST-ADL meta-model is published by the EAST-ADL Association: http://east-

adl.info/SpeciĄcation/V2.1.12/html/

122 Tobias Wägemann, Ramin Tavakoli Kolagari, Klaus Schmid

Fig. 1: EAST-ADL System Model [Bl13, p. 4]

such that extension modeling may be plugged in and out as required. Traceability with full
support of SysML semantics is supported for all modeling entities, i.e., between different
levels of abstraction as well as within a given abstraction level and to the extensions.

3.2 Variability Modeling Concepts in EAST-ADL

Managing variability is at the core of software product line engineering, it occurs because
some aspect of a system may change from one variant of a system to another. EAST-ADL,
as a decidedly automotive-speciĄc language, takes these challenges into account and offers
variability modeling techniques applicable for the car manufacturer and for the supplier.
Its variability management starts on Vehicle Level (cf. Figure 1), where the external (i.e.,
user-centric/abstract) variability, as well as the product-line-strategy variability is described
by cardinality-based feature models [CHE05]. The impact of the described variability is then
deĄned on the Analysis and Design Levels, respectively. Traceability links the abstract/root
view on Vehicle Level to the variability impact on lower levels of abstraction, i.e., the
artifact levels. While the details of how variability is actually realized in the system are
largely suppressed on the Vehicle Level, they are the focus of attention when managing
variability on the artifact levels. The artifact levels are Analysis Level, Design Level and
the extensions, where variability may occur as well. For example, one may think about the
different requirements for a rain sensor with and without a rain light sensor. Variability is
described in two ways on the artifact levels:

Feature models used on Analysis and Design Level get a much more concrete meaning
as compared to the feature model on Vehicle Level in order to reĆect detailed internal

Optimal Product Line Architectures for the Automotive Industry 123

variability as concrete implementation of the variability on the Vehicle Level. ConĄguration
decisions [RTW09] link feature models to one another with the purpose of deĄning conĄg-
uration, both within one abstraction level and across abstraction levels. As a consequence of
linking artifact level variation to Vehicle Level feature models by means of conĄguration
decisions, all major variability conĄguration is essentially controlled by the Vehicle Level.

Explicit variation is used to denote that modeling entities may be optional, i.e., be deleted
from the system model. Dependencies among variable entities are captured in terms
of variation groups. This integrated way of modeling variability can also be linked to
conĄguration decisions such that the (partial) conĄguration of this variability is guided by
feature models on a hierarchy level one step higher and ultimately by the feature models on
Vehicle Level.

3.3 Product Line Variability versus Architectural Degrees of Freedom

For the purpose of this paper it is essential to understand the distinction between two
kinds of (architectural) variabilities: 1. Product line variability [MP07, CN01] describes
the variations regarding components (or modules) of proper products that are well-formed
with respect to the product line design space. 2. Architectural degrees of freedom refer to
potential alternatives for designing the product (line) architecture. In other words, the result
of conĄguring all architectural degrees of freedom would be a product line architecture
(PLA), whereas the result of conĄguring all product line variability would be a product. The
architectural degrees of freedom are the basis for our optimization process, which intends
to produce an optimal product line architecture with respect to (multiple) criteria chosen by
an architect. Therefore, at the end of our optimization process, no architectural degrees of
freedom remain in the system model and the remaining architectural variability is governed
only by the product line design space.

Although product line variability and architectural degrees of freedom indeed both describe
variability, their purpose and their role, e.g., in an architecture optimization process, differ
considerably. It would therefore be useful for an architecture description language to manage
these variablities differently. As the EAST-ADL does not support this distinction (similar
to all other established modeling languages we are familiar with), we use the variability
modeling concepts of EAST-ADL for both and differentiate them as follows: we deĄne all
artifact variability that can be traced up to the Vehicle Level by means of conĄguration
decisions as product line variability (i.e., all variability that is rooted on Vehicle Level
is product line variability). Artifact variability without traceability to the Vehicle Level
(i.e., variability that is introduced only at artifact levels) stands for architectural degrees of
freedom; such variability is not conĄgured as part of a product line conĄguration, but is
instead decided at the time of system design. Identifying optimal design decisions for the
architectural degrees of freedom is the primary objective of our optimization approach.

124 Tobias Wägemann, Ramin Tavakoli Kolagari, Klaus Schmid

The chosen approach of distinguishing between product line variability and architectural
degrees of freedom is advantageous in that it can be applied to any (variability) modeling
approach that supports abstraction, which is indeed common. In the context of the EAST-
ADL the chosen approach is especially elegant because of the predeĄned root abstraction
level, i.e., the Vehicle Level.

4 TRANSLATION INTO AN OPTIMIZATION PROBLEM

A general deĄnition of an optimization problem is the problem of Ąnding the best solution
in regard to speciĄc criteria from all feasible solutions. Mapped to our problem domain, this
deĄnition translates to Ąnding the best product line architectures within the optimization
space deĄned by the architectural degrees of freedom as described by the EAST-ADL system
models. The use of EAST-ADL models for architecture optimization requires to formalize
all optimization-relevant system information in a way that is sufficient for optimization
purposes.

In this section we present our formalization approach for variant-rich EAST-ADL sys-
tem models, which involves (a) the identiĄcation of all model elements relevant for the
optimization process, (b) an evaluation of the characteristics of these elements in regard
to the intended optimization goals and (c) a generation of a mathematical formulation,
which constitutes the basis of our optimization process. We also describe how we handle
optimization problems with multiple objectives as part of our approach. It is not the goal of
our approach to fully automate architecture deĄnition.

4.1 Multiple Design Objectives

When considering multiple design objectives in a non-trivial optimization process, there is
usually no solution that is truly optimal for each of the objectives simultaneously. This is
caused by conĆicts among the objectives, e.g., making the system more lightweight will
likely increase costs, etc. There are two different ways of handling this issue, resulting in
two different approaches to multi-objective optimization.

One possibility is to turn the initial multi-objective problem into a pseudo-single-objective
problem, by aggregating all considered objectives into a single weighted objective function.
The resulting single solution of this approach is optimal in regard to the predeĄned weights
used for the design objective aggregate, which have to be determined before the optimization.
This kind of approach is called scalarization or weighted normalization [GR06].

The other possibility, and the one we use in our approach, is to consider all design objectives
simultaneously in a specialized optimization process called Pareto optimization. The result
of a Pareto optimization is not a single solution, but a set of Pareto-optimal solutions, called
the Pareto front. Pareto optimality is based on the concept of dominance; a solution is called

Optimal Product Line Architectures for the Automotive Industry 125

non-dominatedŮand is thus part of the Pareto frontŮif there are no other solutions that are
better in at least one objective without degrading one or more of the other objectives [BK05,
p. 414ff].

All solutions that are part of the Pareto front, i.e., all dominant solutions, are in principle
equally optimal. Selecting the most suitable solution from the Pareto set is therefore subject
to a trade-off analysis. This step is dependent on the expertise and the end goals of the
user, typically an architect intending to Ąnd the architecture that best suits a speciĄc set
of requirements. From the perspective of an architect, our approach is therefore a means
to efficiently explore the design space of system models, which guarantees that a chosen
architecture is Pareto-optimal in regard to the considered design objectives.

4.2 Formalization Approach

In order to establish a sound basis for the exploration of an architecture optimization
space, all optimization-relevant information of a given variant-rich system model must
be formalized into a rigorous mathematical form. Our optimization problems have binary
decision variables and multiple design objectives. Therefore, our problem domain is that of
multi-objective integer linear programming (MOILP) with all variables ∈ {0, 1}. In order to
translate our optimization problems into MOILP form, we Ąrst assign all relevant variable
elements to numbered decision variables x1...xn. We can then formulate the program as
follows:

Minimize Cx

subject to Ax ≥ a0

x ∈ {0, 1}n
(1)

where C is a (m, n)-Matrix of design objective values, A and a0 are a (p, n)-matrix and a
p-vector representing a set of constraints which maps the optimization space and x is an
n-vector of binary decisions variables; with m being the number of design objectives, n

being the number of decision variables and p being the number of program constraints. The
matrix Cx translates to a set of linear objective functions F(x) = (f1(x), f2(x), ..., fm(x))

T ,
which represent the pursued design objectives.

First of all, a formalization approach must be able to distinguish between product line
variability and the systemŠs architectural degrees of freedom (cf. Section 3.3). The intended
output of our optimization approach is a product line with Pareto-optimal architectural
decisions, not a Pareto-optimal conĄguration of the product line, i.e., not a product.
Therefore, it must be possible to omit all product-line-related variability from the constraint
formalization, so that it doesnŠt get resolved as part of the optimization process. Our approach
accomplishes this distinction between product line variability and architectural degrees of
freedom by an evaluation of the language traceability across the abstraction levels of the
EAST-ADL model. If a variation point is part of the systemŠs product line variability, it must
be possible to trace its origin up to the modelŠs Vehicle Level, where the product line design

126 Tobias Wägemann, Ramin Tavakoli Kolagari, Klaus Schmid

space is deĄned by means of feature models. If however the trace ends below the Vehicle
Level, the variation point must necessarily be part of the architectural degrees of freedom
instead. Using this distinction, we assign decision variables to the variable elements of the
architectural degrees of freedom.

In order to generate the objective functions from our variant-rich EAST-ADL models, we
parse a type of native EAST-ADL language annotations called GenericConstraints. Using
predeĄned GenericConstraintKinds like weight or piece cost, GenericConstraints can be
used to annotate quantiĄable quality attribute information to elementsŮincluding variable
elementsŮof the model. The set of possible objectives is therefore deĄned by the available
GenericConstraintKinds in the EAST-ADL language speciĄcation. To generate the objective
functions for these annotations, we allocate the numeric values of the GenericConstraints
(of one speciĄc GenericConstraintKind) to the previously introduced decision variables.
In doing so, we produce linear objective functions in the form of f (x) = cT x, where cT

is the transposed vector of the numeric values of the GenericConstraints for the variable
elements associated with the decision variables x. Performing this step for all pursued
design objectives produces a set of linear objective functions.

Next, we formalize the variability information into program constraints. Having established
a way of Ąltering out the (for the formalization process) unwanted product line variability, the
formalization of desired variability (i.e., architectural degrees of freedom) into constraints
for our MOILP is done by applying a set of transformation rules based on an intermediate
conversion into propositional logic. These transformation rules were presented in detail in
one of our former publications [WW15], which was focused solely on a method for generating
propositional constraints from variability descriptions. In this paper we incorporate this
method into a fully-Ćedged multi-objective optimization approach. Table 1 gives a summary
of the rules and Section 6.2 demonstrates their application by means of a case study. With the
formalization of (a) quality attributes into design objectives and (b) variability information
into program constraints in place, we can now assemble full MOILP representations of
optimization problems for variant-rich EAST-ADL models. Our implementation generates
these MOILPs in the standard formats of OPL12 and AMPL13.

5 SOLVING OUR OPTIMIZATION PROBLEM

We use our formalization of the optimization problem as input for third-party optimization
tooling. Our tool of choice is the commercial optimization software FINNOPT14, which
provides a human decision maker with an interactive process for Ąnding the most preferred
compromise among all Pareto-optimal solutions of a multi-objective optimization problem.
The FINNOPT approach is inherently iterative and allows the user to guide the process
towards preferred solutions as part of a trade-off analysis. FINNOPT is based on the

12 https://www-01.ibm.com/software/commerce/optimization/modeling
13 http://ampl.com
14 http://www.Ąnnopt.com

Optimal Product Line Architectures for the Automotive Industry 127

Variability Propositional Logic Program Constraints
F
ea

tu
re

T
re

e

Feature has
parent

f → fparent fparent − f ≥ 0

Feature is
excluded

!f (1 − f) = 1

Feature
Group

for all m:
fparent → Mm(f1, .., fn)

for all m:
Mm(f1, .., fn) − fparent ≥ 0

F
ea

tu
re

L
in

k needs fstart → fend fend − fstart ≥ 0

optional
alternative

!(fstart ∧ fend) fend + fstart ≤ 1

mandatory
alternative

fstart ⊕ fend fstart + fend = 1

V
ar

ia
ti
on

G
ro

up needs f1 → (f2 ∧ f3 ∧ . . . ∧ fn)
∧n

k=2
(fk − f1 ≥ 0)

optional
alternative

for all m:
Mm(f1, .., fn)

f1 + f2 + . . . + fn ≤ 1

mandatory
alternative

f1 ⊕ f2 ⊕ . . . ⊕ fn f1 + f2 + . . . + fn = 1

ConĄguration
Decisions

criterion → effect effect − criterion ≥ 0

Tab. 1: Overview of our transformation rules for EAST-ADL system variability [WW15].

IND-NIMBUS [Mi06] software that was developed by the Industrial Optimization Group
of the University of Jyväskylä, Finland15. The tool integrates an external ILP-solver and
utilizes it as part of its process. For this purpose we use the commercial solver CPLEX that
is part of the IBM ILOG CPLEX Optimization Studio16 for mathematical optimization.

FINNOPT is well-suited to the task of identifying solutions that are both Pareto-optimal
in regard to a preferred emphasis on speciĄc design objectives and useful for a system
architect. The software is able to handle large and complex optimization problems and has a
user interface that is well suited to analyzing trade-offs for system architectures. However,
since we generate our problem formalization in standardized formats (OPL, AMPL), the
FINNOPT-based tool setup can in principle quite easily be exchanged with alternative
optimization tools for multi-criteria optimization and decision making.

15 http://www.mit.jyu.Ą/optgroup
16 http://www.ibm.com/software/products/en/ibmilogcpleoptistud

128 Tobias Wägemann, Ramin Tavakoli Kolagari, Klaus Schmid

Fig. 2: The wiper control system demonstration model.

6 CASE EXAMPLE

We demonstrate the application of our architecture optimization approach by means of
an example. The demonstration model is an extended version of an existing EAST-ADL
example, which was previously used for showcasing the variability language concepts of
the language in the MAENAD project17. While the demonstration model is smaller than
real-world system models, it adequately serves the purpose of demonstrating our approach
in the context of this paper. We will Ąrst give an overview of the modelŠs structure and its
contained variabilities. We then demonstrate our MOILP-based formalization approach,
before the formalized program is used to explore the optimization space. The resulting
Pareto-optimal product line architectures are used for a discussion of the correctness and
consistency of the solutions and the adequacy of our optimization approach in general.

6.1 The Demonstration Model

The model used for this demonstration is illustrated in Figure 2. The system shows a product
line architecture for the control electronics of a windscreen wiper. To keep the example
concise, the demonstration model does not show the full EAST-ADL realization, but gives
an overview of all elements that are relevant to the optimization process and makes a clear
distinction between elements on the Vehicle Level and those on the artifact levels of the
model. The level of abstraction used here also coincides with the level of abstraction used in
the source document of the model. In this representation, variable elements are indicated by
dashed lines, public feature models of containers are shown at the top right of the containers,

17 MAENAD Concept Presentation on EAST-ADL Variability: http://www.maenad.eu/public/conceptpresentations
/6_Variability_EAST-ADL_Introduction_2013.pdf

Optimal Product Line Architectures for the Automotive Industry 129

weight / g cost / e power consumption / W

V1_Supplier_A 122 3.30 2.80
V1_Supplier_E 131 3.25 2.75
V2_Supplier_B 154 5.32 3.10
V2_Supplier_C 154 5.90 3.15
WI_Supplier_A 155 3.54 2.60
WI_Supplier_C 167 3.51 2.55
WI_Supplier_D 158 3.58 2.50
RS_Supplier_A 143 10.65 5.50
RS_Supplier_B 150 10.82 5.50
RS_Supplier_D 126 11.46 5.45

Tab. 2: (Excerpt of) quality attribute values for system components from different suppliers.

and (non-obvious) conĄguration decisions are represented by arrows from public feature
models to conĄguration targets.

The system can be conĄgured in either a basic or an advanced conĄguration, which toggles
between two different system variants V1 and V2. The system further includes an optional
rain sensor that is mandatory for the advanced conĄguration. These variation points are part
of the product line design space.

In addition, the demonstration model also contains variabilities that describe degrees
of freedom for the architecture. In this example, these variability descriptions represent
alternativeŮbut functionally identicalŮcomponents from different suppliers and the
interdependencies among them. The basic variant V1 and the advanced variant V2 each
have two alternative components, the rain sensor and the wiper integrator each have three.
The alternative components from different suppliers have varying weight, cost and power
consumption (cf. Table 2). The following constraints exist:

• The basic variant V1 from supplier A needs the wiper integrator from supplier A;
e.g., because it is a built-in feature of the wiper integrator.

• The advanced variant V2 from supplier B and the rain sensor from supplier B need
each other; e.g., because they are sold as a set and not as separate modules.

• The rain sensor from supplier D needs the wiper integrator from supplier D; e.g.,
because supplier D uses a non-standard proprietary connector.

6.2 Problem Formalization

In order to conduct an automated optimization of the architecture, we Ąrst need to
formalize all optimization-relevant data of the demonstration model. The Ąrst step of

130 Tobias Wägemann, Ramin Tavakoli Kolagari, Klaus Schmid

formalization is to assign ordered decision variables to all variable components of
the model: x1 = V1_Supplier_A, x2 = V1_Supplier_E , x3 = V2_Supplier_B, x4 =

V2_Supplier_C, x5 = W I_Supplier_A, x6 = W I_Supplier_C, x7 = W I_Supplier_D,
x8 = RS_Supplier_A, x9 = RS_Supplier_B, and x10 = RS_Supplier_D.

Next, we formalize the variability annotations of the model. The formalization follows the
general process described in Section 4, more speciĄcally the transformation rules shown
in Table 1. This step produces the set of equality and inequality constraints for the integer
linear program, i.e., the optimization space. The formalization of the degrees of freedom
of the demonstration model results in the following set of constraints (with all decision
variables xi ∈ {0, 1}):

x1 + x2 = 1

x3 + x4 = 1

x5 + x6 + x7 = 1

x8 + x9 + x10 = 1

x5 − x1 ≥ 0

x7 − x10 ≥ 0

x3 − x9 = 0

(2)

Our goal is to Ąnd a Pareto-optimal product line architecture, not a Pareto-optimal product.
Therefore, we only formalize the architectural degrees of freedom, not the product-line-
related variability (which will still be present in the resulting architectures). In our demon-
stration model, the product line variability from the Vehicle Level traces to the WiperControl
variation point on the artifact levels, which was thus omitted from the formalization. All
other variabilities (i.e., supplier choices and dependencies) have no traceability to the Vehicle
Level; they are thus architectural degrees of freedom and are included in the formalization.

The formalization of quality attributes into objective functions naturally use the same
assignment of decision variables. The quality attribute values deĄned in Table 2 result in the
following linear objective functions for weight, cost and power consumption, in this order:

MIN 122 ∗ x1 + 131 ∗ x2 + 154 ∗ x3 + 154 ∗ x4+

155 ∗ x5 + 167 ∗ x6 + 158 ∗ x7 + 143 ∗ x8+

150 ∗ x9 + 126 ∗ x10

MIN 3.30 ∗ x1 + 3.25 ∗ x2 + 5.32 ∗ x3 + 5.90 ∗ x4+

3.54 ∗ x5 + 3.51 ∗ x6 + 3.58 ∗ x7 + 10.65 ∗ x8+

10.82 ∗ x9 + 11.46 ∗ x10

MIN 2.80 ∗ x1 + 2.75 ∗ x2 + 3.10 ∗ x3 + 3.15 ∗ x4+

2.60 ∗ x5 + 2.55 ∗ x6 + 2.50 ∗ x7 + 5.50 ∗ x8+

5.50 ∗ x9 + 5.45 ∗ x10

(3)

Having generated both objective functions and program constraints means that we now
have a proper multi-objective integer linear program (cf. Equation 1). This enables us to

Optimal Product Line Architectures for the Automotive Industry 131

Fig. 3: Petal diagram of the Pareto-optimal solutions.

explore the optimization space and to identify Pareto-optimal solutions for the given quality
attributes.

6.3 Discussion of Optimization Results

Even for the small optimization space of our demonstration model, Ąnding Pareto-optimal
solutions by hand can already be a tedious exercise. When scaling up the size of the problem
to real-world models, Ąnding solutions by hand quickly goes from tedious to impractical to
outright impossible. In order to demonstrate our approach, we apply commercial tooling (cf.
Section 5) for solving the formalization of our optimization problem and thereby identify
four Pareto-optimal solutions. Regarding the consistency of our results, it should be noted
that each solution directly corresponds to a real product line architecture for the given
system, since all product line variability is still present in the resulting models. In other
words, the product line variability space remains intact.

The optimization solutions can be described using a notation of 4-tuples in the form
of (V1,V2,W I, RS); e.g., (A,C, A, A) is a solution where V1, the wiper integrator and
the rain sensor use components from supplier A, and V2 from supplier C. Using our
optimization tooling, we identiĄed the Pareto solutions (E, B,D, B), (E,C,D,D), (E, B,C, B)
and (E,C,D, A). Figure 3 shows a Petal diagram of these solutions, where the petals depict the
relative quality of criteria per solution, thereby giving a rough overview of the characteristics
of each solution. Petal diagrams are one of the visualization options of the FINNOPT tool
(cf. Section 5). Such visualizations can be used (among other methods) to conduct a trade-off
analysis of the Pareto-optimal alternatives for a system architecture. Pareto analyses for large
and complex real-world industrial models are a non-trivial task that requires considerable
system expertise from the conducting architect or engineer.

The Pareto set for our case study example has a particularly interesting characteristic: out
of all products that can be conĄgured from the given product line design space, the most
lightweight possible product (277g, V1 from supplier A, WI from supplier A, no rain

132 Tobias Wägemann, Ramin Tavakoli Kolagari, Klaus Schmid

sensor) is not part of the most lightweight product line architecture (E,C,D,D) (its most
lightweight product has 289g). Effects like this are a consequence of family-based analyses
like our product-line-aware optimization and must be taken into account when considering
the adequacy of Pareto-optimal product line architectures for speciĄc use cases.

7 CONCLUSIONS

In this paper we introduced a novel approach for product line architecture optimization and
demonstrated its application by means of a case study. The approach deĄnes a complete
mathematical formalization as a multi-objective integer linear program that comprises the
architectural degrees of freedom, the implementation components and the design objectives
(cf. Section 4). We demonstrated that our approach has characteristics that differentiate
it both from our previous work and from other research in this area. Furthermore, our
approach is not merely theoretical, but has been implemented with the help of off-the-shelf
optimization tooling (cf. Section 5).

As future work, we plan to compare our approach to other optimization frameworks in terms
of efficiency and optimality of the results. We also plan to address variants of the given
problem domain like an (optional) inclusion of speciĄc border conditions, e.g., optimal
product variants that shall always be part of a resulting product line architecture. Furthermore,
we plan to identify useful application scenarios for the so far unused formalization of product
line variability in addition to our current approach of optimizing only the architectural
degrees of freedom. We plan to continuously evaluate our efforts with the aid of industry
experts from the automotive domain. A Ąrst round of evaluations has already been concluded
and yielded positive feedback.

References

[Al13] Aleti, A.; Buhnova, B.; Grunske, L.; Koziolek, A.; Meedeniya, I.: Software architecture
optimization methods: A systematic literature review. IEEE Transactions on Software
Engineering, 39(5):658Ű683, 2013.

[BK05] Burke, E. K.; Kendall, G.: Search methodologies: Introductory Tutorials in Optimization
and Decision Support Techniques. Springer, 2005.

[Bl13] Blom, H.; Lönn, H.; Hagl, F.; Papadopoulos, Y.; Reiser, M.-O.; Sjostedt, C.-J.; Chen,
D.-J.; Tavakoli Kolagari, R.: , White Paper Version 2.1.12: EAST-ADL - An Architecture
Description Language for Automotive Software-Intensive Systems, 2013.

[CHE05] Czarnecki, K.; Helsen, S.; Eisenecker, U.: Staged conĄguration through specialization and
multilevel conĄguration of feature models. Software Process: Improvement and Practice,
10(2):143Ű169, 2005.

[CN01] Clements, P.; Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley Professional, 2001.

Optimal Product Line Architectures for the Automotive Industry 133

[Co14] Colanzi, T. E.; Vergilio, S. R.; Gimenes, I.; Oizumi, W. N.: A search-based approach for
software product line design. In: Proceedings of the 18th International Software Product
Line Conference-Volume 1. ACM, pp. 237Ű241, 2014.

[CV12] Colanzi, T. E.; Vergilio, S. R.: Applying search based optimization to software product line
architectures: Lessons learned. In: International Symposium on Search Based Software
Engineering. Springer, pp. 259Ű266, 2012.

[CV16] Colanzi, T. E.; Vergilio, S. R.: A feature-driven crossover operator for multi-objective and
evolutionary optimization of product line architectures. Journal of Systems and Software,
121:126Ű143, 2016.

[GR06] Grodzevich, O.; Romanko, O.: Normalization and other topics in multi-objective opti-
mization. In: Proceedings of the FieldsŰMITACS Industrial Problems Workshop. The
Fields Institute, pp. 89Ű102, 2006.

[LHLE15] Lopez-Herrejon, R. E.; Linsbauer, L.; Egyed, A.: A systematic mapping study of search-
based software engineering for software product lines. Information and software technol-
ogy, 61:33Ű51, 2015.

[Mi06] Miettinen, K.: IND-NIMBUS for demanding interactive multiobjective optimization.
Multiple Criteria Decision Making Š05, 1:137Ű150, 2006.

[Mi15] Mian, Z.; Bottaci, L.; Papadopoulos, Y.; Sharvia, S.; Mahmud, N.: Model transformation
for multi-objective architecture optimisation of dependable systems. In: Dependability
Problems of Complex Information Systems, pp. 91Ű110. Springer, 2015.

[MP07] Metzger, A.; Pohl, K.: Variability management in software product line engineering.
In: Companion to the proceedings of the 29th International Conference on Software
Engineering. IEEE Computer Society, pp. 186Ű187, 2007.

[RRV16] Ramírez, A.; Romero, J.; Ventura, S.: A comparative study of many-objective evolutionary
algorithms for the discovery of software architectures. Empirical Software Engineering,
21(6):2546Ű2600, 2016.

[RTW09] Reiser, M.-O.; Tavakoli Kolagari, R.; Weber, M.: Compositional Variability: Concepts and
Patterns. In: 42nd Hawaii International Conference on System Sciences. pp. 1Ű10, 2009.

[Sc03] Schmid, K.: A Quantitative Model of the Value of Architecture in Product Line Adoption.
In: Proceedings in the 5th International Workshop on Product Family Engineering. 2003.

[Th12] Thüm, T.; Apel, S.; Kästner, C.; Kuhlemann, M.; Schaefer, I.; Saake, G.: Analysis strategies
for software product lines. School of Computer Science, University of Magdeburg, Tech.
Rep. FIN-004-2012, 2012.

[Ti12] Tischer, Christian; Boss, Birgit; Müller, Andreas; Thums, Andreas; Acharya, Rajneesh;
Schmid, Klaus: Developing Long-Term Stable Product Line Architectures. In (de Almeida,
E. Santana; Schwanninger, C.; Benavides, D., eds): Proceedings of the 16th International
Software Product Line Conference (SPLC Š12). volume 1. ACM, pp. 86Ű95, 2012.

[Wa13] Walker, M.; Reiser, M.-O.; Tucci-Piergiovanni, S.; Papadopoulos, Y.; Lönn, H.; Mraidha,
C.; Parker, D.; Chen, D.-J.; Servat, D.: Automatic optimisation of system architectures
using EAST-ADL. Journal of Systems and Software, 86(10):2467Ű2487, 2013.

[WW15] Wägemann, T.; Werner, A.: Generating Multi-objective Programs from Variant-rich
EAST-ADL Product Line Architectures. In: GI-Jahrestagung. pp. 1673Ű1685, 2015.

134 Tobias Wägemann, Ramin Tavakoli Kolagari, Klaus Schmid

Extending a UML and OCL Tool for Meta-Modeling:
Applications towards Model Quality Assessment

Khanh-Hoang Doan1, Martin Gogolla1

Abstract:

For developing software in a model-driven style, meta- and multi-level modeling is currently gaining
more and more attention. In this contribution, we propose an approach to extend a two-level modeling
tool to three-level modeling by adding a meta-model at the topmost level. Standard OCL does not
support reĆective constraints, i.e., constraints concerning properties of the model like the depth of
inheritance. By adding an auto-generated instance of the topmost level to the middle level, we can
offer an option for writing reĆective constraints and queries. We apply the extension to demonstrate
the usefulness of meta-modeling for model querying and model quality assessment. A Ąrst proposal
towards level-crossing constraints is also put forward.

Keywords: UML; OCL; Meta-modeling; ReĆective constraints; Model querying; Model quality
assessment.

1 Introduction

Within software development, Model-Driven Engineering (MDE) is playing now a more and
more important role. MDE considers models as central development artifacts, for example by
combining the UML (UniĄed Modeling Language) [Ob15b], and the OCL (Object Constraint
Language) [CG12]. Meta-models play a crucial role in modeling as they deĄne the structure of
models, and meta-modeling [AK03, Bé05] and multi-level modeling [At14, At15, AGC16]
has become a major research topic. Meta-modeling is closely connected to multi-level
modeling because a UML and OCL model, which we call a user model, can be regarded
an instance model, i.e., instantiation of a metamodel. The user model in turn may act as a
type model, which may be instantiated again to a run-time instance model. Following this
process, one obtains a modeling architecture with at least three levels.

Our starting point is a version of the tool USE (Uml-based SpeciĄcation Environ-
ment) [GBR07, GH16] that supports two-level modeling. In this contribution we show how
to extend the tool to three levels of modeling by adding the OMG (Object Management
Group) UML meta-model to the topmost level. In order to make the work with different
modeling levels easier, we provide the option to automatically take a simpliĄed view on

1 University of Bremen, Computer Science Department, E-Mail: {doankh,gogolla}@informatik.uni-bremen.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 135

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-sa/4.0/

the meta-model based on the elements of the current input user model. To offer access to
the meta level, a meta-model instance corresponding to the user model is automatically
generated and added to the middle level. By doing that, the user model turns into a instance
model, and therefore modelers can write OCL constraints and queries about the model itself.
We call this type of OCL expressions reflective constraints and queries. Thus the work in this
paper supports meta-models and reĆective OCL constraints and queries, i.e., expressions
that treat the user model itself as data. ReĆective querying helps to explore, understand
and validate models, especially when we model large, complicated systems. For example,
we can utilize reĆective constraints to analyze a model and check for internal quality of
a class diagram. In this paper, we also show the application of reĆective constraints for
model quality evaluation. The quality properties that we deal with in this paper are the
problems on the class diagram might relate to general design issues, e.g., the naming of
elements, or to questions regarding model metrics. Some similar approaches in this Ąeld
have been presented, for example in the works [Ag11, AGO12, LGdL14]. Developers can
use an appropriate method to evaluate their model and Ąnd drawbacks and problems in the
model. The quality assessment method introduced in this contribution uses standard OCL
in our three-layer modeling approach. Our three-layer modeling approach also offers an
extension of standard OCL for level-crossing constraints, which are across all three levels,
since the meta objects and run-time objects are accessible at the same time. An idea of
extending OCL for level-crossing constraints is also presented in the later part of this paper.

The rest of the paper is organized as follows. Section 2 presents the general idea to extend
our two-level tool to a three-level modeling tool. In Section 3 we show how to write
reĆective queries in the extended tool based on the available meta-model. The approach
using reĆective OCL constraints for quality assessment is introduced in Sect. 4. Section 5
presents a Ąrst proposal towards level-crossing constraints. The paper ends with some
concluding remarks and future work in Section 7.

2 Tool-supported Meta Modeling

2.1 Meta-modeling in UML

The OMG has deĄned the Meta-Object-Facility (MOF) [Ob15a] as a fundamental standard
for modeling. MOF provides a four-layer architecture for system modeling (three of them
are shown in Fig. 1). Generally speaking, adjacent layers in the architecture are related by
the instance-of relationship. This means that a lower layer is used for instantiating the next
upper layer. One could also say that the same entities at a middle layer Mi can be (A) objects
for the next upper layer Mi+1 and (B) classes for the entities at the next lower layer Mi−1.

The top layer in the MOF architecture, named M3, is a meta-meta model. This meta-meta
model is the language used to build the metamodels at the lower layer, called M2. The UML
metamodel, which is used to describe the UML, is the most well-known example of a model

136 Khanh-Hoang Doan, Marti Gogolla

at M2 layer. The models at layer M2 describe the elements and the structure of the models
at layer M1. Models at layer M1 can be, for instance, models written in UML. The last and
bottom layer in the MOF architecture is the layer M0 (also called data layer). Models at this
layer describe run-time instances (representations of real-world objects).

2.2 Basics of Meta Modeling in USE

In previous works, we have introduced USE (UML-based SpeciĄcation Environ-
ment) [GBR07, GH16] as a two-level modeling tool, in which a user UML and OCL
model at level M1 (class diagram and constraints) and run-time instances at layer M0 (object
diagrams) are provided. In [Go15], ideas for experimenting with multi-level models in the
two-level tool USE are presented. In the current contribution, we introduce an approach, in
which the MOF architecture is integrated into USE for meta modeling. Roughly speaking,
we now make the third OMG layer M2 explicitly available. Fig. 1 shows the general schema
for our three-level modeling approach in the new version of USE. The model at layer M2
is the UML meta-model (the OMG superstructure) [Ob11]. This meta-model itself is an
explicit UML class model formulated in USE with (currently) 63 classes and 99 associations.
It is preloaded as a type model for all user UML models at layer M1 and is Ąxed during
the modeling process. In the middle of our three-layer modeling approach there is a user
UML and OCL model at layer M1, which is highlighted by the dashed rectangle in Fig. 1.
The key point that makes our approach available for writing reĆective constraints is an
auto-generated meta-instance of the meta-model added to M1 level. Each meta-object is an
instance of a meta-class and the number of generated meta-objects and links is based on the
input user model. For example, if there are two classes in the user model, then two instances
of meta class Class are generated. Our approach visits all user model elements (e.g., classes,
attributes, operations, associations) and generates the corresponding meta-objects and links.
Table 1 shows the mapping between the user model elements and the related meta-model
classes and associations, which are the type elements for the generated meta-objects and
links. In this work, we use the USE speciĄc language SOIL (Simple OCL-based Imperative
Language) [BG11] to create these meta-objects and links.

2.3 Three-layer Model Representation in USE

As discussed before, in the M1 layer we provide two views on the user model. The Ąrst view
is a class diagram view, which can be seen as a type model for the object model at the lower
layer M0. The second view is an object diagram view that is an instantiation of the UML
meta-model at level M2 and that corresponds to the loaded UML user model. These two
views represent the same information and are always in sync.

Fig. 2 contains an example of a three-level modeling representation in USE. The user
model in this example is a simple model, with two classes, Employee and Department, and an

Extending a UML and OCL Tool for Meta-Modeling 137

Instance model

Type modelInstance model

Type model

UML Meta model

Meta model

instances

Run-time instances

UML Class model

M2

M1

M0

<<instanceOf>>

<<instanceOf>>

<<viewOf>>

<<viewOf>>

User

model

Fig. 1: General schema for three-layer model representation.

association WorksIn as shown in the right middle part of Fig. 2. As mentioned above, the full
meta-model includes 63 classes and 99 associations. Therefore, viewing the full meta-model
is not practical and sometimes not necessary, because many of the meta-model elements
might not be used to describe the current user model. For example, the meta-model class
Operation is not used to describe any element in the Employee-Department model. Starting
from these observations, we provide a simpliĄed view for the meta-model, as shown in the
upper part of Fig. 2. To construct the simpliĄed view from the full meta-model, we drop all
unnecessary classes and associations, which are not needed for any element of the current
user model. In the simpliĄed view, we only show the meta-model elements, i.e., classes
and associations, that the user model needs as type elements to instantiate model elements.
Table 1 shows the mapping between the user model elements and the related meta-model
classes and associations.

In each row, the item in the Ąrst column is a user model element, and the items in the second
column are the classes that directly relate to the user model element, i.e., a typing model
element. The third column contains the related meta-model associations (the subscript
text includes the names of association ends corresponding to the classes). Based on this
mapping, we can detect which meta-model elements will be displayed in the simpliĄed
view. For example, if a class in the user model contains attributes then the Property

metaclass and two associations, i.e., Classclass Ű PropertyownedAttribute and DataTypeDataType Ű
PropertyownedAttribute will be shown. Concerning the example and as the result of the
described mapping, only three classes, Class, Property, Association, and the corresponding
associations are shown in the simpliĄed meta-model view for the Department-Employee
user model. Additionally, we still provide a full meta-model view, in case the developer
wants to explore it.

138 Khanh-Hoang Doan, Marti Gogolla

Fig. 2: Three-layer model representation in USE.

Extending a UML and OCL Tool for Meta-Modeling 139

The left middle part in Fig. 2 is the user model represented as an instance of the meta-model.
As can be seen, every element of the user model is an instance of a class from the meta
model. Each instance is named as a combination of the name of the corresponding element
from the user model and the meta-model class from which it is instantiated. For example,
the object WorksInAssociation is an instance of metaclass Association and its name combines
ŚWorksInŠ, the name of the association from user model, and ŚAssociationŠ, the name of
the meta-model class. The object diagram shown in the lower part of Fig. 2 is a run-time
instance of the user model. It is the model at layer M0. ŚCSŠ and ŚAndyŠ are instances of the
Department class and the Employee class, respectively.

There is a number of derived links between objects in the meta-instance view. However,
to make the meta-instance view at layer M1 more focussing on the instanceOf aspect, we
only show the direct links and do not show these derived links. The two views in layer M1
describe one model. They are equivalent and kept in sync. Each element in the user
model class diagram view, e.g., a class, an attribute or an association, is presented as a
meta-instance in the meta-instance view. If there is any change in the user model, e.g., a
name change, an addition or a deletion of an element, the object diagram in meta-instance
view will be updated. An example of a synchronous change on the views at layers M1
and M2 is presented and highlighted in Fig. 3. The change on the user model is made by

Tab. 1: Relationship between user model elements and meta-model elements.

User model elements Related UML
meta-model
classes

Related UML meta-model associations

Class Class

Attribute Property Classclass Ű PropertyownedAttribute
DataTypedataType Ű PropertyownedAttribute

Association Association ClassendType Ű Associationassociation

Association End Property Associationassociation Ű PropertymemberEnd
Associationassociation Ű PropertynavigableOwnedEnd
Associationassociation Ű PropertyownedEnd

Operation Operation Classclass Ű OperationownedOperation
DataTypedataType Ű OperationownedOperation

Parameter Parameter Operationoperation Ű ParameterownedParameter

AssociationClass AssociationClass

Generalization Generalization Classclass Ű ClasssuperClass
GeneralizationGeneralization Ű ClassspeciĄc
GeneralizationGeneralization Ű Classgeneral

RedeĄned Attribute/ Rede-
Ąned Association End

Propertyproperty Ű PropertyredeĄnedProperty

Subsetted Attribute/ Sub-
setted Association End

Propertyproperty Ű PropertysubsettedProperty

140 Khanh-Hoang Doan, Marti Gogolla

(A) adding the operation ŚnumberOfEmp(): IntegerŠ into class Department. Consequently,
two corresponding meta-instances are synchronously (B) added to the meta-instance view,
i.e., the Department_numberOfEmp:Operation instance and the IntegerDataType:DataType instance
for the return data type ŚIntegerŠ. And synchronously, the metaclass Operation and related
associations are (C) added to the simpliĄed meta-model view (at layer M2).

3 Tool-based Reflective Querying

The access to the meta-level supported by standard OCL [Ob06] is limited, therefore writing
reĆective queries, e.g., ŞĄnd the classes related to a given class c and their relevant rolesŤ, is
impossible. In this section, we will introduce how our approach supports more meta-level
access capabilities for writing reĆective queries within the extended tool.

3.1 Meta-level Accessibility in OCL

Standard OCL is a formal language for writing constraints and queries on UML models.
OCL expressions are formulated on the level of classes (M1) and their semantics is applied
on the level of objects (M0). Given a meta object t: OclType, the following table shows the
list of supported OCL meta-level access capabilities.

Tab. 2: OCL built-in meta-level access

Expression Semantics

t.name() : String Get the name of the type t

t.attributes() : Set(String) Get the set of names of all attributes of t

t.operations() : Set(String) Get the set of names of all operations of t

t.associationEnds() : Set(String) Get the set of names of all association ends navigable from t

t.supertypes() : Set(OclType) Get the set of all direct supertypes of t

t.allSupertypes() : Set(OclType) Get the transitive closure of the set of all supertypes of t

As we can see, with these limited meta-level access capabilities, standard OCL cannot
express a number of reĆective queries and constraints. The following list presents several
reĆective queries that cannot be expressed with the standard OCL.

1. Find all classes related to a given class

2. Find names of all subclasses of a given class

3. Find all abstract classes

4. Find all classes that have more than 10 attributes

Extending a UML and OCL Tool for Meta-Modeling 141

Fig. 3: Synchronous changes on the views of layer M1 and M2.

142 Khanh-Hoang Doan, Marti Gogolla

5. Find all classes that have more than 5 subclasses

6. Calculate the number of classes in a user model

7. Check for the setter and getter methods of all attributes

8. Find all classes of a user model that have no subclass

These queries, however, can be expressed with our three-level modeling approach introduced
in the previous section. In the next section, we will show how to formulate and execute
reĆective queries in the extended tool.

3.2 Writing Reflective OCL Querying in Tool USE

As introduced in the previous section, our approach supports a three-layer UML and OCL
speciĄcation: instances, model, and meta-model. Through the tool support, one can access
the meta-model and create OCL queries for the user model by considering it as an instance
of the meta-model. Model querying using the meta-model approach provides possibilities
for considering the elements contained in a model, for example, by accessing the attributes,
operations, and referenced elements of a given model element, by executing comprehensions
and quantiĄed expressions. A query is an OCL expression on the meta-model layer, and
the result is a Boolean value or a set of user model elements in form of instances of a
meta-model type element. Model queries such as ŞĄnd the classes related to a class and
their relevant rolesŤ cannot be formulated in OCL directly. However, our meta-modeling
approach can deal with this kind of model query. For example, the query ŞĄnd classes
related to class Department via an associationŤ on the Employee-Department example can be
formulated by the following OCL expression and executed by our tool as shown in Fig. 4.

The Association meta class is the type element for associations in the user model and endType

is an end of a derived association that can be used to navigate from the Association meta
class to the Class metaclass. DepartmentClass is the meta-instance of the Class metaclass; its
name is a combination of the user model element and the corresponding metaclass. The
result of executing this query, i.e., Bag{EmployeeClass}, is also shown in Fig. 4.

Fig. 4: Model query example: Find related classes.

Extending a UML and OCL Tool for Meta-Modeling 143

Fig. 5: Model query example: Find abstract classes.

Another example for model querying is presented in Fig. 5. The example there is an
Employee hierarchy model, a typical subclass-superclass generalization model with a
four-level inheritance structure. For example, one might want to Ąnd all abstract classes
within this model. The OCL query to perform this task is stated in Fig. 5. In particular,
isAbstract is a Boolean attribute of the metaclass Class in order to deĄne whether a class at
level M1 (in a user model) is abstract or not.

4 Model Quality Assessment with Reflective Constraints

Writing reĆective constraints is now possible with our meta-modeling approach. ReĆective
constraints can be exploited for many applications, one of them is model quality assessment.
Model quality assessment helps modelers to detect errors or mistakes on their models, to
Ąx bugs and to improve the models. These assessment properties might include design
properties: absence of isolated classes, respecting naming conventions (e.g., the name
of every element must obey the camelCase convention) or metrics properties (e.g., a
generalization hierarchy is not too deep). By visual inspection, we can identify several
quality problems in the example model in Fig. 5:

1. There is one isolated class, i.e., Director. An isolated class is a class which is not
involved in an association or in the inheritance hierarchy.

2. The name of the class consultantManager does not start with a capital letter (assuming
the class names should obey the camelCase convention).

3. The attribute name : String is repeated in all subclasses of the class Manager. It should
be deĄned in the superclass.

However, evaluating and detecting these kinds of quality problems on large and complicated
models might take time and might even be impractical. In this section, we introduce a

144 Khanh-Hoang Doan, Marti Gogolla

Fig. 6: The workĆow of model quality assessment process

proposal that employs OCL utilizing the meta-level modeling approach as presented before.
Thus, we can automatically evaluate quality properties of a user model.

Fig 6 shows the workĆow of the model quality evaluation process. Firstly, the property must
be formulated by the developer as a Boolean-valued reĆective OCL expression. The next
evaluation and analysis steps will be performed by tool USE. The reĆective OCL expression
will be evaluated. If the evaluation yields True, the property is satisĄed and the model
respects this property. On the contrary, if the property fails, the developer might be interested
in the parts of the model that violate the property. Returning to the example in Fig. 5, we
want to check the Ąrst problem mentioned in the section beginning, i.e., whether there are
isolated classes in the user model. To achieve this, we formulate an OCL expression for the
property.

Class.allInstances()->select(c | c.typeElement->isEmpty() and

c.superClass->isEmpty() and c.subClass->isEmpty())->isEmpty())

In this example, we navigate from a metaclass c to related associations through the typeElement

role name. The superClass and subClass role names are used to navigate from the metaclass
c to its superclass and subclass, respectively. The assessment result is False as shown in
Fig. 7. That means the property is violated. It can be seen from the user class diagram in
Fig. 5 that there is one isolated class, i.e., the class Director.

In the case of simple models, one can manually Ągure out the elements that cause the
violation of an assumed property. However, with a large, complicated model, this can be
hard work and can sometimes be impossible. Our tool supports designers to analyze such
properties and to look for the reason for the unsatisĄability. Particularly the USE evaluation

Extending a UML and OCL Tool for Meta-Modeling 145

Fig. 7: Example of model assessment and analysis.

146 Khanh-Hoang Doan, Marti Gogolla

browser allows developers to dive into the details of the formula evaluation and identify the
spots in the object diagram that contribute to the fact that the formula is not satisĄed.

The USE evaluation browser in the lower part of Fig. 7 can be obtained by clicking the
ŚBrowserŠ button on the right hand side of the OCL expression evaluation window in Fig. 7.
The browser window decomposes the expression into sub-parts in a hierarchical structure,
and every part is evaluated. From the evaluation browser, we can see that there is only one
violating element, i.e., one isolated class, which is the Director class. For further analysis,
one can expand sub-expressions and explore the evaluation of other sub-parts of the formula
as shown in Fig .7.

5 Towards an Approach for Level-Crossing Constraints

Level-crossing plays an important role in multi-level modeling. Standard OCL, however,
only supports formulating constraints on the level of classes (M1) and their semantics
concerns the level of objects (M0). That means it is impossible to write expressions on
objects at different linguistic levels, e.g., the expression ŞClass.allInstances().allInstances()Ť
is syntactically invalid in OCL. Looking back to our approach on three-level modeling,
we can see that developers now can access meta objects as well as run-time objects at the
same time. Therefore, we can say that our three-level modeling approach offers enough
semantics for extending OCL for multi-level-crossing constraints. Let us consider the
following level-crossing constraint, which is an invalid, ill-typed constraint in standard
OCL.

Class.allInstances().allInstances()->forAll(age>18)

Assuming every class in the model has an age attribute with Integer type, this constraint
ensures that the value of the age attribute of all instances of all classes is over 18. As we can
see, the semantics of the Ąrst part of the constraint, i.e., Class.allInstances(), concerns the meta-
level, and the semantics of the second part of the expression, i.e., allInstances()->forAll(age > 18),
concerns the model level. The result of the meta-level part has type Set(Class). Unfortunately,
the allInstances() operation (in standard OCL [Ob06]) is applicable only on type Class.

To overcome this issue, one could work with the forAll collection operation between the
meta-level expression and the model-level expression. If we handle a term of type Set(Class)

with the forAll iterator this gives the option to access a single Class, on which the model-level
expression can be applied.

Class.allInstances()->forAll(c | # c.allInstances()->forAll(age > 18) #)

Naturally, we have to distinguish meta-level sub-expressions and model-level sub-expressions.
In other words, we have to indicate in OCL, which sub-expression belongs to which
level (meta-level or model-level). To achieve this, we introduce an additional notation in
OCL expressions, i.e., #...#. This indicates that the expression within #...# is a model-level

Extending a UML and OCL Tool for Meta-Modeling 147

expression. As the result, we propose a formula template for a level-crossing constraint as
shown below.

<meta-level OCL expression>->forAll(c | # <model-level OCL expression> #)

Generally speaking, using this formula template, one can write constraints that go from the
M2 to the M0 level through the M1 level. This capability supports writing more powerful and
Ćexible constraints. Instead of using the universal quantiĄcation it would also be possible to
use an existential quantiĄcation. Other OCL collection operations, e.g. one, are feasible as
well. Working out details is subject to future work. Our proposed level-crossing formula
template has a few restrictions: (a) the meta-level expression must return the type Set(Class),
(b) the model-level expression must be a Boolean-valued expression, and (c) the result of
the overall level-crossing expression is always a Boolean value.

6 Related Work

There is a number of other proposals, which are related and similar to our work, that have
been introduced in recent years. The tool Melanee [AG12] is designed as an Eclipse plug-in,
supports strict multi-level metamodeling and facilitates general purpose languages as well as
domain speciĄc languages. Another tool is MetaDepth [dLG10] allowing linguistic as well
as ontological instantiation with an arbitrary number of meta-levels supporting the potency
concept. The framework Modelverse introduced in [Mi14] can be used to model a four-level
language hierarchy. The work in [BKK16, IGS14] uses F-Logic as an implementation
basis for multi-level models including constraints. In contrast to these approaches, our
contribution deals with traditional two-level UML/OCL modeling approaches by extending
them for meta-modeling and exploits added meta-data for writing reĆective constraints and
level-crossing constraints with OCL. One commonality between our work and these above
mentioned approaches is the introduction of elements in the middle level that have both
type and instance facets.

The idea of copying the M2-model instance to lower levels in the MOF meta-model
architecture and exploiting it for reĆective constraint writing is also presented in [Dr16]. In
that paper, the meta instance is added to the M0 level, together with the run-time instances,
through instantiation and reiĄcation processes. Adding elements to the M0 level is a major
difference between the work in [Dr16] and our approach, because in our work, the meta
instance is generated and added to the M1 level. Therefore, in order to write a reĆective
constraint or query with our approach, we only need to go from the M2 level to the M1 level.
This means we do not need to extend the OCL for writing reĆective constraints or queries.

7 Conclusion

This contribution has proposed an extension of the tool USE that supports three-level
modeling where the middle level can be seen at the same time as an object diagram, i.e.,

148 Khanh-Hoang Doan, Marti Gogolla

the instantiation of the upper level model, and as a class diagram, i.e., the type model for
the lower level. Based on these ideas, we present an approach for reĆective constraints
and queries within the extended tool and the application of this approach to model quality
assessment. A Ąrst proposal towards level-crossing constraints was also introduced: a
proposal that offers writing more powerful and Ćexible constraints.

Future work includes the following topics. First of all, we would like to work out within
our approach formal deĄnitions for notions like potency or strictness. Developer support
for these notions should then be explored. The user interface in our tool USE for model
querying and quality evaluation can be strengthened as well. For instance, one option might
be to highlight the result of meta-level queries in the user class diagram. Another open item
would be to implement a library of pre-deĄned quality assessment properties. With the
integration of three-level modeling in the tool USE, more work on model metrics seems to
be a promising direction for a USE extension. The proposal for level-crossing constraints
must be implemented and extended to cover other formula templates. Last but not least,
complex examples and case studies, especially case studies from large applications, must
check the practicability of the proposal.

References

[Ag11] Aguilera, David; García-Ranea, Raúl; Gómez, Cristina; Olivé, Antoni: An Eclipse Plugin for
Validating Names in UML Conceptual Schemas. In: Proc. ER 2011 Workshops FP-UML,
MoRE-BI, Onto-CoM, SeCoGIS, Variability@ER, WISM. pp. 323Ű327, 2011.

[AG12] Atkinson, Colin; Gerbig, Ralph: Melanie: Multi-level Modeling and Ontology Engineering
Environment. In: Proc. 2nd Int. Master Class MDE: Modeling Wizards, co-located with
MODELS 2012. MWŠ12, pp. 7:1Ű7:2, 2012.

[AGC16] Atkinson, Colin; Grossmann, Georg; Clark, Tony, eds. Proc. 3rd Int. Workshop Multi-Level
Modelling co-located with MoDELS 2016, volume 1722 of CEUR Workshop Proceedings.
CEUR-WS.org, 2016.

[AGO12] Aguilera, David; Gómez, Cristina; Olivé, Antoni: A Method for the DeĄnition and
Treatment of Conceptual Schema Quality Issues. In: Proc. 31st Int. Conf. ER 2012. pp.
501Ű514, 2012.

[AK03] Atkinson, C.; Kuhne, T.: Model-Driven Development: A Metamodeling Foundation. IEEE
Software, 20(5):36Ű41, 2003.

[At14] Atkinson, Colin; Grossmann, Georg; Kühne, Thomas; de Lara, Juan, eds. Proc. 1st Int.
Workshop Multi-Level Modelling co-located with MoDELS 2014, volume 1286 of CEUR
Workshop Proceedings. CEUR-WS.org, 2014.

[At15] Atkinson, Colin; Grossmann, Georg; Kühne, Thomas; de Lara, Juan, eds. Proc. 2nd Int.
Workshop Multi-Level Modelling co-located with MoDELS 2015, volume 1505 of CEUR
Workshop Proceedings. CEUR-WS.org, 2015.

[Bé05] Bézivin, Jean: On the UniĄcation Power of Models. Software & Systems Modeling,
4(2):171Ű188, 2005.

Extending a UML and OCL Tool for Meta-Modeling 149

[BG11] Büttner, Fabian; Gogolla, Martin: Modular Embedding of the Object Constraint Language
into a Programming Language. In: Formal Methods, Foundations and Applications: 14th
Brazilian Symposium. Springer Berlin Heidelberg, pp. 124Ű139, 2011.

[BKK16] Balaban, Mira; Khitron, Igal; Kifer, Michael: Multilevel Modeling and Reasoning with
FOML. In: IEEE Int. Conf. SWSTE. pp. 61Ű70, 2016.

[CG12] Cabot, Jordi; Gogolla, Martin: Object Constraint Language (OCL): A DeĄnitive Guide. In
(Bernardo, Marco; Cortellessa, Vittorio; Pierantonio, Alfonso, eds): Formal Methods for
Model-Driven Engineering, LNCS 7320, pp. 58Ű90. Springer, 2012.

[dLG10] de Lara, Juan; Guerra, Esther: Deep Meta-modelling with MetaDepth. In: Proc. 48th Int.
Conf. TOOLS 2010. pp. 1Ű20, 2010.

[Dr16] Draheim, Dirk: ReĆective Constraint Writing. In: Special Issue on Database- and Expert-
Systems Applications on Transactions on Large-Scale Data- and Knowledge-Centered
Systems XXIV - Volume 9510. Springer-Verlag New York, Inc., pp. 1Ű60, 2016.

[GBR07] Gogolla, Martin; Büttner, Fabian; Richters, Mark: USE: A UML-based SpeciĄcation
Environment for Validating UML and OCL. Sci. Comput. Program., 69(1-3):27Ű34, 2007.

[GH16] Gogolla, Martin; Hilken, Frank: Model Validation and VeriĄcation Options in a Contem-
porary UML and OCL Analysis Tool. In (Oberweis, Andreas; Reussner, Ralf, eds): Proc.
Modellierung (MODELLIERUNGŠ2016). GI, LNI 254, pp. 203Ű218, 2016.

[Go15] Gogolla, Martin: Experimenting with Multi-Level Models in a Two-Level Modeling Tool.
In: Proc. 2nd Int. Workshop Multi-Level Modelling co-located with MoDELS 2015. pp.
3Ű12, 2015.

[IGS14] Igamberdiev, Muzaffar; Grossmann, Georg; Stumptner, Markus: An Implementation of
Multi-Level Modelling in F-Logic. In: Proc. Workshop Multi-Level Modelling co-located
with MoDELS 2014. pp. 33Ű42, 2014.

[LGdL14] López-Fernández, Jesús J.; Guerra, Esther; de Lara, Juan: Assessing the Quality of
Meta-Models. In: Proc. 11th Workshop MoDeVVa@MODELS 2014. pp. 3Ű12, 2014.

[Mi14] Mierlo, Simon Van; Barroca, Bruno; Vangheluwe, Hans; Syriani, Eugene; Kühne, Thomas:
Multi-Level Modelling in the Modelverse. In: Proc. Workshop Multi-Level Modelling
co-located with MoDELS 2014. pp. 83Ű92, 2014.

[Ob06] Object Management Group Ű OMG: . OMG: Object Constraint Language, version 2.0,
2006.

[Ob11] Object Management Group Ű OMG: . OMG UniĄed Modeling Language(OMG UML),
Superstructure, version 2.4.1, 2011.

[Ob15a] Object Management Group Ű OMG: . OMG Meta Object Facility (MOF) Core SpeciĄcation,
version 2.5, 2015.

[Ob15b] Object Management Group Ű OMG: . UniĄed Modeling Language SpeciĄcation, version
2.5, 2015.

150 Khanh-Hoang Doan, Marti Gogolla

Measuring the Quality of System Specifications in Use Case

Driven Approaches

Alexander Rauh1, Wolfgang Golubski2, Stefan Queins3

Abstract: One of the biggest challenges of a requirements analyst is to generate and provide a
high-quality system specification in order to support other disciplines during system development.
Today, there are only few mechanisms to measure the quality of requirements with less effort for
the analyst. The following paper describes a meta-modeling and model-to-model transformation
approach to formally evaluate different quality characteristics of system specifications like
consistency and completeness in use case driven requirements analysis processes with less effort
for the requirements analyst. Therefore, the mentioned concept integrates the information
contained in different representations of requirements into a common requirements model and
analyzes quality characteristics of the specification in two steps. In the first step, every
representation within the specification will be evaluated separately according to predefined
representation specific rules. In the second step after requirements integration, algorithms analyze
the quality of the integrated information and calculate the overall characteristics of the
specification.

Keywords: Requirements Quality, Specification Quality, Requirements Modeling, Meta-
Modeling, Model-to-Model Transformation

1 Introduction

In systems engineering the system specifications are foundations for nearly every kind of
discipline during development and after sales [Wa15]. Design, architecture and
implementation transform the requirements of the specification into a set of components
to realize the system and satisfy the needs of the customers. Testing and verification
check the developed system against the system specification and ensure that the quality
of the system fits the expectations. Additionally, during after sales the requirements of
the system support the maintenance discipline to understand and improve the system’s
realization. In the context of this paper the term system addresses software systems as
well as more technical systems consisting of software, mechanic and electric parts like
cars.

For every purpose mentioned above high-quality requirements according to the
characteristics listed in IEEE29148:2011 [IE11] have to be collected during

1 University of Applied Sciences Zwickau, Dr.-Friedrichs-Ring 2a, 08056 Zwickau, alexander.rauh@fh-

zwickau.de
2 University of Applied Sciences Zwickau, Dr.-Friedrichs-Ring 2a, 08056 Zwickau, wolfgang.golubski@fh-

zwickau.de
3 SOPHIST GmbH, Vordere Cramergasse 13, 90478 Nuremberg, stefan.queins@sophist.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 151

https://creativecommons.org/licenses/by-sa/4.0/

requirements elicitation. Especially, in case that these requirements will be used as direct
input for source code generation as mentioned in [Sm15] or if simulating the system
under consideration before development as explained in [Po12]. At the moment, there
are only a few approaches which aim at the assurance of the quality of system
specifications. Furthermore, these approaches do not provide any mechanisms to
evaluate this quality by numbers, need high effort to calculate some numbers or only
evaluate some samples of a specification instead of the overall quality.

The concept discussed in this paper explains how to formally measure different quality
characteristics of system specifications for a use case driven requirements analysis
process using common notations for requirements documentation. In addition to the
measurements this approach provides the sources of the defects in the documented
requirements.

Following this introduction, there is a section to discuss some related works and already
known approaches to measure the quality of requirements. The third section describes a
concept and a process for requirements integration in order to measure the quality of
system specifications. After that, there is a discussion of already existing quality
characteristics of requirements and requirements specifications. Furthermore,
interdependencies between the characteristics are explained. The fifth section describes
the quality measurement process during requirements integration which checks a
specification against defined requirements modeling and documentation rules. After an
example to show the results of measuring the quality of a specification, the benefits of
this approach will be explained. In the last section, there are some open issues which
may be relevant for further researches.

2 Related Works

There are different approaches which provide to measure the quality of a system
specification or support the requirements analyst to document a consistent and ideally
complete set of requirements.

The first related approach described in [Go11] analyzes consistency and completeness of
a specification via trace relations between the requirements. Therefore, the requirements
analyst has to identify interdependency between the requirements and has to traces them
manually. A tool evaluates the types of the relations and reports contradictions. To
manage the trace relations defines [Go11] a meta-model for requirements which is
similar to the meta-model of the Requirements Interchange Format (ReqIF) [OM16].
The approach mentioned in [Go11] evaluates only the quality of the trace relations
between requirements but does not formally analyze the quality of the requirements
content.

Another tool [Fa01] evaluates the quality of requirements in natural language. This tool
analyzes the textual requirements for keywords and assigns quality attributes to these

152 Alexander Rauh, Wolfgang Golubski, Stefan Queins

keywords. The quality attributes differ from the quality characteristics defined by IEEE
29148:2011 [IE11] and aim at defects in the language of the requirement sentence. For
example, undefined multiplicities and vague terms are reported as defects. The tool in
[Fa01] only supports textual requirements. Other representation types for requirements
documentation like UML cannot be used for analysis purposes.

A fourth similar approach defined by [Da93] also evaluates the quality of textual
requirements according to predefined attributes but does not provide an algorithm to
measure these attributes formally. The concept only explains techniques for
requirements analyst to evaluate the quality attributes manually. Disadvantage of the
approach described in [Da93] is the very high effort for the analyst. Additionally, only
textual requirements can be used for quality analysis.

Some other approaches consider less common representation types to evaluate the
quality system specifications. Furthermore, these approaches do not provide possibilities
to add more common representations.

For example, [Kr09] analyzes the consistency of requirements by capturing textually
requirements, creating a UML use case model from these requirements manually and
converting these models into a problem ontology. The consistency of this problem
ontology is evaluated via reasoning and is matched to a domain ontology representing
the domain knowledge related to the system’s domain to discover further contradictions.
UML use case models support only abstract views onto a system. For the detailed view
onto the system’s functionality other UML diagram types like activity diagrams or state
charts have to be used, but are not supported by[Kr09].

A last similar approach described in [He96] applies algorithms for consistency checks to
the formal Software Cost Reduction (SCR) tabular notation, but does not support more
common requirements representation types like UML or textual requirements. Thereby,
before applying this approach onto a specification, the requirements analyst has to
transform a common system specification into the SCR notation and has to spend a lot of
additional effort.

Approaches which use formal representation types of requirements like VHDL,
MATLAB Simulink or different temporal logics are not discussed in this paper. These
representation types are used in very specific domains but are usually not used for
common system specifications.

3 Requirements Integration Concept for Quality Measurements

The idea to measure the quality of a system specification is to integrate information
contained in the requirements into a common database and to evaluate the overall quality
of this information. Thereby, representation specific information is encapsulated and the
quality of the content described by requirements will be evaluated. Although today’s
requirements management tools provide mechanisms to store different views as

Measuring the Quality of System SpeciĄcations in Use Case Driven Approaches 153

described by [Kr95] or [Cz15] onto the system under consideration in a common model
are the information within these views only loosely coupled. Interrelations are often
simple references which the requirements analyst has to create and manage manually.
Additionally, the tools do not check whether there is a relation in between the content of
the referenced parts or not. Hence, the idea is to extract the information of these several
views and to integrate it in a common requirements model which includes formal
relations between the information. Once integrated, algorithms can evaluate this
requirements model according to predefined rules which address several quality issues of
the overall system specification like consistency and completeness.

This mentioned integration is realized via a meta-modeling and model-to-model
transformation concept. Therefore, the concept is divided into a representation layer, an
interpretation layer and an integration layer. Every layer contains at least one meta-
model and one or more instances of these meta-models. In between these layers model-
to-model transformations are applied.

The first layer is the representation layer which contains the system specification use for
requirements integration purposes. In the context of this approach such a system
specification is a set of different models which store the requirements for the system
under consideration. These models are instances of common meta-models used for
requirements documentation like the UML meta-model and its several diagram types or
template-based textual requirements. Notation or representation type of requirements
may be used as synonym for the meta-models of the representation layer.

The interpretation layer consists of representation type specific interpretation meta-
models and one instance of each of these meta-models. In contrast to the UML there is
one dedicated interpretation meta-model for the common UML diagram types for
requirements documentation. The idea of the interpretation layer is to evaluate the
quality, especially the syntactic correctness, of each view onto the system under
consideration separately before requirements integration. Thereby, the requirements
analyst gets feedback to the quality of each view and has the possibility to adjust the
requirements before an overall quality evaluation. For example, this layer allows
evaluating the use case view onto the system independent of the system’s information
model where the terms, used in the use cases, are defined.

The third layer is the integration layer consisting of a function-oriented meta-model for
requirements and one instance of this meta-model which contains the integrated
information of the different views onto the system under consideration. Algorithms
evaluate the overall quality of the system specification according to this meta-model, to
the representation specific and the comprehensive modeling rules. Function-oriented
means that this meta-model only defines the structure of information and terms of
functional requirements including the quality of service requirements of these functions.
Organizational requirements related to the development process or project constraints
like time and budget as mentioned in [Dö11] are not part of this meta-model. The
function-oriented meta-model of the integration layer was already described and

154 Alexander Rauh, Wolfgang Golubski, Stefan Queins

published in [Ra17] and is not explained in the context of this paper. Fig. 1 shows these
layers and their interrelations including the most significant terms.

Fig. 1: Layer concept for requirements integration

In order to formally calculate the quality of the system specification several rules define
how to use the different notations for requirements documentation. On the one hand,
there are representation specific rules which address the usage of model elements within
one view e.g. how to name a use case. Violations against these rules will be checked
during transformation of the models in the representation layer into the models of the
interpretation layer when applying the Interpretation Rule Set. For each violated rule, a
so-called defect will be created. These representation specific defects are used to
calculate quality characteristics for each view separately. On the other hand, there are
representation comprehensive rules that aim at the interrelations of information in
between the different views. After requirements integration algorithms check the
integrated information according to these comprehensive rules and generate also defects
in case of rule violations. Furthermore, the overall quality characteristics of the system
specification will be measured. Fig. 2 gives an overview on the single steps of the
requirements integration process which was described within this section. For each step,
the stereotypes show the actor who performs this action.

Measuring the Quality of System SpeciĄcations in Use Case Driven Approaches 155

Fig. 2: Process for requirements integration and quality measurement

Depending on the requirements analysis process and the guideline for requirements
documentation in a specific development project it may be necessary to adjust the meta-
models of the interpretation layer and the predefined requirements documentation rules
in order to apply this concept. The fifth section shows some examples for representation
specific and comprehensive documentation rules and shows a related interpretation
meta-model derived from the use case driven requirements analysis process according to
[Cz15].

4 Characteristics of Requirements and System Specifications

In order to define the term quality in a more precise way, this section discusses several
characteristics of requirements and sets of requirements. The standard IEEE 29148:2011
serves as foundation for the discussion. First of all, [IE11] differs between characteristics
for single requirements and requirements documents. Single requirements have to be:

• Necessary

• Implementation Free

• Unambiguous

• Consistent

• Complete

• Singular

156 Alexander Rauh, Wolfgang Golubski, Stefan Queins

• Feasible

• Traceable

• Verifiable

Some definitions of the characteristics listed above refer not only a single requirement
but also consider the context of this requirement. For example, consistency means that
the requirement is free of conflicts to other requirements [IE11]. Similar to consistency
states the definition of completeness that the requirement does not need further
refinements [IE11]. In the context of a system specification it is impossible to determine
completeness without analyzing the requirements context which means other
requirements addressing the same subject. In addition to the quality characteristics for
single requirements IEEE 29148:2011 defines the following criteria for sets of
requirements:

• Complete

• Consistent

• Affordable

• Bounded

In order measure the quality of a system specification, a separation between single
requirements and a set of requirements is not necessary. Therefore, quality
characteristics in the context of this approach always refer to a set of requirements and
defects within the requirements have influence onto one or more of these characteristics.

One goal of the concept mentioned in this paper is to evaluate the quality of a system
specification automatically using algorithms. But a few of the previously listed
characteristic cannot be checked by a tool but only by the requirements analyst himself.
For example, it is not possible to determine feasibility and affordability of requirements
without knowledge and experience from similar development projects. Additionally, one
essential characteristic is missing which provides the foundation for automatic quality
checks by algorithms. To apply algorithms onto requirements these requirements have to
be syntactically correct. IEEE 29148:2011 only defines semantic correctness as a task to
be established during requirements analysis and maintenance. Semantic correctness
means that the requirements express the intentions of the stakeholders [IE11].

In addition to this mentioned dependency, there are further interrelations between the
quality characteristics. Inconsistency leads to the issue that completeness and necessity
cannot be determined by algorithms. For example, if there is an actor with no
associations to any use case within the use case view onto the system under
consideration this actor might be not necessary or the use case view is incomplete due to
a missing association. Whether this defect addresses necessity or completeness depends
on the solution of the analyst to solve this defect. Algorithms are not able to make this
decision.

Measuring the Quality of System SpeciĄcations in Use Case Driven Approaches 157

Unambiguity has interrelations to consistency, necessity and completeness. As defined
by IEEE 29148:2011 means unambiguity that there are no possibilities for different
interpretations of information. Inconsistency, incompleteness and violations of necessity
cause such possibilities for interpretation.

The concept described in this paper supports the measurement of correctness,
completeness, consistency, unambiguity and necessity.

5 Rule-based Quality Measurement of Requirements

The quality of a system specification is measured according to predefined requirements
documentation rules. Each documentation rule has assigned at least one of the quality
characteristics listed in the previous section. Rule violations lead to defects which
decrease the assigned characteristics.

For the application of this concept onto a system specification for validation purpose the
rules for requirements documentation, the related interpretation meta-models and the
required transformations were defined for the use case driven requirements analysis
process according to [Cz15]. The snippets below show two different rules for
requirements documentation including the assigned quality characteristics to give an idea
of these rules. The first rule is representation specific and addresses the documentation
of use cases. The second rule is comprehensive and addresses and interrelation between
use cases and the information model of the system’s domain.

Rule 1 addresses the naming of use case. The requirements analysis process in [Cz15]
recommends that the name of a use case should consist of a process and an object of the
system’s domain. UML does not even constrain the naming [OM15]. The rule above
provides the option to add an adjective between the verb for the process and the noun for
the object. This adjective could be used to add further information to the object like a
state of this object. For example, a use case could be named like “archive existing user
profile”. In order to simplify the implementation of this rule, a name of a use case could
only consist of two or three tokens. The first token is the verb which defines the process.
If the name contains three tokens, the second token is a state and third is the object of the
domain. Domain objects which consist of more than one token will be named in camel
case e.g. “UserProfile”. For further researches, this simplification could be eliminated by
the integration of a natural language processing (NLP) tool like [Bj10]. This tool would
also provide mechanisms to categorize the types of the words and to analyze the
grammar of natural language parts in the representation models.

Rule 1: Names of UML Use Cases follow the structure <verb> [adjective] <noun>.

Assigned quality characteristics: Correctness

Criticality: high

158 Alexander Rauh, Wolfgang Golubski, Stefan Queins

As mentioned before, there is at least one quality characteristic of the previous section
assigned to each of the requirements documentation rules. If such a documentation rule
is violated, the related quality characteristic will be decreased. For example, in case that
the name of a use case violates rule 1, the correctness of system specification is affected.

The criticality of the modeling rules classifies the impact of a rule violation onto the
further requirements integration process. High criticality means that the related
representation model element cannot be integrated into the integration model. Low
criticality violations have no effects onto the requirements integration but cause also a
loss in the requirements quality.

Rule 2 is a comprehensive modeling rule which addresses the usage of interrelations
between UML use case diagrams and UML class diagrams for information modeling.
The nouns in the names of use cases represent objects of the system’s domain and
thereby should be part of the information model. Consistency and completeness will be
decreased, if rule 2 is violated. The impact of such a violation onto the requirements
integration process is low.

In addition to these kinds of modeling rules, the mentioned requirements integration
concept provides interpretation meta-models for the representation types required for a
use case driven requirements analysis process according to [Cz15]. Fig. 3 shows the
interpretation meta-model for UML use case diagrams. This meta-model is derived from
eight use case specific requirements documentation rules.

Rule 2: The noun in the name of a use case is defined as a class within the
information model of the system specification.

Related representations: UML Use Case Diagram, UML Class Diagram

Assigned quality characteristics: Consistency, Completeness

Criticality: low

Measuring the Quality of System SpeciĄcations in Use Case Driven Approaches 159

Fig. 3: Interpretation meta-model for UML use case diagrams

The core element of this meta-model is the Use Case, which represents functionality of
the assigned System at high level of abstraction. In order to provide fault tolerance
during instantiation of the use case interpretation model, the cardinalities of the relations
between Use Case and System and Use Case and Actor according to the definition of use
cases in [Ja92] are loosened from obligatory to optional.

In contrast to the UML, which defines the name of a use case as a non-empty string
[OM15], the meta-model shown in Fig. 3 encapsulates the name of a use case as the
separate class Use Case Term. Furthermore, the use case term and its parts depicts
documentation rule 1 which defines the structure of the names of use cases.

Includes- and extends-associations of the use cases are simplified in the interpretation
meta-model compared to the UML meta-model. The details of include- and extend-
associations between use cases have to be documented in the control flows of the
dedicated use cases. These control flows are parts of the activity of the system
specification. Hence, there is no need to store further details for include- and extend-
associations of use case diagrams within the interpretation model. The Defect will be
used to store violations of use case specific requirements documentation rules. Such a
defect persists the rule which was violated and the criticality of the violation in order to
give the requirements analyst advises for editing the use case model.

Further interpretation meta-models for UML class diagrams, state charts and activity
diagrams as well as the interpretation meta-models for glossary entries, functional and
non-functional textual requirements will be presented later during researches due to the
limited space in this paper.

Overall to measure the quality of system specifications there are 27 representation
specific documentation rules, 13 comprehensive documentation rules and interpretation
meta-models for:

160 Alexander Rauh, Wolfgang Golubski, Stefan Queins

• UML Use case diagrams

• UML Activity diagrams

• UML State Charts

• UML Class diagrams and glossary entries

• Template-based textual functional requirements

• Template-based textual non-functional requirements

The representation specific documentation rules are included in the Interpretation Rule
Sets shown in Fig. 1 and the Integration Rule Set contains the comprehensive
documentation rules. Tab. 1 lists the count of representation specific and comprehensive
rules including the count of related quality characteristics.

Completeness Correctness Consistency Unambiguity Necessity

Use Case Diagrams 8 1 7 1 4 2
Activity Diagrams 4 3 4 0 2 0
Class Diagrams 2 0 2 0 1 0
Glossary Entries 4 1 1 2 2 0
State Charts 3 0 3 0 0 0
Textual functional
requirements

3 0 3 1 1 0

Textual non-functional
requirements

3 0 3 1 0 0

Representation
Comprehensive

13 10 13 13 0 0

Affected Quality CharacteristicsAddressed

Representation Type

Rule

Count

Tab. 1: Representation specific and comprehensive modeling rules and quality characteristics

These meta-models are implemented using Eclipse EMF. The model-to-model
transformations are realized using a combination of the ATLAS Transformation
Language (ATL) and Java. The transformation rule sets are implemented in ATL. Java
was used to coordinate the transformation steps and to analyze the defects within the
interpretation layer and the integration layer in order to calculate the numbers for the
quality characteristics.

6 Example for Integration Results

In order to explain the possibilities and results of the approach mentioned in the previous
sections, the integration concept was applied onto the following two simple diagrams of
a system specification of an online shop. The representation specific defects and the
comprehensive defects of the specification are explained. Fig. 4 shows a use case
diagram on the left and an information model on the right which were integrated.
Additionally, there are two activity diagrams for “create CustomerAccount” and “buy

Measuring the Quality of System SpeciĄcations in Use Case Driven Approaches 161

Article” within the specification which will be referenced to explain the integration
results.

Fig. 4: Use cases and information model of an online shop

Tab. 2 shows the defects which were generated during instantiation of the interpretation
model for the use case diagram in Fig. 4.

ID Element Defect Related Quality Characteristics Criticality

1 Payment Incorrect name of use case Correctness high

2 display OrderHistory missing association to any
actor

Correctness, unambiguity low

3 delete existing
CustomerAccount

missing association to any
actor

Correctness, unambiguity low

4 Shop Administrator missing association to any use
case

Correctness, unambiguity low

Tab. 2: Defects in the use case interpretation model

The first defect is the result of violated rule 1 which is explained in the previous section
in detail. The name of the use case “Payment” does not consists of a verb and a noun but
only contains a nominalization. This syntactic incorrectness leads to a high criticality of
the first defect because the related use case cannot be instantiated within the
interpretation model and, thereby, will be ignored in the further integration process.

The second and the third row address the violation of a documentation rule derived from
the definition of use cases according to [Ja92]. Both use cases do not have an association
to any actor and, thereby, may not be of value. Besides the impact onto the correctness
of the use cases lead both defects to an ambiguity. The defect related use cases may be
documented incomplete or they may be unnecessary. The requirements integration could
be performed for both use cases. Hence, the criticality of the defects in the second and
third row is evaluated as low.

The defect in the fourth row addresses the “Shop Administrator” without an association
to any use case. The violation is similar to the previously explained missing associations.
It has also an impact onto the correctness and the unambiguity of the specification but
the requirements integration could be performed.

162 Alexander Rauh, Wolfgang Golubski, Stefan Queins

The class diagram on the left in Fig. 4 does not violate any representation specific
documentation rules. After the instantiation of the interpretation models for the use cases
and the information model the requirements analyst could edit the defects listed in Tab. 2
or the requirements integration could proceed. Tab. 3 shows the representation
comprehensive defects after integration of the diagrams in Fig. 4.

ID Element Defect Related Quality Characteristics Criticality

1 display OrderHistory noun OrderHistory is not part of the
information model

Consistency, Completeness low

2 display OrderHistory activity "display OrderHistory" is
missing

Consistency, Completeness low

3 ship Order activity "ship Order" is missing Consistency, Completeness low
4 offer Article activity "offer article" is missing Consistency, Completeness low
5 delete existing

CustomerAccount
activity "delete existing
CustomerAccount" is missing

Consistency, Completeness low

6 buy Article control flow of activity "buy Article"
does not contain call-behavior of activity
"display OrderHistory"

Correctness, Consistency low

Tab. 3: Representation comprehensive defects of the integrated requirements

The first defect is the result of a violation of rule two of the previous section. It aims at
the interrelation between the nouns in the names of use cases and the classes in the
information model. As shown in Fig. 4 exists no class “OrderHistory” within the
information model. Consistency is decreased because of the contradictions between the
different views and completeness is impacted due to obvious missing information.

The defects in rows two to five address the missing refinements of the use cases. Each
use case has to be refined by one activity which defines the single steps of the control
flow when executing the related use case. These three defects have also lead to
inconsistencies as well as incompleteness of the specification.

The last row shows a violation of a documentation rule which aims at the semantic of
includes-associations between use cases and their influence onto the control flows of
these use cases. The activity of the included use case has to be part in the activity of the
including use case as a call-behavior action. Due to the missing activity of “display
OrderHistory” shown in the second defect, there is no possibility to add such a call-
behavior action within the control flow of “buy Article”. The contradiction between the
use case view and the activity view of these use cases is obviously an inconsistency. The
correctness of the specification is also affected because of the wrong documentation of
the includes-association. The six defects in Tab. 3 have a low criticality. They do not
prevent the requirements integration.

7 Benefits

This approach provides mechanisms to formally measure the quality of systems
specifications created during use case driven analysis process according to [Cz15] and
reports the defects to the requirements analyst. There are two different kinds of

Measuring the Quality of System SpeciĄcations in Use Case Driven Approaches 163

measurements. On the one hand, the quality of each view onto the system is calculated
separately. Thereby, the requirements analyst can focus and improve one dedicated view.
On the other hand, the requirements integration provides to check the overall quality of
the requirements in all views. Especially, the interrelations between the dedicated views
onto system are hard to be checked manually and take a very high effort. The mentioned
concept supports to check these interrelations automatically with less effort.

Regarding the identified defects of a system specification, the requirements analyst can
decide which of these defects he wants to fix. Thereby, the level of the quality of a
specification can be adjusted to the projects needs and constraints. For example, the level
of quality for a specification for safety critical systems (e.g. cars or airplanes) has to be
quite higher than for less safety critical systems (e.g. business software).

The process to measure the quality of a system specification is very lightweight, which
allows the requirements analyst to apply the concept in different kinds of projects. For
example, the concept can be applied iterative in agile development processes as well as
in more traditional processes when reaching milestones.

8 Conclusion & further Researches

The concept mentioned in this paper measures the quality of system specifications
according to predefined requirements modeling rules. For each rule, there is at least one
quality characteristic assigned, which will be decreased if the related rule is violated.
The modeling rules are classified in representation specific and representation
comprehensive rules. The representation specific rules are checked during instantiation
of the interpretation models when applying the Interpretation Rule Set onto the
representation models. After that, the requirements analyst has the possibility to fix
violations before the interpretation models will be integrated. After requirements
integration, the representation comprehensive rules including the interrelations between
the different views onto the systems are analyzed and the overall quality of the system
specification is calculated.

For further researches, the definition of metrics for specifications might be interesting.
These metrics could be calculated from the numbers of rule violations per type of model
element in the requirements models. Thereby, the maturity of a system specification
could be determined periodically during the requirements analysis process.

In order to eliminate simplifications of the natural language parts in the representation
models, the integration of natural language processing tools to analyze parts of the
natural language in the requirements models seems to be necessary. Thereby, the
modeling rules for naming model elements like use case and activities could be more
flexible and would provide an additional benefit.

The example section lists the result when applying the described concept onto a small

164 Alexander Rauh, Wolfgang Golubski, Stefan Queins

system specification which consists of four diagrams with some interrelations. For
further validation purposes, the application of this approach onto larger specifications or
even during a requirements analysis process is necessary. Thereby, the integration results
can be verified and compared to each other and issues of the current concept could
become transparent.

References

[Bj10] Björkelund, Anders; Bohnet, Bernd; Hafdell, Love; Nugues, Pierre (2010): A High-
performance Syntactic and Semantic Dependency Parser. In: Proceedings of the 23rd
International Conference on Computational Linguistics: Demonstrations. Stroudsburg,
PA, USA: Association for Computational Linguistics (COLING ’10), S. 33–36. Online
available http://dl.acm.org/citation.cfm?id=1944284.1944293.

[Cz15] Cziharz, Thorsten; Hruschka, Peter; Queins, Stefan; Weyer, Thorsten (2015):
Handbook of Requirements Modeling IREB Standard. Version 1.1. Online available
https://www.ireb.org/content/downloads/17-handbook-cpre-advanced-level-
requirements-modeling/ireb_cpre_handbook_requirements-modeling_advanced-level-
v1.1.pdf.

[Da93] Davis, A.; Overmyer, S.; Jordan, K.; Caruso, J.; Dandashi, F.; Dinh, A. et al. (1993):
Identifying and measuring quality in a software requirements specification. In: [1993]
First International Software Metrics Symposium. Baltimore, MD, USA, 21-22 May
1993, S. 141–152.

[Dö11] Dörr, Jörg (2011): Elicitation of a complete set of non-functional requirements.
Stuttgart: Fraunhofer-Verl (PhD theses in experimental software engineering, 34).

[Fa01] Fabbrini, Fabrizio; Fusani, Mario; Gnesi, Stefania; Lami, Giuseppe (2001): An
automatic quality evaluation for natural language requirements. In: Proceedings of the
Seventh International Workshop on Requirements Engineering: Foundation for
Software Quality REFSQ, Bd. 1, S. 4–5. Online available
http://fmt.isti.cnr.it/WEBPAPER/P11RESFQ01.pdf.

[Go11] Goknil, Arda; Kurtev, Ivan; van den Berg, Klaas; Veldhuis, Jan-Willem (2011):
Semantics of trace relations in requirements models for consistency checking and
inferencing. In: Softw Syst Model 10 (1), S. 31–54.

[He96] Heitmeyer, Constance L.; Jeffords, Ralph D.; Labaw, Bruce G. (1996): Automated
consistency checking of requirements specifications. In: ACM Trans. Softw. Eng.
Methodol. 5 (3), S. 231–261.

[IE11] Institute of Electrical and Electronics Engineers. 2011: Systems and software
engineering -- Life cycle processes --Requirements engineering.

[Ja92] Jacobson, Ivar (1992): Object-oriented software engineering: A use case driven
approach. [New York] and Wokingham and Eng and Reading and Mass: ACM Press
and Addison-Wesley Pub.

[Kr09] Kroha, Petr; Janetzko, Robert; Labra, José Emilio (2009): Ontologies in Checking for
Inconsistency of Requirements Specification. In: Third International Conference on
Advances in Semantic Processing (SEMAPRO). Sliema, Malta, S. 32–37.

Measuring the Quality of System SpeciĄcations in Use Case Driven Approaches 165

[Kr95] Kruchten, Philippe (1995): The 4+1 View Model of Architecture: IEEE Software.

[OM15] Object Management Group, Inc. (2015): Unified Modeling Language. Version 2.5.
Online available http://www.omg.org/spec/UML/.

[OM16] Object Management Group, Inc. (2016): Requirements Interchange Format™
(ReqIF™). Version 1.2. Online available http://www.omg.org/spec/ReqIF/1.2.

[Po12] Pohl, Klaus; Achatz, Reinhold; Hönninger, Harald; Broy, Manfred (2012): Model-
based engineering of embedded systems: The SPES 2020 methodology. Berlin and
New York: Springer.

[Ra17] Rauh, Alexander; Golubski, Wolfgang; Queins, Stefan (2017): A requirements meta-
model to integrate information for the definition of system services. In: 2017 IEEE
Symposium on Service-Oriented System Engineering: IEEE / Institute of Electrical
and Electronics Engineers Incorporated.

[Sm15] Śmiałek, Michał; Nowakowski, Wiktor (2015): From Requirements to Java in a Snap.
Model-Driven Requirements Engineering in Practice. Cham: Springer International
Publishing (EBL-Schweitzer).

[Wa15] Walden, David D.; Roedler, Garry J.; Forsberg, Kevin; Hamelin, R. Douglas; Shortell,
Thomas M. (2015): Systems engineering handbook: A guide for system life cycle
processes and activities. 4th edition.

166 Alexander Rauh, Wolfgang Golubski, Stefan Queins

Synthesis of Cost-optimized Controllers from
Scenario-based GR(1) Specifications 1

Daniel Gritzner2, Joel Greenyer2

Abstract: Modern systems often consist of many software-controlled components which must
cooperate to fulĄll difficult to achieve goals. Trying to reduce the cost of running such a system,
e.g., by minimizing total energy consumption, adds additional complexity. To support engineers in
the difficult design of such systems we developed a scenario-based speciĄcation approach enabling
the intuitive modeling of goals and assumptions using short scenarios. These formal speciĄcations
allow defects to be detected and Ąxed early in development. In this paper we present and evaluate an
extension to our approach which enables engineers to model costs of processes and thus to synthesize
controllers which guarantee that the speciĄed goals are fulĄlled in a cost-optimized manner. Our
approach even considers the transfer of energy between components to enable the design of systems in
which, e.g., the braking energy of moving components can be leveraged to reduce the cost of running
a system.

1 Introduction

Modern systems in several domains, e.g., manufacturing, transportation, or health care, often
consist of many software-controlled components which must cooperate to fulĄll their goals.
As users of these systems demand increasingly complex functionality, the processes which
need to be performed by the cooperating components become increasingly complex as well.
This in turn means engineers face difficult challenges when designing and implementing the
behavior required of each component in the system. Processes require the cooperation of
multiple components and every components is involved in the implementation of multiple
processes, often several processes at the same time. Each component must properly react to
external events, e.g., user inputs, as well as internal events, i.e., actions of other components.
Determining and implementing the correct behavior for every component is a difficult and
error-prone task. This task becomes even more difficult when optimization is a concern, i.e.,
Ąnding behavior which not only fulĄlls all requirements but is also optimal according to
some well-deĄned criterion. Typical criteria are reducing the cost of operating a system
or reducing its environmental impact, e.g., through reducing the amount of energy or raw
materials required for the production of a physical item. A good example of such a system
is an automated manufacturing facility in which many robots cooperate to produce cars.

1 This research is funded by the DFG project EffiSynth.
2 Leibniz Universität Hannover, Fachgebiet Software Engineering, Welfengarten 1, D-30167 Hannover, Germany

daniel.gritzner|greenyer@inf.uni-hannover.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 167

https://creativecommons.org/licenses/by-nc/3.0/
daniel.gritzner | greenyer@inf.uni-hannover.de
https://creativecommons.org/licenses/by-sa/4.0/

To support engineers in the difficult design process of such systems we developed a formal,
yet still intuitive scenario-based speciĄcation approach. In our approach, short scenarios
are used to model guarantees (goals, requirements, desired behavior) and assumptions

made about the environment. Scenarios are sequences of events, similar to how engineers
describe requirements to each other, e.g., “When A and B happen, then component C1

must do D, followed by C2 doing E.” These sequences are used to describe, in an intuitive
way [Al14, GMMS12], when events or actions may, must, or must not occur. The formal
nature of scenario-based speciĄcations enables the use of powerful analysis techniques early
in the design process. Through simulation and controller synthesis, which, if successful,
can prove that the requirements deĄned in the speciĄcation are consistent, defects can be
found and Ąxed early during development. Additionally, these same techniques can be
used to directly execute a speciĄcation at runtime or to automatically generate executable
code [Gr15, GG]. Doing so signiĄcantly reduces manual implementation effort, mitigating
some of the cost of writing a formal speciĄcation and potentially even reducing overall
development costs.

In this paper we present and evaluate an extension of our scenario-based speciĄcation
approach enabling engineers to design systems which behave in a cost-optimized manner.
Previously, when synthesizing a controller/strategy, our goal was to Ąnd a behavior strategy
which allows the system to fulĄll all guarantees inĄnitely often as long as all environment
assumptions hold. The extension discussed in this paper enables two things, a) the modeling
of costs associated with the behavior deĄned in a formal speciĄcation, and b) the synthesis
of controllers which minimize the costs of executing the speciĄed system. In some domains,
e.g., manufacturing, negative costs occur: when robots decelerate, their kinetic energy
can, through smart electrical design, be leveraged to drive concurrent processes [Gr14].
Usually, this energy is turned into heat and thus is lost to the system. Our proposed extension
supports the transfer of energy between processes in order to Ąnd a system behavior in
which positive and negative costs signiĄcantly overlap. Thus the overall energy consumption
when running a system can be reduced, i.e., the systemŠs operational costs are reduced. The
work in this paper is part of a realization of our proposed vision of generating code for the
energy-efficient control of production systems [GG16].

Sect. 2 of this paper introduces a running example. Sect. 3 explains some preliminaries.
Then, Sect. 4 discusses the main contribution, cost-optimized synthesis, followed by an
evaluation in Sect. 5. The paper Ąnishes with related work and a conclusion in Sect. 6 and 7.

2 Example

As a running example we use a production system as depicted in Fig. 1. While the Ągure only
shows two robot arms, one welding and the other performing a pick-and-place operation,
this example can easily be extended to additional robots which perform tasks such as drilling
or cutting.

168 Daniel Gritzner, Joel Greenyer

arm A

arm B

deposit belt

conveyor belt

c:Controller

Fig. 1: A typical production system consisting of two robot arms and two conveyor belts. The Ąrst arm
welds two pieces of a work item Ąrmly together while the second arm picks up the Ąnished items and
places them on a different conveyor belt.

This is a typical production process and can be found in many domains, e.g., the manu-
facturing of cars. Partially built cars move along a conveyor system and once they are in
place for the next step, robot arms move in and perform some action, e.g. tightening screws,
welding, etc., on the car. Then the robots move back into a holding position and prepare
themselves for the next car. These actions are then repeated again and again.

The optimization goal in our example is to Ąnd a strategy for controlling the robots such
that their movement becomes synchronized in a way that minimizes the overall energy
consumption of the system. However, the robots must still fulĄll all required tasks. For this
purpose, we include positive costs for acceleration and movement at constant velocity for
each arm (these must be minimized) and negative costs for deceleration in our speciĄcation.
Braking energy that cannot be used immediately is turned into heat, i.e., it is lost.

3 Preliminaries

In this section we explain two-player games with a General Reactivity of rank 1 (GR(1))
condition, a formalism to which we map our formal, scenario-based speciĄcation. The two
players are the speciĄed system and its environment. To synthesize a controller from a
formal speciĄcation, we try to Ąnd a strategy for the system in a GR(1) game such that the
system is able to fulĄll all guarantees as long as the environment fulĄlls the assumptions.

3.1 GR(1) Games

A game is a directed graph, called game graph, GG “ pV, E, v0q with a Ąnite set of vertices
V , a set of edges E Ď V ˆ V , and an initial state v0 P V . The set V is partitioned into two
disjoint sets V1 and V2. Each vertex v P Vi is controlled by player i, i.e., this player can choose
which edge e “ pv, v1q P E with v

1 P V is traversed to progress the game. Since the players
in our case are the system and its environment, we also use Vsys and Venv instead of V1 and
V2 respectively. E is left-total, i.e., there are no dead ends in GG. A play or run is an inĄnite
sequence of vertices and edges r “ v0e0v1e1v2e2v3 . . . such that @i : ei “ pvi, vi`1q P E.

Synthesis of Cost-optimized Controllers from Scenario-based GR(1) SpeciĄcations 169

A GR(1) game is a game with an additional winning condition for player sys. To help
understanding a GR(1) condition, we start with the simpler Büchi condition. A Büchi
condition consists of a set of goal states G Ď V at least one of which must be visited
inĄnitely often by any run which fulĄlls this condition. The equivalent Linear Temporal
Logic (LTL) [Pn77] formula is ˝♦g with g “ Şa state v P G is visitedŤ. This condition can
be generalized into a Generalized Büchi condition with multiple, but Ąnitely many, goal state
sets Gi , all of which must be visited independently, i.e.,

Ź

i ˝♦gi in LTL. A GR(1) condition
consists of two Generalized Büchi conditions, the assumptions A “ pA1, A2, . . . , Anq and
the guarantees G “ pG1,G2, . . . ,Gmq with n,m P N such that the formula

˜

ľ

i

˝♦ai

¸

ùñ

˜

ľ

j

˝♦gj

¸

(1)

holds. This condition is fulĄlled iff, whenever all the assumptions hold, i.e., their goal states
are visited inĄnitely often, all the guarantees hold as well.

A strategy for player i is a mapping from any possible Ąnite preĄx p “ v0 . . . vj of any
possible run r , with vj controllable by i, to an edge e “ pvj, v

1q P E. A strategy is memoryless

if the mapping to edges e only depends on the current state vj of a game. Player sys wins a
run r iff r fulĄlls the GR(1) condition of the GR(1) game. Player sys wins a GR(1) game iff
that player has a strategy such that sys wins every possible run r .

3.2 Scenario-based Modeling

We developed a DSL, the Scenario Modeling Language (SML), and an associated tool suite,
ScenarioTools, for creating and analyzing formal, scenario-based speciĄcations [Gr15,
Gr16, GG]. SML is a textual variant of Live Sequence Charts [DH01, HM03a] which we
extended with additional Ćow control features. Listing 1 shows an excerpt of a speciĄcation
written in SML. In SML, short scenarios describe in an intuitive way how objects may,
must, or must not behave. The excerpt shows an assumption of how robot arm movement
works: when the robot is instructed to move, it will immediately accelerate, after that it will
eventually move at a constant velocity, eventually decelerate and eventually arrive at its
destination. At every step it notiĄes the systemŠs controller of its current state. Roles (lines
2&3) in SML serve the same purpose as lifelines in Message Sequence Charts. Different
objects can be bound at runtime to dynamic roles, even concurrently. As an example, if two
robots move concurrently there will be two instances of RobotMovement (lines 4-10) active
concurrently with each instance having different, unique role bindings. Classes of objects
can be deĄned as controllable by the system (line 1). All other objects are uncontrollable, or
controllable by the environment, by default.

An SML speciĄcation consists of sets of scenarios and the play out algorithm [HM03a,
HM03b] deĄnes how they can be interwoven into a play. Basically, the algorithm waits for

170 Daniel Gritzner, Joel Greenyer

1 controllable { Controller }

2 dynamic role Controller controller

3 dynamic role Robot robot

4 assumption scenario RobotMovement {

5 controller -> robot.move()

6 committed robot -> controller.accelerate()

7 eventually robot -> controller.move()

8 eventually robot -> controller.decelerate()

9 eventually robot -> controller.arrived()

10 }

List. 1: Excerpt from an SML speciĄcation of the example shown in Fig. 1

the environment to choose an event and then activates and progresses scenarios accordingly.
Whenever at least one event, sent by a system object, is enabled which is Ćagged by a
liveness condition (e.g., committed), play out will execute one of these events, unless it is
blocked by another scenario.

The play out algorithm is generally non-deterministic meaning that multiple events may be
possible according to the algorithm given a speciĄc set of active scenarios and an object
instance model. This induces a state space, in particular a game graph GG “ pV, E, v0q.
Each vertex represents a system state, i.e., a set of active scenarios and an object model.
The initial vertex has no active scenarios but still has an object model. Each edge is labeled
with an event that corresponds to the event that caused the changes in the system state
between the two connected vertices. Each vertex is controllable by either the system or the
environment, i.e., all outgoing edges, also called outgoing transitions, correspond to events
in which the senders are all controllable by the same player. To implement the keyword
eventually properly, system controlled vertices might have a system-controllable outgoing
edge explicitly representing Şwait for the environmentŤ.

To turn this game into a GR(1) game, we also extract a GR(1) condition from the speciĄcation.
Each active scenario with unique role bindings is turned into one assumption or guarantee
condition depending on the scenarioŠs type (assumption or guarantee). The goal states for
such an active scenario are all states in which this scenario has no liveness condition to fulĄll
(in particular, this is true if the scenario is not even active in a given state) and no safety
violation of that scenario (tracked via a Ćag) has occurred in previous states. Additionally,
we add a guarantee that contains all environment-controlled states as goal states. This
is to ensure that the system will eventually react to external inputs again, assuming the
speciĄcation is well-separated, which is a desirable property of a good speciĄcation [MR16].
In a well-separated speciĄcation, the system cannot force a violation of the assumptions by
any of its choices, i.e., the system must focus on fulĄlling the guarantees.

Active scenarios AS represent subgraphs of this game graph. These subgraphs are char-
acterized by initializing edges, terminating edges, and a set of states V 1 Ă V in which
AS is active. Initializing edges represent events which activate AS, i.e., which represent
the Ąrst event in the associated scenario S. Terminating edges represent events which

Synthesis of Cost-optimized Controllers from Scenario-based GR(1) SpeciĄcations 171

terminate AS, usually the last event in S. The smallest possible such subgraph is just a single
edge which is both initializing and terminating an active scenario which merely checks a
condition when a certain event occurs. However, for simplicity, we will later only consider
subgraphs in which the sets of initializing and terminating edges are disjoint, implying
V 1 ‰ H. These subgraphs represent activities which last for an extended duration and are
characterized by events which indicate the beginning, progress, or end of an activity. The
scenario RobotMovement in Listing 1 is an example of such an activity. The set V 1 of an
activity can be partitioned into a set of weakly connected components with exactly one
component for each instance of the activity within the game graph.

3.3 Controller Synthesis

Our controller synthesis is an implementation of ChatterjeeŠs attractor-based GR(1) game
solving algorithm [Ch16]. It uses the assumptionsŠ and guaranteesŠ goal states to calculate
attractors. An attractor is dependent on a player and a condition, e.g., a system attractor
of guarantee G j is a state from which the system can ensure to visit a goal state of G j

regardless of the environmentŠs behavior. ChatterjeeŠs algorithm iteratively calculates and
removes environment dominions from the game graph. An environment dominion is a set
of states all of which are not a system attractor of at least one guarantee. Furthermore,
these states are all environment attractors of all assumptions. The states retained after no
further environment dominion can be found are known to contain a strategy which allows
the system to either fulĄll all of its guarantees or to ensure the violation of at least one
assumption. If the initial state of the game graph is in this set, the speciĄcation is realizable,
i.e., the system wins the game. We call the set of retained states the winning states.

To extract a strategy from the winning states we start with calculating system attractors
strategies for all guarantees. This is done via a reverse search starting from the goal states of
a guarantee. First, all goal states are marked as attractors. Then, iteratively, all non-attractor
states which are directly reachable via traversing an edge from an attractor in reverse
direction, are tested whether they are attractors or not, i.e., are they system controllable with
an edge leading to an attractor or are they uncontrollable with all edges leading to attractors.
All new attractors found this way are also marked as attractors and for each new attractor
that is controllable, the edge used to reach it (via reverse direction traversal) is stored as the
systemŠs move in that particular state. These mappings of states to edges are a cycle-free
strategy to reach a goal state, i.e., this mapping is a system attractor strategy.

Next, for each guarantee, we calculate system dominions, analogously to the environment
dominions used in the initial game solving algorithm, in the non-attractor states of that
guarantee. We store the strategy to reach and stay in such a dominion as we did before for
fulĄlling the guarantee. Then we remove it and repeat the process until no further dominion
can be found and removed. This way we end up with a strategy for each guarantee to either
fulĄll it or end up in a subgraph in which at least one assumption is violated.

172 Daniel Gritzner, Joel Greenyer

Finally, a memoryless strategy can be calculated by creating a new game graph which
consists of m copies of the original graphŠs vertices (m = number of guarantees). The states
in this new graph are labeled with the label of the state they are a copy of and the label of
the guarantee G j which should be fulĄlled next. An arbitrary state, which is a copy of the
original initial state, can be chosen as the new initial state. From this state the strategy for
G j is followed (all outgoing edges are added for uncontrollable states) until a goal state is
reached. The outgoing edges of this goal state are labeled with a new G j1 to fulĄll and its
strategy is then followed. One after another, all guarantees are fulĄlled this way. Most of
the states created by this approach will never be reached, thus creating the necessary states
on-the-Ćy while following the current strategy greatly reduces the resulting graphŠs size.
Memoryless strategies make subsequent processes, e.g., code generation, easier as only the
system state needs to be tracked at runtime as opposed to the entire event history.

4 Cost-optimized Synthesis

In this section we describe our technique for synthesizing a cost-optimized controller. It
is built on top of the GR(1) game solving algorithm described in the previous section,
reusing as much of the existing functionality as possible. We followed a divide-and-conquer
approach in our design. First, we execute the regular attractor-based game solving algorithm.
If the system is realizable, we run our cost optimization algorithm on the winning states.
Finally, we perform a modiĄed strategy extraction to extract a cost-optimized memoryless
strategy from the winning states, or in other words, synthesize a cost-optimized controller.

4.1 Optimization Goals, Costs and Gains

GR(1) games are inĄnite games, i.e., the systems represented by these games are intended
to be run for an indeĄnite amount of time. While this is a good analogy for how systems in
many domains, e.g., manufacturing, are actually run, this poses a problem for optimization:
if every event or activity (cf. end of Sect. 3.2) can, in theory, occur an inĄnite number of
times, how do we model costs in a well-deĄned, preferably Ąnite, way that can be computed
with reasonable effort? We observed that components repeat Ąnite activities an inĄnite
number of times in these games. An analogous pattern in a programming language would
be a while-loop whose loop condition is always true and which, of course, has a Ąnite body.
Often even the whole system follows such a pattern. Thus, to optimize an inĄnite game, we
need to identify its Ąnite ŞbodyŤ, which is a subgraph with a clearly deĄned beginning and
end like that of an activity, and optimize the behavior while in that body.

To identify Ąnite subgraphs during which the systemŠs behavior shall be optimized we added
the ability to annotate scenarios in SML as optimization goals. The activity represented by
the scenario then deĄnes a set of weakly connected components during which optimization
shall be performed. A speciĄcation may already contain suitable scenarios which merely

Synthesis of Cost-optimized Controllers from Scenario-based GR(1) SpeciĄcations 173

must be annotated by an expert. But even if not, SML allows writing appropriate scenarios
which do not alter the game graph or the GR(1) condition induced by the speciĄcation. These
can be used to deĄne optimization goals in a clear, separate manner. Through annotations
engineers can also choose which parts of the systemŠs behavior are optimized while others,
which need not be optimized, e.g., a one time initialization, or which must not be optimized,
e.g., a safe shutdown procedure in case of an error or emergency, remain untouched.

We use the same notion of activities we used for deĄning optimization goals to deĄne costs

(scenarios annotated with a cost P R`) and gains (scenarios annotated with a cost P R´).
By using activities instead of merely assigning cost values to vertices or edges we are able
to identify when costs and gains overlap to model effects like the transfer of energy between
components mentioned in the introduction. Costs may model whichever property shall be
optimized such as the usage of energy, raw materials, or money. Concrete cost values have
to be provided by engineers at design time. Measuring or estimating these costs is outside
the scope of this paper as it depends on the domain of the system and the type of the cost.

Without loss of generality, for the remainder of this paper we only consider optimization
goals, costs, and gains which consist of a single weakly connected component. In practice, we
simply split subgraphs consisting of several such components into multiple subgraphs. For
optimization goals, we further assume that they do not overlap. Optimization goal instances
which, after splitting into single weakly connected components, overlap are merged into one
single instance of an optimization goal. This opens up a new issue: circular dependencies of
goals. If, e.g., two activities which shall both be optimized overlap which each other such
that the end of the Ąrst activity overlaps with the beginning of the second activity and vice
versa, a simple trick can resolve this issue. The circle becomes a Ąnite subgraph if only one
of the two activities is deĄned as optimization goal. If the impact of the activity, which is
not optimized, is sufficiently small or the overlap of the activities is sufficiently large, then
the effect on the resulting optimized behavior can be negligible. Assuming the robot arms in
Fig. 1 work in such a timing that one arm always starts processing the next work item while
the other just Ąnishes its work on its current work item, then only optimizing the movement
of one arm yields good results. It will synchronize itself such to the movement of the other
arm that the overall system behaves in an optimal way.

4.2 Optimization Objective

Our optimization objective is to Ąnd optimal paths through every optimization goal OG

of a game. For every system-controllable v P VOG we want to Ąnd the optimal edge to
choose for the player sys such that the path p “ ve0v1e1 . . . en with en being a terminating
transition incurs the least possible cost. We optimize the worst-case cost, i.e., player env

will always choose the edge that leads to the highest overall cost.

174 Daniel Gritzner, Joel Greenyer

The cost of a path p “ ve0v1e1 . . . en is deĄned as

costppq “

˜

n
ÿ

i“0

costpeiq

¸

` costptargetStatepenqq (2)

with the cost of an edge ei being the sum of all costs of activities which terminate in ei and
the cost of a state v

1 being the sum of all costs of activities active in v
1. The costs of the

target state v
1 of en are included, despite OG already being terminated, because following

the path p makes performing the activities active in v
1 unavoidable. However, to take effects

such as transfer of energy into account, we consider the effective cost of a path p, which is

effectiveCostppq “ costppq ´ optimalGainppq. (3)

The optimal gain is the maximum amount of cost which can be mitigated by gains. Assuming
we have a function costTransfer : Costs

Ś

Gains Ñ R`
0 which maps pairs of costs c P Costs

and gains g P Gains to the amount of c mitigated by g, the optimal gain is deĄned as

optimalGainppq “ max
costTransfer

¨

˝

ÿ

cPCostsppq,gPGainsppq

costTransferpc, gq

˛

‚, (4)

i.e., it is the result of applying the best possible cost transfer function to all relevant cost and
gain pairs. A cost, and analogously gain, is only relevant to a path p iff it affects costppq,
i.e., it overlaps p. While every path p may have a different optimal cost transfer function, all
such functions must fulĄll the following constraints:

‚ @c P Costs, g P Gains :
`

Vc X Vg “ H
˘

ñ costTransferpc, gq “ 0,with Vc,Vg being
states in which c, g are active, i.e., gains can only mitigate concurrently active costs.

‚ @c P Costs :
´

ř

gPGains costTransferpc, gq
¯

ď costpcq, with costpcq being the cost

value assigned to c. This constraint ensures that no cost is ŞovercompensatedŤ.

‚ @g P Gains : p
ř

cPCosts costTransferpc, gqq ď |costpgq| , i.e., no gain can be ŞoverusedŤ
to mitigate concurrent costs.

A single cost can be mitigated by multiple gains and a single gain can mitigate multiple costs
as long as the constraints above are fulĄlled. Gains, which do not overlap with sufficiently
high costs, are (partially) lost.

4.3 Cost Propagation

Algorithm 1 shows how we apply dynamic programming and depth-Ąrst search to build
a map M of paths, which minimize the effective cost, through an optimization goal OG.

Synthesis of Cost-optimized Controllers from Scenario-based GR(1) SpeciĄcations 175

Algorithm 1 Cost propagation for optimization goal OG

Input: terminating transitions ET of OG
Output: map M of cost-optimized paths

1: initialize empty map M , stack S, set Done, and set Improved
2: S.pushAll(e P ET)
3: while S is not empty do
4: e Ð S.pop(), ss Ð e.sourceState, ts Ð e.targetState
5: if M .contaisKey(ts) ^ ts is system-controllable then
6: p Ð M[ts].Ąrst + e
7: else if M .contaisKey(ts) ^ ts is environment-controllable then
8: p Ð M[ts].last + e
9: else

10: p Ð e

11: effCost Ð calculateEffectiveCost(p)
12: if M[ss] “ null then
13: M[ss] Ð tpu, Improved Ð Improved Y tssu
14: else
15: M[ss].addOrdered(p)
16: if mappingImproved(M , ss, p) then
17: Improved Ð Improved Y tssu

18: Done Ð Done Y teu
19: pushImprovedTransitions(S, ss, Done, Improved)
20: return M

The algorithm starts at the terminating transitions of OG and searches optimal paths in
the reverse direction. Calculating the effective cost of paths in that order is easier than in a
forward search.

For every edge e, the algorithm takes the best path p from eŠs target state to the end of OG

(stored in M), adds e to the front of p (lines 5-10), calculates the effective cost of the new p

(line 11) and then Ąnally updates M (lines 12-17), which will eventually store one entry for
every outgoing transition of every state in OG. The mappings in M are stored in order from
least effective cost to highest effective cost. Mappings with equal cost are stored in the order
they are found, as this will cause strategy extraction to favor edges which do not lead to
cycles within OG.

To calculate the effective cost (line 11), we maintain an additional map of paths p1 “
v

1e0v1e1v2e2 . . . en to a data structure storing the pathŠs (non-effective) cost, which gain
beginning in e0 or later compensates which cost and the degree of cost transfer, and how
much cost transfer from gains active in v

1 could potentially currently occur. From this
information the effective cost of p can be easily computed.

To calculate the cost of p “ vev1e0v1e1 . . . en (concatenation of e and p1), we add the
values of costs terminating in e to the cost of p1, determine the optimal cost transfer from
gains beginning in e (thus turning potential cost transfer into actual cost transfer), and
calculate the new potential cost transfer of gains active in v. When turning potential cost

176 Daniel Gritzner, Joel Greenyer

transfers to actual cost transfers we approximate the optimal cost transfer function via a
heuristic to avoid expensive combinatorial explosion. Our heuristic is based on the number
numOverlapspgq of costs a gain g could potentially compensate. The idea is to use gains with
less opportunities to compensate costs Ąrst. When multiple gains begin in the same edge,
we process them in the order of their numOverlapspgq from lowest to highest. Similarly,
during the processing of each gain we iterate over costs c based on numOverlapspcq. While
doing so, we make sure that the constraints deĄned in Sect. 4.2 are still satisĄed. Computing
the potential cost transfer from still active gains follows the same approach.

Algorithm 1 uses the sets Improved and Done to determine which edges to push onto the
search stack S (line 19). Whenever S is empty, all incoming edges of states in Improved are
pushed onto S and then Improved is cleared. As an optimization, the incoming edges of a
state may be pushed onto S if all of the states outgoing edges are in Done, even though S is
not yet empty. This reduces the number of loop iterations necessary to fully construct M .

The algorithm will eventually terminate because the terminating edges of OG are only
pushed onto S once and the incoming edges of every vertex v in OG are pushed onto S at
most as often as the number of outgoing edges of v. After termination, M maps every vertex
in OG to a list of its outgoing edges ordered from least to highest effective cost.

4.4 Modified Strategy Extraction

Extracting a cost-optimized memoryless strategy works similar to extracting a regular
memoryless strategy, though requires some modiĄcation to system attractor strategy
calculation. Other steps, e.g., merging the strategies for each guarantees into a single
strategy, work the same as before. This implies that parts of the game graph, in which the
system must ensure that the assumptions are violated, are not optimized. We do not consider
this to be a goal of a well-deĄned system.

The modiĄed system attractor calculation for each guarantee works by iterating over all its
attractor vertices v after discarding the system moves determined by the regular system
attractor calculation (cf. Sect. 3.3). A forward depth-Ąrst search is performed, iterating over
outgoing edges of each controllable vertex in the order stored in M[v] (a random order is
tried when there is no such M[v]). The search starts at an arbitrary controllable attractor
vertex v. When a vertex vGoal , which is either a goal state or for which a move is already
known, is found, the outgoing transitions used to construct the path from v to vGoal are
stored as the systemsŠ moves for each controllable vertex on said path. Then a new search
is started from a controllable vertex for which no move has been determined so far. If the
search detects a cycle in the current path or encounters a non-attractor state it will backtrack.
This way the system will take the most cost-efficient path to fulĄll each guarantee. There
will be no paths with a lower effective cost that lead to a goal state. The approach terminates
as all options are eventually considered, assuming the least cost-effective path is still the
best option which still fulĄlls a given guarantee.

Synthesis of Cost-optimized Controllers from Scenario-based GR(1) SpeciĄcations 177

5 Evaluation

In this section we discuss benchmark results of our approach for the synthesis of cost-
optimized controllers. We measured the time required to execute the algorithms as well as
the size of the game graphs and the synthesized controllers.

5.1 Benchmark Setup

All benchmarks were run on a laptop with an Intel Core i7-5500U, 8 GB RAM, and Windows
10 64-bit. ScenarioTools, the implementation of our DSL and tool-suite, was run using
Eclipse Modeling Tools Oxygen and Java 8. During benchmarking no other processes other
than system services were running on this system and it was not connected to any network.

We ran benchmarks using the example described in Sect. 2. We used different instances
with a varying number of robots for benchmarking. The speciĄcation consisted of seven
scenarios, one of which was annotated as optimization goal, one was annotated as a cost
activity (a robot accelerates and moves) and one was annotated as a gain activity (a robot
decelerates; potentially losing kinetic energy as heat). The speciĄed situation was that of
new work items, e.g., a car, arriving at each robotŠs work station simultaneously, followed
by each robot moving in from a holding position, performing a task (these were not modeled
in detail but kept abstract) and then moving back into the initial holding position waiting for
the next work item. The optimization goal was to minimize the loss of kinetic energy as heat
during each work item processing cycle, i.e., minimize the total energy cost of the system.

Each example was benchmarked 10 times. Before running the actual benchmarks, Ąve warm
up iterations were performed, to prevent the results from becoming tainted by on-demand
resource loading or an undeĄned cache state.

5.2 Benchmark Results

Tables 1 and 2 show our benchmark results. The game graph and controller size comparison
shows that only a fraction of the states and transitions from the game graph actually end
up being part of the synthesized controller, despite the controller potentially containing
multiple copies of each state of the game graph. Also, the state space explosion problem
is apparent, as the size of the game graphs increases exponentially with the number of
robots. Controllers for instances with Ąve or more robots could not be synthesized as
ScenarioTools ran out of memory during game graph creation. Furthermore, there was
a single optimization goal instance which spanned nearly the entire game graph.

Table 2 shows that the majority of time was spent creating the game graph, consuming about
95% of the time required to synthesize a controller. The other steps require a comparatively
insigniĄcant amount of time, indicating that the algorithms for performing these other steps,

178 Daniel Gritzner, Joel Greenyer

number of robots 1 2 3 4

states in game graph 16 279 4010 52877

transitions in game graph 16 379 6310 91477

states in controller 16.0 62.7 1462.7 18954.7

transitions in controller 16.0 67.7 1818.3 26681.3

states in optimization goal 14 275 4002 52861

Tab. 1: Size of the game graphs, synthesized controllers, and the optimization goal subgraph; controller
metrics are averaged over 10 iterations.

number of robots 1 2 3 4

game graph creation 21.8 ms 326.3 ms 6109.5 ms 117181.8 ms

GR(1) game solving 0.1 ms 1.7 ms 44.5 ms 2193.4 ms

strategy extraction (just GR(1)) 0.4 ms 1.5 ms 41.6 ms 1974.1 ms

cost optimization 0.1 ms 1.7 ms 18.8 ms 468.7 ms

strategy extraction (optimized) 1.6 ms 2.7 ms 57.9 ms 2739.1 ms

total (extracting opt. strategy) 23.6 ms 332.4 ms 6230.7 ms 122583.0 ms

Tab. 2: Performance measurements; all measurements are times in milliseconds and averaged over 10
iterations.

including the cost optimization presented in this paper, scale sufficiently well to larger
systems. Game graph creating becomes a problem long before these other steps start to run
slowly. In particular, the cost optimization, i.e., extracting optimization goals, costs, and
gains and propagating effective costs through optimization goals, scales well. For larger
systems, it performs signiĄcantly better than every other step. Overall, for the instance with
four robots, cost optimization and modiĄed strategy extraction added only 1233.7 ms to the
process compared to synthesizing a non-optimized controller. This means for that instance
the overall synthesis time only increased by 1%.

The modiĄed strategy extraction appears to require signiĄcantly more time than the regular
strategy extraction for smaller systems (a factor 4 difference for a system with a single robot),
but this difference decreases as the size of the system increases (a factor 1.39 difference
for a system with four robots). While the effect on the overall synthesis process is already
negligible, Table 2 also indicates that the performance difference between the two strategy
extraction approaches themselves becomes negligible for sufficiently large game graphs.

6 Related Work

There are many approaches for synthesizing optimized controllers from a formal speciĄcation,
e.g., by Smith et al. [Sm10], Karaman et al. [KF11, KSF08], Wolff et al. [WTM12], and
Jing et al. [JEKG13]. The last one even offers an extensible GR(1) synthesis tool [ER16].
These approaches use temporal logic, usually LTL, for their formal speciĄcations and

Synthesis of Cost-optimized Controllers from Scenario-based GR(1) SpeciĄcations 179

transition-based costs. Our approach, instead, uses intuitive scenario-based speciĄcations
and optimizes based on activities. Activity-based costs are necessary to leverage effects
such as the transfer of braking energy to drive concurrently active components.

Also related is the work done on energy games. Introduced by Bouyer et al. [Bo08], there are
synthesis approaches proposed by Chatterjee et al. [Ch10, CRR14], Maoz et al. [MPR16],
and Brim et al. [Br11]. Actions performed by the players, i.e., transitions traversed in the
game graph, cause an energy level to rise and fall throughout the game, thus modeling
costs and gains. The Ąrst playerŠs objective is to keep this level non-negative. Again,
transition-based costs and gains are insufficient for our optimization objective (cf. Sect. 4.2).

Mean pay-off games offer the ability to model vertex-based rewards [CHJ05]. Maximizing
rewards can be interpreted as minimizing costs. However, vertex-based costs/rewards have
the same limitations as transition-based rewards.

Pellicciari et al. [Pe13] try to utilize idle times of individual robot trajectories. Wigström et
al. [Wi13] use dynamic programming to determine an optimal task schedule for a multi robot
cell. However, neither approach is able to automatically Ąnd optimization opportunities
outside of isolated time windows or pre-deĄned energy exchange opportunities between
components. Our approach is able to consider all optimization opportunities.

7 Conclusion

In this paper we presented an approach for synthesizing cost-optimized controllers from
scenario-based speciĄcations, an intuitive method for creating formal speciĄcations. We
evaluated the performance of this optimization technique and found that it works very
fast, especially for larger systems. It is able to handle optimization goals which leverage
the transfer of energy between components to reduce the overall energy consumption of a
system, a goal difficult or even impossible to model in many existing approaches.

In future work, we want to extend SML with the ability to model time-based constraints
and costs. This enables not only the modeling of safety properties in which timing plays
an important role but also opens up new avenues for optimization. In robotics, moving a
component the same distance at different speeds causes different energy consumptions. To
take advantage of this, we need to know how much time a component has to fulĄll its goal
without slowing down the overall system. Furthermore, knowing how long processes take
would also allow for a more accurate model of cost compensation. If we know by how much
the deceleration and movement of different components overlap we can more accurately
determine how much of the braking energy can actually be recouped.

References
[Al14] Alexandron, G.; Armoni, M.; Gordon, M.; Harel, D.: Scenario-Based Programming:

Reducing the Cognitive Load, Fostering Abstract Thinking. In: Proc. 36th Int. Conf. on

180 Daniel Gritzner, Joel Greenyer

Software Engineering (ICSE). pp. 311Ű320, 2014.

[Bo08] Bouyer, Patricia; Fahrenberg, Uli; Larsen, Kim G; Markey, Nicolas; Srba, Jiří: InĄnite
runs in weighted timed automata with energy constraints. In: International Conference
on Formal Modeling and Analysis of Timed Systems. Springer, pp. 33Ű47, 2008.

[Br11] Brim, Lubos; Chaloupka, Jakub; Doyen, Laurent; Gentilini, Raffaella; Raskin, Jean-
François: Faster algorithms for mean-payoff games. Formal methods in system design,
38(2):97Ű118, 2011.

[Ch10] Chatterjee, Krishnendu; Doyen, Laurent; Henzinger, Thomas A; Raskin, Jean-François:
Generalized mean-payoff and energy games. arXiv preprint arXiv:1007.1669, 2010.

[Ch16] Chatterjee, Krishnendu; Dvorák, Wolfgang; Henzinger, Monika; Loitzenbauer, Veronika:
Conditionally Optimal Algorithms for Generalized Büchi Games. In (Faliszewski, Piotr;
Muscholl, Anca; Niedermeier, Rolf, eds): 41st International Symposium on Mathematical
Foundations of Computer Science (MFCS 2016). volume 58 of Leibniz International
Proceedings in Informatics (LIPIcs), Schloss DagstuhlŰLeibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, pp. 25:1Ű25:15, 2016.

[CHJ05] Chatterjee, Krishnendu; Henzinger, Thomas A; Jurdzinski, Marcin: Mean-payoff parity
games. In: Logic in Computer Science, 2005. LICS 2005. Proceedings. 20th Annual
IEEE Symposium on. IEEE, pp. 178Ű187, 2005.

[CRR14] Chatterjee, Krishnendu; Randour, Mickael; Raskin, Jean-François: Strategy synthesis
for multi-dimensional quantitative objectives. Acta Informatica, 51(3-4):129Ű163, 2014.

[DH01] Damm, Werner; Harel, David: LSCs: Breathing Life into Message Sequence Charts. In:
Formal Methods in System Design. volume 19, pp. 45Ű80, 2001.

[ER16] Ehlers, Rüdiger; Raman, Vasumathi: Slugs: Extensible gr (1) synthesis. In: International
Conference on Computer Aided VeriĄcation. Springer, pp. 333Ű339, 2016.

[GG] Gritzner, Daniel; Greenyer, Joel: Controller Synthesis and PCL Code Generation from
Scenario-based GR (1) Robot SpeciĄcations. In: Proceedings of the 4th Workshop on
Model-Driven Robot Software Engineering (MORSE 2017), co-located with Software
Technologies: Applications and Foundations (STAF 2017) (to appear).

[GG16] Greenyer, Joel; Gritzner, Daniel: An Approach for Synthesizing Energy-Efficient Con-
trollers for Production Systems from Scenario-Based SpeciĄcations. In: Proc. of the
MoDELS 2016 Demo and Poster Sessions, co-located with ACM/IEEE 19th Int. Conf.
on Model Driven Engineering Languages and Systems (MoDELS 2016). volume 1725.
CEUR Workshop Proceedings, pp. 87Ű93, 2016.

[GMMS12] Gordon, M.; Marron, A.; Meerbaum-Salant, O.: Spaghetti for the Main Course? Obser-
vations on the Naturalness of Scenario-Based Programming. In: Proc. 17th Conf. on
Innovation and Technology in Computer Science Education (ITICSE). pp. 198Ű203,
2012.

[Gr14] Greenyer, Joel; Hansen, Christian; Kotlarski, Jens; Ortmaier, Tobias: Towards Synthesiz-
ing Energy-efficient Controllers for Modern Production Systems from Scenario-based
SpeciĄcations. Procedia Technology (Proceedings of the 2nd International Conference
on System-Integrated Intelligence (SysInt 2014)), 15(0):388Ű397, 2014.

Synthesis of Cost-optimized Controllers from Scenario-based GR(1) SpeciĄcations 181

[Gr15] Greenyer, Joel; Gritzner, Daniel; Gutjahr, Timo; Duente, Tim; Dulle, Stefan; Deppe, Falk-
David; Glade, Nils; Hilbich, Marius; Koenig, Florian; Luennemann, Jannis; Prenner, Nils;
Raetz, Kevin; Schnelle, Thilo; Singer, Martin; Tempelmeier, Nicolas; Voges, Raphael:
Scenarios@run.time Ű Distributed Execution of SpeciĄcations on IoT-Connected Robots.
In: Proceedings of the 10th International Workshop on Models@Run.Time (MRT 2015),
co-located with MODELS 2015. CEUR Workshop Proceedings, 2015.

[Gr16] Greenyer, Joel; Gritzner, Daniel; Katz, Guy; Marron, Assaf: Scenario-Based Modeling
and Synthesis for Reactive Systems with Dynamic System Structure in ScenarioTools.
In: Proc. of the MoDELS 2016 Demo and Poster Sessions, co-located with ACM/IEEE
19th Int. Conf. on Model Driven Engineering Languages and Systems (MoDELS 2016).
volume 1725. CEUR, pp. 16Ű32, 2016.

[HM03a] Harel, D.; Marelly, R.: Come, LetŠs Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, 2003.

[HM03b] Harel, David; Marelly, Rami: Specifying and Executing Behavioral Requirements: The
Play-In/Play-Out Approach. SoSyM, 2:82Ű107, 2003.

[JEKG13] Jing, Gangyuan; Ehlers, Rüdiger; Kress-Gazit, Hadas: Shortcut through an evil door:
Optimality of correct-by-construction controllers in adversarial environments. In:
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on.
IEEE, pp. 4796Ű4802, 2013.

[KF11] Karaman, Sertac; Frazzoli, Emilio: Linear temporal logic vehicle routing with applica-
tions to multi-UAV mission planning. International Journal of Robust and Nonlinear
Control, 21(12):1372Ű1395, 2011.

[KSF08] Karaman, Sertac; Sanfelice, Ricardo G; Frazzoli, Emilio: Optimal control of mixed
logical dynamical systems with linear temporal logic speciĄcations. In: Decision and
Control, 2008. CDC 2008. 47th IEEE Conference on. IEEE, pp. 2117Ű2122, 2008.

[MPR16] Maoz, Shahar; Pistiner, Or; Ringert, Jan Oliver: Symbolic BDD and ADD Algorithms
for Energy Games. arXiv preprint arXiv:1611.07622, 2016.

[MR16] Maoz, Shahar; Ringert, Jan Oliver: On well-separation of GR (1) speciĄcations. In:
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, pp. 362Ű372, 2016.

[Pe13] Pellicciari, M; Berselli, G; Leali, F; Vergnano, A: A method for reducing the energy
consumption of pick-and-place industrial robots. Mechatronics, 23(3), 2013.

[Pn77] Pnueli, Amir: The temporal logic of programs. In: Foundations of Computer Science,
1977., 18th Annual Symposium on. IEEE, pp. 46Ű57, 1977.

[Sm10] Smith, Stephen L; Tůmová, Jana; Belta, Calin; Rus, Daniela: Optimal path planning
under temporal logic constraints. In: Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on. IEEE, pp. 3288Ű3293, 2010.

[Wi13] Wigstrom, Oskar; Lennartson, Bengt; Vergnano, Alberto; Breitholtz, Claes: High-level
scheduling of energy optimal trajectories. IEEE Transactions on Automation Science
and Engineering, 10(1):57Ű64, 2013.

[WTM12] Wolff, Eric M; Topcu, Ufuk; Murray, Richard M: Optimal control with weighted average
costs and temporal logic speciĄcations. Proc. of Robotics: Science and Systems VIII,
2012.

182 Daniel Gritzner, Joel Greenyer

Collaborative Modeling Enabled By Version Control

Dilshod Kuryazov 1, Andreas Winter 1, Ralf Reussner2

Abstract: Model-Driven Software Development is a key Ąeld in software development activities
which is well-suited to design and develop large-scale software systems. Developing and maintaining
large-scale model-driven software systems entail a need for collaborative modeling by a large number
of software designers and developers. As long as software models are constantly changed during
development and maintenance, collaborative modeling requires frequently sharing of model changes
between collaborators. Thereby, a solid change representation support for model changes plays an
essential role for collaborative modeling systems. This paper focuses on the problem of model change
representation for collaborative modeling. It introduces a meta-model generic, operation-based and
textual difference language to represent model changes in collaborative modeling. This paper also
demonstrates a collaborative modeling application Kotelett.

Keywords: Model-driven Software Development and Evolution; Collaborative Modeling; Modeling
Deltas; Model Difference Representation

1 Motivation

As a software engineering paradigm, Model-Driven Software Development (MDSD) is the
modern day style of software development which supports well-suited abstraction concepts
to software development activities. It intends to improve the productivity of the software
development, maintenance activities, and communication among various team members
and stakeholders. In MDSD, software models which also comprise source code are the
central artifacts. MDSD brings several main beneĄts such as a productivity boost, models
become a single point of truth, and they are reusable and automatically kept up-to-date with
the code they represent [KWB03, pp. 9ff].

Software models (e.g. in UML [RJB04]) are the key artifacts in MDSD activities. They
are well-suited for designing, developing and producing large-scale software projects. In
order to cope with constantly growing amounts of software artifacts and their complexity,
software systems to be developed and maintained are initially shifted to abstract forms using
modeling concepts. Software models are the documentation and implementation of software
systems being developed and evolved [KWB03].

1 University of Oldenburg, Software Engineering Group, Uhlhornsweg 84, 26111 Oldenburg, Germany, {kuryazov,
winter}@se.uni-oldenburg.de

2 Karlsruhe Institute of Technology, Institute for Program Structures and Data Organization, Postfach 6980,
D-76128 Karlsruhe, Germany, ralf.reussner@kit.edu

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 183

https://creativecommons.org/licenses/by-nc/3.0/
{kuryazov, winter}@se.uni-oldenburg.de
{kuryazov, winter}@se.uni-oldenburg.de
ralf.reussner@kit.edu
https://creativecommons.org/licenses/by-sa/4.0/

Software models are constantly changed during their development and evolutionary life-
cycle. They are constantly evolved and maintained undergoing diverse changes such as
extensions, corrections, optimization, adaptations and other improvements. All development
and maintenance activities contribute to the evolution of software models resulting in several
subsequent revisions. During software evolution, models become large and complex raising
a need for collaboration of several developers, designers and stakeholders (i.e. collaborators)
on shared models i.e. Collaborative modeling.

Depending on the nature of interaction, collaborative modeling systems can be divided into
two main forms, namely sequential and concurrent collaborative modeling [ESG91]:

• Sequential Collaboration. In sequential collaboration, collaborators design a shared model
by checking out it into their distributed environment. After making changes, they merge
their local changes into the main model. This scenario results in several subsequent
revisions of the same shared central model. After each change, differences between
subsequent model revisions are identiĄed and represented in model repositories
as modeling deltas. Modeling deltas serve as information resources in further
manipulations and analysis of models. Modeling deltas representing signiĄcant
changes between subsequent revisions of models are Ąrst-class entities in storing the
histories of model changes in model repositories. The sequential version control is
referred to as macro-versioning in this paper.

• Concurrent Collaboration. Concurrent collaboration is usually dedicated to instantly
creating, modifying and maintaining huge, shared and centralized models in real-time
by a team of collaborators. Thus, the changes made by collaborators have to be
continually detected and synchronized among several concurrent instances of that
model. As long as synchronization has to occur in real-time, performance of interaction
matters. Thus, model changes have to be represented and synchronized using very
simple notations. Concurrent model instances can be differentiated by changes
represented in small modeling deltas. The required performance of synchronization
in real-time can be achieved by exchanging small modeling deltas [KW15]. Real-time
synchronization of modeling deltas is referred to as micro-versioning.

Sequential and concurrent version control are the key activities of sequential and concurrent
collaborative modeling, respectively. In both activities, modeling deltas are Ąrst-class entities
and play an essential role in storing, exchanging and synchronizing the changes between the
subsequent and parallel revisions of evolving models. Thus, the efficient representation of
modeling deltas is crucial.

An efficient change representation notation is needed for both micro-versioning and macro-
versioning. Both versioning techniques might rely on the same base-technology to deal with
modeling deltas. To that end, this paper introduces a difference language (DL) to the problem
of model difference presentation in modeling deltas. The proposed DL is meta-model generic,
operation-based, modeling tool generic, reusable, applicable, and extensible. Associated
technical support also focuses on providing a catalog of supplementary services which

184 Dilshod Kuryazov, Andreas Winter, Ralf Reussner

allow for reusing and exploiting modeling deltas represented by DL. These supplementary
services extend the application areas of DL.

The remainder of this paper is structured as follows: Section 2 investigates existing related
approaches in the research domain. Several requirements for DL and its collaborative
modeling application are deĄned in Section 3. The core concepts behind the DL-based
collaborative modeling are depicted in Section 4 and the same section explains some DL
services. Section 5 explains collaborative modeling applications. Section 6 discusses the
evaluation of the collaborative modeling application in various modeling languages. This
paper ends up in Section 7 by drawing some conclusions.

2 Related Work
The problem of collaborative modeling and its change representation is the actively discussed
and extensively addressed topic among the research community of software engineering.
There is a large number of research papers addressing to collaborative modeling (Section 2.1)
and model difference representation (Section 2.2).

2.1 Collaborative Systems

Collaborative approaches are widely investigated in collaborative document writing and
code-driven software development. Thus, this section also reviews some collaborative
source code development and document editing systems in order to derive some general
concepts and principals.

Sequential collaborative systems such as Git [Sw08], Mercurial [Ma10], Subversion
[CSFP04] are used for sequential revision control in source code-driven software develop-
ment. There are also sequential collaborative modeling systems such as EMF Store [HK13],
SMoVer [Al07], AMOR [Br10] and [Ta12] that are discussed below.

Concurrent collaborative text editing systems record and synchronize change notiĄcations
during concurrent collaborative development. Collaborative documents writing systems
like Google Docs [Go17] and Etherpad [Ap17] are widely used systems in concurrent
document creation and editing. There are also several browser-based web modeling tools
like GenMyModel [DMA13], Creately [Ci15] which exchange changes over WebSockets.
Their core ideas and underlying implementation technologies are not explicitly documented.
Their modeling notations and other services are not accessible making them difficult to
study and extend.

For differentiating revisions and calculating differences, the most collaborative systems
for source code-driven software development use MyerŠs LCS [My86] algorithm which
is based on recursively Ąnding the longest sequence of common lines in the list of lines
of compared revisions. The core idea behind this algorithm is to represent differences
documents by additions, removals, and matches of textual lines. Software models can also
be represented in textual formats using XMI exchange formats, but it is commonly agreed

Collaborative Modeling enabled by Versioning 185

that the collaborative approaches for source code cannot sufficiently Ąt to MDSD because
of the paradigm shift between source code- and model-driven concepts [CRP07], [St08].
Differentiating the textual lines of the XMI-based software models can not provide sufficient
information about the changes in associated and composite data structures of software
models. As there are already outstanding collaborative systems for textual documents
and the source code of software systems, MDSD also requires support for generic, solid,
conĄgurable and extensible collaborative modeling applications for their development,
maintenance, and evolution.

2.2 Modeling Delta Representation Approaches.

The existing collaborative modeling approaches employ various techniques for model
difference representation. Below, the existing approaches are classiĄed and discussed.

Model-based approaches represent modeling deltas by differences models. Cicchetti et
al. [CRP07] introduced a meta-model independent approach. The approach uses software
models for representing model differences conforming to a differences meta-model. Cicchetti
et al. also provides a service to apply differences models to differentiated models in order to
transform them from one revision to another. A fundamental approach to sequential model
version control based on graph modiĄcations introduced by Taentzer et. al. [Ta12] is also
used to represent model differences by differences models. The approach is validated in
Adaptable Model Versioning System (AMOR) [Br10] for EMF models [St08]. The major
focus of the approach is differentiation and merging of software models that serve as the
main foundations for sequential model version control.

Graph-based approaches represent model differences using internal graph-like structures. It
is usually similar to model-based representation, but relying on the low-level graph-like
structures. A generic approach to model difference calculation and representation using
edit scripts is introduced by the SiDiff approach [Ke13]. SiDiff consists of a chain of model
differencing processes which include correspondence matching, difference derivation, and
semantic lifting [Ke12]. SiDiff does not rely on a speciĄc modeling language.

Standard ER Database represents model differences in standard entity-relational (ER)
databases. Likely, SMOVER [Al07] is a sequential revision control system for software
models using ER database.

Text-based approaches represent model differences by a sequence of edit operations in
the textual forms embedding change-related difference information. An early approach is
introduced by Alanen and Porres [AP03] in the text-based difference representation area.
DeltaEcore [SSA14] is a delta language generation framework and addresses the problem
of generating delta modeling languages for software product lines and software ecosystems.
EMF Store [HK13] is a model and data repository for EMF-based software models.
The framework enables collaborative work of several modelers directly via peer-to-peer
connection providing semantic version control of models.

186 Dilshod Kuryazov, Andreas Winter, Ralf Reussner

Operation-based. All of these approaches identify themselves as the operation-based
difference representation. They usually use basic edit operations such as create, delete and
change (or similar and more) which is a general concept being relevant to many difference
representation approaches. Regardless of their difference representation techniques, they
employ these basic operations only for recognizing the type of model changes, but information
about model changes is generally stored in various forms as discussed above.

Lessons Learned.
This section discusses the existing related approaches based on the criteria whether
representation by these approaches can provide small modeling deltas for both sequential
and concurrent collaborative modeling. The most approaches focus on only some aspects of
(or only one of) these collaborative modeling scenarios.

Software models themselves are too complex and structured for modeling tool developers
and users. Modeling deltas represented by models or graphs usually consist of additional
conceptual information for representing its modeling or graph concepts alongside actual
difference/change information. In this case, model- or graph-based modeling deltas might
not be as small as text-based modeling deltas. Moreover, if model differences are again
represented by models or graphs, further extension of this class of approaches might
require more knowledge and effort in developing further services on the top. Model- and

graph-based difference representations are unlikely to show high performance in concurrent
collaborative modeling because of their complex data structures which causes difficulties
in rapid synchronization in real-time. During the evolutionary life-cycle, if all difference
information is stored in a database, the database becomes very complex and huge with an
associated and entity-relational data set. In database-based representation, modeling deltas
may not easily be identiĄed and reused.

Modeling deltas represented in textual forms are the most likely to be small, efficient and
well-suited for collaborative modeling for many reasons: (1) directly executable descriptions
of model differences; (2) easy to implement; (3) fully expressive, yet unambiguous providing
necessary knowledge; (4) easy to synchronize with high performance; (5) minimalistic in
comparison to model-, graph- and database-based representations.

Literature reviews show that research on difference representation for collaborative modeling
is still in its infancy. Considering the aforementioned discussion, collaborative modeling
requests a textual difference language (DL) to represent modeling deltas in sequential and
concurrent collaborative modeling.

3 Requirements

As long as there are several modeling languages and model designing tools, collaborative
modeling approaches should not rely on a speciĄc modeling language or modeling tool.
Collaborative modeling has to support both sequential (macro-versioning) and concurrent
(micro-versioning) collaboration forms. Since difference representation lies at the core of

Collaborative Modeling enabled by Versioning 187

collaborative modeling, this section deĄnes several requirements that a proposed DL-based
difference representation has to fulĄll.

Awareness of Content and Layout. The content of software models is recognized by
looking at the meta-models they conform to. The graphical design of models is
aligned by their layout data in the model editors of model designing tools. There are
several graphical modeling editors which display the modeling content with their
layout representation information. Like models conform to their meta-models, layout
information is represented by and conform to their graphical notation. In order to
provide collaborative modeling on such graphical modeling tools, DL has to be aware
of layout notation together with the meta-models (content) of modeling languages.
For instance, if a designer changes the position and size of a modeling artifact in
a graphical editor, the same changes have to simultaneously occur in the modeling
editors of other tool instances as well.

Genericness. There are several modeling languages and graphical notations following
diverse formal speciĄcations and concepts. DL has to be generic with respect to the
meta-models of modeling languages and their layout without restricting itself to a
particular modeling language or tool. If DL is generic, its collaborative modeling
support can then be tailored to the wide range of modeling languages and tools.

Supportiveness. As deĄned in Section 1, collaborative modeling forms two scenarios such
as concurrent micro-versioning and sequential macro-versioning, whereas difference
representation is a common and fundamental concern for both. The most approaches
investigated in Section 2 focus on only some aspects of these collaborative modeling
scenarios. DL has to support both scenarios of collaborative modeling by being
applicable, persistent, implementable and expressive.

These requirements are also partly addressed to in [CRP07], [HK10], [SBG08]. They are
proper characteristics for emerging an appropriate difference representation approach for
collaborative modeling in MDSD. They are the efficient design of the data structure for
representing model differences in modeling deltas. These signiĄcant principles are also the
design foundations for DL that contribute to empowering the qualiĄcation and solidity of
difference representation. DL aims at fulĄlling these requirements throughout this paper.

4 Modeling Deltas

In collaborative modeling, changed modeling artifacts have to be properly identiĄed and
represented in modeling deltas for further processing of software models. A model change

deĄnes any kind of change made to a modeling artifact during its evolutionary life-cycle.
Modeling deltas including model changes are the core entities in representing model changes
and building collaborative modeling on top. DL focuses on representing model changes in
modeling deltas. Section 4.1 demonstrates the overall conceptual idea of DL. Section 4.2
gives a very simpliĄed example of DL-based change representation. Section 4.3 explains a
subset of supplementary DL services required for collaborative modeling.

188 Dilshod Kuryazov, Andreas Winter, Ralf Reussner

4.1 Conceptual Idea

In order to use the collaborative modeling environment, speciĄc DLs have to be generated
from the meta-models of modeling languages. DL is a generic approach with respect to
the meta-models of modeling languages. It is conceptually a family of domain-speciĄc
languages. As long as the modeling concepts of any modeling language can be recognized
by looking at the meta-model of that language, a speciĄc DL for a particular modeling
language is generated by the DL generator service (explain in Section 4.3) importing its
meta-model. Then, modeling deltas can be represented in terms of DL for instance models
conforming to that modeling language.

C
o

n
te

n
t
P

a
rt

L
a

y
o

u
t
P

a
rt

Fig. 1: UML Class Diagram Meta-model

Figure 1 depicts the meta-model of a subset of UML class diagrams which is used throughout
this paper as an example. The meta-model is separated into two parts by a dashed line.
Below of the line, it depicts the content part which is used to represent the subset of the
modeling concepts of UML class diagram. In graphical modeling, every modeling object
has design information such as color, size, and position, also called layout information.
Above the dashed line, the Ągure consists of the layout part that is used to depict notation
for layout information for the conceptual part. This way of designing meta-models is another
advantage of the DL approach satisfying the Awareness of Content and Layout requirement.
This allows for using the same collaborative modeling environment for different modeling

Collaborative Modeling enabled by Versioning 189

content. The complete meta-model is used for creating overall collaborative modeling
application explained in Section 5.

4.2 Motivating Example

In order to explicitly explain how changes are represented in terms of DL, this section
presents a simpliĄed example of the DL-based change representation in modeling deltas.
A very simple UML class diagram [RJB04, pp. 47ff] is chosen as a running example to
apply the DL approach. Figure 2 depicts two subsequent revisions of the same class diagram
namely Rev_1 and Rev_2, they conform to the meta-model depicted in Figure 1. Figure 2
further portrays two concurrent instances of the latest revision, in this case, Rev_2. Two
designers, namely Designer_1 and Designer_2, are working on these concurrent instances.

Rev_1

g1

+ name : String

+ surname : String

Person

g2
g3

Rev_2

g1

+ firstName : String

+ surname : String

Person

g2
g3

+ title : Title

Teacher

Designer_1

Designer_2

evolves

opens

opens

Delta between Rev_2 & Rev_1

g4

g5

g6

g2.changeName(“name”);

g5.delete();

g4.delete();

g6.delete()

…

g1

+ firstName : String

+ lastName : String

Person

g2
g3

+ title : Title

Teacherg4

g5

g6

g1

+ firstName : String

+ surname : String

+ age : Integer

Person

g2
g3

+ title : Title

Teacherg4

g5

g6
g7

Delta_1

g3.changeName(“last

Name”);
…

Delta_2

g7=createKAttribute(g1,

“age”, PUBLIC, false);

g1.changeHeight(38);

Macro-versioning

M
icro

-v
ersio

n
in

g

Fig. 2: Modeling Deltas in Collaborative Modeling

In the Ąrst revision, the model has only one class named Person. While evolving from the
Ąrst revision to the second, the following changes are made: a class with the name Teacher
is added and it is generalized to the existing class Person, the attribute name of the class
Person is changed to firstName.

According to the ModelElement class of the meta-model in Figure 1, each model element
has an attribute named gDiff_UUID which means all model elements are assigned to
universally unique identifiers (UUID). Therefore, each model element in this example also
has a persistent identiĄer. Assigning UUID to modeling artifacts allows for identifying
and keeping track of modeling artifacts over time. Any particular modeling artifact can
be traced by detecting the predecessor and successor artifact of that modeling artifact
(inter-delta references). The persistent identiĄers are always used in the DL operations in
order to preserve consistency of modeling deltas. They are also used as indicators to refer to
modeling concepts from the DL operations in modeling deltas (delta-model references).

190 Dilshod Kuryazov, Andreas Winter, Ralf Reussner

The DL operations representing modeling deltas in Figure 2 conform to a speciĄc DL
generated from the meta-model depicted in Figure 1. Each delta operation consists of a
Do part (cf. g2.changeName("name");) which describes the kind of change by means of
operations (one of create, change, delete) and an Object part (with attributes if required)
(cf. g2.changeName("name");) which refers to the modeling concept. The modeling deltas
between the subsequent revisions refer to macro-versioning and the modeling deltas between
the two concurrent instances refer to micro-versioning.

Each object of any modeling language can be created, deleted or attributes of each object
can be changed during the evolution process. DL deĄnes model changes by three basic
operations such as creation, deletion of modeling artifacts or change of the attributes of
these artifacts. These basic operations are sufficient set of operations to represent any kind
of model changes by DL.

Macro-versioning. In macro-versioning (cf. Subversion [CSFP04], Git [Sw08], Mercurial
[Ma10]), the differences between subsequent revisions are usually identiĄed and represented
in reverse order i.e. they represent changes in the backward deltas [KW15]. Because these
systems intend to store differences as directly executable forms which are more practical
in retrieving the earlier revisions of software systems. They store the most recent revision
of software systems and several differences deltas for tracing back to the initial revision.
Hence, the latest revision is the most frequently accessed revision. DL-based difference
representation also follows the similar art of delta representation. Thus, the modeling
delta between the Ąrst and second revisions is represented in the backward delta (Delta
between Rev_2 and Rev_1). Modeling deltas are directly executable descriptions of model
differences i.e. application of the modeling delta to the second revision results in the Ąrst
revision. When the delta Delta between Rev_2 and Rev_1 is applied to the revision Rev_2,
the Ąrst operation changes the attribute firstName of the class Person to name, and the
following deletion operations delete the attribute of the class Teacher, the class Teacher
itself and the generalization assigned to g6. For the sack of simplicity, the delta depicts the
conditional full-stops (...) on the last line, meaning the delta consists of other DL operations
for changing layout information.

Micro-versioning. In the second revision, the model is then being further developed by two
designers concurrently. Designer_1 changes the attribute of the class Person from surname
to lastName. This change is then sent to the other instance as a Delta. On the other instance,
Designer_2 creates a new attribute with name age in the class Person. That change is sent
to the instance, Designer_1 is working on, as a Delta. When the new attribute is added,
the height of the class Person is increased and this change of layout information is also
described by DL operation (g1.changeHeight(38);) in the same delta. Both of these deltas
are represented as forward deltas in this case. Because the latest changes have to be reĆected
on the parallel models, thus, changes have to be applied to models in forward order.

Collaborative Modeling enabled by Versioning 191

4.3 DL Services

In collaborative modeling, several services are involved in generating speciĄc DLs, cal-
culating and applying the DL-based modeling deltas. As all DL services are explained
in [KW15], this section brieĆy revisits the services which are involved in collaborative
modeling.

DL Generator. DL generator generates a speciĄc DL for a particular modeling language
by importing its meta-model. While generating the speciĄc DL, it inspects all of the
concrete (i.e., non-abstract) meta-classes of a given meta-model and the attributes of these
meta-classes. For each meta-class, it generates interfaces with implementations for creation
and deletion operations, as well as for change operations for each attribute. ModiĄcation of
the attribute named gDiff_UUID (e.g. the class ModelElement in Figure 1 is not allowed
by default as it tightly deĄnes the identity of a modeling artifact, therefore, should not be
changed as the part of model changes. A speciĄc DL is always generated in the form of a
Java Interface.

After generating a speciĄc DL for the given meta-model, several DL services still have to be
involved in collaborative modeling as depicted in Figure 3. It depicts an abstract architecture
of collaborative modeling including server and client sides.

Applier

Calculator

Model

Editor

Collaborator

Micro-Versioning
(by Synchronizer)

{Models}
Repository

(Backward Deltas)

{Forward

Deltas}

Server

Macro-versioning
(by GMoVerS)

designs

detects changes
from

applies changes to

Client

Fig. 3: Overall Architecture of Collaborative Modeling

The server-side consists of the concurrent synchronization service micro-versioning and
sequential version control service macro-versioning which uses the DL-based modeling
delta repository. On the client side, while collaborators are designing models using a model
editor, their changes are constantly detected by the calculator service and sent to other clients
as modeling deltas. Once these deltas arrive at other clients, they are applied to models
by the applier service. During collaboration, designers may to store a particular state of
their model whenever their model is complete and correct. They are able to manage models
and load any revisions of their model which they have saved earlier. The macro-versioning
feature is provided by the DL application GMoVerS (Generic Model Versioning System)
[KW15].

Calculator. Calculation of modeling deltas depends on the form of collaboration whether it
is sequential (macro-versioning) or concurrent (micro-versioning) collaboration. In micro-
versioning, they are calculated by listening for changes in models by change listeners [HK10].
Because changes have to be synchronized in real-time providing sufficient performance. In

192 Dilshod Kuryazov, Andreas Winter, Ralf Reussner

macro-versioning, modeling deltas between subsequent model revisions are calculated using
state-based comparison of subsequent revisions [Ke13]. The state-based comparison and
change listener are two different features of the DL delta calculator service. For instance,
all modeling deltas in Figure 2 are calculated by this service. The modeling delta Delta
between Rev_2 and Rev_1 is computed by the state-based comparison (implemented using
SiDiff algorithm [Ke13]), whereas the modeling deltas on both instances of Designer_1 and
Designer_2 is computed by the change listener in real-time. The state-based comparison
feature can calculate both, forward and backward deltas, whereas change listener can
calculate only forward deltas.

Applier. In collaborative modeling, modeling deltas are applied to the base model in order
to transform them from one revision to another. Application of modeling deltas to the base
models is provided by the DL delta applier service [KW15]. In case of loss or damage of
information on the initial copy of a model, designers might feel a need to revert their model
for obtaining earlier versions or undoing recent changes they made. For instance, in Figure 2,
the applier applies the Delta between Rev_2 and Rev_1 to Rev_2 to revert it to Rev_1.
The applier is also employed in micro-versioning in order to propagate model changes on
the concurrent instances of a shared model. In Figure 2, the applier is used to apply both
Delta_1 and Delta_2 to the instances of Designer_1 and Designer_2, respectively.

The both, DL calculator and applier, services follow the general principles and do the same
core operating tasks of difference calculator and applier for textual version control systems.
But, their realization follows modeling concepts i.e. the DL calculator and applier operate
on the composite and graph-like software models, whereas the latter operate on the textual
documents.

5 Application: Kotelett

The collaborative modeling applications are established by the speciĄc orchestrations of the
DL services and on the top of the DL-based difference presentation. This section explains
the collaborative modeling application Kotelett and other ongoing work.

The collaborative modeling application entitled Kotelett tool was initially developed by
a students project group in the Software Engineering Group at the Carl von Ossietzky
University of Oldenburg. Kotelett takes advantage of the DL-based modeling deltas for
exchanging changes among various collaborators of the shared model. Figure 4 depicts the
overall user interface of Kotelett. It displays two independent tool instances working on the
same model concurrently. Each Kotelett instance consists of several windows as explained
below. When the tool is launched, it shows the list of models which are currently available
in the repository and asks the user which model to join as a collaborator. But, the users can
open multiple models during collaboration.

In micro-versioning, modeling deltas are not stored for reverting changes. However, reversion
of changes in micro-versioning happens on the client side of the editor and provided by the

Collaborative Modeling enabled by Versioning 193

B

A
C D C D

E F

Fig. 4: Kotelett Screenshot

Redo/Undo features of the editor. Kotelett can save the model at a particular time and by
clicking a save button whenever the model is complete and correct. When the tool is asked to
save the model, it calculates the differences (backward deltas for macro-versioning) between
the last and current revisions. It then stores these differences in the form of the DL-based
modeling delta. On the left instance of the Kotelett screenshot, the pop-up menu model

browser (A) allows for selecting and opening any version of the model which was saved
previously. The menu lists all automatically and manually saved versions of the current
model. Once any previous revision is selected, that revision is reverted by the DL applier

service by applying sequential modeling deltas to the base model.

The model tree (B) shows the list of diagrams the user is currently working on. Each diagram
belongs to a speciĄc model. It also shows the list of model elements that are created in
the current diagram. The model editor (D) area is the main part which allows users for
designing UML class diagrams. The Elements (C) part lists the most important notations
of UML class diagram where the users can select and draw that element in the model
editor. These notations of the UML class diagram are created based on the meta-model
depicted in Figure 1. The correctness of the model on this editor is checked according to
that meta-model, automatically. The user list (E) (left instance) window lists all users that
are currently working on the initial diagram. These users are highlighted with different
colors in order to show the clear distinction between them and to recognize which change is
made by which user in the editor. The log (F) window (right instance) constantly displays
the modeling deltas that are exchanged among collaborators after each user action. Creating
one model element on the graphical modeling editor may result in one or several change

194 Dilshod Kuryazov, Andreas Winter, Ralf Reussner

operations that are contained in one modeling delta and synchronized between collaborators.
Modeling deltas are represented by a speciĄc DL generated from the meta-model in Figure 1.

The JGraLab (Java Graph Laboratory) [DW98] technical space is used for realizing DL in
Kotelett. TGraph [ERW08] is used to represent software models internally, whereas the
TGraph schema used to deĄne meta-models. JGraLab further provides generic features
for deĄning in-place model manipulations to implement the DL-based operations. The
architectural and implementation concepts of Kotelett is explained in [KW15] in detail.

DL in UML Designer.
As ongoing work, the collaborative modeling approach is being applied to UML designer
which is an EMF- and Sirius-based domain-speciĄc modeling tool [Ob17]. DL will be
applied to UML designer using the EMF technical space. To represent model changes in
UML designer, a speciĄc DL will be derived from the EMF-based Ecore meta-model [St08].
The delta calculator and applier services will be extended by EMF transactional editing
domain and command stack extensions. All other underlying technologies remain the same
and unchanged.

6 Evaluation

The collaborative modeling approach in this paper is validated to achieve its intended goals
by fulĄlling the requirements identiĄed in Section 3. More speciĄcally, these requirements
are revisited in this section for presenting their fulĄllment by DL. All DL concepts, services
and applications provide evidence to the fulĄllment of each of these requirements. Finally,
the extend-ability of the approach is shown in this section.

6.1 Validation

Kotelett is used in Software Engineering lectures for teaching purposes by a group of students
including more than ten collaborators in parallel. The tool was also used experimentally
by more than ten users located over long distance (Germany, Canada, Mozambique, and
Uzbekistan), all connecting to the server located in Germany.

During these experiments, the tool has shown sufficiently high performance by synchroniza-
tion of small DL-based modeling deltas. So far Kotelett did not face any change conĆicts in
micro-versioning. This probably is attributed to the rapid synchronization of small modeling
deltas. Exchanging binary formats of deltas can be faster, but so far it was not necessary. It
can be experimented for optimization purposes. But, it probably might not be expressive
enough making it difficult for further extentions. For merging various model revisions in
macro-versioning, Kotelett aims at employing the existing merge feature provided by the
JGraLab technical space [DW98].

In order to accomplish a solid, appropriate, generic and efficient collaborative modeling
approach, this paper has kept the requirements deĄned in Section 3 in its focus and thoroughly

Collaborative Modeling enabled by Versioning 195

attempted to satisfy them. Based on the layout notation part and modeling language notation
part of meta-models (e.g. Figure 1), the collaborative modeling environment is aware
of content and layout of models. The same collaboration environment can be used for
modeling language and layout notations (Awareness of Content and Layout), simultaneously.
The approach is generic with respect to the meta-models of modeling languages. The
collaborative modeling environment can be applied to wide range of modeling languages
and tools by generating speciĄc DLs by the DL generator explained in Section 4.3. It then
can import any meta-model deĄning modeling concepts and layout notation and generates
speciĄc DL for it (Genericness). If meta-models are changed, they can be re-imported and
speciĄc DLs can be regenerated newly for changed meta-models.

The collaborative modeling approach is applied to Kotelett and other applications under
development. These applications support concurrent (by micro-versioning) and sequential
(by macro-versioning) collaborative modeling (Supportiveness). They are developed on top
of DL which provides more efficient ways of representing, exchanging and synchronizing
modeling deltas improving the performance of data processing. DL is utilized as solid and
common syntactic ground for representing modeling deltas in these applications.

6.2 Extendability

In the approach, existing functionality can be extended, new features can be added by
extending underlying technologies and concepts such as the DL services. The collaborative
modeling approach can represent software models under collaboration using internal
graph-like structures [ERW08] and graphical editors can be separated from that graph
representation. This allows for extending graphical editors without changing the underlying
concepts and technologies of collaborative modeling. This enables tool developers to deĄne
further graphical notations, shapes, and views as they want and reuse existing collaborative
modeling environment without any further development effort. As depicted in Figure 1, the
layout notation part (above the dashed line) of the meta-models enables extendability of
the approach for further modeling languages with the same layout notation. The modeling
concept part (below the dashed line) of the meta-model should be replaced by the meta-model
of another modeling language. Eventually, the same layout information can be reused for
further modeling languages.

The catalog of the DL services can also be replaced by other implementations and extended
with further services or features. Any service, component or plug-in required for collaborative
modeling can easily be developed and registered in the service catalog which is practically
useful for further service-oriented modeling tool development. The only prerequisite for
these services is to recognize the syntax of DL. Eventually, these services can again be
involved in service orchestrations for establishing the collaborative modeling applications.

196 Dilshod Kuryazov, Andreas Winter, Ralf Reussner

7 Conclusions

The approach proposed in this paper is meta-model generic, aware of both content and
layout of models and supports sequential and concurrent collaborative modeling. As
modeling deltas are Ąrst-class entities and play an essential role in storing, exchanging
and synchronizing changes between the subsequent and concurrent revisions of evolving
models, representation of modeling deltas is very crucial in both forms of collaboration.
Thus, the collaborative modeling approach is elaborated on top of the efficient difference
language notation which is employed in both micro-versioning and macro-versioning. Both
forms rely on the same base difference representation language for modeling deltas.

A proposed operation-based DL serves as a common change representation and exchange
format for collaborative modeling, making software models commonly available to multiple
users in different locations. Micro-versioning achieves high performance of synchronization
by exchanging small DL-based forward deltas, whereas macro-versioning can effectively
store the change histories of evolving modeling artifacts in model repositories as the DL-
based backward deltas. These and further collaborative modeling scenarios can be developed
by speciĄc orchestrations of the DL services which can produce, store, exchange, synchronize
and apply modeling deltas in collaborative modeling. Kotelett can be downloaded at https:
//pg-kotelett.informatik.uni-oldenburg.de:8443/build/stable/ and presented at
the conference as well.

References

[Al07] Altmanninger, K.; Bergmayr, A.; Schwinger, W.; Kotsis, G.: Semantically enhanced
conĆict detection between model versions in SMoVer by example. In: Procs of the Int.
Workshop on Semantic-Based Software Development at OOPSLA. 2007.

[AP03] Alanen, M.; Porres, I.: Difference and union of models. In P.Stevens, J.Whittle, and G.
Booch, editors, Proc. 6th Int. Conf. on the UML, Springer, LNCS 2863:2Ű17, 2003.

[Ap17] AppJet Inc.: , Etherpad. http://www.etherpad.com, visited on 01.02.2017.

[Br10] Brosch, P.; Kappel, G.; Seidl, M.; Wieland, K.; Wimmer, M.; Kargl, H.; Langer, P.: Adapt-
able Model Versioning in Action. in: Proc. Modellierung 2010, Klagenfurt, Österreich,
LNI 161:221Ű236, March 24-26 2010.

[Ci15] Cinergix Pty.: , CreateLy. http://www.creately.com, visited on 01.06.2015.

[CRP07] Cicchetti, A.; Ruscio, D.; Pierantonio, A.: A Metamodel independent approach to difference
representation. Journal of Object Technology, 6:9:165Ű185, October 2007.

[CSFP04] Collins-Sussman, B.; Fitzpatrick, B.; Pilato, M.: Version Control with Subversion. OŠReilly
Media, June 2004.

[DMA13] Dirix, M.; Muller, A.; Aranega, V.: GenMyModel: UML case tool. In: ECOOP. 2013.

[DW98] Dahm, P.; Widmann, F.: Das Graphenlabor. Technical Report 11/98, Universität Koblenz-
Landau, Koblenz, 1998. Fachberichte Informatik.

Collaborative Modeling enabled by Versioning 197

https://pg-kotelett.informatik.uni-oldenburg.de:8443/build/stable/
https://pg-kotelett.informatik.uni-oldenburg.de:8443/build/stable/

[ERW08] Ebert, J.; Riediger, V.; Winter, A.: Graph technology in reverse engineering. The TGraph
approach. In: 10th Workshop Software Reengineering. GI LNI. pp. 23Ű24, 2008.

[ESG91] Ellis, C.; Simon, G.; Gail, R.: Groupware: Some Issues and Experiences. ACM, 34(1):39Ű
58, 1991.

[Go17] Google Inc.: , Google Docs. http://docs.google.com, February 2017. online.

[HK10] Herrmannsdoerfer, M.; Koegel, M.: Towards a generic operation recorder for model
evolution. In: Proceedings of the 1st International Workshop on Model Comparison in
Practice. ACM, pp. 76Ű81, 2010.

[HK13] Helming, J.; Koegel, M.: , EMFStore., 2013. http://eclipse.org/emfstore.

[Ke12] Kehrer, T.; Kelter, U.; Ohrndorf, M.; Sollbach, T.: Understanding model evolution through
semantically lifting model differences with SiLift. In: Software Maintenance (ICSM),
2012 28th IEEE International Conference on. IEEE, pp. 638Ű641, 2012.

[Ke13] Kehrer, T.; Rindt, M.; Pietsch, P.; Kelter, U.: Generating Edit Operations for ProĄled UML
Models. In: MoDELS. pp. 30Ű39, 2013.

[KW15] Kuryazov, D.; Winter, A.: Collaborative Modeling Empowered by Modeling Deltas. ACM,
Lausanne, Switzerland, 09 2015.

[KWB03] Kleppe, A.; Warmer, J.; Bast, W.: MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston, USA, 2003.

[Ma10] Mackall, M.: The mercurial scm. Internet Website, last accessed 05.07.2017, 2010.

[My86] Myers, E. W.: An O (ND) difference algorithm and its variations. Algorithmica, 1(1):251Ű
266, 1986.

[Ob17] Obeo Network: , UML designer. http://www.umldesigner.org/, visited on 02.10.2017.

[RJB04] Rumbaugh, J.; Jacobson, I.; Booch, G.: UniĄed modeling language reference manual.
Pearson Higher Education, 2004.

[SBG08] Sriplakich, P.; Blanc, X.; Gervals, M.: Collaborative software engineering on large-scale
models: requirements and experience in modelbus. In: Proceedings of the 2008 ACM
symposium on Applied computing. ACM, pp. 674Ű681, 2008.

[SSA14] Seidl, C.; Schaefer, I.; Aßmann, U.: DeltaEcore-A Model-Based Delta Language Generation
Framework. In: Modellierung. pp. 81Ű96, 2014.

[St08] Steinberg, D.; Budinsky, F.; Merks, E.; Paternostro, M.: EMF: Eclipse Modeling Framework.
Addison-Wesley Longman Publishing Co., Inc., 2008.

[Sw08] Swicegood, T.: Pragmatic version control using Git. Pragmatic Bookshelf, 2008.

[Ta12] Taentzer, G.; Ermel, C.; Langer, P.; Wimmer, M.: A fundamental approach to model
versioning based on graph modiĄcations: from theory to implementation. journal: Software
and Systems Modeling, April 25 2012.

198 Dilshod Kuryazov, Andreas Winter, Ralf Reussner

Enhancing MDWE with Collaborative Live Coding

Peter de Lange, Petru Nicolaescu, Thomas Winkler, Ralf Klamma1

Abstract: Model-Driven Web Engineering (MDWE) methodologies enhance productivity and offer a
high level view on software artifacts. Coming from classical software development processes, many
existing approaches rather enforce a top-down structure instead of supporting a cyclic approach
that integrates smoother with modern agile development. State-of-the-art MDWE should integrate
established and emerging Web development features, such as (near real-time) collaborative modeling
and shared editing on the generated code. The challenge when covering these requirements lies
with synchronizing source code and models, an essential need to cope with regular changes in the
software architecture and provide the Ćexibility needed for agile MDWE. In this paper, we present an
approach that enables cyclic, collaborative development of Web applications by using traceability
in model-to-text transformations to deal with the synchronization. We adopt a trace-based solution
for collaborative live coding in order to merge manual code changes into Web application models
and ensure that the open-source code repositories reĆect both model and manual code reĄnements.
Our evaluation shows a reliable code to model synchronization and investigates the usability in
collaborative software development settings. With our approach we contribute to integrating agile
development practices into MDWE.

Keywords: Model-Driven Web Engineering; Traceability; Model to Text Transformations; Collabo-
rative Live Coding

1 Introduction

Mostly adopted in classical software development models, past MDWE research does not
cope with the paradigm shift towards agile development [MR03], inclusion of end-users
and various stakeholders into the development process and the increased communication
and collaboration in (remote) teams on the Web. To adapt to this new intensive information
exchange setting, a MDWE approach has to support development cycles with rapid changes
in the architecture and code being simultaneously edited, all in a multi-user collaborative and
Near Real-Time (NRT) scenario. Hence, traditional methods that enable the synchronization
between model and code need to be adapted to the collaborative setting. Furthermore, they
need to cope with powerful, collaborative frontend technologies and paradigms beyond
simple website and client-server models.

In this paper, we present a cyclic MDWE development process in which model updates
are synchronized with source code reĄnements. The authoring of models and code is

1 RWTH Aachen University, Lehrstuhl Informatik 5, Advanced Information Systems Group (ACIS), Ahornstrasse
55, 52074 Aachen, Germany {lastname}@dbis.rwth-aachen.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 199

https://creativecommons.org/licenses/by-nc/3.0/
{lastname}@dbis.rwth-aachen.de
https://creativecommons.org/licenses/by-sa/4.0/

performed collaboratively in NRT on the Web, bringing together teams composed of various
stakeholders. We apply related work on traceability [OO07] and synchronization [HLR08]
from the model-driven engineering domain to formalize an agile collaborative MDWE
method for the Web. In order to adapt the synchronization techniques to the NRT collaboration
setting, we developed a trace model that provides linking information between model
elements and source code artifacts. We apply this concept using a prototype that integrates
a live collaborative code editor into an existing MDWE framework. All source code and
traces are stored in a source code repository using the Git protocol.

In the following, we start with introducing the background and related work our paper is
based on in Section 2, before Section 3 introduces our MDWE process. Section 4 presents
the formalization of our traceability-based synchronization approach. Section 5 describes
the integration of our proof-of-concept prototype into the CAE [La17], a Web-based MDWE
framework. In Section 6, we describe and interpret the results of our user evaluation. Finally,
Section 7 concludes this paper and provides an outlook on future work.

2 Background and Related Work

In the scope of MDWE, Model to Text (M2T) transformations are a special form of Model

to Model (M2M) approaches, in which the target model consists of textual artifacts [Mv06],
in this case the source code of the generated Web application. The target model is generated
based on transformation rules, deĄned with respect to a modelsŠ metamodel [Me02].
Template-based approaches are (together with visitor-based approaches) the most prominent
solution for M2T transformations [CH06]. Here, text fragments consisting of static and
dynamic sections are used for code generation. While dynamic sections are replaced
by code depending on the parsed model, static sections represent code fragments not
being altered by the content of the parsed model [ORK14]. An important aspect of M2T
transformations is Model Synchronization. It deals with the problem that upon regeneration,
changes to the source model have to be integrated into the already generated (and possibly
manually modiĄed) source code. To achieve this, traces are used to identify manual source
code changes during a M2T (re)transformation. In MDWE, managing traceability has
evolved to one of the key challenges [ALC08]. Another challenge is the decision on the
appropriate granularity of traces, as the more detailed the links are, the more error-prone they
become [Go12, Va14]. In addition to model synchronization, Round-Trip Engineering (RTE)
also considers changes in the source code which are propagated back into the model. Among
others, formal deĄnitions of model synchronization and RTE for M2M transformations have
been proposed in [GW06] and [HLR08].

OOHDM was one of the Ąrst approaches towards the changing requirements in the
development of Web applications in comparison to traditional applications [SR98]. It
focuses on the hypertext structure of Web applications, as traditional software engineering
concepts do not offer appropriate abstractions for those structures. Following the separation

of concerns approach, OOHDM divides the development process into four tasks, i.e. the

200 Peter de Lange, Petru Nicolaescu, Thomas Winkler, Ralf Klamma

conceptual design, the navigation design, the abstract interface design and the implementation.
In UML-based Web Engineering (UWE), the modeling of Web applications integrates the
separation of concerns by separately modeling content, navigation, business processes and
presentation [KKK07]. While stereotypes are used to deĄne speciĄc semantics of model
elements, e.g. ŞnavigationLinkŤ for direct links, the Object Constraint Language (OCL) is
used to deĄne additional static semantics and constraints for a model element such as class
invariants. MagicUWE is a plugin for the commercial CASE tool MagicDraw that supports
the UWE notation [BK09]. Another prominent modeling language is WebML, in which Web
applications are deĄned by high-level and platform-independent speciĄcations [CFB00].
While a structural model describes the site content, a hypertext model is responsible for the
composition of contents and the navigation between pages. In a presentation model, the
layout and graphical representation of a page is deĄned independently of the displaying
device and the language used for the visual representation. In addition, a personalization
model is used to store user speciĄc content [CFB00]. In 2013, an extension of WebML
lead to the speciĄcation of the Interaction Flow Modeling Language (IFML), a language
that was adopted as a standard by the Object Management Group (OMG). While especially
UWE and WebML are the most prominent examples of recent developments in the domain
of MDWE research, none of them are based on a (formalized) RTE approach that allows for
an agile use of these approaches.

Medini QVT, developed by IKV++, is a commercial tool that implements the declarative part
of the QVT speciĄcation, i.e. the QVT Relations. Thus, it supports incremental bidirectional
M2M transformations and the generation of trace models during the transformation process.
UML Lab, developed by Yatta, is a commercial modeling suite which is integrated into the
Eclipse platform. It provides a graphical UML modeling editor and template-based M2T
transformations, supporting reverse engineering and RTE. However, NRT collaboration
facilities are not provided. Finally, MOFScript is a M2T transformation tool developed as
an Eclipse plugin. As the MOFScript language does not depend on any actual metamodel, it
can be used for code generation of arbitrary metamodels and their instances. In addition, it
supports the generation of traces as well as the synchronization between models and source
code. However, it does not provide any RTE facilities. Besides, the tool does neither offer
NRT collaborative modeling nor coding functionalities. To our knowledge, there currently
exists no agile NRT MDWE framework, that allows for a cyclic, collaborative development
process with modeling phases followed by (live) coding phases and vice-versa.

3 Agile Collaborative MDWE

Our approach introduces an agile life-cycle for MDWE. From a general perspective on
the modeling-coding cycle, changes in the architecture (i.e. changes happening in NRT
as a team work result of multiple stakeholders with and without technical knowledge)
are performed in the collaborative modeling phase. Detailed behavior is reĄned in the
collaborative coding phase, using the automatically generated code from the model artifacts.

Enhancing MDWE with Collaborative Live Coding 201

The cycle is achieved by synchronizing collaborative modeling phases and live source code
editing. At any point in time, stakeholders can switch between one of the two phases. All
changes of the model are immediately reĆected in the generated source code. Changes to
the source code are taken into account upon model-to-code regeneration, integrating them
accordingly into the regenerated source code. Both modeling and coding is done on the
Web in a NRT collaborative manner, meaning that changes in model and source code are
directly visible to all stakeholders at all time.

Although our approach can be used for arbitrary MDWE frameworks and Web applications,
in the scope of this work we consider Web applications composed of HTML5 and JavaScript
frontends and RESTful microservice backends. Since especially frontend architectures can
be highly unstructured, we propose to unify the architecture of applications developed
with our approach through the usage of protected segments, that enforce a certain base
architecture, facilitating both future service and frontend orchestration, maintenance and
training efforts for new developers. Protected segments in the source code describe a
functionality that is reĆected by a modeling element. In order to encourage the reuse of
software components, we allow changes which modify the architecture only in modeling
phases. Since our approach offers a cyclic development process, this can be done instantly by
switching to modeling, changing the corresponding element and returning to a new coding
phase. To further enforce this methodology, before source code changes are persisted, a
model violation detection is performed. This informs the user about source code violating
its corresponding model, e.g. architecture elements manually added to the source code
instead of being modeled. Concerning the synchronization between the code and the model,
our collaborative MDWE process uses a trace-based approach. Changes in the code produce
traces, which are used in the model-to-code (re)generation in order to keep the corresponding
code synchronized to the model elements. This way, the process can be reĆected without
the need to implement a full RTE approach.

4 Model Synchronization Strategy

Although the conceptual idea of our model synchronization strategy can be applied to
arbitrary Web application metamodels, for a better understanding we give simple examples of
the appliance of our concept to the metamodel we use in our implementation at certain points
in this section. Therefore, in Fig. 1 we illustrate an excerpt of our Frontend Component

metamodel. It contains the three elements HTML Element, Event and Function, their
attributes and their connections between each other.

Our general concept of model synchronization is depicted in Fig. 2. It is divided into
two separate synchronizations: a synchronization between the source code and its trace
model and a second synchronization between the source model and the source code. In the
following, we explain our synchronization concept by using a simple formalization. We
denote the source models by Si , source code models by Ti and trace models by tri . The
source- and source code-metamodels are denoted by MS and MT . We use the deĄnition of

202 Peter de Lange, Petru Nicolaescu, Thomas Winkler, Ralf Klamma

Fig. 1: Example model

synchronization expressed in [HLR08] as follows: two models A and B with corresponding
metamodels MA and MB are synchronized, if

trans(A) = strip(B, trans) (1)

holds for the transformation trans : MA → MB and a function strip : M × (MA → MB) →

M that reduces a model of M with either M = MA or M = MB to only its elements relevant
for the transformation. This deĄnition uses the trans and strip functions [HLR08]. Intuitively,
the trans function expresses that applying a transformation to the source model yields the
target model. The function strip is used to remove any additional elements and map models
to only the relevant source/target model. As an example, consider the height attribute of an
HTML img tag. As it can be seen in Fig. 1, the HTML Element of our metamodel does not
contain a height attribute, so this manually added attribute would not be part of the stripped
model according to our transformation.

4.1 Synchronization of Source Code and Trace Model

Based on a Ąrst model S1, an initial generation of the source code T1 and its trace model
tr1 is performed. As depicted in Fig. 2, the trace model tri is updated, once the source
code changes. ∆T2i−1 are applied to the source code T2i−1 in the i-th code reĄnement
phase. Formally, a single source code change can be denoted by one of the two functions
δ+
MT

: MT × C × N → MT and δ−
MT

: MT × C × N → MT . While the former inserts a
character c ∈ C at position n ∈ N, the latter deletes a character c from position n in the
source code. Then, the result of applying the source code changes ∆T2i−1 on T2i−1 is deĄned
by:

T2i−1∆T2i−1 := δ±MT
(δ±MT

(· · · δ±MT
(T2i−1, c1, n1) · · · , ck−1, nk−1), ck, nk) =: T2i (2)

for nk, ∈ N, ck ∈ C and k ∈ N.

Enhancing MDWE with Collaborative Live Coding 203

Model S1

Model S2

Model Si

∆Si−1

∆S1

Code T1

Code T2

Code T3

∆T1

Merge

results

Merge

resultsModel Si+1

∆Si

∆S2

Merge

∆T3

Code T4

Code T5

∆T2i−1

Code T2i

Code T2i+1

results

∆T5

1st Code Generation

updates

updates

updates

generates

∆T2

updates

∆T4

∆T2i

Traces
tr1

Traces
tr2

Traces
tr3

Traces
tri

Traces tri+1

Fig. 2: Model synchronization

Considering Eq. 1, the condition trans(T2i) = strip(tri, trans) must hold for the synchroni-
zation between the updated source code T2i and trace model tri:

trans(T2i) = strip(tri, trans) (3)

⇐⇒ trans(T2i−1∆T2i−1) = strip(tri, trans) (4)

⇐⇒ trans(δ±MT
(δ±MT

(· · · δ±MT
(T2i−1, c1, n1) · · · , ck−1, nk−1), ck, nk))

= strip(tri, trans)
(5)

For the synchronization between source code and trace model, we only need to update the
lengths of the segments of the trace model. Therefore, we assume strip(tri, trans) = len(tri),

204 Peter de Lange, Petru Nicolaescu, Thomas Winkler, Ralf Klamma

where len(tri) is a tuple containing the segmentsŠ lengths. This leads to the following
equation that must hold after the source code was updated:

trans(δ±MT
(δ±MT

(· · · δ±MT
(T2i−1, c1, n1) · · · , ck−1, nk−1), ck, nk)) = len(tri) (6)

To satisfy this condition, each source code change needs to update the length of the segment
that is affected by the deletion or insertion. Therefore, each δ±

MT
is transformed to an update

of the trace model tri:

δ±MT
(δ±MT

(· · · δ±MT
(T2i−1, c1, n1) · · · , ck−1, nk−1), ck, nk) →

δ±len(δ
±
len(· · · δ

±
len(len(tri), n1) · · · , nk−1), nk)

(7)

with δ+len((l1, · · · , lm), n) := (l1, · · · , lj + 1, · · · , lenm) (8)

δ−len((l1, · · · , lm), n) := (l1, · · · , lj − 1, · · · , lenm) (9)

where li ∈ N for i,m ∈ N, 1 ≤ i ≤ m is the length of the i-th segment and lj, j ∈ N for
1 ≤ j ≤ m is the length of the segment that is affected by an insertion or deletion in the
source code at position n.

4.2 Synchronization of Model and Source Code

In the model synchronization process, the last synchronized model Si , the updated model
Si+1, the current trace model and the last synchronized source code T2i are involved. By
using the trace model of Si , the applied model changes ∆Si can be merged into the last
synchronized source code T2i without overwriting already implemented code reĄnements.
As a result of the model synchronization, the updated source code T2i+1 and its trace model
are obtained.

In general, model changes can be deĄned as functions of the form δ : MS → MS . More
speciĄcally, the model changes can be denoted by the following Ąve functions, adapted
from [HLR08]: δ+t , δ−t : creating/deleting element of type t; δ+

e,s1,s2, δ−
e,s1,s2: adding/deleting

edge from element s1 to s2; and δattr
a,s1,v: setting attribute a of element s1 to value v. As such,

applying ∆Si to Si can be deĄned as a sequence of these changes:

Si∆Si := δ1 ◦ · · · ◦ δn(Si) =: Si+1 (10)

According to Eq. 1, the following equation must hold for the synchronization between model
and source code:

trans(Si+1) = strip(T2i+1, trans) (11)

⇐⇒ trans(Si∆Si) = strip(T2i+1, trans) (12)

⇐⇒ trans(δ1 ◦ · · · ◦ δn(Si)) = strip(T2i+1, trans) (13)

Enhancing MDWE with Collaborative Live Coding 205

Furthermore, as all parts of the source code that directly correspond to model elements
are contained in protected segments, we assume strip(T2i+1, trans) = prot(T2i+1), where
prot(T2i+1) represents the source code that is reduced to the content of its protected segments.
Finally, this leads to the following equation that must hold after the synchronization process:

trans(δ1 ◦ · · · ◦ δn(Si)) = prot(T2i+1) (14)

To satisfy this equation, each individual model change δi, i ∈ N, 1 ≤ i ≤ n is transformed to
its corresponding source code changes. Next, we Ąrst introduce formulas that are needed for
the later transformations.
Attribute value: the value of the attribute labeled name of a model element elm is denoted
by attrname(elm) := (c1, · · · , ck) with ci ∈ C for i, k ∈ N, 1 ≤ i ≤ k.
Position and length of an element: the position of the Ąrst character of a model element
elm within a Ąle is deĄned by posseg(elm). The length of elm is deĄned by lenseg(elm).
Position and length of an attribute: the position of the Ąrst character of an attribute
a of a model element elm is deĄned by posattr (a, elm). The length of a is deĄned by
lenattr (a, elm).
Template: a template for an element elm of type t is denoted by

tempt (attrname1 (elm), · · · , attrnamen (elm)) := (c1, · · · , ck)

with ci ∈ C for k, i ∈ N, 1 ≤ i ≤ k. The attributes are used for the instantiation of the
variables occurring in the template. We further deĄne two functions that ease the formulas
for deleting and inserting multiple characters:

δ∗+(T, (c1, · · · , ck), n) := δ+MT
(· · · δ+MT (T, ck, n + k) · · · , c1, n) (15)

δ∗−(T, n, k) := δ−MT
(· · · δ−MT

(T, cn+k, n + k) · · · , cn, n) (16)

While the former inserts a tuple of characters starting from position n into a Ąle, the later
deletes the characters cn, ..., cn+k at the positions n, ..., n + k from a Ąle.

As the transformation of model to source code changes is highly dependent on the type of
the updated model elements, the concept for synchronization is shown exemplary for Events

of the example model described in Fig 1. A valid Event element has two edges e and e′

that connect it to an HTML Element h and to a Function element f , respectively. Then, a
newly created Event element is transformed to source code changes by

δ+t (Si) → δ
∗+(T2i, tevent, posevents) (17)

where posevents references the position in the source code that contains all events and tevent
is the following template:

tevent := tempt (attrŚnameŚ(event), attrŚcauseŚ(event), attrŚnameŚ(f), attrŚidŚ(h)) (18)

Thereby, a new source code artifact representing the Event element is inserted into the
source code. The deletion of an Event element is transformed as follows:

δ−t (Si) → δ
∗−(T2i, posseg(event), lenseg(event)) (19)

206 Peter de Lange, Petru Nicolaescu, Thomas Winkler, Ralf Klamma

The code artifact of the deleted Event element is removed from the source code. Finally a
value of an attribute a is transformed to source code changes:

δattra,event,v(Si) → δ
∗+(δ∗−(T2i, posattr (a, event), lenattr (a, event)), v, posattr (a, event))

(20)

Thus, the old value of the attribute is Ąrst deleted from the source code and its new value is
inserted at the same position. As we are only considering valid models and according to our
model, an Event element needs two edges, we can assume that for each deletion of an edge
there is also an insertion of a new edge. Therefore, we only transform edge updates. Since
an Event element has two edges, we need to differentiate:

1. If the current HTML Element h connected to an Event is changed to another HTML
Element h′, the transformation from model to source code is:

δ+
e,event,h′

(δ−
e,event,h

(Si)) → δ
∗+(δ∗−(T2i, posattr (ŚidŚ, h), lenattr (ŚidŚ, h)),

attrŚidŚ(h
′), posattr (ŚidŚ, h))

2. If the current Function element f of an Event is changed to another Function element
f ′, the source code is modiĄed according to:

δ+
e,event, f ′

(δ−
e,event, f

(Si)) → δ
∗+(δ∗−(T2i, posattr (ŚnameŚ, f), lenattr (ŚnameŚ, f)),

attrŚnameŚ(f ′), posattr (ŚnameŚ, f))

5 Realization

We integrated our model synchronization strategy into a Web-based collaborative modeling
environment called Community Application Editor (CAE) [La16]. CAE uses a template-
based MDWE approach to support NRT collaboration between developers and other
involved stakeholders. In the scope of this paperŠs contribution, we extended the frontend
with a Live Code Editor widget based on the ACE editor2, which realizes the collaborative
NRT editing of (generated) source code directly in the browser. The NRT collaboration and
shared editing features are realized using the Yjs [Ni16] framework. Available as an open
source Javascript library, Yjs enables shared editing for arbitrary data types and formats
(e.g. lists, maps, objects, text, JSON) on the Web. It uses protocols such as WebRTC and
WebSockets for message propagation in NRT. Integrated with the live code editor widget,
our framework only needs to manage the Yjs Collaboration Spaces (similar to a chat room,
with all involved users being able to collaborate on one application model and code). We
integrated the model synchronization and trace generation functionality into the Java-based
backend of the CAE and extended it with means to manage local Git repositories used by
the live code editor widget to update the source code.

2 https://ace.c9.io

Enhancing MDWE with Collaborative Live Coding 207

https://ace.c9.io

Trace Generation and Model Synchronization The template engine, implemen-
ted in the backend of the CAE, forms the main component for trace generation and model
synchronization. It is used for both the initial code generation, as well as for further model
synchronization processes. Except for some special cases, like renaming or deleting Ąles,
applying the strategy design pattern allows us to use the same methods for both the initial
code generation and model synchronization.

Fig. 3: Trace model

Fig. 3 depicts our trace model, adapted from the metamodel of traces presented in [OO07].
For each FileTraceModel, and thus for each Ąle, we instantiate a template engine class,
which can hold several template objects. A template object is a composition of Segments,
generated by parsing a template Ąle. A template Ąle contains the basic structure of an
element of the Web applicationŠs metamodel. In such a Ąle, variables are deĄned to be used
as placeholders, which are later replaced with their Ąnal values from the model. Additionally,
the template Ąle contains information about which part of the generated source code is
protected or unprotected. Based on the template syntax for variables and unprotected parts,
a template Ąle is parsed and transformed into a composition of segments of the trace
model. For each variable a protected segment is added, and for each unprotected part, an
unprotected segment is added to the composition. The parts of a template Ąle that are neither
variables nor unprotected parts are also added to the composition as protected segments.
According to the deĄnition of model synchronization for M2T transformations, Eq. 1 must
hold for the model synchronization. Thus, we need to update the content of each variable
for all templates of all model elements. However, maintaining a trace and a model element

208 Peter de Lange, Petru Nicolaescu, Thomas Winkler, Ralf Klamma

reference for all of these variables is not feasible due to the large size of such a Ąle trace
model. Instead, traces are only explicitly maintained for the composition of segments of a
template. Linking a segment of a variable to its model element is done implicitly by using
the elementŠs id as a preĄx for its segment id. When templates are appended to a variable,
the type of its linked segment is changed to a composition.

Following the strategy design pattern, we implemented an Initial Generation Strategy and a
Synchronization Strategy, which are used by our template engine. Each synchronization
strategy instance holds a reference to the Ąle trace model of the last synchronized source
code to detect new model elements as well as to Ąnd source code artifacts of updated model
elements. As in some cases source code artifacts of model elements can be located in
different Ąles, a synchronization strategy can also hold multiple Ąle trace models in order
to Ąnd code artifacts across Ąles. After a template engine and its template strategy were
properly initiated, the template engine is passed as an argument to the code generators.
These create template instances for the model elements based on the template engine. The
engine checks if a segment of the model element is contained in the trace models Ąle
by recursively traversing its segments. If a corresponding segment for the model element
was found, a template reusing this segment is returned. Otherwise, a new composition
of segments, obtained by parsing the template Ąle of the model element, is used for the
returned template. For new model elements, new source code artifacts are generated. For
updated elements, their corresponding artifacts are reused and updated. As templates can
contain other templates in their variables, these nested templates need to be synchronized as
well. In the generated Ąnal Ąles, source code artifacts of model elements that were deleted in
the updated model must be removed from the source code. Therefore, the nested templates,
more speciĄcally their segment compositions, are replaced with special segments by the
synchronization strategy. By following the proxy design pattern, these special segments are
used as proxies for the original compositions and ensure that templates of deleted model
elements are removed from the Ąnal source code.

To ensure that source code artifacts that directly correspond to a model element are not
manually added by users (and thus hold no corresponding modeling element, making the
model an inaccurate representation of the source code), we implemented a model violation
detection. For each detected violation a feedback note containing the position of the violation,
as well as a message describing it, is provided to the user. Model violations are deĄned
in terms of violation rules. A violation rule consists of a model element type, a regular
expression that is used to Ąnd the violation, a group number that can be used to reference a
speciĄc group of the regular expression and a message that describes the violation.

Live Code Editor The live code editor allows multiple users to collaboratively work on
the same Ąle at the same time. As it can be seen in Fig. 4, the live code editor widget is
divided into three parts. On the left side of the widget, a list of currently active users as
well as a Ąle list is displayed. The actual editor is located in the center of the code editor
widget. The cursors of remote users are displayed in different colors to all users participating
in this live coding phase. For highlighting protected segments in the viewport of the Ace

Enhancing MDWE with Collaborative Live Coding 209

Fig. 4: Screenshot of the live code editor widget

editor, we use a gray background color. The depicted screenshot shows the development
of a frontend component. Here, a tree containing the widgetŠs HTML elements is shown
on the right side of the editor. The synchronization of the Ąle content among all users, the
synchronization between the source code and its traces and the concept of (un)protected
segments are integrated into the code editor. While the content of an unprotected segment
can be edited, a protected segment is immutable. In order to synchronize the Ąle content
among all users, each unprotected segment is individually synchronized on the frontend,
using the previously mentioned Yjs library. As protected segments are not editable, they
are not synchronized. Because every unprotected segment is synchronized individually, the
length of each segment is also synchronized. Thereby, the transformation of source code
changes to updates of the trace model deĄned in Eq. 7 is implicitly performed for all users.
Thus, the trace model and source code are implicitly synchronized for all users. The concept
of (un)protected segments is implemented by replacing the default command handler of the
Ace editor with a CommandDecorator component. This decorator handles code changes
of the local user and is called before the command is actually executed by the Ace editor
and the corresponding Yjs instance of the edited segment is updated. Based on the type of
command, it is decided which actual decorator will be executed. We distinguish between
navigation, deletion, insertion and other allowed operations. In order to decide to which
segment a source code change belongs, a reference to the current active segment is updated
in a navigation decorator, every time the local userŠs text cursor changes. Based on the active
segment, it is decided if a source code change is allowed or forbidden, i.e. the operation is
performed in an unprotected or protected segment. A deletion operation is performed if the
current active segment is not protected and the dimension of the selected text that should be
deleted is not out of the bounds of the active segment. Similar checks are performed for
insertion operations. The last group of operations consists of commands that do not change
the source code and that can be executed without side effects towards the trace model.

On the backend, we extended the CAEŠs REST API with means for maintaining local Git
repositories. When a request for storing a Ąle is received, its content and its Ąle traces are
stored and committed to a local repository. Before that, a check is performed to determine

210 Peter de Lange, Petru Nicolaescu, Thomas Winkler, Ralf Klamma

if storing the Ąle is allowed. To prevent conĆicts with Ąles that are artifacts of an earlier
model synchronization process, the id of the trace model that is updated in each model
synchronization process is also included in each Ąle trace model. Thus, each Ąle is assigned
to the id of the model synchronization process in which it was created. Even if our frontend
is designed to reload Ąles after a model synchronization process, this protection mechanism
additionally ensures that the synchronization between Ąles and their models does not
accidentally break. As the content and traces of updated Ąles are (Ąrst) only stored in local
repositories, the GitHub proxy service provides means to push locally committed changes to
a remote repository. Possible conĆicts with the remote repository are automatically resolved
by using the Git Theirs merging strategy. This strategy ensures that in case of merging
conĆicts, changes of the branch that is merged are used for resolving the conĆicts.

6 Evaluation

We performed a usability study with student developers to assess how our collaborative
MDWE method is received in practice. We carried out eight user evaluation sessions, each
consisting of two participants. After receiving a short introduction into the CAE and Ąlling
out a pre-survey to asses their experiences in Web development, the participants were
seated in the same room and asked to extend an existing application, which consisted of two
frontend components and two corresponding microservices. Each evaluation session took
about half an hour of development time. At the end of each session, we let the participants
Ąll out a Ąve Likert scale questionnaire containing questions about their Web development
experience and gathered their feedback regarding the cyclic development process and the
live code editor.

Results and Observations. As expected, the (pre-survey) rating of the familiarity with Web
technologies (4.00) and RESTful Web services (4.07) was rather high. However, only a
minority of our participants were familiar with MDWE (2.67) or had used collaborative
coding for creating Web applications before (2.40). Fig. 5 shows the main results regarding
our development paradigm. As it can be observed, the participants rated connections between
our two collaborative phases, namely the access to the code editor from the model (4.67)
and the reverse process with the synchronization enabled (4.40) very high. The same also
holds for the awareness introduced into the live code editor, as the participants could easily
see where other developers were working (4.33). They were able to successfully collaborate
on a shared part of the application by using the live code editor (4.47). These two rather high
ratings show that the developed live code editor fulĄlls the requirements for live collaborative
code editing of model-based applications. Compared to the other ratings, the general idea of
a collaborative code editor for development and the need for collaboration during the code
reĄnements phase were rated lower (both 3.47). One explanation for this is that developers
are familiar with using version control systems and therefore do not see a high demand for a
live collaborative code editor when working together with other developers. Even though
the chosen application was, due to the time constraints of a live evaluation setting, quite

Enhancing MDWE with Collaborative Live Coding 211

Advantages of keeping models

and source code synchronized

A cyclic model−driven development process

eases the development of a Web application

The concept of a cyclic development

process is relevant

Collaborative code editing is necessary

for applying code refinements

Using a collaborative live code

editor in the future

Ability to collaboratively work on a shared

part of the model using the live code editor

Ability to see on what part of

the model my collaborator was working

Connection between

the live code editor and the model

Ability to access the

code editor from the model

Average User Rating (N = 15)

4.33

4

4.13

3.47

3.47

4.47

4.33

4.4

4.67

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Fig. 5: Results of the user evaluation

simple, the evaluation participants mostly saw cyclic development in general as relevant
(4.13) and also rated the beneĄts of a cyclic MDWE process high (4.00). Moreover, all
participants could identify the advantages of code and model synchronization (4.33). All in
all, the perception of participants towards our approach was very positive and we consider it
as a successful step towards evaluating our prototype using a more complex application in a
real-world development scenario.

In order to evaluate the inĆuence of trace generation on performance and space requirements
over time, we measured the code generation time during the complete evaluation and
analyzed one frontend component Git repository of the Ąnal resulting application. Here, we
consider that even though it is isolated, due to our template-based approach, this case gives a
good approximation about the behavior of our prototype in various scenarios. Since we used
one repository for performing all sessions, we were able to consider data from 490 commits.
The exemplary frontend component had a Ąnal total size of 634 KB, which contained 9
KB of generated and reĄned code. The static JavaScript libraries, images and other Ąles
added up to 173 KB. The Ąnal trace information occupied 42 KB. This leaves 410 KB of
Git history, of which the trace history occupied 338 KB. All in all, the trace information,
even though it occupies considerably more space than the code output, does not negatively
impact the space requirements in a usual Web development setting. Especially, since it only
scales with source code changes, which usually donŠt make up the larger part of an Web

212 Peter de Lange, Petru Nicolaescu, Thomas Winkler, Ralf Klamma

application in comparison to media assets and data. Moreover, the time to store, commit,
push and retrieve code with trace information Ű considering our evaluation scenario data and
participantŠs subjective opinion Ű does not introduce observable delays in the development
process.

7 Conclusions and Future Work

This paper presents a concept for synchronizing models and source code, in the context of
an agile MDWE scenario on the Web. A trace model providing linking information between
model elements and source code artifacts, as well as a prototype of a live collaborative
code editor that supports our concept of traceability and model synchronization have been
developed and integrated into an existing MDWE approach. The evaluation of our prototype
showed that our method is relevant and a valuable enhancement for introducing agile
development practices into MDWE.

As future work, we plan to extend our evaluation on larger scale projects, to gain deeper
insights on the effects of using our agile MDWE method. Since the developed prototype is
integrated into a larger framework with which we want to integrate complete professional
communities into the development process, we want to further investigate the impact which
the interplay between live coding, live preview of Web application changes and collaborative
modeling has on the communication between end-users and developers.

References

[ALC08] Angyal, László; Lengyel, László; Charaf, Hassan: A Synchronizing Technique for Syntactic
Model-Code Round-Trip Engineering. In: Proceedings of the 15th International Conference
and Workshop on the Engineering of Computer-Based Systems. IEEE Computer Society,
pp. 463Ű472, 2008.

[BK09] Busch, Marianne; Koch, Nora: MagicUWE Ű A CASE Tool Plugin for Modeling Web
Applications. In: Proceedings of the 9th International Conference on Web Engineering.
Springer, pp. 505Ű508, 2009.

[CFB00] Ceri, Stefano; Fraternali, Piero; Bongio, Aldo: Web Modeling Language (WebML): A
Modeling Language for Designing Web sites. Computer Networks, 33(1):137Ű157, 2000.

[CH06] Czarnecki, Krzysztof; Helsen, Simon: Feature-Based Survey of Model Transformation
Approaches. IBM Systems Journal, 45(3):621Ű645, 2006.

[Go12] Gotel, Orlena; Cleland-Huang, Jane; Hayes, Jane Huffman; Zisman, Andrea; Egyed,
Alexander; Grünbacher, Paul; Dekhtyar, Alex; Antoniol, Giuliano; Maletic, Jonathan:
The Grand Challenge of Traceability (v1.0). In: Software and Systems Traceability, pp.
343Ű409. Springer, 2012.

[GW06] Giese, Holger; Wagner, Robert: Incremental Model Synchronization with Triple Graph
Grammars. In: Proceedings of the International Conference on Model Driven Engineering
Languages and Systems. Springer, pp. 543Ű557, 2006.

Enhancing MDWE with Collaborative Live Coding 213

[HLR08] Hettel, Thomas; Lawley, Michael; Raymond, Kerry: Model Synchronisation: DeĄnitions
for Round-Trip Engineering. In: Proceedings of the First International Conference on
Model Transformations. Springer, pp. 31Ű45, 2008.

[KKK07] Kraus, Andreas; Knapp, Alexander; Koch, Nora: Model-Driven Generation of Web
Applications in UWE. In: 3rd International Workshop on Model-Driven Web Engineering.
CEUR-WS, 2007.

[La16] de Lange, Peter; Nicolaescu, Petru; Derntl, Michael; Jarke, Matthias; Klamma, Ralf:
Community Application Editor: Collaborative Near Real-Time Modeling and Composition
of Microservice-based Web Applications. In: Modellierung 2016 Workshopband, pp.
123Ű127. 2016.

[La17] de Lange, Peter; Nicolaescu, Petru; Klamma, Ralf; Jarke, Matthias: Engineering Web
Applications Using Real-Time Collaborative Modeling. In: Proceedings of the 23rd
International Conference on Collaboration and Technology (CRIWG 2017). Springer, pp.
213Ű228, 2017.

[Me02] Mellor, Stephen J.; Scott, Kendall; Uhl, Axel; Weise, Dirk: Model-Driven Architecture. In:
Proceedings of the 8th International Conference on Object-Oriented Information Systems.
Springer, pp. 290Ű297, 2002.

[MR03] Martin; Robert Cecil: Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, New Jersey, USA, 2003.

[Mv06] Mens, Tom; van Gorp, Pieter: A Taxonomy of Model Transformation. Electronic Notes in
Theoretical Computer Science, 152:125Ű142, 2006.

[Ni16] Nicolaescu, Petru; Jahns, Kevin; Derntl, Michael; Klamma, Ralf: Near Real-Time Peer-to-
Peer Shared Editing on Extensible Data Types. In: Proceedings of the 19th International
Conference on Supporting Group Work. ACM, pp. 39Ű49, 2016.

[OO07] Olsen, Gøran K.; Oldevik, Jon: Scenarios of Traceability in Model to Text Transformati-
ons. In: Proceedings of the Third European Conference on Modelling Foundations and
Applications. Springer, pp. 144Ű156, 2007.

[ORK14] Ogunyomi, Babajide; Rose, Louis M.; Kolovos, Dimitrios S.: On the Use of Signatures for
Source Incremental Model-to-text Transformation. In: 17th International Conference on
Model Driven Engineering Languages and Systems. Springer International Publishing, pp.
84Ű98, 2014.

[SR98] Schwabe, Daniel; Rossi, Gustavo: An Object Oriented Approach to Web-based Applications
Design. TAPOS, 4(4):207Ű225, 1998.

[Va14] Vara, Juan Manuel; Bollati, Veronica A.; Jimenez, Alvaro; Marcos, Esperanza: Dealing
with Traceability in the MDD of Model Transformations. IEEE Transactions on Software
Engineering, 40(6):555Ű583, 2014.

214 Peter de Lange, Petru Nicolaescu, Thomas Winkler, Ralf Klamma

Modellierung plattformübergreifender
Quellcode-Entsprechungen für die koordinierte Co-Evolution
portierter Software-Systeme

Tilmann Stehle, Matthias Riebisch1

Abstract: Wird Software auf eine neue Plattform portiert, so entsteht häuĄg eine zusätzliche Quellcode-
Basis für die neue Plattform, die gemeinsam mit dem ursprünglichen Quellcode weiterentwickelt
werden muss. Doppelte Arbeit kann dabei vermieden werden, indem die portierte Implementation die
Entwurfsentscheidungen sowie Terminologie und Lösungsmuster der ursprünglichen Implementation
übernimmt, sodass eine vereinheitlichte Weiterentwicklung gleichartiger Codeteile ermöglicht wird.
Modelle können Entsprechungen zwischen konkreten Code-Elementen wie Klassen und Methoden
beider Implementationen explizit und formal erfassen, um eine solche gemeinsame Weiterentwicklung
zu vereinfachen und partiell zu automatisieren. Bisherige Ansätze zur Suche nach Entsprechungen
befassen sich mit der Verknüpfung von Softwareartefakten auf unterschiedlichen Ebenen, aber erlauben
keinen Vergleich zwischen gleichartigen Softwareartefakten unterschiedlicher Sprachen. In diesem
Paper beschreiben wir ein Verfahren zur Erhebung sprachübergreifender Entsprechungen und zeigen,
wie die resultierenden Modelle zur Koordination der gemeinsamen Evolution von ursprünglicher und
portierter Implementation genutzt werden können. Zur Verwirklichung des Nutzungspotentials wurden
öffentlich zugängliche Erweiterungen für Entwicklungsumgebungen implementiert. Das beschriebene
Verfahren zur Erhebung der Modelle wurde anhand zweier quelloffener Portierungsprojekte evaluiert.

Keywords: Modellierung; Portierung; Quellcode-Entsprechungen; Abhängigkeiten

1 Einleitung

HäuĄg muss eine bestehende Software auf eine neue Plattform portiert werden, um
sie einem größeren Nutzerkreis zugänglich zu machen, oder neue Anwendungen zu
ermöglichen. Insbesondere im Feld der Softwareentwicklung für mobile Endgeräte ist dies
eine regelmäßige Herausforderung [JMK13]. Aber auch Software-Bibliotheken werden
portiert, um sie auf anderen Plattformen nutzbar zu machen. Beispiele dafür sind Apache
Lucene2 oder JGit3, deren ursprüngliche Implementationen für die Java Virtual Machine
auf die .Net-Plattform übertragen wurden.
Es existieren Frameworks wie Apache Cordova [Th17a], Xamarin [Xa17] oder Unity [Un17],
die es erlauben, Software für mehrere Plattformen auf einer gemeinsamen Codebasis

1 Universität Hamburg, {stehle,riebisch}@informatik.uni-hamburg.de
2 Website zur .Net-Implementation von Lucene: https://lucenenet.apache.org/
3 Github-Seite der .Net-Implementation von JGit: https://github.com/mono/ngit

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 215

https://creativecommons.org/licenses/by-nc/3.0/
https://lucenenet.apache.org/
https://creativecommons.org/licenses/by-sa/4.0/

zu entwickeln. Diese können für Neuentwicklungen sinnvoll genutzt werden. Existiert
aber bereits eine reife Implementation der Software für eine Plattform, so kann diese
nicht einfach an die Entwurfsvorgaben eines solchen Frameworks angepasst werden. Die
Übertragung hätte eine Neuentwicklung auf Basis des Frameworks zur Folge, die die
ursprüngliche Implementation durch eine unreife Implementation ersetzen würde. Zudem
müssen etwaige plattformspeziĄsche Teile der Implementation über komplexe Mechanismen
wie bedingtes Kompilieren realisiert und mit der gemeinsamen Codebasis verbunden werden,
was die Lesbarkeit des Quelltextes vermindert. Entwickler, die vor der Aufgabe einer
Portierung stehen, entscheiden sich daher regelmäßig dafür, die bestehende Implementation
beizubehalten und erneuten Entwicklungsaufwand zu betreiben, um eine zusätzliche
Implementation für die Zielplattform zu erstellen [JMK13]. Aus der Portierung durch
erneutes Implementieren entstehen zwei parallele Entwicklungsstränge, die mit doppeltem
Aufwand gepĆegt werden müssen. Es erfolgt eine gemeinsame Weiterentwicklung der
beiden Implementationen, die auch als Co-Evolution bezeichnet wird. Bei Änderungen in
funktional gleichen Teilen der Implementationen sollten Synergieeffekte angestrebt werden,
um diese doppelte Arbeit zu verhindern und die Änderungen konsistent durchzuführen.

Problemstellung: Plattformübergreifende Abhängigkeiten in der Co-Evolution portier-
ter Software. Ursprüngliche und portierte Implementation sollen in der Regel funktional
konsistent zueinander sein und gleichartig strukturiert sein. Wird eine Software beispiels-
weise für mobile Geräte mit unterschiedlichen Betriebssystemen bereitgestellt, so erwarten
die Nutzer, dass sie auf allen Plattformen die gleichen Arbeitsabläufe mit gleichem Ergebnis
durchführen können und dass ggf. ein Austausch von Daten zwischen den plattformspe-
ziĄschen Implementationen möglich ist. Die Weiterentwicklung der Software muss für
beide Plattformen erfolgen. Folgen die Implementationen auf beiden Plattformen einem
einheitlichen Entwurf, so können Änderungen zusammengelegt werden und doppelter Auf-
wand kann vermieden werden. Entwickler können den Erhalt funktionaler und struktureller
Konsistenzen erleichtern, indem sie für alle Plattformen dieselben Entwurfsentscheidungen
und Lösungsmuster sowie eine einheitliche Terminologie einsetzen. Um die genannten
Konsistenzen aufrechtzuerhalten, muss bewusst Aufwand investiert werden. Ohne diesen
gezielten Aufwand würden Inkonsistenzen entstehen. Eine Ursache dafür ist, dass ursprüngli-
che und portierte Implementation regelmäßig von unterschiedlichen Teams weiterentwickelt
werden4. Bei hoher Fluktuation im Entwicklungsteam sowie bei großen Systemen ist zudem
die Wahrscheinlichkeit hoch, dass nicht allen Entwicklern alle Entwurfsentscheidungen
bewusst sind und deswegen bei Änderungen Inkonsistenzen eingeführt werden. In der Folge
verursachen die eingeführten Unterschiede zwischen den Implementationen doppelte Arbeit
bei der Konzeption weiterer Änderungen für jede Plattform und die funktionale Konsistenz
nimmt ab. Es ist folglich notwendig, die Gemeinsamkeiten der Implementationen explizit
zu beschreiben.

4 Diese Vermutung legt der Vergleich der Autoren der ursprünglichen Implementation mit den Autoren der portierten
Implementation sowohl bei JGit (https://github.com/eclipse/jgit/graphs/contributors bzw. https:
//github.com/mono/ngit/graphs/contributors), als auch bei Lucene nahe (https://github.com/apache/
lucene-solr/graphs/contributors bzw. https://github.com/apache/lucenenet/graphs/contributors)

216 Tilmann Stehle, Matthias Riebisch

https://github.com/eclipse/jgit/graphs/contributors
https://github.com/mono/ngit/graphs/contributors
https://github.com/mono/ngit/graphs/contributors
https://github.com/apache/lucene-solr/graphs/contributors
https://github.com/apache/lucene-solr/graphs/contributors
https://github.com/apache/lucenenet/graphs/contributors

Beitrag dieser Arbeit: Repräsentation, Erhebung und Nutzungspotentiale plattform-
übergreifender Abhängigkeitsmodelle. Um die Synchronisation zwischen den Im-
plementationen zu unterstützen, ist es erforderlich, die Entsprechungen zwischen den
Quellcode-Elementen beider Implementationen explizit zu modellieren. Unser Beitrag
umfasst drei wesentliche Aspekte: Wir beschreiben eine Modellierungssprache zur for-
malen Erfassung plattformübergreifender Entsprechungen. Zweitens beschreiben wir ein
Verfahren zur automatischen Erhebung dieser Entsprechungen. Drittens zeigen wir konkrete
Nutzungspotentiale der Modelle für die koordinierte plattformübergreifende Co-Evolution
auf und zeigen deren Realisierbarkeit durch Werkzeugimplementationen.

2 Verwandte Arbeiten

[Di11] gibt einen Überblick über formale Methoden zur Konsistenzerhaltung bei Änderungen
gekoppelter Modelle. Manche dieser Techniken können auf die parallele plattformübergrei-
fende Entwicklung übertragen werden. Deren Anwendung setzt allerdings eine formale
und korrekte Beschreibung der Modellbeziehungen und Konsistenzbedingungen voraus.
Dies ist insbesondere bei der PĆege manuell portierter Software nicht gegeben, sodass eine
voll automatisierte Konsistenzerhaltung im Rahmen dieser Arbeit zunächst nicht angestrebt
wird.
Als Trace Link bezeichnet man die explizite Verknüpfung zweier Softwareartefakte
[CHGZ12]. In diesem Sinne sind auch die hier diskutierten expliziten Entsprechungen
zwischen Code-Elementen der ursprünglichen Implementation und ihren portierten Pen-
dants als Trace Links zu bezeichnen. Das Erstellen und Nutzen von Trace Links zwischen
verschiedenartigen Softwareartefakten wie Anforderungsbeschreibungen und zugehörigen
Quellcode-Dateien ist Gegenstand diverser Forschungsarbeiten [De07] [AAT10] [Ol10].
Diese setzen Techniken des Information Retrieval ein, die die Struktur des Quellcodes außer
Acht lassen, weshalb sie nicht in unsere Arbeit einĆießen. [Mi03] schlägt zur Erkennung
von Code-Duplikaten einen Ansatz basierend auf formaler Konzeptanalyse vor, der sowohl
Strukturen als auch Bezeichner in die Ähnlichkeitsanalyse einbezieht. Dieser ist jedoch
hoch komplex und nimmt laut der Autoren bereits bei kleinen Code-Basen extrem viel
Rechenzeit in Anspruch. Er ist damit nicht zum Auffinden von Entsprechungen zwischen
laufend weiterentwickelten Code-Basen einsetzbar. Wertvoll ist allerdings die Idee der
Gewichtung von Bezeichnern nach ihrer Hierarchie im Syntaxbaum, die wir in ähnlicher
Weise zum Vergleich von Quellcode-Elementen nutzen.
Das Auffinden von Quellcode-Duplikaten auf Basis textueller oder struktureller Ähnlichkei-
ten ist ebenfalls gut erforscht [Ud13]. Die erforschten Techniken sind jedoch hauptsächlich
auf Ähnlichkeiten zwischen Code-Elementen derselben Sprache anwendbar, weshalb wir
sie zur Erhebung von Entsprechungen zwischen ursprünglichen Code-Elementen und ihren
portierten Pendants nicht einsetzen. Das Problem der Entwicklung plattformübergreifender
Software mit separater Quellcode-Basis je Plattform ist wissenschaftlich kaum beleuchtet.
Gleichwohl gibt es Arbeiten, die sich mit sprachübergreifender und sprachunabhängiger

Modellierung plattformübergreifender Quellcode-Entsprechungen für die koordinierte
Co-Evolution portierter Software-Systeme 217

Softwareentwicklung befassen. [MS12] führt sogenannte Semantic Links ein, die Entwick-
lern sprachübergreifende Abhängigkeiten innerhalb einer Implementation aufzeigen. Sie
setzen allerdings eine gegebene explizite Verbindung zwischen den Code-Elementen voraus,
weshalb sie im Portierungs-Kontext nicht genutzt werden können.
[RCPO14] schlägt eine Technik zum Vergleich des Verhaltens von Anwendungen anhand
ihrer Netzwerk-Kommunikation vor. Da es sich dabei um einen Black-Box-Ansatz handelt,
ist aus dem Vergleich kein Rückschluss auf die ursächlichen Unterschiede und Gleichheiten
im Quellcode zu ziehen. Der hier vorgestellte Ansatz bietet im Gegensatz dazu eine Basis
für den Vergleich der Implementationen auf Ebene des Quellcodes.
[SKL06] und [Ti01] zeigen modellbasierte Ansätze auf, mit denen objektorientierte Struktu-
ren und Refactorings sprachunabhängig beschrieben werden können, sodass ihre Anwendung
auf Code in verschiedenen Sprachen eine einheitliche Strukturveränderung bewirkt. Unser
Mechanismus für plattformübergreifende Refactorings setzt diese Äquivalenz für Refacto-
rings in verschiedenen Sprachen voraus, um die strukturellen Entsprechungen zwischen
synchron restrukturierten Code-Elemente zu wahren.
In [SR15] haben wir einen Ansatz vorgestellt, der während der initialen Portierung sys-
tematisch Entsprechungen im Design und in der Terminologie der ursprünglichen und
portierten Implementation herstellt. Diese Entsprechungen können in den hier eingeführten
Entsprechungsmodellen erfasst werden.

3 Repräsentation plattformübergreifender Quellcode-Entsprechungen

Um die benötigten plattformübergreifenden Quellcode-Entsprechungen zur Koordination
der Co-Evolution zweier Implementationen nutzen zu können, müssen sie explizit in
Modellen dargestellt werden, die wir im Weiteren als Entsprechungsmodelle bezeichnen.
Die Modellierungstheorie [Th13] deĄniert wichtige Eigenschaften von Modellen für die
Metamodell-DeĄnition. Purpose: Der Zweck eines Entsprechungsmodells ist es, Aufwand
bei der Co-Evolution der verknüpften Implementationen einzusparen. Dazu soll es folgende
Aktivitäten unterstützen: (1)Die Suche nach korrespondierenden Code-Elementen, (2)die
Navigation zwischen korrespondierenden Code-Elementen über die Grenzen verschiedener
Entwicklungsumgebungen hinweg, (3)die Übertragung automatisierbarer Änderungen wie
Refactorings, sowie (4)die Koordination händischer Änderungen sich entsprechender Code-
Elemente. Diesen Zwecken trägt das Metamodell dadurch Rechnung, dass es Paare sich
entsprechender Quellcode-Elemente einander zuordnet. Das Metamodell ist formal, sodass
die Entsprechungsmodelle zur Reduktion von Aufwand automatisiert von Werkzeugen verar-
beitet werden können, die den Zwecken 1 bis 4 dienen. Impact: Teil der Purpose-Eigenschaft
ist der angestrebte EinĆuss der Modelle, konkret die Reduktion des Aufwands für die paral-
lele Weiterentwicklung durch Koordination und Zusammenlegung der Änderungen sich
entsprechender Code-Elemente. Dazu gehören die Unterstützung von Verständnis und Navi-
gation, das erleichterte Auffinden von korrespondierenden Code-Elementen sowie der Erhalt
von Ähnlichkeiten bezüglich des Entwurfs und der eingesetzten Terminologie bei möglichst
geringem Modellierungsaufwand. Aus der Forderung nach geringem Modellierungsaufwand

218 Tilmann Stehle, Matthias Riebisch

leitet sich die Forderung ab, die Modelle automatisiert zu erheben. Beim automatisierten
Erheben der Entsprechungen herrscht Unsicherheit über die Korrektheit der gefundenen
Entsprechungen. Diese Unsicherheit muss in den Entsprechungsmodellen erfasst werden,
was im Metamodell vorgesehen ist. Restrictions: Aus dem Zweck der Modelle ergeben
sich Einschränkungen für das Metamodell. Die Entsprechungsmodelle sind beispielsweise
nicht dazu gedacht, über den Entwurf einer einzelnen Implementation zu diskutieren und
enthalten folglich über die Entsprechungen hinaus keine anderen Beziehungen zwischen
Code-Elementen. Pragmatism: Es gibt eine intendierte Nutzergruppe, die die Modelle auf
eine bestimmte Weise einsetzen soll. Im konkreten Fall sollen die Modelle teil-automatisiert
mit Werkzeugen für die oben genannten Zwecke während der Weiterentwicklung portierter
Software genutzt werden. Dem entspricht das Metamodell durch die formale DeĄnition
erlaubter Modellelemente und Beziehungen, sodass entsprechende Modelle automatisiert
mit Werkzeugen für Softwareentwickler verarbeitet werden können. Amplification: Ein
Modell kann zusätzliche Informationen enthalten, die das Original nicht enthält. Die hier
eingeführten Modelle enthalten explizite Entsprechungen zwischen Quellcode-Elementen,
die im Quellcode nicht explizit sind. Truncation: Modelle abstrahieren vom Original und
lassen dabei Informationen aus, die im Sinne des Zwecks irrelevant sind. Relevant für die
Beschreibung der Entsprechungen sind lediglich Ursprung und Ziel sowie ein KonĄdenz-
wert, der angibt, mit welcher Wahrscheinlichkeit eine automatisch erhobene Entsprechung
korrekt ist. Mapping: Modelle beziehen sich stets auf ein Original, dessen Elemente sich
im Modell wiederĄnden. Die im Entsprechungsmodell verknüpften Repräsentationen von
Quellcode-Elementen beziehen sich auf die konkreten Quellcode-Elemente in der ursprüng-
lichen und portierten Implementation. Idealisation: Modelle nehmen im Allgemeinen eine
zweckdienliche Vereinfachung vor. Im Fall der Entsprechungsmodelle werden lediglich
1:1-Beziehungen der Ist-Situation abgebildet. Es wird nicht berücksichtigt, dass eine Klasse
beispielsweise auch mehr als einen Zweck haben kann und eventuell nicht vollständig in ihr
Pendant in der Zielimplementation übertragen worden ist.

Um Quell- und Zielelement unabhängig von ihrer Art eindeutig zu identiĄzieren, gibt es
im Metamodell (Abbildung 1) die abstrakte Klasse Code-Element, die ein Code-Element
repräsentiert und Informationen zum Auffinden des verknüpften Elements hält.

Typ

-VollstBezeichner: String

Methode

-Name: String
-Parameter: List<Parameter>
-EnthaltenderTyp: Typ
-Rückgabetyp: Typ

Quellcode-Entsprechung

-Quellknoten: Code-Element
-Zielknoten: Code-Element
-Konfidenz: Float

«abstract»
Code-Element

-DateiPfad: String
-Programmiersprache: String
-KurzName: String

Abb. 1: Ausgewählte Klassen des Metamodells für
plattformübergreifende Quellcode-Entsprechungen
im UML-Klassendiagramm

SpeziĄsche Klassen für Code-Elemente wie
Methoden oder Typen erben von ihr. Die
Klasse Methode speichert neben dem Na-
men der repräsentierten Methode eine Re-
ferenz auf den Typ, in dem die Metho-
de deĄniert ist. Typ speichert als identiĄ-
zierendes Attribut den vollständigen Be-
zeichner des Typs und erbt selbst von
Code-Element, da Typen wie Klassen oder
Interfaces ebenfalls Code-Elemente sind
und Entsprechungen haben können. Die

Modellierung plattformübergreifender Quellcode-Entsprechungen für die koordinierte
Co-Evolution portierter Software-Systeme 219

Quellcode-Entsprechungen werden durch
Instanzen der Klasse Quellcode-Entsprechung repräsentiert. Sie halten jeweils einen
Verweis auf das ursprüngliche und das portierte Code-Element sowie eine Bewertung der
Ähnlichkeit zwischen den verknüpften Elementen. Diese Bewertung dient als Indikator
dafür, mit welcher Wahrscheinlichkeit die identiĄzierte Entsprechung korrekt ist und ist
dementsprechend im Konfidenz-Attribut einer Quellcode-Entsprechung modelliert. Die
Bewertung ist notwendig, da automatisch erhobene Quellcode-Entsprechungen nicht immer
mit Sicherheit zutreffen. Damit Entwickler anhand eines Entsprechungs-Modells syste-
matisch nach dem portierten Pendant zu einem gegebenen Code-Element suchen können,
werden die potentiellen Entsprechungen nach dieser Bewertung sortiert.

4 Automatische Erhebung plattformübergreifender Quellcode-
Entsprechungen und Erfassung in Entsprechungsmodellen

Um den Aufwand für die Erstellung von Entsprechungsmodellen gering zu halten, schlagen
wir ein Verfahren zu deren automatischen Erhebung vor. Es ermittelt Entsprechungen von
Code-Elementen wie Klassen oder Methoden zwischen Quellcode der ursprünglichen und
der portierten Implementation unabhängig von den eingesetzten Programmiersprachen. Die
gefundenen Entsprechungen werden in Modellen gemäß des in Abschnitt 3 eingeführten
Metamodells erfasst. Voraussetzung dafür ist, dass die ursprüngliche Programmiersprache
und die Programmiersprache der Zielplattform demselben Paradigma folgen, sodass ein
gleicher Schnitt der Quellcode-Elemente nach Zuständigkeiten möglich ist. Das wäre
beispielsweise bei der Portierung einer ursprünglich funktional programmierten Software
in eine objektorientierte Zeilsprache nicht der Fall.
Das Verfahren kann in zwei Teilprozesse unterteilt werden: Der erste indexiert die Code-
Elemente der ursprünglichen und der portierten Implementation. Der zweite Teilprozess
durchsucht den erstellten Index anhand eines gegebenen Code-Elements nach terminologisch
und strukturell ähnlichen Elementen.

Der erste Teilprozess ist in Abbildung 2 dargestellt. Im ersten Schritt werden die Quell-
codes sowohl der ursprünglichen als auch der portierten Implementation eingelesen und
abstrakte Syntaxbäume für sie erstellt. Aus den abstrakten Syntaxbäumen wird zu jedem
Quellcode-Element eine Multimenge erstellt, die die Bezeichner des Elements beinhaltet.
Da diese Multimengen indexiert und später im Prozess mit einer Suchanfrage verglichen
werden, bezeichnen wir sie im Sinne des Information Retrieval als Dokument [MRS08].
Beispielsweise werden in das Dokument zu einer Klasse neben dem Klassennamen auch
sämtliche Namen von Methoden, Feldern und Variablen, eingefügt, die innerhalb der Klasse
verwendet werden. So wird von der Syntax der Programmiersprache abstrahiert. Dabei
soll berücksichtigt werden, dass Bezeichner auf verschiedenen Ebenen des Syntaxbaumes
unterschiedlich stark zur Bedeutung eines Code-Elements beitragen. Beispielsweise ist
der Klassenname für die Beschreibung einer Klasse aussagekräftiger als der Name einer
lokalen Variable. Diese Strukturinformation soll erhalten bleiben. Zu diesem Zweck haben

220 Tilmann Stehle, Matthias Riebisch

Quellcode-
Element
(Modell)
erstellen

Dokument und
Modell-Element

indexieren

Camel Case
aufspalten

&
Wortstämme für
Teilbezeichner

bilden

Bezeichner
extrahieren &

gewichten

Code
parsen

Indexierung provide

Quellcode-Element
(Modell)

Dokument
mit gewichteten Wortstämme

Gewichtete
Bezeichner

Abstrakter
Syntaxbaum

Document Index

Quellcode-
Element

Abb. 2: Parsen und Indexieren der Quellcode-Elemente in der ursprünglichen und portierten Imple-
mentation

wir entsprechend der Grammatiken objektorientierter Sprachen wie Java, C# oder Swift
eine Hierarchie abgeleitet, die festlegt, wie oft der Bezeichner eines Sprachkonstrukts in
das Dokument eines Code-Elements aufgenommen wird. In das Dokument zu einer Klasse
Ćießt beispielsweise der Bezeichner einer enthaltenen lokalen Variablen einfach ein, der
Name der umschließenden Methode doppelt und der Name der Klasse vierfach. Zwischen
dem Bezeichner eines enthaltenen Elements und seinem umschließenden Element liegt also
der Faktor 2.

Die in das Dokument aufgenommenen gewichteten Bezeichner werden im nächsten Schritt
in ihre Bestandteile zerlegt, auf ihren Wortstamm reduziert und Großbuchstaben durch
Kleinbuchstaben ersetzt, sodass die spätere Suche auch Ähnlichkeiten erkennt, wenn
Bezeichner sich nur in Teilen gleichen. Der Bezeichner DateConverter würde beispielsweise
in date und convert zerlegt. Das Kompositum bleibt zusätzlich im Dokument enthalten, um
zwischen Bezeichnern wie ServiceLocation und LocationService unterscheiden zu können.
Das Dokument wird gemeinsam mit einer Instanz der Klasse Quellcode-Element (siehe
Abb. 1) indexiert, die das Quellcode-Element eindeutig identiĄziert.

Der zweite Teilprozess ist in Abbildung 3 dargestellt. Er sucht für ein gegebenes Code-
Element nach einer Entsprechung im Index. Dazu wird zu einem gewählten Code-Element
die identiĄzierende Instanz von Quellcode-Element (siehe Abb. 1) erzeugt und im Index
das zugehörige Dokument Q mit den Teilbezeichnern qi nachgeschlagen. Es wird mit jedem
anderen Dokument D des Index anhand der Ähnlichkeitsfunktion Okapi BM25 [RZ09]
verglichen, die als eine der erfolgreichsten Text-Retrieval Algorithmen ohne Beachtung der

Modellierung plattformübergreifender Quellcode-Entsprechungen für die koordinierte
Co-Evolution portierter Software-Systeme 221

Quellcode-
Entsprechungen

(Modell)
erstellen

Indexierte
Dokumente mit

Anfrage-Dokument
Vergleichen

Zugehöriges
Dokument
im Index

nachschlagen

Quellcode-Element
(Modell)
erstellen

Suche
Quellcode-

Element

Quellcode-Element
(modell)

Dokumenten-Index
Bewertete

Quellcode-Element

Quellcode-Entsprechungen

Anfrage-Dokument
mit gewichteten Wortstämmen

Abb. 3: Suche nach Trace Links zu einem gegebenen Quellcode-Element im erzeugten Index

Syntax gilt (ebd.). Okapi BM25 wird als numerischer Wert für die Ähnlichkeit wie folgt
berechnet:

n∑

i=1

IDF(qi) ·
f (qi,D) · (2.2)

f (qi,D) + 1.2 · (0.25 + 0.75 ·
|D |

avgdl
)

avgdl ist dabei die durchschnittliche Anzahl von Bezeichnern in einem Dokument und |D |

ist die konkrete Anzahl der Bezeichner in D. f (qi,D) ist die HäuĄgkeit des Auftretens von
qi in D. Dieser Wert wird für wichtige Bezeichner wie Klassennamen durch die Gewichtung
der Bezeichner bei der Indexierung erhöht. Die Funktion IDF(qi) in der Gleichung ist die
umgekehrte DokumentenhäuĄgkeit (Inverse Document Frequency) des Bezeichners qi . Sie
berechnet einen Wert dafür, wie gut das Enthaltensein von qi ein Dokument von anderen
unterscheidet. Sie wird berechnet als:

IDF(qi) = log(
N − n(qi) + 0.5

n(qi) + 0.5
)

wobei N die Zahl aller Dokumente im Index ist und n(qi) die Anzahl der Dokumente, die qi
enthalten. Die bei der Indexierung vorgenommene Gewichtung von Bezeichnern hat keinen
EinĆuss hierauf. Die rechte Seite der Formel kann für Dokumente durchschnittlicher Länge
zu folgender Teilformel vereinfacht werden:

f (qi,D) · (2.2)

f (qi,D) + 2.2

Sie berechnet einen Wert für die Bedeutung jedes Bezeichners qi des Abfragedokuments
für das zu vergleichende Dokument D. Die relative Dokumentlänge |D |

avgdl
im Nenner führt

dazu, dass lange Dokumente niedriger bewertet werden. Dahinter verbirgt sich die Annahme,
dass lange Dokumente typischerweise weniger speziĄsch sind.
Okapi BM25 wird für jedes indizierte Dokument berechnet, sodass jeweils ein Wert für die
Ähnlichkeit zum Anfrage-Dokument Q vorliegt. Die zum indizierten Dokument gehörige

222 Tilmann Stehle, Matthias Riebisch

Instanz von Code-Element wird jeweils mit dem Code-Element des Anfrage-Dokuments
Q durch eine Quellcode-Entsprechung verknüpft, sofern der Ähnlichkeitswert nicht Null
beträgt. Die Entsprechung erhält als Wert für das Konfidenz-Attribut den errechneten
Ähnlichkeitswert. Die erzeugten Entsprechungen können durch Werkzeuge nach Konfidenz
geordnet werden, sodass man systematisch nach korrekten Entsprechungen zu einem
Code-Element suchen kann, indem man Entsprechungen mit hohem KonĄdenzwert zuerst
verfolgt.

5 Nutzung von Entsprechungsmodellen für die Co-Evolution von
ursprünglicher und portierter Implementation

Die erzeugten plattformübergreifenden Entsprechungsmodelle können genutzt werden, um
die koordinierte Co-Evolution mehrerer Implementationen für unterschiedliche Plattformen
zu unterstützen. Konkret unterstützen wir drei Tätigkeiten: (1)Das Auffinden des imple-
mentierenden Quellcodes zu einem gegebenen Entwurfsbaustein oder einem gegebenen
Verhalten, welches als Feature Location oder auch Concept Location [RW02] bezeichnet
wird, (2) die Koordination von Änderungen verknüpfter Elemente und (3) die automatisierte
Synchronisierung von Änderungen an äquivalenten Quellcode-Elementen.

Nutzung der Entsprechungsmodelle für Feature Location. [Si16] und [Fr14] stellen
fest, dass Entwickler für das Verstehen des Codes und das IdentiĄzieren der zu ändernden
Code-Teile erheblichen Aufwand in das Navigieren entlang von Quellcode-Abhängigkeiten
investieren. Sie stellen dadurch Bezüge zwischen Code-Elementen her und verstehen somit,
wo im Quellcode welche Funktionalität implementiert ist.
Durch die Nutzung der eingeführten Entsprechungsmodelle kann dieses Vorgehen auf
eine Implementation beschränkt werden: Ist das zu ändernde Code-Element in der ersten
Implementation gefunden, kann das anzupassende korrespondierende Element in der zwei-
ten Implementation anhand der Quellcode-Entsprechungen ohne doppelten Aufwand für
Feature Location ermittelt werden.
Dazu muss die Navigation entlang der Entsprechungen in die eingesetzten Entwicklungs-
umgebungen integriert werden.

Koordination von Änderungen verknüpfter Elemente. Die Co-Evolution mehrerer
Implementationen kann auf Basis der Entsprechungsmodelle koordiniert werden: Nach
Änderung eines Code-Elements mit einer Entsprechung in der zweiten Implementation
kann das Modell genutzt werden, um an dieser Entsprechung einen TODO-Kommentar zu
verfassen, der die korrespondierende Angleichung fordert. TODO-Kommentare werden in
der Softwareentwicklung häuĄg als halbformale Markierungen für ausstehende Aufgaben
am Code hinterlegt. Der für das markierte Code-Element zuständige Entwickler wird so auf
die Notwendigkeit hingewiesen, die beiden Implementationen durch eine entsprechende
Änderung einander wieder anzugleichen.

Modellierung plattformübergreifender Quellcode-Entsprechungen für die koordinierte
Co-Evolution portierter Software-Systeme 223

Automatisierte Koordination von Änderungen an einander entsprechenden Quellcode-
Elementen. Manche Änderungen an einander entsprechenden Quellcode-Elementen können
auf Basis der Entsprechungsmodelle koordiniert und in beiden Implementationen synchroni-
siert durchgeführt werden. Dafür müssen zwei Voraussetzungen erfüllt sein: Erstens müssen
sich die zu ändernden Quellcode-Elemente in der zu ändernden Eigenschaft (z.B. Name oder
Sprachkonstrukt) gleichen; zweitens muss die Änderung in beiden Implementationen in
gleicher Weise umsetzbar sein. Zum Beispiel können anstehende Refactorings gleichzeitig
auf beide Implementationen angewendet werden, um strukturelle Entsprechungen zu bewah-
ren. Das einfachste Beispiel ist die Umbenennung zweier sich entsprechender Klassen. Um
die Konsistenz der Benennungen zu wahren, ist es sinnvoll, die Umbenennung gleichzeitig
in beiden Implementationen durchzuführen. Dies kann auf Basis der Entsprechungsmodelle
automatisiert werden.

6 Evaluierung

Um das in Abschnitt 4 beschriebene Verfahren zum Auffinden von Quellcode-
Entsprechungen zu evaluieren, wurde es auf zwei Portierungsprojekte angewendet. Das
erste Projekt namens Twidere ist ein quelloffener Twitter-Client, der ursprünglich für das
Betriebssystem Android entwickelt wurde5 und aktuell manuell für das Betriebssystem
iOS reimplementiert wird6. Bei der manuellen Übertragung aus den Programmiersprachen
Java und Kotlin (Android) in die Sprache Swift (iOS) sind an vielen Stellen Ähnlichkeiten
in Form gleicher Entwurfsbausteine und gleicher Bezeichner für übertragene Lösungs-
muster zwischen den Implementationen entstanden. Trotzdem unterscheiden sich beide
Implementationen strukturell und funktional stark. Beispielsweise wurden die Interfaces
FavoritesResources, FriendsFollowersResources , HelpResources und 3 weitere Inter-
faces der Android-Implementation nicht explizit nach Swift übertragen. Die Operationen
dieser Interfaces sind in der Klasse MicroblogService vereint, die kein Interface explizit
implementiert. Die iOS-Implementation enthält zudem viele Funktionalitäten der Android-
Version nicht. Wir halten Twidere damit für ein Portierungsprojekt mit typischen Schwächen
bei der Konsistenz zwischen ursprünglicher und portierter Implementation, wenn kein
Aufwand in die Konsistenz investiert wird.
Das zweite zur Evaluation betrachtete Projekt ist Apache Lucene.Net7. Dabei handelt es
sich um die portierte Implementation des Such-Frameworks Apache Lucene, das teilweise
mit Code-Convertoren in C# übersetzt und dann manuell angepasst wird. Dabei wird beson-
deres Augenmerk auf Konsistenz bei der Strukturierung des Quelltextes gelegt, obgleich
.Net-typische Schnittstellen angestrebt werden [Th17b]. Durch die hohe Konsistenz und
dadurch, dass die ursprüngliche und die portierte Implementation von unterschiedlichen
Entwicklern bearbeitet wird, stellt es einen guten Kontrast zu Twidere dar. Mit diesen beiden
Projekten kann die Leistungsfähigkeit des Verfahrens bei niedriger und hoher Konsistenz

5 Link zum Repository: https://github.com/TwidereProject/Twidere-Android
6 Link zum Repository: https://github.com/TwidereProject/Twidere-iOS
7 Website zur .Net-Implementation von Lucene: https://lucenenet.apache.org/

224 Tilmann Stehle, Matthias Riebisch

https://github.com/TwidereProject/Twidere-Android
https://github.com/TwidereProject/Twidere-iOS
https://lucenenet.apache.org/

verglichen werden.
Wir haben 50 der 1128 Typen der Android-Implementation von Twidere ausgewählt und
ihre Entsprechungen in den 132 Typen der iOS-Implementation identiĄziert. Dazu haben
wir systematisch die Ordnerstruktur des Projektes mittels Tiefensuche durchlaufen und
Entsprechungen in der Swift-Implementation ausĄndig gemacht. Konnte keine Entsprechung
eindeutig identiĄziert werden, wurde der Typ von der Evaluation ausgeschlossen. Daraus
ergaben sich 62 Entsprechungen, die wir als Vergleichsdaten für die Evaluation nutzen8. Die
identiĄzierten Links wurden von einer Person geprüft, die ansonsten nicht an dieser Arbeit
beteiligt ist. Auf der Ebene von Methoden erwies es sich als schwierig, im Twidere-Projekt
eindeutige Entsprechungen ausĄndig zu machen, die andere Methoden als Getter und Setter
mit ihren Pendants verknüpfen. Diese Methoden stellen das Verfahren angesichts ihrer
kürze und banalen Funktionalität nicht auf die Probe, sodass wir keine Evaluation auf
Methodenebene in Twidere vorgenommen haben.

In gleicher Weise haben wir Entsprechungen für die Kernfunktionalität von Lucene
identiĄziert, die im Ordner core der Implementation zu Ąnden ist. Darin sind 1871 Typen
deĄniert. Zu den 50 ersten Typen haben wir die Pendants in der C#-Implementation
identiĄziert9. Zusätzlich haben wir zu jedem dieser 50 Typen das Pendant der ersten in ihm
deĄnierten Operation identiĄziert10. Getter und Setter haben wir dabei übersprungen. Gab
es in einem Typ ausschließlich Getter und Setter, so wurde der Typ übersprungen und eine
Operation eines Typs gewählt, der weiter hinten in der Sortierung nach Ordnerstruktur liegt.

Die manuell gewonnenen Entsprechungen haben wir als Sollwerte genutzt, um unser
Verfahren anhand der Metrik Mean Average Precision (MAP) [MRS08, s.159] zu bewerten.
Bei MAP handelt es sich um eine Metrik zur Bestimmung der Qualität von Suchergebnissen,
die im Gegensatz zu Precision und Recall die Reihenfolge der Ergebnisse berücksichtigt. Sie
ist eine der gebräuchlichsten Metriken im Bereich des Information Retrieval [MRS08, s.159].
MAP berechnet den durchschnittlichen Precision-Wert bei zunehmendem Recall-Wert wie
folgt:

M AP(Q) =
1

|Q |

|Q |∑

j=1

(
1

mj

m j∑

k=1

Precision(Rjk))

wobei Q die Menge aller Informationsbedarfe qj , also aller Anfragen
nach Code-Entsprechungen ist. Eine perfekte Suche würde zu einem ge-
gebenen Code-Element ej(OrigImpl) der Originalimplementation die Menge
{e1(ZielImpl), e2(ZielImpl)..., em j (ZielImpl)} mit allen mj korrespondierenden Code-
Elementen der Zielimplementation liefern. MAP bildet für jede der mj korrekten
Entsprechungen Teillisten Rjk , die nur die gelieferten Ergebnisse bis zur k-ten korrekten
Entsprechung enthalten. In der Teilliste Rj1 sind also alle Suchergebnisse bis zur ersten

8 manche Code-Elemente in der Android-Implementation haben mehrere Entsprechungen in der iOS-
Implementation. Die vollständige Liste der Entsprechungen ist unter https://swk-www.informatik.uni-
hamburg.de/~stehle/TwidereLinks.pdf abrufbar.

9 Diese sind unter https://swk-www.informatik.uni-hamburg.de/~stehle/LuceneTypeLinks.pdf abrufbar.
10 Diese sind unter https://swk-www.informatik.uni-hamburg.de/~stehle/LuceneMethodLinks.pdf abrufbar.

Modellierung plattformübergreifender Quellcode-Entsprechungen für die koordinierte
Co-Evolution portierter Software-Systeme 225

https://swk-www.informatik.uni-hamburg.de/~stehle/TwidereLinks.pdf
https://swk-www.informatik.uni-hamburg.de/~stehle/TwidereLinks.pdf
https://swk-www.informatik.uni-hamburg.de/~stehle/LuceneTypeLinks.pdf
https://swk-www.informatik.uni-hamburg.de/~stehle/LuceneMethodLinks.pdf

korrekten Entsprechung enthalten; in Rj2 alle Ergebnisse bis zur zweiten korrekten
Entsprechung. Für alle Teil-Ergebnislisten wird der durchschnittliche Precision-Wert
ermittelt. Dies wird für alle Suchanfragen wiederholt und abschließend der Durchschnitt
über alle Suchanfragen gebildet.
Für die identiĄzierten Entsprechungen der Typen des Twidere-Projekts egibt sich ein MAP
von 0,75; für die identiĄzierten Entsprechungen der Typen von Lucene bzw. Lucene.Net
ein MAP von 0,86 und für die verknüpften Methoden von Lucene ebenfalls ein MAP
von 0,86. Nach unserer Kenntnis gibt es kein anderes Verfahren, das sprachübergreifende
Entsprechungen von Code-Elementen identiĄziert, sodass ein Vergleich nicht möglich ist.
Im Vergleich mit modernen Verfahren zur Verknüpfung natürlichsprachlicher Dokumente
mit dem zugehörigen Quellcode erreicht unser Verfahren sehr gute MAP-Werte. Diese
erreichen einen MAP zwischen 0,7 und 0,76 [ZLL13]. Insgesamt beĄnden wir unser
Verfahren damit für effektiv. Die Grenzen des Verfahrens werden bei der Suche nach
Entsprechungen für plattformspeziĄsch benannte Code-Elemente sichtbar. Beispielsweise
wird die Methode close() der Klasse org.apache.lucene.analysis.CharFilter nicht
mit ihrem Pendant Lucene.Net.Analysis.CharFilter.dispose() verknüpft, da eine platt-
formspeziĄsche Bezeichnung gewählt wurde und wenig Gemeinsamkeiten zwischen den
verwendeten Bezeichnern innerhalb der Methoden bestehen.
Unser Verfahren zur Erhebung von Entsprechungen wurde im Rahmen zweier studentischer
Arbeiten in ein Plugin für die Entwicklungsumgebung IntelliJ IDEA integriert und in
[Gr17] hinsichtlich Benutzbarkeit evaluiert. Der zugehörige Quellcode steht auf GitHub
zur Verfügung11. Das Plugin bietet neben der Erkennung von Quellcode-Entsprechungen
zwischen Java-, Kotlin- und Swift-Code auch die Navigation entlang der Entsprechungen
und die Erzeugung von TODO-Kommentaren. Dazu wird ein Bezeichner, z.B. einer
Methode oder einer Klasse markiert und über das Kontext-Menü eine Liste potentieller
Entsprechungen aufgerufen, über die der Entwickler zur portierten Version navigieren, oder
dort einen Kommentar hinterlegen kann. Entwickler können damit nach Änderungen an
Java-Elementen einen entsprechenden Vermerk am zugehörigen Swift-Element erstellen,
um die Angleichung der Swift-Implementation anzustoßen.
Ein zweites Plugin bietet für automatisch konvertierten Code das plattformübergreifende
Umbenennen einer Methode und ihrer Entsprechungen in einer verknüpften Swift-
Implementation12. Der Entwickler Ąndet nach Installation des Plugins den zusätzlichen
Eintrag rename method and linked elements im Kontext-Menü für Refactorings. Er kann
nach Auswahl dieser Option aus der Liste potenzieller Entsprechungen eine Swift-Methode
auswählen und einen neuen Namen für beide sich entsprechenden Methoden inklusive ihrer
Aufrufe automatisch vergeben lassen.

11 Der Quellcode des Plugins sowie eine Anleitung zum Kompilieren und Nutzen des Plugins Ąnden sich unter:
https://github.com/TilStehle/Java-Kotlin-Swift-Trace-Link-Recovery

12 Der Quellcode des Plugins sowie eine Anleitung zum Kompilieren und Nutzen des Plugins Ąnden sich unter:
https://github.com/TilStehle/Cross-Platform-Traceability

226 Tilmann Stehle, Matthias Riebisch

https://github.com/TilStehle/Java-Kotlin-Swift-Trace-Link-Recovery
https://github.com/TilStehle/Cross-Platform-Traceability

7 Fazit und Ausblick

In diesem Paper haben wir einen Ansatz zur Modellierung von Quellcodeentsprechungen in
der plattformübergreifenden Entwicklung und ein sprachunabhängiges Verfahren zu deren
Erhebung entwickelt. Es führt zur Vermeidung doppelter Arbeit bei der plattformübergrei-
fenden Co-Evolution, weil Feature Location sowie automatisierbare Änderungen nur einmal
durchgeführt werden müssen und nicht automatisierbare Änderungen koordiniert werden.
Um das Verfahren zur Erhebung der Quellcode-Entsprechungen zu evaluieren, haben wir
es erfolgreich auf zwei quelloffene Portierungsprojekte angewendet. Als Proof of Concept
haben wir Werkzeuge entwickelt, die dieses Verfahren implementieren und die koordinierte
Co-Evolution unterstützen.
Unsere zukünftigen Arbeiten werden die Nutzung der beschriebenen Entsprechungsmodelle
für automatisierte Konsistenzprüfungen zwischen den plattformspeziĄschen Implementatio-
nen untersuchen. Darüber hinaus lohnt es sich, Bibliotheken von Entsprechungen auf der
Ebene plattformtypischer Strukturen aufzubauen, um konkrete Quellcode-Entsprechungen
trotz plattformspeziĄscher Strukturen aufzuĄnden. Zudem könnte die Qualität der Entspre-
chungsmodelle durch das Wissen und Nutzungsverhalten der Entwickler verbessert werden,
was weitere Informationen im Modell erfordert.

Literaturverzeichnis

[AAT10] Asuncion, Hazeline U.; Asuncion, Arthur U.; Taylor, Richard N.: Software Traceability
with Topic Modeling. In: ICSE2010, Vol. 1. ACM, S. 95Ű104, 2010.

[CHGZ12] Cleland-Huang, Jane; Gotel, Orlena; Zisman, Andrea: Software and Systems Traceability.
Springer, 2012.

[De07] De Lucia, Andrea; Fasano, Fausto; Oliveto, Rocco; Tortora, Genoveffa: Recovering
Traceability Links in Software Artifact Management Systems Using Information Retrieval
Methods. ACM TOSEM, 16(4), September 2007.

[Di11] Diskin, Zinovy: Model Synchronization: Mappings, Tiles, and Categories. In: GTTSE
2009. Springer, S. 92Ű165, 2011.

[Fr14] Fritz, Thomas; Shepherd, David C.; Kevic, Katja; Snipes, Will; Bräunlich, Christoph:
DevelopersŠ code context models for change tasks. In: FSE2014. ACM, S. 7Ű18, 2014.

[Gr17] Greiert, Gerrit: , Entwicklung eines Plugins in IntelliJ IDEA zum Auffinden
von Quellcode-Entsprechungen. https://github.com/TilStehle/Java-Kotlin-

Swift-Trace-Link-Recovery/blob/master/Entwicklung%20eines%20Plugins%20in%

20IntelliJIDEA%20zum%20Auffinden%20von%20Quellcode-Entsprechungen.pdf, 2017.
Studie.

[JMK13] Joorabchi, M. E.; Mesbah, A.; Kruchten, P.: Real Challenges in Mobile App Development.
In: 2013 ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement. S. 15Ű24, Oct 2013.

[Mi03] Mishne, Gilad: Source Code Retrieval using Conceptual Graphs. Masterarbeit, University
of Amsterdam, 2003.

Modellierung plattformübergreifender Quellcode-Entsprechungen für die koordinierte
Co-Evolution portierter Software-Systeme 227

https://github.com/TilStehle/Java-Kotlin-Swift-Trace-Link-Recovery/blob/master/Entwicklung%20eines%20Plugins%20in%20IntelliJIDEA%20zum%20Auffinden%20von%20Quellcode-Entsprechungen.pdf
https://github.com/TilStehle/Java-Kotlin-Swift-Trace-Link-Recovery/blob/master/Entwicklung%20eines%20Plugins%20in%20IntelliJIDEA%20zum%20Auffinden%20von%20Quellcode-Entsprechungen.pdf
https://github.com/TilStehle/Java-Kotlin-Swift-Trace-Link-Recovery/blob/master/Entwicklung%20eines%20Plugins%20in%20IntelliJIDEA%20zum%20Auffinden%20von%20Quellcode-Entsprechungen.pdf

[MRS08] Manning, Christopher D.; Raghavan, Prabhakar; Schütze, Heinrich: Introduction to
Information Retrieval. Cambridge University Press, 2008.

[MS12] Mayer, P.; Schroeder, A.: Cross-Language Code Analysis and Refactoring. In: SCAM2012.
IEEE, S. 94Ű103, Sept 2012.

[Ol10] Oliveto, R.; Gethers, M.; Poshyvanyk, D.; De Lucia, A.: On the Equivalence of Information
Retrieval Methods for Automated Traceability Link Recovery. In: ICPC2019. IEEE, S.
68Ű71, June 2010.

[RCPO14] Roy Choudhary, Shauvik; Prasad, Mukul R.; Orso, Alessandro: Cross-platform Feature
Matching for Web Applications. In: ISSTA2014. ACM, S. 82Ű92, 2014.

[RW02] Rajlich, Václav; Wilde, Norman: The Role of Concepts in Program Comprehension. In:
IWPC Š02. IEEE, S. 271Ű278, 2002.

[RZ09] Robertson, Stephen; Zaragoza, Hugo: The Probabilistic Relevance Framework: BM25
and Beyond. Found. Trends Inf. Retr., 3(4):333Ű389, April 2009.

[Si16] Singh, Alka; Henley, Austin Z.; Flemming, Scott D.; Luong, Maria V.: An Empirical
Evaluation of Models of Programmer Navigation. In: ICSME2016. IEEE, S. 9Ű19, 2016.

[SKL06] Strein, D.; Kratz, H.; Lowe, W.: Cross-Language Program Analysis and Refactoring. In:
SCAMŠ06. IEEE, S. 207Ű216, Sept 2006.

[SR15] Stehle, Tilmann; Riebisch, Matthias: Establishing Common Architectures for Porting
Mobile Applications to new Platforms. In: WSRE2015. GI-FG SRE, S. 26Ű27, 2015.

[Th13] Thalheim, Bernhard: The Conception of the Model. In: BIS2013. S. 113Ű124, 2013.

[Th17a] The Apache Software Foundation: , Apache Lucene Core, March 2017.

[Th17b] The Apache Software Foundation: , Lucene.net, 2017.

[Ti01] Tichelaar, Sander: Modeling object-oriented software for reverse engineering and refacto-
ring. Dissertation, University of Berne, 2001.

[Ud13] Udagawa, Yoshihisa: Source Code Retrieval Using Sequence Based Similarity. Journ.
IJDKP, 3(4):57Ű74, July 2013.

[Un17] Unity Technologies: , Unity - Game Engine. https://unity3d.com/de/, 2017.

[Xa17] Xamarin Inc.: , Xamarin. https://www.xamarin.com/, 2017.

[ZLL13] Zhou, J.; Lu, Y.; Lundqvist, K.: A Context-based Information Retrieval Technique for
Recovering Use-Case-to-Source-Code Trace Links in Embedded Software Systems. In:
Euromicro Conference on Software Engineering and Advanced Applications. S. 252Ű259,
Sept 2013.

228 Tilmann Stehle, Matthias Riebisch

Praxisforum Ű Eingeladene
Industriebeiträge

Praxisforum

Modellierung stellt eines der wichtigsten Hilfsmittel zur Beherrschung komplexer
Systeme dar. Die Themenbereiche der Entwicklung, Nutzung, Kommunikation und
Verarbeitung von Modellen sind dabei so vielfältig wie die Informatik mit all ihren
Anwendungen selbst.

Die in zweijährigem Turnus durchgeführte Fachtagung MODELLIERUNG wird vom
Querschnittsfachausschuss Modellierung der Gesellschaft für Informatik e.V. seit 1998
durchgeführt und hat sich als einschlägiges Forum für Grundlagen, Methoden, Techniken,
Werkzeuge sowie Domänen und Anwendungen der Modellierung etabliert.

Schon immer lag ein Schwerpunkt der Tagung auf dem Austausch zwischen Praxis und
Wissenschaft. Dies wird auch 2018 durch das Praxisforum weitergeführt.

Das Praxisforum bietet die Gelegenheit, über die Anwendung und Umsetzung von
Konzepten, Techniken und Werkzeugen der Modellierung in der Praxis zu berichten.
Dabei werden insbesondere gewonnene Erfahrungen sowie aktuelle Probleme und
Lösungsansätze ausgetauscht.

Um die Qualität der Beiträge hochzuhalten, wurden für das Praxisform dediziert Praktiker
angesprochen, um umfassend über Erfolgsgeschichten und Fehlschläge im Umgang mit
Modellen in der Praxis zu berichten. Dabei wurden insgesamt 6 Vorträge von Vertretern
unterschiedlicher Firmen ausgewählt. Im Konferenzband enthalten sind schriftliche
Ausarbeitungen zu 5 der Vorträge. Komplettiert wird das Praxisforum durch 5 weitere
Vorträge von Vertretern der Sponsoren der Tagung. Entstanden ist dadurch ein
ausgewogenes Programm mit Themen, die von der pragmatischen Nutzung von Modellen
in agilen Softwareentwicklungsprojekten bis hin zur Nutzung von Modellen in
sicherheitskritischen Anwendungen reichen.

Braunschweig, im Februar 2018

Andreas Vogelsang, Technische Universität Berlin

Daniel Méndez, Technische Universität München

doi:18.18420/to-be-provided-by-editor

Implementing Knowledge Management in Agile

Projects by Pragmatic Modeling

Harald Störrle1

Abstract: Background: Team knowledge is diluted and destroyed through domain
evolution and staff turnover. A challenge to any project, agile projects are particularly
vulnerably as they rely more on tacit knowledge than plan-based approaches. Increasing
project sizes and durations deteriorate this situation. Introducing documentation and
modeling to turn tacit into explicit knowledge as exercised in traditional approaches is
perceived as costly, and impeding with agility.
Objective: We want to improve agile practices for large, long-running projects by
adopting and adapting long-standing modeling practices, challenging these practices in
the process. We aim to establish a more pragmatic view of what should be considered a
model, and how complex system models could be organized to better support their usage.
Method: We propose several additions and changes to existing agile practices, and a
new notion of model. We highlight how models are used in industry, and how existing
modeling languages and tools might be improved to better support these usage modes.
Results: We have successfully implemented our approach in a large project. A transfer
to a smaller, more typical agile project in a different environment is under way.
Conclusions: Modeling can be a valuable and appreciated addition to agile development
projects. However, this requires a pragmatic approach beyond the conventional wisdom of
MDE and academic modeling practices. A broader view on what models and modeling are
is useful in practice, and offers relevant new research questions.

1 Introduction

Over the past 20 years, agile approaches to software development have evolved from
innovation to main-stream. The “home ground” [Bo02, p. 64] of agile approaches
are smaller projects in dynamic environments with few external constraints. Push-
ing for the limits, though, practitioners have attempted to apply agile practices
also to large and long-running projects in complex domains or highly regimented
environments, facing substantial “barriers” [BT05, p. 30]. In this paper we argue
that the commonality in all these barriers is the (un)availability of knowledge in a
team.

1 Dr. Harald Störrle, Principal IT Consultant, QAware GmbH, Aschauer Str. 32, 82152 München,
hstorrle@acm.org

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 233

https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/18.18420/to-be-provided-by-editor
hstorrle@acm.org
https://creativecommons.org/licenses/by-sa/4.0/

2 Harald Störrle

Obviously, software engineering is a highly knowledge-driven activity, making soft-
ware engineers prototypical knowledge workers [CM04], and underscoring the im-
portance of knowledge sharing. Agile approaches acknowledged this from the start,
aiming to “reduce the cost of moving information between people” [CH01, p. 131] by
striving to “replace documents with talking in person and at whiteboards” (op cit.).

Therefore, agile approaches tend to “focus on individual competency as a critical

factor in project success” [CH01, p. 131], relying critically on tacit knowledge (“in
the heads of the team members”) [Bo02], and de-emphasizing the role of explicit
knowledge as expressed in documents, models, and other artifacts.2 Clearly, relying
on tacit knowledge presents a critical challenge for agile approaches when faced with
large teams, high staff turnover, or long running projects [NMM05, BT05, Hi03].
Consider these factors in how they affect knowledge in a development team.

• Team Size: With increasing team size, it is more and more unrealistic to
assume that all team members are exchangeable, with the same level and
profile of expertise, interests, strengths, and experience. Thus, larger teams
will exhibit an increasing differentiation of roles filled within a team. Inevitably,
team structures will emerge, be they formal or informal.

• Staff turn over: Clearly, when knowledge is primarily tacit (“in the heads”),
removing experienced and knowledgeable members from the team also removes
knowledge from the team. Explicit knowledge codified in documents, on the
other hand, is much less affected by staff turn over.

• Long-running projects: Regardless of staff turnover, passing time alone
brings about changes in the application domain, system structure, and tech-
nologies used. Therefore, knowledge decays over time: similar to technical
debt accumulating with interest over time, technology and domain “inflation”
depreciate the value of knowledge. Unlike staff turn over, however, these
changes affect tacit and explicit knowledge in similar ways: both of them
decay and need active effort to keep up to date.

In short: staff turn over amounts to knowledge loss and the inevitable differentiation
of growing teams impedes with agile practices to compensate loss of knowledge.
Conventional measures to turn tacit knowledge into explicit knowledge, i. e., docu-
mentation and modeling, are no solution: Simply transplanting such approaches
and saddling developers with these tasks risks agility [BT05, p. 34], and does not
solve the issue of knowledge decay, thus limiting their expected benefit. This leads
to the research question we explore in this paper:

2 Davenport and Prusak define knowledge as “a fluid mix of framed experience, values, contextual
information, and expert insight that provides a framework for evaluating and incorporating
new experiences and information. [...] In organizations, it often becomes imbedded (sic.) [...] in
documents or repositories [...]” [DP98, p. 5]. See [Po66] for an explanation of the dichotomy of
tacit and explicit knowledge.

234 Harald Störrle

KM throug pragmatic modeling 3

RQ: How can we adapt existing methods to reduce loss or decay of knowl-
edge in large, long-running agile projects, yet maintain agility as far
as possible?

In this paper we report on a project that overcame this challenge by re-interpreting
what it means to model, and how models can be used as an effective knowledge
management medium. Our observations generalize to projects that start out highly
agile, and evolve into a more moderate pace as they mature, addressing the needs
of increasing business criticality.

2 Documentation in practice

In order to turn implicit knowledge into explicit knowledge, it must be committed
to writing (or drawing) in one form or another. This inevitably results in (large)
sets of documents in a multitude of more or less organized storage spaces. Typically,
there would be a mixture of shared drives with a folder hierarchy of many docu-
ments in different formats, quite possibly with some “proper” models3 mixed in.
Additionally, there might be wikis, paper documents, posters and drawings on walls
and whiteboards, and the proverbial personal drawer. Clearly, it is difficult to find
information in such a setting, and even more difficult be sure that a particular bit
of information is missing. This makes adding and updating documents error-prone,
increasing the burden of documentation further. As a consequence, information
gaps, duplicates, and diverging variants of documents appear increasingly. In short,
the cost-benefit proposition of such a form of documentation is not compelling.

Another way of documenting large scale systems is by creating comprehensive
models. However, as such models get large, structuring them offers a challenge of
its own [St10]. Also, whatever modeling language is used, it is not as universally
(and proficiently) adopted as natural language, and improvised sketches. Then,
all existing modeling languages have more or less severe shortcomings, and often
are not a good match for the application domain. For instance, UML has been
criticized repeatedly for the lack of perceptual support and conceptual clarity [FS07].
Finally, existing modeling tools fall short of users’ legitimate expectations regarding
functionality and usability.

Among the many forms of documentation frequently found in real projects, two
stick out. First, there are many informal diagrams which team members would use
to illustrate a point, or supplement communication with one another, clients, or
other stakeholders. In order to clearly separate them from the more regimented
and restricted diagrams found in UML and similar languages, we will use the name

3 In the remainder, we use the term model to refer to such “proper” models, i. e., expressed in one
of the common languages like UML, created by a specific tool, and offering diagrams along with
semantic structures.

Implementing Knowledge Management in Agile Projects by Pragmatic Modeling 235

4 Harald Störrle

sketch for these artifacts. Sketches are very widely used [BD14], and often resemble
well-known notations such as class diagrams.

Second, one often discovers documents with model-like content in a fairly rigid
structure, with no attached visualizations but created mainly for human users.
For instance, data models might be described as text documents with a section
per entity containing a table of fields/columns and their respective properties.
Likewise, one often sees spreadsheets with lists of REST-endpoints, use cases, or
states and applicable triggers. So, following generic definitions of models in software
development [St73, Lu03, Ma09], we maintain that for all intents and purposes,
structured text or tables can act as models. In the remainder, we call such documents
modeloids.

Fig. 1: Models, Diagrams, and Modeloids: differentiating the content from the presentation
aspect

With sufficient effort, both sketches and modeloids could be transformed into
“proper” models, at least to a substantial degree. Quite possibly, we might have
to add either comments to capture the prose description of modeloids, or visual
annotations and colors to mimic the visual appeal of sketches. Of course, it is
questionable whether spending this effort is justified by the benefit, and whether it
is realistic to expect this to happen in practice. In both cases, in our experience, the
answer is no. This begs the question how we could use sketches and modeloids as
elements in knowledge management of software development projects rather than
“proper” models.

3 Pragmatic Agile Documentation

Our approach combines three major elements: a single unified repository, improved
access paths, and content curation.

236 Harald Störrle

KM throug pragmatic modeling 5

3.1 Single unified repository

Development projects typically use shared drives, version controlled repositories,
wikis, ticket systems, chats, emails, various forms of dedicated collaboration software
(e. g. Slack, Google Docs), along with conventional modeling tools, and analog
media. The existence of multiple storage spaces is obviously an impediment to
finding explicit knowledge, and keeping it consistent and up to date. So, the first
goal is to integrate all existing sources of documentation into a single Project and
System Knowledge Base (PSKB).

In practice, there will never be a single, unified storage for all documents. We can
strive to reduce their number, though, and impose clearly defined usage roles. We
suggest to use an enterprise strength wiki system as the information backbone. It
offers several advantages over the classic documents-in-subversion approach.

• comprehensive Wikis allow all forms of documents, from simple wiki pages
with embedded images and links, to attachments (including modeloids);

• contextuality Wikis easily allow to provide context to all documentation
elements;

• changeable Grace to the simplicity of mark-down and the built-in straight-
forward version tracking on individual pages, it simplifies changing it and is
forgiving in the face of errors;

• collaborative Wikis facilitate distributed collaboration across organizations.

In our case, we use the pre-existing Confluence wiki. Apart from already being in
place and widely used, it offers rich functionality, including integration with Jira
and HipChat.

3.2 Improved access paths

In order to cater for different capability levels and tastes of different users, we
provide multiple alternative access methods to the information in the knowledge
base. The Confluence wiki comes with a built-in conventional full-text search and
sophisticated filtering. Information spaces are organized in a tree-structured page
hierarchy, that allows users to navigate the tree very much the same way they would
navigate a directory hierarchy.

Additionally, we also provide a visual path to knowledge through Visual Access
Maps (VAM). VAMs are (large) diagrams representing important aspects or parts
of the overall system or project, where diagram elements are instrumented with
links to pages or attached documents that provide more detailed information to
that element. For instance, the system architecture map affords links to the major
neighboring systems, subsystems, interfaces, data items and use cases. It is irrelevant

Implementing Knowledge Management in Agile Projects by Pragmatic Modeling 237

6 Harald Störrle

whether these diagrams follow any particular well-defined syntax, whether they
overlap, or what aspect they cover – organization charts or marketing can be as
useful as ER diagrams or UML Assembly Diagrams4. Particularly, informal sketches
can be used as well as “proper” diagrams. That way, existing diagrams can be
reused with little additional effort.

Likewise, it does not matter what the elements link to. A link’s target my be another
diagram (i. e., zooming into a refinement), a wiki page with some description, an
attached slide set with a high-level description, or a lengthy table with detailed
information. Or, in fact, a combination of the above. Additional elements that do
not naturally fit into given model structures (e. g., a glossary) may be included by
simply adding a document icon with a link.

Upgrading existing diagrams to VAMs allows user to more easily relate to the
new structure. Also, reusing existing material makes for a faster bootstrap of the
new documentation approach and thus supports overall project agility. Contrary to
intuition, it is not cheaper, though, as most of the effort stems from stratifying the
diagram (improving layout, closing gaps), and adding links to it. Obviously, the
more abstract and high-level these diagrams are, the lower the change rate, and,
thus, the smaller the maintenance effort. Either way, keeping such diagrams up to
date is part of the ongoing curation process (see below).

Using all forms of improper models directly, we not only save the effort of trans-
forming them into proper models, but also ensure that the stakeholders who created
them can also maintain them, even if they do not speak whatever modeling language
is “the right one”. Working with what we actually find, and changing as little as
possible also allows us to progress much more quickly—no big up-front efforts are
required. This way, it is possible to adopt a modeling approach in an agile project.
By focusing on existing documents we ensure that the right pieces are documented:
if people found it necessary to write the documents, they are obviously worthwhile.
Also, there is no risk of impeding agility by burdening a team with unwanted
documentation.

All in all, the PSKB created this way very much resembles a large, well-organized
UML model with many diagrams in a proper modeling tool, except that it readily
incorporates all kinds of diagrams, and all kinds of information. Syntactic and
semantic restrictions embedded in UML (or any other language) no longer apply.
This new-won freedom must be used with care, though, to ensure a prolonged
usefulness of the overall structure.

4 Also known as Part-Port-Diagrams

238 Harald Störrle

KM throug pragmatic modeling 7

3.3 Content curation

Content curation consists of two parts. First, building the knowledge base requires
an initial, one-time effort to transform existing elements of documentation and
consolidate them into an the PSKB. In our case, the pre-existing wiki-page hierarchy
needed to be re-organized, cleansed, and consolidated. The pre-existing multiple
large documents needed to be split up and inserted into the PSKB in suitable
places.

Second, in order to maintain the quality level reached, ongoing curation is indispens-
able. We suggest to add the dedicated role of Knowledge Manager, supplemented
by cyclic team efforts (“Documentation Day”) similar to refactoring of source code
and system structure. Repeated reminders in sprint retrospectives serve to maintain
a focus on the quality of documentation. We used a list of knowledge gaps for
identified “undocumented important knowledge” and “known unknowns”, and a
ticket system for larger issues with the existing documentation.

4 Case Study: RepairResearch

In this section we describe the RepairResearch (RR) project in which we developed
our approach. RR has been launched by a major premium car manufacturer to
support after sales activities, mainly maintenance, repair, and upgrade of vehicles.
Each week, information on over 220,000 vehicles is delivered to approx. 5,000 parties
world wide via RR.

The RR system consists of over 220 KLoC of source code (mostly Java) and employs
substantial amounts of 3rd-party code. Launched in 2011, over 130 person-years have
been spent creating RR (not counting client efforts). In total, over 60 different people
have worked on this project. The staff size (including client-side personnel) ranged
from 20 to 35 people, and is currently at 26 people (19.3 full time equivalents), with
some more loosely attached.

Starting with hardly any documentation, the number of people involved and the
(inevitable) staff turnover required more and more elements of explicit knowledge.
Also, realizing the criticality of the application and the knowledge monopoly of
particular individuals, the client demanded conventional documentation. Initially,
there was a wiki with over 500 pages, more than 900 attachments (more than 700
images, 145 documents), and a total volume of almost 300MB. There were three
shared drives with a combined volume of over 200GB, in almost 15,000 folders
with approx. 100,000 files. The so called System Handbook alone comprised 400
printed pages, and was complemented by handbooks for architecture, maintenance,
configuration management, and users. There were several overlapping glossaries,

Implementing Knowledge Management in Agile Projects by Pragmatic Modeling 239

8 Harald Störrle

and many versions of project plans, organization charts and similar diagrams. Many
team members had (outdated) copies of subsets of these resources.

While a great deal of information was technically available, many team members
(client side as well as supplier side) felt that actually very little information was
practically available. This was particularly felt by new team members and those
whose work required familiarity with multiple topics. Probing deeper, the following
reasons for this perception appeared.

• Location Multiple storage locations contained overlapping or complementary
information.

• Access The stores had different, and sometimes difficult to use access paths;
full-text search covered only part of the storage.

• Obsolescence Some (parts of) information resources were outdated/obsolete.
• Ambiguity Information in different places was partially inconsistent.
• Gaps Even considering all information stores, there were many actual gaps

in the documented knowledge.

Judging from past projects, we consider this size and state typical for a project
of this scope and age, irrespective of whether they apply agile practices or not.
However, agile practices with the emphasis on code rather than other artifacts are
bound to suffer more from the impact of unregulated proliferation of documentation.
This is when the RR project decided to meet the challenge by a dedicated knowledge
management effort. Knowledge management has been an official role in RR since
2014, though the activities were low-key. In early 2016, a large number of experienced
team members were shifted out, both client side and supplier side, leading to
increased demand of the remaining experts, and requests for more explicit knowledge.
By autumn 2016, knowledge management activities were ramped up resulting in the
solution described in this paper. The projects adopted the approach in late 2017.

Our experience so far is promising: team members report improved quality and
availability of system and project knowledge, which is felt almost immediately.
However, it might be that the benefits we experience are due to the initiative as
such (Hawthorne effect). Also, it appears that the investment up to this point was
well-spent and yields a positive return on invest. However, it is too early to say
whether our approach is truly sustainable and self-perpetuating. This can only be
judged in hindsight, that is, in a few years. Finally, we have no hard evidence on
the relative sizes of cleaning up obsolete and overlapping documents, filling actual
gaps, improving access by visual access, and unifying storage locations. Thus, this
case is but a first exploration into the opportunities.

We observed that implementing the PSKB did not in any way displace the existing
system and domain experts—they were just as sought after for sharing personal
insight as the were before. However, they reported ‘questions to become “more

240 Harald Störrle

KM throug pragmatic modeling 9

interesting” as many simple questions can now be answered by other team members.
The effort of building and maintaining the PKSB are so far smaller than expected.
The initial set up effort amounted to roughly 40 person-days (8% of a project-month),
and ongoing curation comes at 1-2 person days per month (2-3% of a project month).
Periodic “documentation days” cost roughly a full person-day of a quarter of the
team every three months (1-2% of a project month). Altogether, this amounts
to 10% of a project month once, and 2-4% of the budget continuously, on top of
whatever effort was spent by individuals for creating specific bits of knowledge,
which did not change.

5 Related Work

Davenport and Prusak’s seminal work [DP98] defines knowledge in the sense used
in this paper, and Polanyi supplements the distinction between tacit and explicit
knowledge [Po66]. Schneider provides a comprehensive and accessible introduction
to knowledge management in the context of software engineering [Sc09]. Scientific
reviews of the field are provided in [BD08, RL02], though both are somewhat dated
and shed little light on KM practices in agile projects.

Primary research about KM for SE in SMEs using agile practices goes back to
[Di02], where post-mortems, pair programming, and team rotation are highlighted
as effective knowledge sharing practices. As we have outlined in the introduction,
these practices are limited in scope to small projects with stable teams and little role
differentiation. Maurer [Ma02] examines limiting factors to scaling agile approaches,
but considers only alternatives to co-location, sidestepping growing team size and
project duration.

There are three popular flavors of applying agile principles in larger scale projects:
Large Scale Scrum (LeSS)5, Disciplined Agile Delivery (DaD)6, and the Scaled Agile
Framework (SAFe)7 (see [He] for a comparison of these approaches).

Chau et al. [CMM03] compared the knowledge management mechanism of agile
and plan-based development projects. Dorairaj et al. [DNM12] acknowledge that
knowledge management is an important part of agile development projects, and
report on a qualitative study of practitioners experienced in large scale agile projects.

6 Conclusion

Agile approaches to software development live by the assumption that “direct

communication is more effective than documentation” [Ma02, p. 14] which is a

5 https://less.works/

6 http://www.disciplinedagiledelivery.com/agility-at-scale/large-agile-teams/

7 http://www.scaledagileframework.com/

Implementing Knowledge Management in Agile Projects by Pragmatic Modeling 241

https://less.works/
http://www.disciplinedagiledelivery.com/agility-at-scale/large-agile-teams/
http://www.scaledagileframework.com/

10 Harald Störrle

“limiting factor for scalability” (op cit.). As projects grow in size and lifetime, the
mechanisms proposed to promote knowledge sharing in agile environments (stand
ups, retrospectives, rotation, wiki) become more and more ineffective. Traditional
formats of explicit knowledge (i. e., documentation) like models or prose documents,
however, are not considered cost-effective. So, we propose a novel approach that
amalgamates elements from both worlds into a wiki hypertext structure, integrating
proper diagrams and sketches, as well as proper models and model-like documents
(“modeloids”). Arbitrary elements may be attached to wiki pages. Visual access
maps facilitate finding elements of knowledge. Our approach is practical, and has
proven its viability in a real world, very large agile project.

We are currently applying our approach to a second project with a very different
context. In particular, this new case study has a much smaller team size, more like
the typical agile project. This project will teach us how to adapt our approach for
smaller projects, and whether it is still economically (and practically) viable under
those circumstances.

References

[BD08] Bjørnson, Finn Olav; Dingsøyr, Torgeir: Knowledge Management in Software
Engineering: A Systematic Review of Studied Concepts, Findings and Research
Methods Used. Information and Software Technology, 50(11):1055–1068, 2008.

[BD14] Baltes, Sebastian; Diehl, Stephan: Sketches and Diagrams in Practice. In: Proc.
22nd ACM SIGSOFT Intl. Symp. Foundations of Software Engineering (FSE).
ACM, pp. 530–541, 2014.

[Bo02] Boehm, Barry: Get ready for agile methods, with care. IEEE Computer,
35(1):64–69, 2002.

[BT05] Boehm, Barry; Turner, Richard: Management challenges to implementing agile
processes in traditional development organizations. IEEE Software, 22(5):30–39,
2005.

[CH01] Cockburn, Alistair; Highsmith, Jim: Agile Software Development: The People
Factor. Computer, pp. 131–133, 2001.

[CM04] Chau, Thomas; Maurer, Frank: Knowledge Sharing in Agile Software Teams.
Logic versus approximation, pp. 173–183, 2004.

[CMM03] Chau, Thomas; Maurer, Frank; Melnik, Grigori: Knowledge sharing: Agile
methods vs. tayloristic methods. In: Proc. 12th IEEE Intl. Ws. Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE). IEEE,
pp. 302–307, 2003.

[Di02] Dingsøyr, Torgeir: Knowledge management in medium-sized software consulting
companies. Empirical Software Engineering, 7(4):383–386, 2002.

242 Harald Störrle

KM through pragmatic modeling 11

[DNM12] Dorairaj, Siva; Noble, James; Malik, Petra: Knowledge management in dis-
tributed agile software development. In: Proc. Agile Conf. (AGILE). IEEE, pp.
64–73, 2012.

[DP98] Davenport, Thomas H.; Prusak, Laurence: Working Knowledge: How Organiza-
tions Manage What They Know. Harvard Business School Press, 1998.

[FS07] Fish, Andrew; Störrle, Harald: Visual qualities of the Unified Modeling Language:
Deficiencies and Improvements. In (Cox, Phil; Hosking, John, eds): Proc. IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE CS, pp. 41–49, 2007.

[He] Heusser, Matt: Comparing scaling agile frameworks. CIO Magazine. originally
published 2015-08-21, last acessed at 2017-12-07.

[Hi03] Highsmith, Jim: Agile Project Management: Principles and Tools. Cutter
Consortium Reports, 4(2), February 2003.

[Lu03] Ludewig, Jochen: Models in Software Engineering – an introduction. J. Softw.
Syst. Model., 2(1):5–14, 2003.

[Ma02] Maurer, Frank: Supporting Distributed Extreme Programming. In (Wells, Don;
Williams, Laurie, eds): Proc. 2nd XP Universe, Proc. 1st Agile Universe Conf.
(XP/Agile Universe). Springer Verlag, pp. 13–22, 2002.

[Ma09] Mahr, Bernd: Information Science and the logic of models. J. Softw. Syst.
Model., pp. 365–383, 2009.

[NMM05] Nerur, Sridhar; Mahapatra, Radha-Kanta; Mangalaraj, George: Challenges of
Migrating to Agile Methodologies. CACM, 48(5):72–78, 2005.

[Po66] Polanyi, Michael: The Tacit Dimension. Doubleday & Company, 1966.

[RL02] Rus, Ioana; Lindvall, Mikael: Knowledge management in software engineering.
IEEE Software, 19(3):26, 2002.

[Sc09] Schneider, Kurt: Experience and Knowledge Management in Software Engineer-
ing. Springer Verlag, 2009.

[St73] Stachowiak, Herbert: Allgemeine Modelltheorie. Springer Verlag, 1973.

[St10] Störrle, Harald: Structuring very large domain models: experiences from indus-
trial MDSD projects. In (Gorton, Ian; Cuesta, Carlos; Babar, Muhammad Ali,
eds): Proc. 4th Eur. Conf. Sw. Architecture (ECSA): Companion Volume. ACM,
pp. 49–54, 2010.

Implementing Knowledge Management in Agile Projects by Pragmatic Modeling 243

Systematic Refinement of CPS Requirements using SysML,
Template Language and Contracts

Markus Grabowski 1, Bernhard Kaiser 2, Yu Bai 3,

Abstract: In these days, we encounter the transition from traditional closed and restricted-purpose
embedded systems towards networked Cyber-Physical Systems. This applies to many industries, but
in particular to the automotive industry, where assistance and automated driving functions are shaped
out of complex combinations of functions and electronic control units, and even the car as a whole
becomes part of a larger network of many vehicles plus infrastructure. Still, veriĄable assertions must
be available in the end to satisfy the safety case. The speciĄcation skills in industry often turn out
to be insufficient. Even today, the mandatory V-model is hard to apply in practice and expressing
appropriate requirements and reĄnements along with the evolution of the architecture is a hard thing
to do. When development becomes agile and centered around component reuse, things become even
more complex. We report about our experience with the application of contract-based development
and explain keystones of our approach. We present a new template language called SSPL that allows
the speciĄcation of requirements and assertions on every system architecture level and show how
contract-based requirements reĄnement can go hand in hand with architecture reĄnement in SysML.
We further present our Eclipse-based tool SAVONA that enables practical application of the approach.

Keywords: contract-based design; template language; system reĄnement; system veriĄcation; cyber
physical systems

1 Introduction

Almost all technology-related industries are facing a rapid transition from formerly closed,
local, restricted-purpose Embedded Systems to open, interconnected and jointly acting
Cyber Physical Systems (CPS), uniting different physical domains with IT and networking
technology. This affects existing industry branches, such as automotive and industrial
automation, but also enables entirely new application Ąelds, such as home automation,
sensor networks, and the Internet of things. This transition can exemplary be observed
by the automotive industry which is forced into the most dramatic transformation since
the invention of the car. Novel assistance functions have arisen, so that in many cases,
sensors and actuators made in a variety of technologies serve for many different functions.
Some of these components have been designed and released years before the functions
they are later used in. Consequently, the original developers of these components had

1 Assystem Germany GmbH, Berlin, Germany, mgrabowski@assystem.com
2 Assystem Germany GmbH, Berlin, Germany, bkaiser@assystem.com
3 Assystem Germany GmbH, Berlin, Germany, ybai@assystem.com

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 245

https://creativecommons.org/licenses/by-nc/3.0/
mgrabowski@assystem.com
bkaiser@assystem.com
ybai@assystem.com
https://creativecommons.org/licenses/by-sa/4.0/

no chances to overlook all future implications, and the architect wanting to reuse an
existing component today does not know under which assumptions it had been developed.
Still, systematic properties like correct behavior and safety have to be validated in the
end. Highly automated driving (HAD) not only accelerates this trend, but also enforces
open interconnections between vehicles and their environment (V2X), because the reach
of on-board sensors is limited and therefore external information about road conditions,
incidents etc. must be received and directly inĆuences safety-relevant maneuver decisions.
The single car is no longer the biggest conceivable system scope, but the whole traffic
system may act as a System-of-Systems (SoS). As new suppliers and off-board services
enter the automotive domain, technologies and development approaches from domains like
IT are harshly contrasting the traditional automotive processes like the V-model. In the light
of these tremendous changes, it can be expected that automotive industries will have to
adapt their way of specifying, developing, and releasing their CPSs towards more agile and
reuse/recombination-oriented approaches. It can be questioned if the traditional V-model
will carry the industry into the future at all, but even in places where the V-model is officially
mandatory, we have observed many Ćaws in its application in industrial practice. Foremost,
these Ćaws affect the Ąrst and most important process phases, the requirements engineering
and architecture speciĄcation. Requirements found in practice are often imprecise or badly
put in words, although the use of template languages has been encouraged for many years
[HJD04]. SpeciĄcations from car OEMs to suppliers often include many details about
process aspects like manufacturing, environmental tests, standards compliance etc. but
when it comes to the core function of the component (e.g. steering controller, radar sensor),
there is not much of the componentŠs behavior speciĄed in detail. Additionally, when Safety
Integrity Levels (ASILs) are assigned, it is sometimes not clear which property or service
exactly is subject to the ASIL. Moreover, requirements are often stated on a wrong scope.
For instance, a requirement towards a radar sensor, specifying the initialization of a braking
action when detecting certain obstacles, is clearly a requirement on vehicle scope, but not
on sensor scope; nevertheless, such kinds of requirements are often found in speciĄcations
towards the radar sensor supplier. On supplier level, requirements on system level are simply
passed through to software component developers, without performing the architectŠs core
duty: to decompose the requirement into sub-requirements for each component and verify
that the whole shows the expected behavior. Requirement speciĄcations are sometimes
only exchanged at project setup and not further kept up-to-date so that their usefulness as a
reference for veriĄcation and safety case creation can be doubted. Backward requirements
from suppliers to the OEM or assumptions about the usage environment are usually not
formally captured. Flaws in implementation or veriĄcation are often the consequence, in
the worst case leading to actual safety risks. Contract-based development approaches have
become more and more mature and popular in the last couple of years and actually have
the potential to support better requirements reĄnement, in particular when combined with
model-based development. Template-based assertion and contract speciĄcation languages
brought up by recent research projects [CE10, Bo15] have contributed a lot, but still need to
be extended to allow expressing all necessary kinds of requirements on system and software
level.

246 Markus Grabowski, Bernhard Kaiser, Yu Bai

In this paper, we present an advanced template language that goes another step in transferring
contract-based development approaches into industrial practice, allowing the stepwise
requirements reĄnement to go hand in hand with model-based system design. After
collecting some requirements regarding a modern speciĄcation process that have guided us
when developing our approach, we will brieĆy give a short introduction on contract-based
design and template languages, as those are the key ingredients of our methodology. After
that, we present our System Specification Pattern Language (SSPL) with which behavioral
system properties can be described in a well readable and unambiguous way. Furthermore,
we describe the method of utilizing contract-based design and SSPL in a stepwise system
reĄnement process [Ka15]. Additionally, we shortly introduce our tool framework SAVONA,
which implements the method and offers support for creating system models and template
expressions and allows early system veriĄcation. At the end, we report on a Ąrst experience
with our approach applied on a research case study.

2 Requirements towards an approach to address these issues

Based on our own industrial project experience, we have collected some requirements for a
speciĄcation method that could help industrial companies mastering the aforementioned
challenges. The approach should not be restricted on a Waterfall or V-Model, but also
allow going bottom-up, i.e. assembling a new system from preexisting function blocks
or practicing agile development methods. It should address the system level and multi-
physics domains, thereby be based on industry-accepted standard languages such as SysML,
Simulink, Modelica, AADL, and the like. This implies interfacing to standard tools
and supporting co-working at different sites on black-box-level, which helps protecting
intellectual property. Tools exploiting the speciĄcation technique should provide side-by-
side development of architecture and requirements, thereby allowing the speciĄcation of
requirements on every level of the architecture. A Ąxed order of requirements formulation and
architecture modeling should not be imposed. All requirements or assertions shall be bound
to architectural components and formulated on their scope by only referring to externally
observable behavior at the componentŠs ports without making any assumptions about the
internal design and implementation. A central point is the guided and veriĄable reĄnement
of the requirements of the super-component onto the requirements of its sub-components.
Regarding the speciĄcation language for requirements or properties, the key requirement
is sufficient expressive power for most kinds of embedded systems and CPS, not stopping
at standard phrases like ŠThe System shall <perform action>Š. A highly extensible and
adaptable language is needed which still has a precisely deĄned syntax in Backus-Naur-Form
(BNF) or similar to enable automated parsing or bottom-up construction using a template
editor. If architecture development and requirements speciĄcation go hand in hand, the
architecture model including class hierarchy is a natural source for an ontology of terms to
be used. To assure correct and safe operation of the highly integrated system and to assure
safe reuse of components in the future, it is necessary to capture not only the requirements

Systematic ReĄnement of CPS Requirements 247

towards a component, but also the assumptions towards the operational environment under
which the component has been developed.

One approach that seems speciĄcally suited to match these requirements is contract-based
development (CBD), that will be at the core of the approach presented in this paper and
will be explained in more details below. However, with its origins in formal software
speciĄcation, existing approaches to CBD do not fulĄll all of the listed requirements. We
will complement CBD with approaches to specify assertions by templates that are close
to natural English languages for better understandability. We will also tightly integrate it
with architecture modeling, centered about SysML Internal Block Diagrams (IBD) as the
modeling technique for the static system and software architecture on all levels before more
speciĄc modeling techniques like Simulink, UML, or hardware block diagrams take over.

3 Fundamentals and related work

In this section, we give a short introduction to contracts and contract-based design.
Additionally, speciĄcation languages for requirements and contracts are discussed. Since
these topics are quite extensive we will also refer to some fundamentals and only shortly
outline related work.

3.1 Contract-based design

Initially intended as a veriĄcation method for sequential software, Bertrand Meyer [Me92]
introduced Contracts using preconditions (which must hold at program entry), post-
conditions (which must hold at program exit), and invariants (which must hold at every
point in time). This idea has been adopted later to component-based software and system
development. A system applying the ’contract-based’ design is represented by a system
model containing components, ports and signals. The system itself is seen as a hierarchical
composition of components, which can exchange information, energy or mass Ćow through
their interfaces, called ports, that are connected to each other via signals. In the contract-based
design paradigm, contracts are deĄned using assertions that allow black box speciĄcations
of components, which means while describing inputs and observable behavior from the
outside, the inner (structure and) working remains unknown. Those assertions need to
be distinguished between assumptions about conditions of their environment and the
guarantees that can be provided given that the assumptions are fulĄlled. This separation
into assumptions and guarantees allows arguing about the functioning of a component
composition, as for every contract can be veriĄed whether the assumptions are met by the
guarantees.
Applying contracts on a system and its components can lower the complexity of verifying the
implementation against the speciĄcation. Fig. 1 shows an example of a contract speciĄcation
for an airbag system. The systemŠs contract speciĄes that the airbag expects a given value

248 Markus Grabowski, Bernhard Kaiser, Yu Bai

Fig. 1: Example of a contract speciĄcation

range on the input port acceleration. If that assumption is fulĄlled the airbag guarantees that
whenever the value decreases below a certain value it sends a current pulse within 50ms.
The system is decomposed into two subsystems each having one contract. By assuming that
the functionality on subsystem IgnitionUnit depends on the output of subsystem sensorUnit

and that the subsystems would not be annotated with contracts, validating the contract of
the overall AirbagSystem would be very complicated, as the composed behavior of both
subsystems has to be computed, leading to large state spaces. By using contracts for the two
subsystems, we can validate the sub-contracts locally and avoid the complex state machine
composition [Ci12].

3.2 Template languages

Because formal expressions are hard to write and understand by non-experts, there is a
huge suppression in using them. That turns out to be very unfortunate as they provide many
striving characteristics, with which requirements engineering processes would beneĄt from.
A well-deĄned syntax and semantics offer only one way to interpret statements, making
things like automatic validation, tracing etc. possible. Expressions in natural language might
be easier to read, but they have no constrains in syntax and semantics resulting in ambiguous
statements which make automation nearly impossible without further work. In addition,
they will likely always need a person with an appropriate domain knowledge to interpret
and validate the expressions correctly.
Template Languages can close the gap between purely formal and unconstrained natural
language. They provide a well chosen set of allowed sentence patterns, which results in a
straight syntax to unify expressions making it easier to read for the recipient. Ideally, the
template language also has unambiguous semantics, leaving only one way to interpret an
expression. As an example, Hull et al. [HJD04] proposed to use Requirement Boilerplates

like ŠThe <system> shall <function> <object> every <performance> <units>.Š, where

Systematic ReĄnement of CPS Requirements 249

<keyword> are placeholders to be replaced by the requirement engineer. Similar approaches
have been done by [IKD09, Ma09, DSS12]. Having an expression written in a speciĄed
syntax and semantics, a machine, which has knowledge about the used grammar, can now
parse and process it further allowing automatic veriĄcation. With this, template languages
have the same advantages as formal languages. In addition, they feature a better readability
as they are only constraining natural language instead of expecting formal expressions. The
only drawback is the overhead of assigning keywords a meaning, so that a machine can
interpret them correctly.

4 System Specification Pattern Language (SSPL)

In a previous work [Gr17], we analyzed existing template languages to Ąnd out why
those are not currently used in practice yet. We focused on the semi-formal languages
Goal and Contract Specification Language (GCSL)[Bo15], Requirement Specification

Language (RSL)[CE10] and the Property Specification Pattern (PSP)[Au15] as these are
able to describe system behavior and have inĆuence on research and/or industry. Other
than that, they featured a well-deĄned semantics in combination with the possibility of
being translatable to a veriĄable formal language. Language attributes like readability and
expressiveness were evaluated by expressing real industrial system requirements with the
respective languages. Others like formalization capabilities have been evaluated by the
completeness of syntactic and semantic deĄnition. We found that none of the languages
features a highly readable and expressible syntax while providing unambiguous (and formal)
semantics. That gave us reason to come up with an own template approach called System

Specification Pattern Language (SSPL), which improves on the deĄcits of existing template
languages.

4.1 Language Characteristics

To represent an applicable speciĄcation language, SSPL has been designed to feature highly
readable and well understandable expressions. We ran a study [Gr17] on the acceptance
of our template expressions from a readersŠ perspective and showed that SSPL performed
strictly better than other template languages and is even received as less ambiguous than
natural language.
SSPL enables the speciĄcation of simple and complex system behavior by allowing chains
of basic expressions. We were able to achieve an overall translation rate of about 92%[Gr17]
of all functional requirements from an automotive light system speciĄcation provided by
Daimler within the project ASSUME4. A full description of the language as well as its
syntax in Backus-Naur-Form and semantics in temporal logic can be found in [Gr17], where
we also provide supporting materials such as a language manual for an easy application of

4 Affordable Safe and SecUre Mobility Evolution. http://assume-project.eu/

250 Markus Grabowski, Bernhard Kaiser, Yu Bai

the language. Within this paper, we will shortly introduce the three general pattern types of
SSPL that are used to express functional system behavior:

Global Invariant Patterns allow the deĄnition of conditions that need to hold without
any constraints. They have no restricted scope and need to be fulĄlled at all points in time.
An example for this type of pattern would be

supply_voltage is always less than or equal 14V.

Trigger-Reaction Patterns specify system behavior that stands in some trigger-reaction
relation to each other. That is why this pattern type is the most important one when it comes
to the speciĄcation of system behavior. In SSPL, the reaction must occur at some point in
time after the trigger is fulĄlled, even if the reaction time is instantiated with e.g. 0ms. If a
simultaneous reaction is desired, please refer to the Simultaneity Patterns.
The Trigger-Reaction Patterns always feature the basic structure ŠWhenever <trigger>
then in response <reaction> within <time>Š, where the trigger and reaction parts can be
replaced by various expressions. A possible pattern instance would be

Whenever sys_temp increases above 120°C while temp_warning is ’OFF’

then in response temp_warning changes to ’ON’ within 50ms and then
sys_state changes to ’CRITICAL’ within 30ms.

Simultaneity Patterns describe the dependent fulĄllment of two or more conditions at the
same points in time. Equivalent to the logical implication, these patterns allow expressions
like

While voltage is less than 3V , start_up does not occur.

Each general pattern type features a variety of possible instantiations to support a broad
band of different system behaviors. Furthermore, SSPL is designed to use an existing system
architecture as ontology to derive suitable keyword replacements such as interface names.
Combining that with a scope restriction on the system component to be described results
in an overall increased quality of speciĄcations.

4.2 Introducing Macros

Sometimes it is unavoidable to use complex expressions within a pattern language, where a
natural language expression would be much shorter or easier to read and understand. That is

Systematic ReĄnement of CPS Requirements 251

why we introduce the concept of typed macros, which extends the expressiveness of our
pattern language towards a DSL while maintaining readability. Other than the approach
of the already existing template languages [Gr08, Au15], we oblige the user to deĄne a
meaning for each natural language phrase by specifying a corresponding pattern language
expression. Macros are not merely text replacement, but are typed according to a class
hierarchy. For instance, event is a built-in type of our language, and the domain engineer can
derive a subclass failure event from it. This way we ensure that even with natural language
elements, all built expressions within our pattern language have unambiguous semantics.
Macros can only replace a non-terminal from the BNF, as the semantics is only guaranteed
to be speciĄed on that level. Terminals can have different meanings due to their context and
can thereby not be used as a macro deĄnition.
To demonstrate the possible advantages of macros, we Ąrst translate the following example
without using them:

NL: Whenever any system critical error occurs the system must enter the safe
mode within 30ms.
SSPL: Whenever any of the following events occur:

- sys_err1 occurs
- sys_err2 occurs
- sys_temp increases above 120°C

then in response sys_mode changes to ŠSAFEŠ within 30ms.

We now want to simplify the pattern expression by replacing the event list with a macro. To
do this, we need to look into the syntax deĄnition of the pattern language and search for the
corresponding non-terminal expression

<any_event_occurs>: any of the following events occurs: <event_list>

We found out that the corresponding non-terminal is <any_event_occurs>, which will be the
type of our new macro we want to deĄne next. To be able to identify a macro more easily
when applied in a pattern expression we chose to underline it

Šany system critical error occursŠ is deĄned as:
any of the following events occur:

- sys_err1 occurs
- sys_err2 occurs
- sys_temp increases above 120°C

After deĄning the macro, we can now use it within our pattern language in every place,
where the non-terminal <any_event_occurs> can be inserted. The resulting expression using
the macro now looks very similar to the original natural language expression

252 Markus Grabowski, Bernhard Kaiser, Yu Bai

NL: Whenever any system critical error occurs the system must enter the safe
mode within 30ms.
SSPL: Whenever any system critical error occurs then in response sys_mode

changes to ŠSAFEŠ within 30ms.

To be even more similar to the original expression, we can deĄne a macro of the type
<var_change> for the change to safe mode. The resulting template expression looks nearly
identical to the original one

Šthe system enters safe modeŠ is deĄned as:
sys_mode changes to ŠSAFEŠ

NL: Whenever any system critical error occurs the system must enter
the safe mode within 30ms.
SSPL: Whenever any system critical error occurs then in response
the system enters safe mode within 30ms.

When using macros it must be considered that there exist some drawbacks in comparison
to pattern expressions without them. Macros introduce a layer of abstraction to the textual
representation of the expression, as actual interface names and values can be masked behind
a natural language phrase. That given, the reader can not directly identify those key elements
and must look for the deĄnition of the macros. There is also the possibility that a bad macro
name is chosen, which could lead the reader to a false interpretation. To be completely sure
on the meaning of an expression that uses macros, studying their deĄnitions is essential.

5 Method and Tool Integration

Only providing the raw templates without any further guidance may result in user despair.
The large number of possible statements or the variety of expressions can easily confuse
the user, making the work harder instead of bringing more ease to it. In addition, the user
might even be unsure at which step during the development process the templates should be
used. At some process steps, it might not be useful or even impossible to apply template
expressions.
In the following section, we provide solutions to all of the problems above. We introduce a
development process that combines the component- and contract-based design approach
with our previously proposed pattern language. Furthermore, we present our prototypical
Tool-Framework SAVONA, which implements the described development process and
allows an easy application of our pattern language.

Systematic ReĄnement of CPS Requirements 253

5.1 System Development Process Using Contract-Based Design

To exploit our template language for integrated architecture reĄnement, we suggest following
the contract-based top-down process Ąrst presented in Kaiser at al. [Ka15]. The chosen

Fig. 2: Activity diagram showing the phases of the suggested contract-based development process of
[Ka15]. Gray activities include the application of SSPL.

development process can be applied to the standard V-Model process and consists of
following phases: System Definition, Formalization, Functional Refinement, Allocation and
Technical Refinement (see Fig. 2). We describe each of them with regards to the interplay
with our template language.

System Definition Phase At the beginning of the development process, the sys-
tem engineer creates a static model of the system architecture. For that, the top-level
interfaces of the system need to be deĄned, as they are essential for the interaction with the
systems environment. The system to be developed is Ąrst modeled as a black box, because
at the current development phase there is no information given on the inner workings of

254 Markus Grabowski, Bernhard Kaiser, Yu Bai

the system. Aside, the top-level system requirements need to be speciĄed. It is advised
that they are captured in natural language at this development phase, as it is much faster
and sufficient for the Ąrst attempt on gathering relevant information. In addition to the
requirements on the system, environmental conditions do also need to be recorded. They
are later used to form assumptions on inputs the system has to work with and to formulate
guarantees the system has to assure in order to fulĄll the environmentsŠ assumptions.

Formalization Phase Next, the requirements and assumptions are formalized us-
ing our SSPL language, which should be supported by a convenient tool, offering natural
language typing with syntax highlighting and/or a template-wizard with pick lists. We
use the existing system architecture as ontology to get information for Ąlling out the
templates, e.g. available interfaces serve as variable names to replace the corresponding
placeholders and available components in the model are potential subjects to requirements.
SSPL formulates assertions, which can be used in the role of an assumption or a guarantee
and can be allocated to any component within the architecture (at Ąrst, the system, which
is the top-level component). It is assured by the tool that only behavioral aspects that are
visible on the current scope can be mentioned in the assertion, i.e. talking about internal
variables or interfaces is not allowed, as well as talking about foreign components. The
possibility to use macros and deĄnitions keeps the assertions compact and readable.

Functional Refinement Phase Until now the system has only been modeled and
speciĄed at its top level. In the functional reĄnement phase, the system will no longer be
considered as a black box, but is reĄned and modeled by using sub-components within the
functional architecture.
This step involves design decisions by the engineer, as he or she comes up with suggestions
on components, which realize the functionality of the current system level, which are
also described on black-box level, addressing only the visible behavior at the ports. Each
new sub-component is initially described by a natural language description and a feature
list. The external interface (the ports) is deĄned and connected to other components via
signals. In order to budget reaction times or value ranges more easily it is suggested Ąrst to
assign assertion to the signals. This involves some arbitrary assignment of sub-functions to
components and some arbitrary budgeting of reaction times, accuracy, ASIL etc., which
is all part of the architectŠs design decisions and should be guided by experience what is
feasible for the later technical implementation of the components. After this assignment and
budgeting, new assumptions and guarantees are formed as template expressions based on
the signal and super-block assertions but tailored to the scope of the component they are
assigned to. This means that only interface names are available for usage in the template
expressions if there exists the corresponding interface on that exact component. The
formalized assumptions and guarantees are bundled as one or more contracts and assigned
to the corresponding components. The contracts are then validated and veriĄed against
the architecture and the other assigned contracts. The validation includes a compatibility

check, which veriĄes that only ports with compatibly types are connected, and a consistency

check, which veriĄes that each constraint in a contract is satisĄable. The most important

Systematic ReĄnement of CPS Requirements 255

veriĄcation step compares contracts on lower architecture level against contracts on the
next higher level and checks whether the sub-components contracts allow the satisfaction
the super-components contracts. This is called refinement check and must in most cases be
performed manually today, by a review that is guided by the tool on detailed level. The more
patterns of our language can be underpinned with formal semantics, the more of this type
of veriĄcation can be performed formally. Detailed information about the formal reĄnement
check of contracts can be found e.g. in [CT12]. The reĄnement is repeated iteratively.

Allocation Phase When the architecture has reached a level of details where ac-
tual technical components can take place of the lowest-level subcomponents, the allocation
phase starts. Each black box component is replaced by one technical component with
matching interfaces. The assigned contracts of the black box component become the
requirements for the technical implementation and the veriĄcation obligations for the
technical components. For each replacement, a Ąnal reĄnement check must be done to
verify that the system contracts are still valid.

Technical Refinement Phase After specifying the system and modeling the static
architecture, it now comes to the creation of dynamic models. Each technical component
of the static architecture needs to be reĄned with a dynamic model (e.g. state diagrams)
which represents the behavior based on its contractsŠ speciĄcation. The dynamic model is
reĄned iteratively until a sufficient model depth is reached and veriĄcation is performed
with existing means (e.g. testing, model checking, simulation) to show for each technical
component that it fulĄlls its guarantees, provided that the assumptions hold.

As shown in [Ka15], the advantage of the contract-based model-integrated approach is
that it works not only in a top-down manner, as suggested by the V- or Waterfall-Model,
but also bottom-up. As long as pre-existing components are annotated with assumptions
and guarantees, they can be stored in a library and reused later in a new context, and
after re-executing the incremental veriĄcation, it becomes clear whether the resulting
system is correct and safe, or the component has to be modiĄed or replaced by another
component due to detected inconsistency. As this plug-and-play approach works quite fast
and contract violations are visible immediately, it supports agile development approaches to
safety-critical automotive systems in an ideal way. In this case, the claim is usually not to
write a complete speciĄcation, but only to Ąx the properties in contracts that absolutely must
be guaranteed (e.g. to fulĄll the safety case) and leave the rest as Ćexible design decisions
to the development team.

5.2 Tool Support

Combining our methodological and template language approaches resulted in the prototypical
tool-framework SAVONA. Based on Papyrus5, it features the creation of system models

5 https://eclipse.org/papyrus/

256 Markus Grabowski, Bernhard Kaiser, Yu Bai

as Internal Block Diagram (IBD), which is provided by SysML. Due to its appearance, it
Ąts perfectly into the component-based design paradigm and fulĄlls the property to model
a static system architecture. In addition, Internal Block Diagrams can be used either in
the system architecture, component architecture or in the hard- and software architecture
by using the same model elements. As SysML is widely used as a modeling language for
system engineers, the users of our tool-framework do not need to get used to any new
modeling language. Additionally, various verification mechanisms have been implemented
to ensure the validity of the modeled architecture, such as the detection on inconsistent port
assignments, detection of invalid connectors, and the detection of cycles within the system
architecture. We thought about different ways to support the user at writing template

Fig. 3: Assertion Editor: Using the IBDŠs static system architecture model as ontology for SSPL
pattern instantiation in SAVONA.

assertions and ended up providing two ways, which allow the user to specify assertions by
using our patterns more easily. The Ąrst option the user has is to use an Assertion Wizard,
which guides him or her through a preselected set of available pattern constructs together
with examples. If the user has decided on a pattern, he or she just needs to adjust minor
details such as variable names or conditional relations until the assertion is completed. The
other option is to directly type assertions in a text editor called Assertion Editor (see Fig. 3),
which features automatic syntax checks content assistance and auto-completion. A more
detailed description of the SAVONA tool and its features can be found in [Gr17].

6 First experience with case study and industry projects

After the initial benchmark of our template approach by translating an automotive light
system speciĄcation provided by Daimler, we are currently applying the method and tooling
on two case studies. Both are provided by us within the AMASS6 project. One of them is a
platoon of model cars with a 1:8 scale, where we want to cope with autonomous driving by

6 Architecture-driven, Multi-concern and Seamless Assurance and CertiĄcation of Cyber-Physical Systems,
https://www.amass-ecsel.eu/

Systematic ReĄnement of CPS Requirements 257

developing a cooperative & adaptive cruise control (CACC).
The other case study we are contributing is a standalone direct current (DC-)motor drive
system, which is used in the model cars. This system is so simple that it allows an easy
understanding and veriĄcation, while still exhibiting all relevant properties of a typical
embedded system, in particular the combination of discrete-state logic with event typed
input signals and continuous-value dynamics with continuous input and output signals.
By applying our proposed model- and contract-based development approach we are are
facing various system properties to design and specify. To give an example, we present the
following natural language requirement that describes a part of the DC-Drives control unit:

ŠIf the measured rotational speed Spd_Act_Meas is less than 1 rpm for more
than 20ms and the rotational speed target Adj_Spd_Tgt is equal 0 rpm then the
voltage output V_Mot to the motor shall be reduced to a range of [0.1V,1V]
within 10ms and stay within that range for at most 15ms. After that, the voltage
output will be set to 0V and remain so until the rotational speed target greater
than 1 rpm for a duration of at least 50ms.Š

Fig. 4 shows a possible signal trace that fulĄlls the given requirement. An appropriate
translation with SSPL results in the following:

Whenever Spd_Act_Meas is less than 1rpm for more than 20ms
and (Adj_Spd_Tgt is 0rpm)

then in response
V_Mot is always in the range from 0.1V to 1V for at most 15ms

starting after at most 10ms
and then (V_Mot is always 0V starting without any delay

until (Adj_Spd_Tgt is greater than 1rpm for at least 40ms)).

Fig. 4: Possible signal trace fulĄlling the given requirement from section 6.
In the Ąrst 10ms, the target speed decreases to 0rpm and thereby stops the rotation of the motor as
voltage on V_Mot is decreased. In the interval [10ms:30ms], the measured speed target speed are 0,
resulting in the fulĄllment of the trigger.
With a couple milliseconds delay, the motor voltage enters the given range and reaches 0V with a
duration less than 15ms. After that, a new target speed is set and holds for 40ms, resulting in an
increasing output voltage and measured rotation speed.

258 Markus Grabowski, Bernhard Kaiser, Yu Bai

7 Conclusions and outlook

The presented approach and prototypical tool addresses a large part of the requirements
listed in the introduction section. Furthermore, Ąrst experiences with applying the approach
and tool onto a small DC motor drive system, as well as a more complex case study of an
autonomous and networked model car, including its CACC / Platooning function have been
made. Although even the latter case study is still much simpler than actual vehicle systems,
we could gain a good impression about the applicability to real-world automotive systems.
However, even these small case studies show that there is still a long way to go towards an
industry-mature speciĄcation and modeling approach. One enhancement with high priority
is to implement a formal check of the reĄnement for as many assertion patterns as possible, in
order to unburden the developer with the manual review steps necessary today. VeriĄcation
possibilities on lowest level should also be kept in mind, e.g. by enabling the automated
generation of observers from the pattern expressions, which check the compliance of actual
(model-in-the-loop) simulation runs or (hardware-in-the-loop) test runs. As the speciĄcation
languages on system, component, hardware, and software level are quite different, it is
desirable to extend the pattern language by a set of predeĄned macros towards a variety of
domain speciĄc languages to improve user acceptance. Regarding the extension of semantics,
we are working especially on further patterns for continuous signal properties. Examples are
properties like stability or bounded output signal range, or the settling time of a controller.
A potential extension we are investigating is to provide patterns for frequency domain
properties. Another extension of our approach would be directed towards structured data
types at interfaces plus speciĄcation patterns for set, quantiĄer, and ordering information, in
order to deal with object lists etc. For safety and reliability/availability assertions, but also
in order to specify the nominal properties of environment-perceiving sensors, probabilistic
patterns should be provided. Potential veriĄcation approaches for these assertions could
be probabilistic model checking, but, more promisingly, Monte-Carlo simulation of the
underlying behavioral models. To bridge the different levels of abstraction, a tool will have
to offer different views with the option to hide details or aspects that are not of interest
on a higher level of abstraction. This could on long term be complemented by a sort of
Šapproximate reĄnementŠ that relaxes the veriĄcation step from one level of abstraction
toward the next lower level by allowing that the reĄned system not fully complies with the
speciĄcation on higher level, but only Šwell enoughŠ.
Regarding the transition from ES to CPS and SoS, the technique should ideally be extensible
towards runtime certiĄcation mechanisms, i.e. it should be possible to specify different
sets of assumptions and guarantees as meta-information at runtime, so that partial systems
willing to cooperate can check in which constellation assumptions and guarantees match, so
that a template safety case prepared at development time is fulĄlled at runtime, meaning
that safe operation is assured.

Systematic ReĄnement of CPS Requirements 259

References

[Au15] Autili, Marco; Grunske, Lars; Lumpe, Markus; Tang, Antony: Aligning Qualitative, Real-
Time, and Probabilistic Property SpeciĄcation Patterns Using a Structured English Grammar.
IEEE Transactions on Software Engineering, 41(7):1-1, 2015.

[Bo15] Boyer, Benoît; Quilbeuf, Jean; Etzien, Christoph; Marazza, Marco; Senni, Valerio; Stra-
mandinoli, Francesca; Peikenkamp, Thomas: GCSL syntax, semantics and meta-model.
Technical report, DANSE Research Project, 2015. DANSE Deliverable 6.3.3.

[CE10] CESAR: DeĄnition and exempliĄcation of RSL and RMM. Deliverable D_SP2_R2.1_M1,
Costefficient methods and processes for safety relevant embedded systems. Technical report,
CESAR, April 2010. Zugriff am 29.08.2016.

[Ci12] Cimatti, Alessandro; Roveri, Marco; Susi, Angelo; Tonetta, Stefano: Validation of require-
ments for hybrid systems: A formal approach. ACM Transactions on Software Engineering
and Methodology (TOSEM), 21(4):22, 2012.

[CT12] Cimatti, A.; Tonetta, S.: A Property-Based Proof System for Contract-Based Design. In:
Software Engineering and Advanced Applications (SEAA), 2012 38th EUROMICRO
Conference on. pp. 21Ű28, Sept 2012.

[DSS12] Daramola, Olawande; Sindre, Guttorm; Stalhane, Tor: Pattern-based security requirements
speciĄcation using ontologies and boilerplates. In: Requirements Patterns (RePa), 2012
IEEE Second International Workshop on. IEEE, pp. 54Ű59, 2012.

[Gr08] Grunske, Lars: SpeciĄcation patterns for probabilistic quality properties. In: Software
Engineering, 2008. ICSE Š08. ACM/IEEE 30th International Conference on. pp. 31Ű40,
May 2008.

[Gr17] Grabowski, Markus: Why Templates on System Behavior Are Not Used in Practice Yet: A
Proposal for Enhancements, Application and Formalization. MasterŠs thesis, Technische
Universität Berlin, 2017.

[HJD04] Hull, Elizabeth; Jackson, Ken; Dick, Jeremy: Requirements Engineering. Springer, 2004.

[IKD09] Ibrahim, Noraini; Kadir, Wan MN Wan; Deris, Safaai: Propagating requirement change into
software high level designs towards resilient software evolution. In: Software Engineering
Conference, 2009. APSECŠ09. Asia-PaciĄc. IEEE, pp. 347Ű354, 2009.

[Ka15] Kaiser, Bernhard; Weber, Raphael; Oertel, Markus; Böde, Eckard; Monajemi Nejad,
Behrang; Zander, Justyna: Contract-Based Design of Embedded Systems Integrating
Nominal Behavior and Safety. Complex Systems Informatics and Modeling Quarterly
(CSIMQ), 2015 (4):66Ű91, Oct 2015.

[Ma09] Mavin, Alistair; Wilkinson, Philip; Harwood, Adrian; Novak, Mark: Easy approach to
requirements syntax (EARS). In: Requirements Engineering Conference, 2009. REŠ09.
17th IEEE International. IEEE, pp. 317Ű322, 2009.

[Me92] Meyer, Bertrand: ApplyingŠdesign by contractŠ. Computer, 25(10):40Ű51, 1992.

260 Markus Grabowski, Bernhard Kaiser, Yu Bai

Modeling and Safety-Certification of Model-based

Development Processes

Oscar Slotosch1 and Mohammad Abu-Alqumsan 2

Abstract: In this paper, we describe a two-step approach to show evidence for compliance with
safety standards within certification efforts for model-based development projects that share some
commonalities (i.e. using the same metamodel). The approach is based on modeling model-based
development processes in combination with the requirements imposed on them by safety
standards. Besides the typical benefits of model-based approaches (modularity, rigor,
formalization and simulation), we use the combined hierarchic processes-requirements model in
order to automatically generate formalized descriptions of processes, standard compliance report
and verification check-lists. The process description can be used to introduce new team members
to the deployed development processes. As a concrete example of the proposed approach, we
present representative parts of the Validas model-based tool qualification process that has been
fully modeled and certified based on the automatically generated documents by TÜV SÜD.

Keywords: Model-based Development, Process Model, Safety Standards, Tool Qualification

1 Introduction

Thanks to the easiness in which domain-specific models can be developed for dedicated
purposes, model-based development is increasingly used in more areas of applications.
Yet, there are remaining areas of applications where models do not enjoy the
expected/desired level of acceptance, even when promising examples and pilot cases
exist. This may suggest that many developers resist switching to model-based
development, possibly because they do not want or are not able to do so. It is common in
practice to encounter the following arguments against introducing model-based
development: “there is no detailed process description of the model-based approach”, “it
is not clear how to do this with my tool X”, “the compliance of the model-based
development process to safety standards is unclear”, or “the modeling tools cannot be
used in safety critical projects, since they are not qualified (or certified)”. Obviously,
these statements/arguments are not against the model-based approach per se, but rather
are manifestations of why developers may resist introducing/switching to model-based
development.

Furthermore, quality aspects of software like consistency, reproducibility and
repeatability and roll-out planning cannot be ensured without the availability of a precise
process description. Consider for instance a situation where a company’s management

1 Validas AG, Arnulfstr. 27, 80335 München, slotosch@validas.de
2 Validas AG, Arnulfstr. 27, 80335 München, abu-alqumsan@validas.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 261

https://creativecommons.org/licenses/by-sa/4.0/

has decided to use UML (and a specific tool) for the specification of software algorithms
in a pilot project. Assume as well that the team is willing to do so, but some team
members use state transition diagrams, others sequence diagrams and some others use
activity diagrams. Furthermore, some even have developed a very sophisticated
combination of component diagrams, class diagrams and C++ code that requires new
stereotypes and small changes in the tool. Even if the pilot project may become a
success, it is obviously impossible to roll it out to the whole company without making a
more detailed description of the modeling process available. A qualification of the used
tool might additionally be required according to relevant safety standards.

In the present work, we aim at bridging the gap of lacking such descriptions of modeling
processes with a novel approach. The same approach is additionally used for the
purposes of facilitating certification efforts, by straightforwardly linking relevant process
activities to the corresponding requirements imposed by relevant safety standards.

Hereby, the crucial point to meet these two goals (i.e. providing formal description and
examining compliance) is to decide upon and to use the right abstraction level when
describing processes and tool usage. While it suffices, from a safety point of view, to
satisfy a requirement by tracing it to the respective activity/-ies and its/their produced
documentation/s, this is yet insufficient, and often not even necessary, for effective and
efficient introduction and usage of models/tools. For the latter case, descriptions have to
be provided in more details, but not to the point where concrete objects/examples are
being described. Otherwise, repeatability and reproducibility in similar projects would be
harmed. We recognize that the metamodel is a well suited abstraction level for both the
reasoning on compliance to safety standards and the description of model-based
development processes. Since processes consist of actions and input/output artifacts we
decided to model the metamodel itself as an artifact that is processed (i.e. created,
updated/extended) from within process activities. This renders the proposed approach
most suitable when the metamodel is used in several concrete development projects of
similar nature.

Without harming the generality of the proposed approach, the present paper focuses on
the application of the proposed method for model-based tool qualification processes
deployed at Validas AG. In particular, we show how the approach is used to show the
compliance of our processes to relevant safety standards.

The remainder of this paper is structured as follows. In Section 2 we introduce our
general approach for modeling model-based development. Section 3 roughly introduces
model-based tool qualification and the metamodel we use to this end. In Section 4, we
introduce how the proposed approach is actually done for modeling the MetaModel in
tool qualification projects. Section 5 provides more details on the whole structuring of
processes and requirements relevant to tool qualification projects. Section 6 provides
some details regarding a practical example from the industry: The certification of
Validas tool qualification processes by TÜV SÜD. Section 7 concludes with a
summary.

262 Oscar Slotosch, Mohammad Abu-Alqumsan

2 Modeling Model-Based Development Processes for Compliance

and Formal Description

In order to achieve compliance and to provide formal description of model-based
development processes, we propose to jointly formalize safety standard requirements
and model-based development processes. To this end, we use the process modeling and
requirements management framework AutoFOCUS33. This open-source software tool
allows modeling of requirements and processes in a hierarchic manner. It additionally
supports backward and forward tractability to requirements. Further, the tool provides a
strongly-typed environment with support for enumeration and structure data types and
additionally provides the possibility to define functions based on user-defined data types.

The tool also supports simulation (module test) of modeled processes with the help of
the so called “DTD Evaluator”, which is a functional interpreter able to process user
defined functions on user defined data types.

Altogether, these features render the tool ideal for our purposes (some benefits of these
features will become clearer in later sections). Standard compliance examination of the
model-based development process is developed and achieved with a set of utilities and
extensions that allow for automatic generation of documentation and work products. We
refer to these extensions as TOPWATER extensions as the name of the project in which
they were developed.

In particular, the following documents can be automatically generated through the
TOPWATER extensions:

1. The Formal Process Description: is integrated eventually as an appendix within a
manually written process description

2. The Compliance Report: showing the satisfaction of the model to all relevant
requirements and their traces.

3. The verification and validation (V&V) Plan: V&V have to be performed
according to this plan in each project that claims compliance to the standards.

Obviously, evidence for compliance of a concrete project to safety standards is achieved
in two steps. Firstly, the general Compliance Report shows the general compliance of the
methodology to the safety standard. Secondly, the V&V Report (produced by following
the V&V Plan) shows the compliance of the concretization of the general methodology
within a concrete project. As such, the compliance Report and the V&V Plan are the
same for all projects that share the same model and modeling process and the V&V

Report is unique for each project.

The overall safety compliance approach is depicted in Fig. 1.

3 AutoFOCUS3 is an open-source software and can be freely downloaded from https://af3.fortiss.org/download

Modeling and Safety-CertiĄcation of Model-based Development Processes 263

Fig. 1: Validas TOPWATER Compliance Method

3 Model-based Tool Qualification

Tool qualification is imposed by safety standards to ensure that tools can be used with
confidence when developing safety-critical items/elements, see [In11], [In10], [RT11].
The main approach adopted by Validas AG for tool qualification is to test the tool in the
same exact environment of the tool user (i.e. qualification by validation). This can be
achieved using the so-called tool qualification kits (or QKits in short), which
additionally can generate the work products (e.g. tool qualification report, tool safety
manual) required by safety standards.

The idea of model-based tool qualification is to build a model for the tool qualification
(i.e. containing features, known bugs, tests, etc.), that allows performing the available
tests and analyzing their results to generate the required documentation and work
products.

The tool chain analyzer [Va17] is a tool that supports the modeling of toolchains and
qualification kits. It supports a tool qualification model with all required information for
classification and qualification of tools, see [Wi12], [Sl12].

The metamodel of the TCA (see user manual) consists of the following elements (for the
sake of clarity in the present paper, we use a simplified representation and omit the
containment hierarchy):

• TOOLCHAIN: root element containing all other elements

264 Oscar Slotosch, Mohammad Abu-Alqumsan

• TOOL: represents a tool in the model

• VERSION: represents a version of the tool

• FEATURE: represents a feature of the tool

• ERROR: represents a potential error of a tool feature

• KNOWNBUG: represents a known mal function of the tool

• CHECK: user action to detect potential errors or real bugs

• RESTRICTION: user action to avoid potential errors or real bugs

Every element in the metamodel has attributes like NAME, DESCRIPTION; some also
have other attributes (e.g. COMMENT, IMPACT, etc.) that have to be specified in
concrete tool classification and qualification projects. Fig. 2 shows a typical
representation of the metamodel.

Fig. 2: Example Metamodel of Toolchains/Tools

The tool qualification requirements imposed by the relevant safety standards [In11],
[In10] and [RT11] are similar in their nature. They mainly require a three phase
approach:

• Classification of the tools

• Qualification of critical tools

Modeling and Safety-CertiĄcation of Model-based Development Processes 265

• Safe usage of the tools according to safety manuals, which are based on results from
the previous two phases (i.e. classification and qualification of tools)

4 Modeling the MetaModel used in Model-based QKit

Development Processes

At the core of our approach is the modeling of model-based development processes and
at the core of such modeling is the specification of the MetaModel being used.

The basis for specifying the MetaModel in AutoFOCUS3 is a simple enumeration data
type called “ModelSpecification” with the enumerator names {NotSet, Specified,
NotRequired}, corresponding to the three possible states every model element can have.
The states of all model elements are initially set to NotSet, and once they are specified,
their states change to Specified. Sometimes it might be undesirable or even not possible
to specify an actual value for a model element. In these cases, the respective model
elements are set to be in the NotRequired state. To clarify the last point, consider for
instance the link TOOL_VERSION_TO of a KNOWN_BUG element, which defines the
version in which the known bug was fixed. This attribute can be therefore Specified (in
case the known bug is already fixed in a specific version) or NotRequired (in case the
known-bug remains an open bug). The attribute TOOL_VERSION_FROM, which
defines the version in which the bug is introduced, has to be specified in either case.

In general, for every class with name <ClName> with attributes <A1>, to <An> and
links <L1> to <Lm> in the metamodel, there are three structure types modeled within
AutoFOCUS3:

• <ClName>Class:{Attributes:<ClName>Attributes, Links:<ClName>Links}

• <ClName>Attributes:{<A1>:ModelSpecification,…<An>:ModelSpecification}

• <ClName>Links:{<L1>:ModelSpecification,.. <Lm>:ModelSpecification}

The type MetaModel is a structure data type consisting of components for each class:

• MetaModel: {<C1>: <ClName>Class,…}

The types, which are required for modeling the MetaModel from Fig. 2 are modeled in
AutoFOCUS3 as shown in Fig. 3.

266 Oscar Slotosch, Mohammad Abu-Alqumsan

Fig. 3: Modeling the MetaModel Data Type in AutoFOCUS3

Having modelled the MetaModel in AutoFOCUS3, actions that define how it is being
created and updated during the modeling processes are defined straightforwardly using
function definition.

For example, the modeling of known bugs of a tool requires, as its input, a defined
TOOL model with contained FEATURE model. The output would be an updated model,
where KNOWN-BUG elements are added together with links to corresponding TOOLs
and affected FEATUREs. Adding mitigations (CHECKs and RESTRICTIONs) and
linking them to the KNOWN-BUGs further extends the model. Such procedures can be
described using the attributes of the model elements that need to be described in each
step: “TOOL.NAME” and “TOOL.VERSION” or “KNOWN-BUG.ID”. The predicate
that checks whether known bugs can be modelled or not can be formulated in
AutoFOCUS3 as follows:

readyForKBModeling(MetaModel:M) =

 M.Tool.Attributes.Name==Specified() &&

 M.Tool.Attributes.Description==Specified() &&

 M.Tool.Links.To_Features==Specified() &&

 M.Feature.Attributes.Name==Specified() &&

 M.Feature.Attributes.Description==Specified() &&

 M.Feature.Links.To_Tools==Specified() &&

Modeling and Safety-CertiĄcation of Model-based Development Processes 267

 M.Version.Attributes.Name==Specified() &&

 M.Version.Attributes.Description==Specified() &&

 M.Version.Links.To_Tools==Specified()

And the update of the model by specifying known bugs can be done within
AutoFOCUS3 in a functional programming style by defining the following function

updateKBModeling(MetaModel:M) =

return combineModels(M, addKnownBugClass({

 Attributes: combineKnownBugAttributes(

 specifyKnownBugName(),

 specifyKnownBugDescription(),

 specifyKnownBugID()),

 Links: combineKnownBugLinks(

 specifyKnownBugLinkToTool(),

 specifyKnownBugLinkToVersion())}));

The helper function can be implemented easily using the definition

specifyKnownBugName:KnownBugAttributes = {

 Name:Specified,

 Description:UnSet,

 ID:UnSet}

Furthermore, in order to facilitate the generation of the V&V Plan, we mark the V&V
actions using the keyword Criterion.

5 Modeling of Development Processes and Requirements

The process description starts from a high abstraction level describing the process with
the customer interaction, see Fig. 4. When constructing a model-based QKit, the core
activity is to build the corresponding model. This process is further detailed as depicted
in Fig. 5, which also shows the main phases of building the QKit: Structure modeling,
analysis modeling and test modeling.

268 Oscar Slotosch, Mohammad Abu-Alqumsan

Fig. 4: Validas Interaction Process (High-Level) with Tool Providers

Fig. 5: Model Construction Main Process

The interface of the known bug modeling process (carried out in the analysis modeling
phase) is described in Fig. 6. This example emphasizes the adequateness of the strongly-
typed environment of AutoFOCUS3 to our modeling purposes. The type of the input
model is MetaModel as detailed in Fig. 3. The name of the input model is
“ToolFeatureModel”, the name of the output model is “KBModel”.

Fig. 6: Known-Bug modeling Process Interface

As has been already shown with the previous figures, AutoFOCUS3 supports a
hierarchical description of processes (and requirements as will be seen later). The
process of specifying known bugs can then be modelled with more details through a state
transition diagram as depicted in Fig. 7 and Fig. 8 for the first part of the modeling
process.

Modeling and Safety-CertiĄcation of Model-based Development Processes 269

Fig. 7: Specification of Known Bug Modeling Behavior

Fig. 8: Specification of the Transition link “Model KBs” from Fig. 7.

As an example of defining verification and validation activities for known bugs, we
define the corresponding Criterion for known bugs modeling as depicted in Fig. 9. Note
that this example shows the relevant V&V activities only partially.

Fig. 9: Criterion Known Bugs

Requirements are typically structured in a hierarchic manner, which can be done in
AutoFOCUS3 straightforwardly. It remains however to link/trace these requirements
with the process modeling. To do so, we recognize that safety standard requirements are
typically imposed on a) Processes and b) Products. For the purposes of certification and
showing compliance, evidence should be provided that a) comply with requirements and
that these processes have been actually followed/deployed for creating b). In our
approach, we model the modeling activities/actions themselves including V&V activities
that can be seen as a checklist for the concrete project. As such, every requirement has at
least two traces in the processes model:

1. One to a process activity that describes it

2. Another to a V&V activity that checks it on the concrete example.

270 Oscar Slotosch, Mohammad Abu-Alqumsan

By splitting the requirements into these two parts, we can demonstrate that our process
satisfies the requirements, provided that for each project the V&V activities are
performed successfully. The concrete projects do not need to bother on the standard
compliance, but have only their concrete checklists to perform.

Fig. 10: Requirements Management and V&V Activities

Fig. 10 shows some examples of how the requirements from the safety standards are
managed. The highlighted trace to the “Criterion: Known Bugs” is a trace to the V&V
activity. The way in which this Criterion is defined is already discussed (and shown in
Fig. 9).

6 Example: Certification of Tool Qualification Processes

Validas has applied (and validated) the proposed approach on the example of tool
qualification as has been detailed in previous sections. Validas claims to build ISO
26262 and IEC 61508 compliant tool qualification kits using a model-based qualification
process. The Validas process for building qualification kits has been modeled within
AutoFOCUS3 and it has been shown to satisfy all 120 requirements from ISO 26262 and
IEC 61508 for tool qualification. 13 additional requirements from Validas (functional
and quality requirements for the model-based QKit) have been satisfied using a process
description consisting of over 1150 element describing the process and the interaction
with the customer. Every Criterion (V&V Check) consists of several questions,
separated by “?”. In total over 250 (simple and concrete) questions in the criteria have to
be answered for each QKit to pass the V&V.

Modeling and Safety-CertiĄcation of Model-based Development Processes 271

According to the Method described in Section 2 the relevant documents have been
generated.

Throughout the certification process regarding Validas process, TÜV requested not only
the compliance with the tool qualification requirements, but also some general
requirements on the management of functional safety. Those requirements could be
easily satisfied by filling out the required Excel checklists and providing the evidences
from the general Validas processes.

The main requirements have been successfully certified based on the generated
documents: Validas Qualification Method (including the generated, formal process
description), compliance report (generated as described) and V&V Plan (generated from
the model as described).

7 Summary

We have presented a general two-step compliance approach that builds upon formalizing
and modeling arbitrary requirements and model processes. In the first step, compliance
to safety standards of the general deployed methodology is shown and compliance report
is generated, whereas in the latter step, compliance of concrete projects that make use of
that general methodology is checked against a V&V plan. Both the compliance report
and the V&V plan are automatically generated from the constructed model. The method
has been applied successfully within our certification efforts of the Validas model-based
qualification kit construction processes with TÜV SÜD, according to ISO 26262 and
IEC 61508.

8 Acknowledgments

This work has been supported in part by the German Federal Ministry of Research and
Education (BMBF) within the project TOPWATER (ZIM) under research grant
ZF41611701BZ5. The authors would like to thank Joachim Schramm for the fruitful and
stimulating discussion within the TOPWATER project and Thomas Escherle for proof
reading and formatting the paper.

9 References

[In10] International Electrotechnical Commission: IEC 61508, Functional safety of
electrical/electronic/programmable electronic safety-related systems, Edition 2.0,
2010.

[RT11] RTCA: DO-330: Software Tool Qualification Considerations 1st Edition, 2011.

272 Oscar Slotosch, Mohammad Abu-Alqumsan

[In11] International Organization for Standardization: ISO 26262 Road Vehicles –Functional
safety–. 1st Edition, 2011.

[Sl12] Slotosch, Oscar: Model-Based Tool Qualification - The Roadmap of Eclipse towards
Tool Qualification – opencert, 2012.

[Wi12] Wildmoser, Martin; Philipps, Jan; Jeschull, Reinhard; Slotosch, Oscar; Zalman,
Rafael: ISO 26262 - Tool Chain Analysis Reduces Tool Qualification Costs. In
SAFECOMP 2012, 2012.

[Va17] Validas AG: Tool Chain Analyzer Tool, can be downloaded from
www.validas.de/TCA.html, 2017.

Modeling and Safety-CertiĄcation of Model-based Development Processes 273

Controlled Complexity for Future Mobility – Methodology,

Guidelines and Tooling

Christian Reuter1

Abstract: The automotive industry is currently facing the most extensive changes since its
invention. Connected, autonomous, shared, and electric crystallize as game changers whereupon
new key player arise with expertise therein. Internet of things principles bring the vehicles online
and so the product life cycle shortens. Although new functionalities should be rolled out quickly.
This contradiction needs new methodologies, guidelines and tooling. In this paper, the current
usage of combined textual and model-based requirement specification as well as variant
management techniques at Daimler is presented in context to research outcomes. Furthermore,
upcoming challenges in the field of handling complexity are described to give an example for
ongoing investigations.

Keywords: Complexity, Variant Management, Systems Engineering.

1 Introduction

A bunch of innovations has led the automotive industry to a complex system architecture
in modern vehicles. A Mercedes-Benz S-Class (W222) has about 150 systems with
functions realized on 100 electronic control units with over 80 million lines of code
[Sc15]. The degree of dependency is rising, since the number of sensors and actors
nearly allows full automation up to autonomy. As known by modern smartphones,
innovation drivers come by combining the persisting hardware with new software
functionalities. These functionalities have to be implemented in development artifacts
like requirements, models, test cases, and code. This principle is keeping the costs per
piece down, but demands higher efforts in creating and integrating new concepts as well
as validating the larger variability and mitigating malfunctions. Hereby, one of the
biggest challenges is the short-term evaluation of changes by recognizing the
development artifacts, which were affected.

In the next section, the current approaches for handling complexity are presented. In
addition to the applied methodologies, guidelines, and tooling, also scientific analysis on
these are provided.

Given that practical application falls short of academic research the pure form of
approaches is not always one-to-one implementable into company processes. Therefore,
dimensions of stakeholders of the development process and resulting realization tracks
are described. Hence, appearing challenges, which need approaches to handle this

1 Daimler AG, Research & Development, X426, Sindelfingen, 71059, christian.c.reuter@daimler.com

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 275

https://creativecommons.org/licenses/by-sa/4.0/

imperfection, are discussed in the third section. Finally, the presented approaches and
challenges were summarized.

2 Foundations in Practical Handling of Complexity

Complexity pushes the need to establish a more high-level view on relations. Therefore,
at Daimler Research & Development, for example, UML activity diagrams are used to
structure functions and encapsulate them according to the IPO model [BVR17]. In
addition, further diagrams are used to describe behavior (e.g. state machines, sequence
diagrams) or structure.

One issue in splitting the development into different levels is keeping them consistent. A
previous case study has shown that the combination of graphical models and a textual
representation can match different needs of stakeholders. Although it should be
considered, that the implementation follows an in advance with all participating partners
agreed guideline [BRV18].

Regarding a software product line, changes can increase variability of development
artifacts. Bauer et al. discussed “methods for the determination of change impacts”
[Ba15]. The major problem in industrial application of these methods is a high effort to
reach the initial conditions for using them. As well as the point of view, where based on
a mainly product structure orientated approach the evaluation of efforts is getting more
complex, since the derivation of development artifacts from the elements of a product
structure needs further information.

Besides that, the concept of FODA (feature-oriented domain analysis) domain modelling
[Ka90] is based on an easier implementable concept, of a tree of features. This
furthermore allows extending details as of more feature levels over time. Aside from
that, no differentiation of links is necessary. A link therein describes the relation of a
development artifact to a feature, to such an extent as a development artifact relies on a
feature.

At Daimler, this is used for a multi-level concept, which gives assistance to the
developers in managing complexity. Here, all mentioned steps are based upon the same
principle. The specification is called a 150%-specification, as it comprises different self-
contained specifications with a common core and individual extents:

 On level one, complexity can be handled with explicit marks within a
requirements specification or a graphical model, so that according to that mark, the
document can be filtered and only relevant aspects appear. This concept is
applicable for systems with a smaller complexity.

 On level two, a simplified form of feature-based variability management can be
used, which is in daily use for systems with a medium complexity. Therefore, e.g.
a requirements specification is linked to a feature tree within the same tool, so

276 Christian Reuter

every requirement is assigned to a feature. At the feature tree, there are features
and their characteristics listed in a flat hierarchy and finally variants can be built
up as a set of features.

 In an environment with high demands on managing complexity, on level three, the
combination of a specialized variant management tool (e.g. pure::variants [PU17])
with interfaces to – for the specific company or department – most common
development tools (e.g. DOORS [IB17], Enterprise Architect [SP17], Simulink
[MA17]) can be used. In this case, the feature tree is independent of a single
development tool. The mentioned specialized variant management tool supports a
capable multi-level feature tree, which is furthermore extendable with in-depth
logic-based constraints [Bo11].

Fig. 1: Draft version of Variability Management Domain for OSLC [Re15]

Besides these in-tool, one-to-one tool, or one-to-many tools solutions, previous work has
shown that a continuous systems engineering environment would bring the highest
benefit to the users and IT operations. To reach this aim, an extension of the OSLC
(Open Services for Lifecycle Collaboration) standard was proposed as part of the
ARTEMIS EU project – CRYSTAL (CRitical sYSTem engineering AcceLeration). Part
of this was to strengthen the concept of an Interoperability Specification and an

Controlled Complexity for Future Mobility Ű Methodology, Guidelines and Tooling 277

interrelated Reference Technology Platform [CR17]. As a contribution to the
Interoperability Specification, the diagram in Fig. 1 pictures the objects “FeatureLink”
and “Feature”, which can relate to other OSLC resources in order to attach variant
information to a variety of development artifacts [OS17]. Several tool implementations
(e.g. PTC Integrity [PI17], PTC Modeler [PM17], Enterprise Architect) were realized to
demonstrate the capabilities of this concept [Re15].

In the area of alternative drive systems, an interview-based study of Beckmann et al.
[BRV18] depicts that overlooking todays challenges the trade-off between the separation
of concerns and the interlink of different levels and views like function orientation,
component mapping, signal flow, coding of electronic control units and also safety and
security topics is difficult to handle.

3 Upcoming Challenges for a Variety of Development Artifacts

The described methodology gives advice to the developer how variant handling can be
pursued. However, in daily use, the comprehension for variant management is essential
for developing a variant friendly architecture and therein comprised functions. This
means that widely generic interfaces between the components as well as a clearly
defined hierarchical decomposed structure inside the components is a prerequisite for the
flexibility the industry is dependent on nowadays [CN02].

To illustrate the stakeholders of the development process resulting in different
dimensions, which have to be handled, the following list gives assistance:

 Development Process (from system design till system validation with stakeholders
like strategy, sales, user interaction)

 Additional Processes (change requests after contracting or issues in the supply
chain)

 External regulations (legislation, state of the art e.g. documented by ISO or GB/T
standards)

 Manufacturer/OEM-specific formalities (e.g. hardware/software architecture,
communication matrix, security requirements)

These influences lead to a functional structure with a variety of requirements, models,
software with related calibration, and more. For handling their complexity, two major
tracks should be considered:

 The first track includes all information, which is well known and can be
considered from the beginning of the development process. That applies also to
manufacturer/OEM-specific formalities and mostly to external regulations.

278 Christian Reuter

 The second track of late changes is more difficult to handle. Depending on the
scale of the change, this track starts earliest after contracting with Tier-1 suppliers
and latest when the milestone of 100% functionality is reached. This track also
applies to a software product line related development, when the newer software
version relies on the previous one.

For the first track, the strategies mentioned in Section 2 are applicable, although the
efficiency of exchanged variant data between the different development tools could be
increased. Also, a comprehensive controlling of variability over the single levels from
product over system to components and across the horizontal departments (like
development, validation, after sales) would bring a better integration to fasten realization
phases.

Quite more challenging are late changes. Here, usually time, cost, quality, and package
are the most significant measurements. If market influences or misleading design
decisions result in a late change, the appreciation of values needs more information. At
first sight, it needs a clearly defined aim. This is the basis for alternating concepts. In
turn, this leads to a scope, what has to be adapted (e.g. components, communication,
documentation, testing). For getting a fast decision the more helpful it is for the involved
departments the closer the scope is that they have to investigate for implementing the
concept. Finally, the evaluated concepts need to be weighed, which concept fits better or
is even one at least suitable.

4 Conclusion

The handling of complexity questions will be a key skill for developers as well as for
companies. The foundations must be well known and day-to-day routine. Therefore, the
knowledge base has to be broadened and common guidelines have to be agreed. Areas of
high variability can be a starting point for that, but cross-sectional support is required.
Because managing complexity cannot be reached by finding a local optimum, also the
interaction of tools has to be pushed to prevent isolated applications. Furthermore, some
challenges still persists, which need new methodologies. A short-term evaluation of a
rating of change impacts and their extent with preferably low entry requirements rises
the attractiveness of such an approach.

Bibliography

[Ba15] Bauer, W.; Bosch, P.; Chucholowski, N.; Elezi, F.; Maisenbacher, S.; Lindemann, U.;
Maurer, M.: Complexity Costs Evaluation in Product Families by Incorporating
Change Propagation. In: 9th Annual IEEE International Systems Conference, 2015.

[BVR17] Beckmann, M.; Vogelsang, A.; Reuter, C.: A Case Study on a Specification Approach
using Activity Diagrams in Requirements Documents. In: International Requirements
Engineering Conference (RE), 2017.

Controlled Complexity for Future Mobility Ű Methodology, Guidelines and Tooling 279

[BRV18] Beckmann, M.; Reuter, C.; Vogelsang, A.: Coexisting Graphical and Textual
Representations of Requirements: Insights and a Guideline. In: International Working
Conference on Requirements Engineering — Foundation for Software Quality
(REFSQ), 2018.

[Bo11] Boutkova, E.: Experience with Variability Management in Requirement Specifications.
In: 15th International Conference on Software Product Lines (SPLC), 2011.

[CN02] Clemens, P.; Northrop, L.: Software Product Lines – Practices and Patterns, Addison-
Wesley, Boston, 2002.

[CR17] Crystal, http://www.crystal-artemis.eu/, accessed 21/12/2017.

[IB17] IBM Rational DOORS Family, https://www.ibm.com/us-en/marketplace/rational-
doors, accessed: 21/12/2017.

[Ka90] Kang, K.; Cohen, S.; Hess, J.; Novak, W; Peterson, A.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. In: Technical Report CMU/SEI-90-TR-21 ESD-
90-TR-222, 1990.

[MA17] MathWorks, Simulink – Simulation and Model-Based Design,
https://www.mathworks.com/products/simulink.html, accessed: 21/12/2017.

[OS17] Specifications – Open Services for Lifecycle Collaboration, http://open-
services.net/specifications/, accessed: 21/12/2017.

[PI17] Integrity | PTC, https://www.ptc.com/en/products/plm/plm-products/integrity,
accessed: 21/12/2017.

[PM17] Integrity Modeler | PLM | PTC, https://www.ptc.com/en/products/plm/plm-
products/integrity-modeler, accessed: 21/12/2017.

[PU17] pure-systems – The leading provider of software for product line and variant
management tools | pure::variants, https://www.pure-systems.com/products/pure-
variants-9.html, accessed: 21/12/2017.

[Re15] Reuter, C.: Variant Management as a Cross-Sectional Approach for a Continuous
Systems Engineering Environment. In: Graz Symposium Virtual Vehicle, 2015.

[Sc15] Schneider, J.: Software-innovations as key driver for a Green, Connected and
Autonomous mobility. In: ARTEMIS-IA/ITEA-Co-Summit, Berlin, 2015.

[SP17] Sparx Systems, Enterprise Architect – UML Design Tools and UML CASE Tools for
software development, http://www.sparxsystems.com/products/ea/, accessed:
21/12/2017.

280 Christian Reuter

Taming the Software Development Complexity with Domain
Specific Languages

Experiences from Deploying MPS-based DSLs for Computed Tomography Scanners
at Siemens Healthineers

Daniel Ratiu1, Holger Nehls2, Jochen Michel3

Abstract: Modern computed tomography (CT) scanners are highly complex and Ćexible devices.
This versatility is realized with a multitude of interconnected parameters and rules which are deĄned
by domain experts in so-called scanner model speciĄcations distributed over almost one hundred
documents. The primarily used tools to write these documents (e.g. MS Word, MS Excel) are domain
agnostic and they support only plain natural-language for the speciĄcation. Consequently, maintaining
a valid scanner speciĄcation is a tedious, error-prone and therefore expensive process. To tackle the
complexity of scanners parameters speciĄcations, over the last two years we developed and deployed
an eco-system of domain speciĄc languages (DSLs) and associated tooling, covering a central portion
of the scanner domain. The languages are developed using the JetbrainsŠ MPS language workbench. In
this paper, we present our experiences with developing our language eco-system. We brieĆy describe
the language architecture, the design and development process that led us there, and discuss variation
points of our approach and present in more detail a set of lessons learnt and best practices.

Keywords: domain speciĄc languages, industrial experience, JetbrainsŠ Meta-Programming System

1 Introduction

Non-invasive imaging is one of the most important improvements in medicine and enables
doctors to diagnose and heal diseases that are not visible without having insights into the
human body. Modern Computed Tomography (CT) scanners are highly complex machines,
enabling radiologists to perform examinations of patients, like trauma scans, evaluation
of neurological abnormalities, detection of tumors or diagnostic of heart diseases. While
the x-ray beam rotates around the patient, the detector measures the attenuation, which
represents the composition of the scanned object. Based on this volume data, it is possible
to reconstruct slice images and calculate 3D visualisations of the human body and organs.
This data is the basis for applications that support the radiologist in the diagnose process.

CT scanners are perfect examples of software intensive cyber-physical systems Ű a large
amount of software enable the realization of complex use-cases and the interaction with

1 Siemens Corporate Technology, Munich, daniel.ratiu@siemens.com
2 Siemens Healthineers, Forchheim, holger.nehls@siemens-healthineers.com
3 Siemens Healthineers, Forchheim, jochen.michel@siemens-healthineers.com

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 281

https://creativecommons.org/licenses/by-nc/3.0/
daniel.ratiu@siemens.com
holger.nehls@siemens-healthineers.com
jochen.michel@siemens-healthineers.com
https://creativecommons.org/licenses/by-sa/4.0/

the real world. The system depends on a wide set of parameters that represent quantities
from the physical world, such as dose parameters, geometric properties and special scanner
capabilities. Besides the program code per se, the complexity of software is also due to
the big variability space deĄned by these conĄguration parameters. Valid combinations of
parameters reĆect physical capabilities of the devices and the desired clinical cases to be
performed. A central challenge that the scanner development teams need to address is to
keep the parameters consistent for a wide variety of clinical cases, on different hardware
and across product lines. Inconsistencies of the parameters conĄgurations can lead to bad
imaging or even damages to the CT scanners.

Traditionally (Figure 1-up), experts from the CT domain (e.g. physicists) deĄne possible
parameter conĄgurations using tables in MS Excel and MS Word documents. These
documents are written in plain natural language and have a very weakly deĄned structure.
Quality assurance of these speciĄcation documents is realized exclusively through manual
reviews. Once the valid conĄgurations are deĄned, a semi-automatic process involving
manual transformations and different scripts is employed to generate conĄguration Ąles
in XML format which can be loaded by the scanner software. This manual process of
creating the speciĄcations is slow, prone to inconsistencies and reaches its limits due to the
complexity of modern CT scanners.

The use of domain speciĄc modeling tools drastically increases the development productivity
and quality: on the productivity side domain experts beneĄt from a higher level of abstraction
and higher automation; on the quality side they beneĄt from modeling guidance and advanced
consistency checks. To cope with the complexity of the CT domain, we have built a set of

Plain Text Specification
Documents and Tables

Specification with
Appropriate Models

Automated Consistency
Checks

Complete
Manual Reviews

Scanner XML
Configuration Files

Documents to Archive

Scanner XML
Configuration Files

Fig. 1: Specify parameters and their relations using plain text and Excel tables requires big review
effort for quality assurance and fragile semi-automatic generation of XML Ąles (top); Model-driven
speciĄcation of parameters enables deep and automatic consistency checks and automatic generation
of XML-based conĄguration Ąles to be loaded on the server (bottom).

282 Daniel Ratiu, Holger Nehls, Robert Walter, Jochen Michel

domain speciĄc languages and tooling (in the following called Scanner-DSL) which we use
to specify the conĄgurations of parameters of CTs. These rich models allow a wide range of
consistency checks and automatic generation of conĄguration Ąles in XMLs format and
which are subsequently loaded in CT scanners (Figure 1-bottom). Besides XML, for process
compliance reasons, we also generate PDF documents which are subsequently archived.

Contributions: In this paper we present our experiences with developing an eco-system
of domain speciĄc modeling languages over the last two years. Model-driven development
approaches are widely used within Siemens Healtineers. However, the Scanner-DSL project
is the Ąrst big project based on language engineering technologies. Thereby, besides
presenting the tooling per se, this paper also describes our approach on technology transfer
and adoption of domain speciĄc modeling approaches in an industrial setting. Last but not
least, based on our experience, we derive a set of lessons learnt and open challenges which
need to be addressed for a broader adoption of the technology.

Structure: In Section 2, we give a brief overview of the technologies used and the
developed DSLs. In Section 3 we present the development process and the major phases of
our project. In Section 4 we discuss variation points of the approach and present our lessons
learnt. In Section 6 we conclude the paper and give an outlook on future work.

2 Scanner-DSL

Scanner-DSL is an eco-system of languages and tooling built with JetbrainsŠ MPS4 language
workbench and the extensions offered by mbeddr-platform5. In Figure 2 we illustrate the
architecture of our tool.

Jetbrains' MPS

mbeddr platform libraries

Scanner DSLs
(19 languages, 280 meta-model classes)

Infrastructure

Healthineers'
languages

Scanner Configuration Application

Fig. 2: Scanner-DSL architecture at a glance: the application, built around a set of domain speciĄc
languages, is based on JetbrainŠs MPS and the extensions provided by the mbeddr-platform.

For reasons of brevity, we will not describe MPS or the mbeddr-platform libraries in detail;
we refer the reader to [Ca14], [Vo13] or [Vo16]. However, in order to make this paper
self-contained, we will brieĆy present in the following two subsections the major features

4 https://www.jetbrains.com/mps/

5 http://mbeddr.com/platform.html

Taming the Software Development Complexity with Domain SpeciĄc Languages 283

https://www.jetbrains.com/mps/
http://mbeddr.com/platform.html

of MPS and of mbeddr-platform which we used in our project. In Section 2.3 we brieĆy
describe our tool.

2.1 Jetbrain’s MPS

JetbrainsŠ Meta-Programming System6 is an open-source language workbench which offers
comprehensive support for all concerns of the development of DSLs and associated tooling.
In MPS, a language implementation consists of several language aspects Ű e.g. structure,
concrete syntax, constraints, type system, transformations, interpreters, or debuggers. MPS
ships with a set of dedicated DSLs for implementing each language aspect.

Editors. MPS, at its core, features a projectional editor to display models. Projectional
editors do not use parsers; instead, they render, or project, a programŠs abstract syntax tree
(AST) in a notation deĄned by the language developer. Language engineers can choose to
use speciĄc notations appropriate for the business domain they address Ű e.g. plain text,
forms, tables, diagrams, mathematical formula or trees.

Context Sensitive Constraints. MPS guides the language users (i.e. domain experts)
towards building models in two ways: 1) constructively by preventing the deĄnition of
invalid models up-front using an advanced set of scopes and constraints; and 2) analytically

by allowing the deĄnition of advanced checks in the IDE. The constructive way is using
the projectional nature of MPS directly Ű the users are allowed to enter only valid content.
Further constraints are essentially implemented as if-statements that check some property
of the AST and report errors if invalid code is detected.

Generators. MPS generators usually work as a chain of model-to-model transformations
where domain-speciĄc ASTs get enriched by platform-speciĄc information with each
transformation step. Eventually, a chain reaches the target language and a model-to-text
transformation produces an output text Ąle. Whilst MPS generators are not bound to this
design, it is the most common use case since it allows for a very modular approach to
combine and interchange transformation steps.

Tooling via IDE Extensions MPS also allows the deĄnition of IDE extensions such as
new menus or views; language engineers use these extensions extensively for building
domain speciĄc tooling or to integrate external tools. The IDE extensions are implemented
via regular Java/Swing programs and a couple of MPS-speciĄc extension points.

6 https://www.jetbrains.com/mps/

284 Daniel Ratiu, Holger Nehls, Robert Walter, Jochen Michel

https://www.jetbrains.com/mps/

Foundational Support for Model-driven Development MPS offers comprehensive
support for the entire life-cycle of model based development with domain speciĄc languages:
integrating with different version control systems, merging and diffing at model level,
testing of different aspects of the language deĄnition, refactorings of languages and models,
migration of models when languages evolve.

2.2 mbeddr Platform

Besides the set of DSLs and language deĄnitions aspects shipped with MPS, we made use
of an additional set of libraries for developing new languages. These libraries are offered by
the mbeddr platform [mbe15] provide additional language deĄnition aspects and DSLs for
deĄning special editors. We have made use of tabular and mathematical notations [VL14],
grammar cells for the deĄnition of consistent editors and language documentation aspect.

2.3 Scanner DSL

In Figure 3 we present a screenshot of our tool which contains examples of three models,
each built with a different DSL: a model which describes the available parameters with their
set of possible values (top-left) and two models describing possible valid combinations of
these parameters. Our models make use of textual, mathematical and tabular notations. On
the bottom-right we illustrate errors caused by a failed consistency check.

Our eco-system of DSLs contains 19 languages providing 264 concepts (i.e. meta-model
classes), with 57 properties and 264 relations between them. We implemented 59 constraints
and scoping rules which restrict constructively the building of semantically Ćawed models
and 112 more complex consistency checks. For quality assurance of these languages, we
have extensively used the testing infrastructure of MPS. We created ca. 60 test-cases with
more than 450 assertions. The generators are tested by comparing the generated artifacts
with a manually reviewed baseline.

Usage Our tool is currently used in production to model three existing scanners. The
initial modeling was done by one of the members of the language engineering team. We
were constantly in touch with our domain experts and future users of the tool. At the end of
2017, the user models have 104 parameters, 1111 composite rules containing 5553 atomic
rules distributed across more than 200 tabular rules. These models have been recently taken
over and enhanced by three domain experts. Our domain speciĄc tool went into production
several months ago and is used today full-time by two users (both non-computer scientists).

Taming the Software Development Complexity with Domain SpeciĄc Languages 285

Fig. 3: Examples of models built with three different DSLs. The models are deeply integrated with
each other which enables complex consistency checks.

3 Development Process

In the following we present three highlights of our project concerning the development
process: the phases of our project, enabling continuous integration of languages and models
and involving domain experts.

3.1 Project Phases

Our development process varied substantially within the last two years of the project and
can be divided into four phases. In Table 1 we present an overview over these phases, their
duration and the number of persons involved.

Phase 1: Ramping-up During the Ąrst 6 months of the project, until the team got conĄdent
with the technology, we had a ramping-up phase. It was characterized by the exploration of
the MPS technology stack and rapid prototyping of relevant use-cases in order to understand
the limitations. The main goal was to produce enough functionality to convince the other
teams about the meaningfulness of the modeling approach. During the ramping-up phase
most of the development took place during several hackathons, each of them being three
days long.

286 Daniel Ratiu, Holger Nehls, Robert Walter, Jochen Michel

Phase 2: Initial development After the ramping-up phase, several team members got
conĄdent with the MPS technology and the team allocated half a person for the development.
Soon after, the Ąrst interns joined the team and the development got a higher dynamics also
in-between the hackathons. The hackathons were used to explore advanced features of MPS
and to solve more complex problems.

Phase 3: Mature project After one year, the development was accelerated in order to
synchronize with the planned deadlines. Our team grew further and this lead to a signiĄcant
increase of the code-base and functionality. We integrated our project in the existing
continuous integration infrastructure and increased the coverage of our tests.

Phase 4: Production After one and half years since project start, our system went into
production and the size and the number of user-models describing parameters conĄgurations
started to grow rapidly. The Ąrst domain experts started to use our DSLs and the development
of languages and user models got different dynamics. This lead to the necessity to decouple
the life-cycles of language development and the use of languages for developing CT
speciĄcations.

Phase Duration (in months) Team-size (#developers / #students)

Ramping-up 6 0.5

Initial devel. 6 0.8 / 1

Mature project 9 1.2 / 2

Production 5 2.8 / 2

Tab. 1: The dynamics of our project changed substantially between phases: we started with a very
small team and and once the value of the technology had been proven, the team was increased in size
and contributes directly to productive software development projects.

3.2 Continuous Integration

Both the language engineering and the domain experts teams are distributed: language
development happens in Forchheim, Cologne and Munich. The domain experts work
distributed from Germany and China. Starting relatively early in the development of the
Scanner-DSLs, we introduced continuous integration for the development of DSLs. After
reaching the Ąrst functional milestone, we deployed the languages and tooling as a standalone
application to be used by domain experts. In Figure 4 we illustrate these two delivery
pipelines: the domain experts use releases of the Scanner-DSL tooling for building their
models. Artifacts (like conĄgurations as XML) are generated automatically from the models
and integrated within the continuous integration pipeline for our scanner software.

Taming the Software Development Complexity with Domain SpeciĄc Languages 287

Language Development

Continuous integration of domain
specific languages and tooling

Language Use

Language
Engineers

Release

Continuous integration of CT
parameter models

Domain
Experts

Fig. 4: The continuous integration is performed both for the language development and for the language
use. When the eco-system of DSLs reach a new baseline, we make a release of the Scanner-DSL
tooling and the domain experts use this release for their development of parameters conĄgurations for
the CT scanners.

3.3 Involving Domain Experts

The DSLs we develop capture the semantics of the CT scanner domain in an explicit and
precise manner. The language development process went closely together with a knowledge
engineering process inside the organization. At any point in time, at least one member of
the language development team had several years of experience with the scanner software
development and thereby in-depth domain knowledge.

During creation of languages, we had to make the domain knowledge explicit (i.e. choose
which concepts and relations among them are captured as Ąrst class language constructs,
and which constraints need to be implemented). We identiĄed edge-cases for which several
domain experts needed to be involved in discussions. Many times these experts had a slightly
different view over their domain and they needed to agree upon how the domain looks like.

4 Discussion and Lessons Learnt

In this section we discuss important variation points of our approach and present our lessons
learnt and open challenges.

4.1 Discussion

On Projectional Editing One of the most important distinguishing feature of MPS is the
projectional editing. Being a projectional editor, MPS does not feel like text editors when
users edit their models. In order to increase the Ćuency of modelsŠ creation and modiĄcation,
MPS allows advanced customization of editor actions Ű e.g. what happens when the user
presses ŤbackspaceŤ in a certain editor cell, or how are linear sequences of lexical items are
transformed into models. We have invested some effort to make the editing experience as

288 Daniel Ratiu, Holger Nehls, Robert Walter, Jochen Michel

intuitive as possible. At the same time this means that the users, who know and sometimes
expect fundamental features of Excel or Word, need to understand that the focus of the new
tool (from their point of view) is not to mirror known textual editor features, but to model
the semantics of the computed tomography scanner data. The initial feedback from our users
with respect to the usability of the editor is positive Ű the users immediately understood
that they are not editing ŤsimpleŤ text but rich models and thereby they calibrated their
expectations.

On MPS’s Extensibility The seamless extension capabilities of MPS with additional
language deĄnition aspects is a key feature which we made use of in our project. Besides
the standard aspects shipped with MPS, as presented in Section 2, we have intensively used
the Ťmbeddr-platformŤ libraries featured as part of mbeddr. Dependencies among different
extensions need to be managed appropriately such that the deployed Rich Client Platform
(RCP) can be built in a meaningful manner.

On Language Evolution and Models Migration on Multiple Branches MPS provides
out-of-the-box advanced support for evolving DSLs and migrate the models to the new
versions of the DSLs. We have used these features intensively to perform agile language
development. However, if the models are built on different branches then they also need to
be migrated to new language versions individually. Comparing (or merging) these branches
after migrations have been performed on them proves to be challenging.

4.2 Lessons Learnt

DSL Development and Domain Engineering go Hand-in-hand. In addition to the
DSL development itself, substantial effort has been involved in domain engineering. The
knowledge of domain experts (i.e. domain concepts, their relations and constraints on valid
combinations) at a certain point in time was formalized in the DSL. The DSLs help us
better understand, manage and consolidate the knowledge in our organization. Once initial
versions of the DSL was built, it was subsequently piloted to model different aspects of the
scanner domain and by doing this we identiĄed improvements of DSL.

Along with the development of DSLs the team went through a learning process about the
domain Ű we continuously got feedback from domain experts Ű and ca. 10-15 persons are
aware about different details of our DSLs and continuously validate what we are developing.

Continuously Demonstrate the Added Value from Early Stages Initial experience with
creating the user models was very useful to convince the stakeholders about the value of
the model-based approach. We were able to detect several inconsistencies in the original

Taming the Software Development Complexity with Domain SpeciĄc Languages 289

data which passed through multiple-review sessions and this was a strong argument for
semantically rich models. The possibility to generate XML conĄguration Ąles from models
quickly and in a fully automated way served as additional argument for our approach.

MPS Enables Highly Efficient Development of DSLs The infrastructure provided by
MPS and mbeddr-platform allowed us to develop the languages in a highly efficient manner.
After a few hours of development, we could get a baseline for languages and tooling which
can be used as input to engage in discussions with domain experts. This baseline is then
subject to iterative improvements, each iteration consisting often only of several hours of
development.

Need for Support for the Entire Life-cycle of DSLs The support for entire life-cycle of
DSL engineering and development offered by MPS proved to be essential - starting from
the DSLs used to deĄne different language aspects, with testing, refactoring and support for
continuous integration.

Configuration Management The DSL development team is distributed between Forch-
heim, Cologne and Munich. The team of domain experts using the DSLs is distributed as
well between Germany and China. The support offered by MPS for advanced versioning
and merging both for language development as well as for the language use is of high
importance for the adoption.

Semantic Richness Besides the deĄnition of appropriate language constructs and con-
straints which prevent up-front building meaningless models, we have implemented a rich
set of consistency and plausibility checks on the scanner models. These have proven to be
highly useful and are appreciated by domain experts since they get feedback immediately in
the IDE (e.g. in case consistency is violated). Corrective actions can be taken immediately
before errors are discovered later in process or even introduced into the production.

Testing and quality assurance We have developed a comprehensive test-suite for testing
the context-sensitive constraints and the generators. The checking rules are developed
test-driven; the generator for XML artifacts is validated by using a baseline test method
and reaches a block coverage of about 97% (measured at Java level using the EMMA7

code coverage tool). Each test is performed latest on our build server, triggered by every
commit. These tests proved to be highly useful whenever we evolved the DSLs or migrated
them to a new version of MPS. Overall, we estimate that the effort spent on writing unit
test was 30% of the total development effort. The integration of testing in our continuous
integration framework accounted for further 10% of the effort. We feel however that the
testing capabilities of MPS could be enhanced towards support for Ťend-to-endŤ testing.

7 http://emma.sourceforge.net/

290 Daniel Ratiu, Holger Nehls, Robert Walter, Jochen Michel

http://emma.sourceforge.net/

5 Related Work

[Vo17] presents lessons learnt from developing mbeddr, an open-source stack of domain
speciĄc languages built on top of C using JetbrainsŠ MPS. mbeddr is one of the biggest
DSLs based projects involving 10+ person years of development effort. This is the closest
work on experience with instantiating DSLs technology with JetbrainsŠ MPS. Compared to
[Vo17], this paper presents experiences and particularities with transfering the language
engineering technologies into industrial context and the entire life-cycle (i.e. from domain
engineering to supporting domain experts in using the tooling) of deploying DSLs.

[MPP14] presents experiences and challenges with domain speciĄc modeling in industrial
automation domain. [To16, TK16] describes experiences with introducing MetaEdit+
language workbench in industrial context to create domain speciĄc modeling languages. The
experienced presented by Tolvanen and colleagues are very much similar to our experiences:
support for the entire life-cycle of languages and models is needed, domain speciĄc modeling
and domain speciĄc tooling drastically increase the productivity of the software development.
Compared to these works, our experiences in this paper are based on a single, medium sized
language engineering project in the healthcare domain. We also describe our approach to
transferring language engineering technology in industrial practice.

6 Conclusions

In this paper we presented the Ąrst results from a two years endeavor on deploying domain
speciĄc languages to describe parameters and their conĄgurations for CT scanners. This
is only a Ąrst step to a holistic model based approach tailored to the needs of Siemens
Healthineers Computed Tomography. The efforts reported here are part of a longer term
project aimed at increasing the automation of the development of Computed Tomography
scanner software. This is only the initial baseline representing one speciĄcation document Ű
we plan to extend the languages and models for up to other 100 speciĄcations successively. In
parallel, the development of new innovative systems continues and new areas of applicability
can be anticipated.

Acknowledgements. We would like to thank Robert Walter8 for the discussions and
feedback on this paper.

References

[Ca14] Campagne, Fabien: The MPS Language Workbench. CreateSpace Publishing, 2014.

[mbe15] mbeddr Platform. http://mbeddr.com/platform.html, 2015. Accessed: 2017-12-15.

8 Independent Consultant, Gleueler Str. 179, 50931 Köln, info@digital-ember.com

Taming the Software Development Complexity with Domain SpeciĄc Languages 291

http://mbeddr.com/platform.html
info@digital-ember.com

[MPP14] Moser, Michael; Pfeiffer, Michael; Pichler, Josef: Domain-speciĄc Modeling in Industrial
Automation: Challenges and Experiences. In: Proceedings of the 1st International Workshop
on Modern Software Engineering Methods for Industrial Automation. 2014.

[TK16] Tolvanen, Juha-Pekka; Kelly, Steven: Model-Driven Development Challenges and Solutions
- Experiences with Domain-SpeciĄc Modelling in Industry. In: Proceedings of the 4th
International Conference on Model-Driven Engineering and Software Development -
Volume 1: Ind Track MODELSWARD. 2016.

[To16] Tolvanen, Juha-Pekka: MetaEdit+ for Collaborative Language Engineering and Language
Use (Tool Demo). In: Proceedings of the 2016 ACM SIGPLAN International Conference
on Software Language Engineering. 2016.

[VL14] Voelter, Markus; Lisson, Sascha: Supporting Diverse Notations in MPS Projectional Editor.
In: Workshop on The Globalization of Modeling Languages, co-located with MODELS. S.
7Ű16, 2014.

[Vo13] Voelter, Markus; Benz, Sebastian; Dietrich, Christian; Engelmann, Birgit; Helander, Mats;
Kats, Lennart; Visser, Eelco; Wachsmuth, Guido: DSL Engineering. dslbook.org, 2013.

[Vo16] Voelter, Markus; Szabó, Tamás; Lisson, Sascha; Kolb, Bernd; Erdweg, Sebastian; Berger,
Thorsten: Efficient development of consistent projectional editors using grammar cells. In:
Proceedings of the International Conference on Software Language Engineering. 2016.

[Vo17] Voelter, Markus; Kolb, Bernd; Szabó, Tamás; Ratiu, Daniel; van Deursen, Arie: Lessons
learned from developing mbeddr: a case study in language engineering with MPS. Software
& Systems Modeling, 2017.

292 Daniel Ratiu, Holger Nehls, Robert Walter, Jochen Michel

Tutorials

Tutorials

Der Tutorial-Track der Modellierung 2018 umfasst Präsentationen zu aktuellen Methoden,
Techniken und Werkzeugen für die Modell-basierte Entwicklung und Analyse von
Software-intensiven Systemen. Die Tutorien sind in einem didaktisch ausgereiften und
Praxis-orientierten Workshop-Format gehalten und kombinieren Vorträge zu
konzeptionellen Grundlagen mit interaktiven Beispielen sowie Live-Demos.

Es wurden drei hochwertige Vorschläge für Tutorials für den Track eingereicht, von denen
alle drei in das Programm der Modellierung 2018 aufgenommen werden konnten.

Das Tutorial eMoflon: A Tool for Building bietet einen Überblick über Prinzipien und
Praktiken im modernen Modell-getriebenen Software Engineering. Unter Verwendung
des Meta-CASE Tools eMoflon wird in dem Tutorial die Verwendung von Meta-
Modellierungsansätzen und Techniken für unidirektionale sowie bidirektionale Modell-
Transformationen beschrieben und anhand einer Fallstudie zu Objekt-orientierten
Refaktorisierungen demonstriert.

Das Tutorial Henshin: A Model Transformation Language and its Use for Search-Based

Model Optimisation in MDEOptimiser bietet einen Überblick über die Anwendung des
Werkzeugs MDEOptimiser, welches eine Erweiterung des Modell-Transformations-
Frameworks Henshins bereitstellt. Es wird demonstriert, wie mithilfe von MDEOptimiser
Modell-Optimierungs-Probleme durch die Suche nach optimalen Modellen hinsichtlich
beliebiger Fitnessfunktionen gelöst werden können.

Das Tutorial Feature Modeling and Development with FeatureIDE bietet schließlich einen
Überblick zur Modellierung, Entwicklung und Analyse Feature-orientierter Software-
Produktlinien. Es wird demonstriert, wie mit dem Werkzeug FeatureIDE
Variabilitätsmodellierung im Problemraum unter Verwendung von Feature-Modellen
sowie Techniken zur Abbildung von End-Nutzer-Features auf Domänen-Artefakte im
Lösungsraum eingesetzt werden können.

Wir möchten dem Organisations-Team der Modellierung 2018, insbesondere den
Organisatoren vor Ort, für die exzellente Unterstützung bei der Durchführung der
Tutorials danken. Weiterhin geht unser Dank an die Mitglieder des Programm-Komitees
für ihre hervorragende Arbeit bei der Begutachtung der Einreichungen. Schließlich
möchten wir den Autoren und Präsentierenden für ihre hochwertigen Tutorials sowie allen
Tutorial-Teilnehmern für ihre fruchtbaren und inspirierenden Diskussionsbeiträge danken.

Berlin / Darmstadt, im Februar 2018

Malte Lochau, TU Darmstadt

Timo Kehrer, HU Berlin

Programmkomitee

Anthony Anjorin Universität Paderborn
Thorsten Berger Chalmers Universität Göteborg
Daniel Strüber Universität Koblenz-Landau
Mattias Ulbrich KIT Karlsruhe
Manuel Wimmer TU Wien

Feature Modeling and Development with FeatureIDE

Thomas Thüm1, Thomas Leich2, Sebastian Krieter3

Abstract: FeatureIDE is an open-source framework to model, develop, and analyze feature-oriented
software product lines. It is mainly developed in a cooperation between TU Braunschweig, University
of Magdeburg, and Metop GmbH. Nevertheless, many other institutions contributed to it in the
past decade. Goal of this tutorial is to illustrate how FeatureIDE can be used to develop software
around end-user features. We will show how feature models are connected to and synchronized with
other artifacts. The hands-on tutorial will be highly interactive and is devoted to practitioners facing
problems with variability, lecturers teaching product line development, and researchers who want to
save resources in building product-line tools.

Keywords: software product lines; feature-oriented software development; feature modeling; product
conĄguration; feature traceability; consistency checking; Eclipse; FeatureIDE

1 Motivation and Overview

Software systems often have to be tailored to the needs of different customers. If differences
between those systems are made explicit in terms of features, feature-oriented software
product lines can be used to automatically generate software variants based on a selection
of features [Ap13].

In feature-oriented software development, valid combinations of features are deĄned in a
feature model during domain analysis. In domain design and domain implementation, those
features are mapped to development artifacts, such as models, code, documentation, or tests.
Preprocessors support a Ąne-grained mapping, as illustrated in the tutorial. Guided by the
feature model, valid conĄgurations are derived and then used as input for the preprocessor.

Since 2004 we are developing tool support for feature-oriented software development for
Eclipse in the FeatureIDE project [Me17]. Since 2009, FeatureIDE is open source and
received contributions from all over the world. While FeatureIDE started as a tool for
teaching and a vehicle for research prototypes, today it is also applied in industrial projects
with thousands of features.

The tutorial is planned to be a highly interactive, half-day event. We will demonstrate
FeatureIDEŠs functionality in addition to interleaved hands-on sessions, in which participants

1 TU Braunschweig, Germany
2 Metop GmbH, Germany; Harz University of Applied Sciences, Germany
3 University of Magdeburg, Germany; Harz University of Applied Sciences, Germany

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 297

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-sa/4.0/

can to tryout FeatureIDE and rely on our assistance. In the interactive parts, the goal is to
modify an example product line with FeatureIDE. Participants are asked to bring a notebook

for the hands-on sessions. The tutorial will cover the following topics:

1. Introduction to feature-oriented software development

2. Setting up Eclipse and FeatureIDE

3. Analysis of feature models and conĄgurations

4. Analysis and testing in feature-oriented software development

We gratefully acknowledge all who contributed to the open-source project FeatureIDE. In
particular, a special thanks for recent contributions to Timo Günther, Christopher Sontag,
Joshua Sprey, Paul Westphal, Chico Sundermann, Holger Fenske, Jens Meinicke, Reimar
Schröter, Gunter Saake, Ina Schaefer, Mustafa Al-Hajjaji, and Alexander Knüppel. A prior
version of this tutorial has been presented at SPLCŠ16 [TLK16].

Literaturverzeichnis

[Ap13] Apel, Sven; Batory, Don; Kästner, Christian; Saake, Gunter: Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer, Berlin, Heidelberg, 2013.

[Me17] Meinicke, Jens; Thüm, Thomas; Schröter, Reimar; Benduhn, Fabian; Leich, Thomas; Saake,
Gunter: Mastering Software Variability with FeatureIDE. Springer, Berlin, Heidelberg,
2017.

[TLK16] Thüm, Thomas; Leich, Thomas; Krieter, Sebastian: Clean Your Variable Code with
FeatureIDE. In: Proc. IntŠl Software Product Line Conf. (SPLC). ACM, New York, NY,
USA, S. 308Ű308, September 2016.

298 Thomas Thüm, Sebastian Krieter, Thomas Leich

Henshin: A Model Transformation Language and its Use for
Search-Based Model Optimisation in MDEOptimiser

Daniel Strüber1, Alexandru Burdusel2, Stefan John3, Steffen Zschaler4

Abstract: This tutorial presents Henshin, a versatile model transformation language increasingly used
in academic and industrial applications. Henshin is based on the paradigm of graph transformation and
provides a comprehensive tool set that supports largely declarative transformation speciĄcations and
various formal analyses. We present the application of Henshin in a search-based model optimisation
task, where the goal is to Ąnd an optimal model regarding a given Ątness function. Using Henshin, we
specify evolutionary operators for MDEOptimiser, a novel search-based model optimisation tool.

Keywords: model transformation; graph transformation; model optimisation; evolutionary optimisa-
tion

1 Summary

Model transformation has been called the heart and soul of model-driven engineering,
a paradigm in which models are continuously improved, reĄned, and translated. While
transformations can, in principle, be developed using any general-purpose-language, these
languages usually do not offer any support for challenges faced during transformation
development, such as the need for veriĄcation, traceability, and optimisation. To better
support developers, a variety of dedicated model transformation languages has emerged.

Henshin [Ar10, St17b] is a model transformation language based on the paradigm of
algebraic graph transformations. HenshinŠs key beneĄts are: (i) a visual syntax, supporting a
largely declarative speciĄcation of transformations, (ii) a mature formal foundation, enabling
various formal analyses, and (iii) a comprehensive tool chain, comprising various editors,
execution engines, and analysis tools. Supported analyses include model checking as well
as conĆict and dependency analysis. In academia, Henshin has been used in settings such as
model versioning, model refactoring, and software product line transformations. In industry,
Henshin has been used to verify the correctness of satellite control procedure translations.

Search-based model optimisation [ZM16] is a recent trend that combines the beneĄts of
model-driven and search-based software engineering. Search-based software engineering

1 Universität Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz, Germany, strueber@uni-koblenz.de
2 KingŠs College London, London WC2R 2LS, United Kingdom, alexandru.burdusel@kcl.ac.uk
3 Philipps-Universität Marburg, Hans-Meerwein-Str., 35032 Marburg, Germany, stefan.john@uni-marburg.de
4 KingŠs College London, London WC2R 2LS, United Kingdom, steffen.zschaler@kcl.ac.uk

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 299

https://creativecommons.org/licenses/by-nc/3.0/
strueber@uni-koblenz.de
alexandru.burdusel@kcl.ac.uk
stefan.john@uni-marburg.de
steffen.zschaler@kcl.ac.uk
https://creativecommons.org/licenses/by-sa/4.0/

provides software developers with technologies to solve optimisation tasks such as test case
selection, component deployment, or release bundling. Yet, the encoding of these tasks as
search problems is a complex and error-prone task that requires substantial expertise in
meta-heuristic technologies, such as evolutionary optimisation algorithms.

To alleviate this issue, search-based model optimisation makes this expertise available by
incorporating it into an optimisation framework. The user provides a solution-space speciĄ-
cation, comprising a meta-model and some in-place model transformations for modifying
the candidate solutions, i.e., the meta-modelŠs instances. The model transformations can
be speciĄed manually, or even generated automatically [St17a]. In summary, search-based
model optimisation supports the black-box use of search technologies, by enabling a problem
speciĄcation based on domain concepts, rather a technology-speciĄc encoding.

MDEOptimiser [BZ17] is a search-based model optimisation framework based on Henshin.
Like other recent frameworks, in particular MOMoT [FTW16], MDEOptimiser involves
Henshin to bridge model transformation with optimisation based on genetic algorithms. As
its distinguishing feature, MDEOptimiser uses Henshin rules to specify the genetic operators,
in particular the mutation operator. This set-up is particularly efficient in situations where
the model itself, rather than the orchestration of rules, is to be optimised.

Goals. Participants will take three things from the tutorial: (i) How to specify and apply
model transformation rules using Henshin, (ii) How to specify an optimisation problem
using MDEOptimiser and Henshin, and (iii) How to design a high-quality mutation operator.

Prerequisites. Participants should be familiar with the Eclipse Modeling Framework (EMF),
which provides the underlying modeling platform for Henshin. In particular, they should
know how meta-models and model instances are speciĄed using EMF.

References
[Ar10] Arendt, Thorsten; Biermann, Enrico; Jurack, Stefan; Krause, Christian; Taentzer, Gabriele:

Henshin: advanced concepts and tools for in-place EMF model transformations. In:
MODELS. Springer, pp. 121Ű135, 2010. https://www.eclipse.org/henshin/.

[BZ17] Burdusel, Alexandru; Zschaler, Steffen: , MDE Optimiser. https://mde-optimiser.
github.io/, 2017.

[FTW16] Fleck, Martin; Troya, Javier; Wimmer, Manuel: Search-based model transformations with
MOMoT. In: ICMT. Springer, pp. 79Ű87, 2016.

[St17a] Strüber, Daniel: Generating Efficient Mutation Operators for Search-Based Model-Driven
Engineering. In: ICMT. pp. 121Ű137, 2017.

[St17b] Strüber, Daniel; Born, Kristopher; Gill, Kanwal Daud; Groner, Raffaela; Kehrer, Timo;
Ohrndorf, Manuel; Tichy, Matthias: Henshin: A Usability-Focused Framework for EMF
Model Transformation Development. In: ICGT. pp. 196Ű208, 2017.

[ZM16] Zschaler, Steffen; Mandow, Lawrence: Towards model-based optimisation: Using domain
knowledge explicitly. In: MELO. pp. 317Ű329, 2016.

300 Daniel Strüber, Alexandru Burdusel, Stefan John, Steffen Zschaler

https://www.eclipse.org/henshin/
https://mde-optimiser.github.io/
https://mde-optimiser.github.io/

eMoflon: A Tool for Tools and Transformations

Lars Fritsche1, Géza Kulcsár2

Abstract: eMoflon is a model-based meta-CASE framework, which allows users to build their own
solutions for modern MDE scenarios. Particularly, eMoflon supports meta-modeling and unidirectional
as well as bidirectional model transformation. In this tutorial, those major functionalities of eMoflon
are presented using a case study of object-oriented refactorings.

Keywords: Model-driven engineering; Model transformation; Bidirectional model synchronization

Model-Driven Engineering (MDE) is a software engineering principle, which tackles the

challenges of complex and long-living software systems by treating architectural and

behavorial system models as an inherent part of the software product. Nowadays MDE

scenarios pose challenges of increasing complexity to software engineers, incorporating

multiple models as well as diverse model engineering tasks:

• (T1) model-based specification of application domains,

• (T2) integration and evolution of models and

• (T3) verification and preservation of consistency between models which represent

different system aspects but share some semantic features.

Particularly, while model evolution is often described by unidirectional model transforma-

tion, model integration and consistency requires the use of bidirectional synchronization

techniques.

With the increasing popularity of MDE, a number of industrial as well as academical

tools have appeared to facilitate the specification and transformation of models, relying

on well-founded techniques such as meta-modeling and model transformation. Regarding

the technical foundations, the Eclipse Modeling Framework (EMF) has become a de-facto

standard for developing MDE tooling. However, the large majority of prevalent tools focuses

on a single aspect of MDE-related activities like model creation or transformation, while

not providing a holistic approach addressing each facet of the MDE process.

In this tutorial, we present eMoflon3, a model-based meta-CASE framework. Using eMoflon,

we demonstrate how to specify EMF-conform meta-models as well as unidirectional and

1 TU Darmstadt, Germany, lars.fritsche@es.tu-darmstadt.de
2 TU Darmstadt, Germany, geza.kulcsar@es.tu-darmstadt.de

3 http://emoflon.org/

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 301

https://creativecommons.org/licenses/by-nc/3.0/
lars.fritsche@es.tu-darmstadt.de
geza.kulcsar@es.tu-darmstadt.de
http://emoflon.org/
https://creativecommons.org/licenses/by-sa/4.0/

bidirectional transformations of EMF models. All features are shown and discussed on the

example of a real-world case study of model-based object-oriented refactorings.

In particular, the refactoring case study is used in this tutorial to highlight the aforementioned

major functionalities of the eMoflon suite:

• (F1) Representation of a custom-tailored abstraction over an object-oriented program

using eMoflon and EMF-based meta-modeling techniques.

• (F2) Specification of correct refactoring rules over our custom-tailored program

model by using the SDM model transformation language in eMoflon.

• (T3) Consistency preservation between refactored models and the original code base;

propagation of changes in the source code or the program model to the other side

using bidirectional model transformation in eMoflon.

The tutorial is aimed at model engineers of any experience level who are interested in a

multi-purpose meta-CASE tool for tackling diverse challenges posed by the modern MDE

landscape, within a single, flexible framework.

Overview:

• Metamodeling with eMoflon

• Unidirectional model transformation using Story-Driven Modeling

• Bidirectional model transformation with Triple Graph Grammars

• Case study of model-based object-oriented refactorings

Lars Fritsche is a doctoral student at the Real-Time Systems Lab at the Technical University

of Darmstadt. His research interests are concurrent engineering and bidirectional model

transformation.

Géza Kulcsár is a doctoral student at the Real-Time Systems Lab at the Technical University

of Darmstadt. His research interests are the semantics of controlled graph transformation

and its application for model transformation.

302 Lars Fritsche, Géza Kulcsár

Werkzeugpräsentation

Werkzeugpräsentationen

Ziel des Tracks „Werkzeugpräsentation“ war es, Modellierungswerkzeuge zu
präsentieren, die im wissenschaftlichen Umfeld entwickelt wurden und werden. Die
Leitung für diesen Track haben Prof. Dr. Hans-Georg Fill und PD Dr. Agnes Koschmider
übernommen. Vorgestellt wurden fünf Modellierungswerkzeuge, die einen interessanten
Einblick in die aktuellen Entwicklungen im Bereich Modellierungswerkzeuge geben. Die
ausgewählten Beiträge wurden auf Basis von jeweils drei Gutachten eines internationalen
Programmkomitees ausgewählt. Die ausgewählten Werkzeuge bieten verschiedene
Modellierungsunterstützungen. Es wurde ein Werkzeug für eine prozessbasierte
Modellierung und Generierung mobiler Cloud-Anwendungen vorgestellt sowie ein
Werkzeug zur interaktiven Simulation der musterbasierten Kontrollflusssemantik von
Geschäftsprozessmodellen. Weitere Demontratoren wurden für eine Augmented Reality-
basierte Prozessmodellierung, für die Erfassung der konzeptuellen Modellierung und für
ein interaktives Zoomen in Fehlerbäumen (Component Fault Trees) gezeigt.

Die Realisierung der Werkzeugpräsentation wäre nicht ohne die Unterstützung von
zahlreicher Seite möglich gewesen. Die Organisatoren möchten sich daher besonders bei
den Autoren der Beiträge für die Einreichung der Arbeiten und die Demonstrationen der
Tools sowie bei den Mitgliedern des Programmkomitees für die fristgerechte Anfertigung
der Gutachten bedanken. Ebenso ergeht der Dank an die Organisatoren der Modellierung
2018 für die Ermöglichung des Tracks im Hauptprogramm der Tagung. Die
Werkzeugpräsentation fand am Donnerstag, den 22. Februar 2018 in Braunschweig statt.

Braunschweig, im Februar 2018

Hans-Georg Fill, Universität Wien

Agnes Koschmider, Karlsruher Institut für Technologie

Programmkomitee

Dominik Bork Universität Wien
Robert Buchmann Universität Babes-Bolyai, Cluj-Napoca
Michael Fellmann Universität Rostock
Florian Johannsen Universität Regensburg
Birger Lantow University of Rostock
Judith Michael Alpen-Adria-Universität Klagenfurt
Kristina Rosenthal Fernuniversität Hagen
Robert Woitsch BOC AG

Graphical App Designer

Konzept für die prozessbasierte Modellierung mobiler Cloud-Anwendungen

Prof. Dr. Gabriele Roth-Dietrich1, Prof. Dr. Rainer Gerten2 und André Schäfer3

Abstract: Der Graphical App Designer (GAD) unterstützt Unternehmen, die Cloud-Plattformen
betreiben und versetzt Anwender4 und Berater, die über fachliche Prozessexpertise sowie über
Prozessmodellierungskenntnisse, aber nicht über Programmiererfahrung verfügen, in die Lage,
Cloud-Anwendungen für heterogene mobile Frontends zu modellieren und zu implementieren. Der
GAD stellt die Modellierungsumgebung bereit, die sich an Prozessdarstellungen in BPMN
orientiert, und stellt durch Prüfungen bereits während der Modellierung die Generierbarkeit und
die Funktionsfähigkeit der Entwürfe sicher. Aus den Modellen kann ein plattformspezifischer
GAD-Compiler später die ausführbaren Anwendungen auf Cloud-Seite generieren.

Keywords: Graphical App Designer, Prozessmodellierung, BPMN, Cloud-Plattform, mobile
Endgeräte.

1 Modellierung und Generierung mobiler Anwendungen durch

Business-User

Die Nutzung mobiler Cloud-Plattformen und die Umsetzung mobiler Geschäftsprozesse
in einer App stellt Unternehmen vor große Herausforderungen, weil die Prozessexperten
zwar die Abläufe bis ins Detail kennen, aber zu wenig technische Vorkenntnisse haben,
um die Prozesse in der Programmierumgebung der Plattform zu implementieren. Der
Graphical App Designer (GAD) soll Anwender aus Fachabteilungen und IT-Berater mit
Business-Schwerpunkt in die Lage versetzen, ihre Prozesskenntnisse direkt in Form
eines Ablaufmodells für die mobile Anwendung zu übertragen. Er übernimmt dazu den
Ansatz grafischer Modellierungswerkzeuge, mobile Anwendungen visuell zu designen,
sowie die Idee von App-Baukästen, Apps aus Bausteinen zusammenzusetzen. Der GAD
stellt eine visuelle Programmierumgebung für die Modellierung und spätere Generierung

1 Hochschule Mannheim, Fakultät für Informatik, Mannheimer Wirtschaftsinformatik-Institut, Paul-Wittsack-

Straße 10, 68163 Mannheim, g.roth-dietrich@hs-mannheim.de
2 Hochschule Mannheim, Fakultät für Informatik, Mannheimer Wirtschaftsinformatik-Institut, Paul-Wittsack-

Straße 10, 68163 Mannheim, r.gerten@hs-mannheim.de
3 Movilizer GmbH, Konrad-Zuse-Ring 30, 68136 Mannheim, andre.schaefer@honeywell.com
4 Soweit im Folgenden bei der Bezeichnung von Personen die männliche Form verwendet wird, schließt diese

Frauen in der gleichen Funktion ausdrücklich mit ein.

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 307

https://creativecommons.org/licenses/by-sa/4.0/

verteilter Cloud-Lösungen und ihrer Nutzung auf heterogenen mobilen Endgeräten
bereit.

2 Konzept

Um die Zielgruppe optimal zu unterstützen, muss sich die Modellierung der mobilen
Anwendung im GAD-Editor am bekannten BPMN-Standard für Geschäftsprozesse
orientieren, von dem jedoch kontextabhängig nur Teilmengen der Notationselemente in
Frage kommen. Die Modellierung soll die Nutzung von Vorlageprozessen ermöglichen,
die versierte Berater oder Entwickler für typische Prozessszenarien vorfertigen und
vielfach wiederverwenden. Diese Templates können Anwender als anpassbare Copy-
and-Paste-Kopiervorlagen oder als referenzierte Modelle für die Ablaufmodellierung in
den GAD-Editor importieren, um die Modellerstellung oder -aktualisierung zu
beschleunigen, wiederverwendbare Modellbibliotheken vorzuhalten und auf Best
Practice Know-how dezidierter Branchen und Anwendungsdomänen zurückzugreifen.

Die Modellierung darf sich nicht auf die für die Nutzer auf dem Mobile Device
sichtbaren Prozessschritte beschränken, sondern muss Backend-Prozesse der Cloud-
Plattform einschließen, etwa für die Synchronisation mit Cloud-Funktionalitäten oder für
Datenmanagementaufgaben. Die Modellierungsphase sollen umfassende Prüfungen
begleiten, so dass die Entwürfe zum Modellierungsende weitgehend fehlerfrei sind.
Diese Verprobungen gewährleisten, dass nur lexikalisch erlaubte Modellierungselemente
zum Einsatz kommen und dass Anwender diese auf syntaktisch korrekte Weise
zusammenfügen. Gewünschte Semantikprüfungen kann der GAD über Regeln
integrieren, etwa zum grundsätzlichen Prozessablauf, zur Reihenfolge der Templates
(z.B. vorbereitende Aktivitäten stets vor durchführenden), zur Template-Schachtelung
(beispielsweise Prozessabschluss immer nur mit Dokumentation der Tätigkeit) oder zu
Mussbestandteilen für die Prozesse (etwa an Synchronisationspunkten mit der Cloud).
Der durch den GAD erzeugten Zwischencode soll sich wiederum an Standards anlehnen
und fertige Modelle in einem plattformunabhängigen XML-Format ablegen, aus denen
ein auf die Cloud-Plattform zugeschnittener GAD-Compiler die fertigen Anwendungen
generiert und über einen Konnektor an die Cloud-Plattform überträgt.

3 Umsetzung

Das Konzept des GAD wurde zusammen mit Studierenden des Bachelor-Studiengangs
Unternehmens- und Wirtschaftsinformatik der Hochschule Mannheim im Rahmen eines
Projektsemesters im Sommer 2017 beispielhaft für das Unternehmen Movilizer GmbH
und ihre Cloud-Plattform Honeywell Movilizer Cloud for Field Operations umgesetzt.
Die Movilizer Cloud verbindet Akteure im Bereich Field Operations miteinander und
orchestriert Prozesse über Unternehmens- und Anwendungssystemgrenzen hinweg durch
Movilizer Mobile Apps, die sich aus Movilizer Movelets, d.h. mobilen Prozessen

308 Prof. Dr. Gabriele Roth-Dietrich, Prof. Dr. Rainer Gerten, André Schäfer

zusammensetzen. Um einen Überblick über die Breite der in der Praxis genutzten
mobilen Prozesse zu bekommen, analysierten und modellierten die Studierenden vier
Prozessszenarien in BPMN: Pickup and Delivery, Direct Store Delivery, Installed Base
Management sowie Field Service Sales. Nach Zusammenführung der Szenarien in einen
vereinheitlichten Gesamtprozess und Modularisierung mit Hilfe von
wiederverwendbaren Subprozessen konnten etwa 20 GAD-Templates extrahiert werden.

Die Marktrecherche konzentrierte sich auf Metamodellierungstools, die sowohl Prozesse
als auch die Besonderheiten von verteilten mobilen Cloud-Anwendungen modellieren
können, sich dabei an BPMN anlehnen, aber Anpassungen in der Modellierungsnotation
ermöglichen. Weitere K.O-Kriterien waren importierbare Shapes und
Notationselemente, XML-Unterstützung und Copyleft. Zu den sonstigen Kriterien
gehörten mit absteigender Gewichtung User Experience, Art und Ort der
Modelldatenspeicherung, Attributierungsmöglichkeiten für Screens und Felder,
Dokumentation bzw. Support, bereits vorhandene Syntax-Checks sowie Lizenzkosten.
Es wurden folgende Tools untersucht: Adonis, ADOxx, BIC Design Free WebEdition,
BPMN.io, Camunda, ConceptBase, draw.io, [em], Fujaba, JastAdd, MetaCase,
metaDepth, OpenPonk, RMT Framework und Signavio. Gemäß dem aufgestellten
Kriterienkatalog und der festgelegten Kriteriengewichtung fiel die Entscheidung auf die
Verwendung des Frameworks bpmn.js, das die Grundlage der beiden als gut bewerteten
Werkzeuge bpmn.io und Camunda bildet.

Abb. 1: Architektur des Graphical Movelet Editor

Um die Modellierungsoberfläche so einfach wie möglich zu halten, nutzt der Proof-of-
Concept des GAD nur wenige BPMN-Notationselemente, darunter ein Start- und ein
Ende-Ereignis sowie den Sequenzfluss. Das Hauptelement für die Ablaufreihenfolge ist
der Screen, dargestellt als BPMN-Aktivität, der entweder eine für Nutzer sichtbare
Oberfläche oder einen verdeckt ablaufenden Prozessschritt abbildet. Entsprechend der
Task-Typen einer BPMN-Aktivität kann auch der Screen verschieden ausgestaltet sein,
z.B. als Text Item Screen, der ein Eingabefeld bereitstellt, mit Kalenderdarstellung für
die Datumsselektion oder als Unterschriftenfeld.

Graphical App Designer 309

Die Templates für die vier Prozessszenarien sind baumartig strukturiert und enthalten
Regeln für Reihenfolge, Schachtelung und Mussbestandteile. Der Movelet-Container auf
oberster Ebene lädt zu Beginn benötigte Daten aus der Movilizer Cloud und schreibt
veränderte Daten am Ende zurück. Da alle Prozessszenarien Touren beinhalten, ordnen
sich darunter sich Sub-Templates für das Vorbereiten, Durchführen und Abschließen
einer Tour an. Je Sub-Template stehen verschiedene Ausgestaltungsvarianten zur
Verfügung, etwa die Tour-Durchführung mit Auslieferungen (Delivery),
Abholvorgängen (Pick-Up) oder Vertriebsbesuchen (Sales Visit).

Abb. 2: Modellierung im Graphical Movelet Editor

Für die Implementierung wurde der Tool-Name auf das Unternehmen Movilizer GmbH
angepasst. Im Backend des Graphical Movelet Editor (GME) liegen die
Notationselemente, der Template-Vorrat sowie die Modellierungsprojekte (siehe Abb.
1). Das GME-Frontend besteht aus GUI-Komponenten, Werkzeugen für die
Prozesslogik und Möglichkeit zur lokalen Speicherung der Modelle. Im GME erstellen
Anwender neue mobile Anwendungen oder importieren existierende Movelets aus der
Movilizer Cloud, nutzen Templates, versorgen die Screens mit Daten und prüfen Syntax
und Semantik der Modelle (siehe Abb. 2). Nach Modellierungsende generiert der GME-
Compiler lokal gespeicherten Movilizer-spezifischen MXML-Zwischencode und
übermittelt bei eingerichteter Verbindung zur Cloud-Plattform die fertigen Modelle an
die Movilizer Cloud.

Der Editor des Graphical App Designers ist in der Stand-Alone-Version nutzbar, um
mobile Prozesse BPMN-nah zu modellieren und mit Templates plattformunabhängig zu
orchestrieren. Er kann auf Anfrage zur Verfügung gestellt werden, um ihn zu erweitern
oder um den Compiler für die Integration in weitere Cloud-Plattformen auszubauen.

310 Prof. Dr. Gabriele Roth-Dietrich, Prof. Dr. Rainer Gerten, André Schäfer

Interactive information zoom on Component Fault Trees

Santiago Velasco1, Jan Reich2 and Maxime Tchangou3

Abstract: The visualization approach for Component Fault Trees (CFTs) realized in this work was
implemented as an extension of the safeTbox modeling tool (safeTbox.iese.fraunhofer.de). Its goal
is to enhance the understandability of compositional and hierarchical models while facilitating
reviewing purposes. Safety Analysts makes use of CFTs to perform fault analyses at system level.
However, such analyses are hindered by the traditional approach of hiding the realization
information of components behind the specification views. The approach presented here
overcomes this problem thanks to an information-based zoom. Through it, it is possible to
gradually present at the specification level information extracted out of the internal realization
views.

Keywords: Component Fault Trees, Information Zoom, Visual Zoom, Black-box, specification
view, realization view, hierarchical abstraction.

Fault Tree Analysis (FTA) is a deductive technique for the identification of faults in a
system. It is very well-known in the safety-critical domain of embedded systems, since
its use is demanded or recommended by several standards (e.g. IEC 61508 or ISO
26262) depending on the criticality of the system to be designed. As its name indicates,
this technique leads to the construction of a tree of undesired events (see Fig1 left): on its
top, a top event (event under analysis) will be found, on the leaf, the so called “Basic
Events” (being the root causes), and in between intermediate events (depict the logical
combinations of basic or other intermediate events).

Fig. 1: Fault Tree (Left), Component Fault Tree (Right)

1 Fraunhofer IESE, Embedded Systems Quality, 67663 Kaiserslautern, santiago.velasco@iese.fruanhofer.de
2 Fraunhofer IESE, Embedded Systems Quality, 67663 Kaiserslautern, jan.reich@iese.fruanhofer.de
3 TU-Kaiserslautern, 67663 Kaiserslautern, maximetchangou2011@yahoo.fr

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 311

https://creativecommons.org/licenses/by-sa/4.0/

Kaiser and Liggesmeyer [BPO00] extended the FTA approach with modularization
concepts to encapsulate parts of a typically monolithic representation into blocks (see
Fig1 right). The resulting Component Fault Tree (CFT) concept introduces new
modeling elements to support a compositional approach, namely CFT instances and
input events. The former allow to reuse existing modularized fault trees within other
fault trees, and the later (Yellow triangles in the figure) represent failure modes
propagating into the modularized fault trees.

Domis [D05] enhanced the CFT approach to get a formal traceability to system and
architectural design models by introducing traces between CFT artifacts and architecture
artifacts. For this reason this approach has the advantage that fault models are easier to
maintain with respect to changes in system design models. In Adler [ASH17], the
integrated approach has been further adapted to support cause analyses in models that
describe control schemes. However, CFTs modeled following these approaches have the
disadvantage that they have to adopt the hierarchical abstraction of the architecture
models they have been integrated to.

In the embedded systems domain, hierarchical abstraction is typically used as means to
handle complexity. This is frequently used in the modeling of large systems when
building component networks in which it is easy to distinguish between the black-box
and white-box views. Meaning the specification and the realization by means of
composition of other components. A black-box representation can be very useful to get
the big picture in terms of composition, but it can be difficult to work with, when model
details are required for reasoning. This is the case in the area of fault analysis for
instance, where it is quite important to have a better understanding of the behavior of the
system parts. This will be required to identify faults that might not only occur as a pure
fault of a component but due to their intricate interaction. Traditionally, compositional
models have been supported by most modeling tools by enabling the navigation from the
black-box (i.e. specification) to the white-box (i.e. realization) representation of a
component and by supporting different visual zoom levels. The navigation from the
white to the black representation is generally not well-supported, since the navigation is
not unique (e.g. in the case of reuse). For this reason an analyst trying to review the
system model has a hard time, since he has to switch continuously between the
specification and realization views. Only in this way he will be able to get a big picture
of the system, while being able to understand the details of each component at the same
time. Such context switching is quite demanding, since it assumes that the analyst is able
to retain the realization view of one or more components in mind while analyzing others.

In order to facilitate the review process of complex models, particularly in the context of
Component Fault Tree analysis, we have implemented a prototype of a visualization
feature as part of the safeTbox™ modeling tool (safetbox.iese.fraunhofer.de). It allows
performing an information zoom, in which details of the realization view of a component
are brought up to the level of the specification representation. The goal of this feature is
to eliminate the need of switching context while obtaining more details within a
hierarchical and compositional model. With the start of the visualization feature, the

312 Santiago Velasco, Jan Reich, Maxime Tchangou

model will be displayed in the visualization feature as displayed in the modeling tool
(see Fig 2 - Entry level). From this point on an analyst has the possibility to control the
amount of information being displayed by means of a visual and information zoom. The
deeper the selected information level the more details of the realization views of the
instances will be displayed. This will occur recursively until no refinement is possible,
i.e. the user sees the full realization of the deep most component in the hierarchy.

Fig. 2: Solution concept

One of the major differences between the regular visualization approach and ours is that
in the black/white box alternative the modeler has a big jump with respect to the amount
of information being displayed whenever he switches from the specification (only
interfaces being displayed) to the realization (i.e. all information). In our approach, we
have introduced several intermediate levels of details which are computed out of the
model information and which smoothly increments the amount of information being
displayed (see level 1 and 2 in figure 2). From the entry point, i.e. the typical black-box
view, the user can zoom into Level 1, which does not present the realization of CFT_A
as it would be expected, but a reduced fault tree which has been computed out of the
results of the Minimal Cut Sets (MCS) analysis. The MCS Analysis is used to compute
the minimal set of events required to trigger the occurrence of a top event. This view
abstracts from the underlying fault model with a small set of modeling elements, but is
still showing the most important information, namely the faults of all internal sub
components of CFT_A. If the user needs to know where these faults originate he can
zoom in further into zoom level 2, where he will start seeing an abstract version of the
realization of the component. In this level, the focus rests on depicting the fault
relationship among sub components. The information with respect to the instance
interfaces is removed by abstracting the fault relationships between each pair of sub
components. In summary, the feature will display the same information as in the entry
level, but for the sub components of CFT_A.

As shown in the figures 3, while zooming in purely through the information zoom, the
feature will add more and more information to the model. For this reason, a visual pan
and zoom functionality is still required to allow the user focus temporary in certain
aspects.

Interactive information zoom on Component Fault Trees 313

In summary, our visualization approach provides an alternative way in displaying
information for component-oriented fault trees. It shall enhance the understandability of
hierarchical models while facilitating reviewing purposes by avoiding context switching.
In the near feature this feature will be extended with other visualization functionalities to
support other analysis activities, e.g. Common Cause Failures (CCF) and Boolean cycle
visualization in CFTs.

Fig. 3: Visualization feature levels example

 [ASH17] Adler,R., Schneider D., Höfig K., ”Evolution of fault trees from hardware safety
analysis to integrated analysis of software-intensive control systems”, In proceedings
of ESREL 2017 (Portoroz, Slovenia, 18-22 June, 2017)

[D05] Domis, D.: "Integrating fault Tree Analysis and Component-Oriented Model-Based
Design of Embedded Systems", PHD Thesis, Technische Universitaet Kaiserslautern,
Fachbereich Informatik, 2005

[BPO03] Bernhard Kaiser , Peter Liggesmeyer , Oliver Mäckel, A new component concept for
fault trees, Proceedings of the 8th Australian workshop on Safety critical systems and
software, pp. 37-46, October 01, Canberra, Australia, 2003

Info zoom

Info (x2) + visual zoom

E

3

1

 MCS

314 Santiago Velasco, Jan Reich, Maxime Tchangou

Eine musterbasierte Kontrollflusssemantik zur interaktiven

Simulation von Geschäftsprozessmodellen

Andreas Drescher1

Abstract: Für die Modellierung von Geschäftsprozessen existieren eine Vielzahl von
Modellierungssprachen, die allerdings häufig eine unpräzise Kontrollflusssemantik besitzen.
Dadurch werden die Analysefähigkeit sowie auch die Austauschbarkeit der Modelle eingeschränkt.
In diesem Beitrag wird eine leichtgewichtige Methode am Beispiel der Business Process Model and
Notation (BPMN) zur präzisen Beschreibung der Kontrollflusssemantik einer beliebigen
graphischen Modellierungssprache als Microsoft Visio (MS Visio) Add-In vorgestellt. Die
Kontrollflusssemantik wird durch eine fallbasierte Zuweisung zu den Kontrollflussmustern der
Workflow Pattern Initiative definiert. Die entstehende Analysefähigkeit wird durch eine interaktive
Simulation demonstriert.

Keywords: Modellierungssprachen, Kontrollflussmuster, Kontrollflusssemantik, Simulation

1 Einleitung

Die Wertschöpfung eines Unternehmens ist von einer effizienten und effektiven
Ausführung der Geschäftsprozesse abhängig. Das Geschäftsprozessmanagement kann für
die strukturierte Herangehensweise von der Erfassung bis hin zur Überwachung der
Geschäftsprozesse angewandt werden. In diesem Zusammenhang werden die
Geschäftsprozesse mit (1) domänenspezifischen Sprachen (z. B. PICTURE), (2)
Standardmodellierungssprachen (z. B. BPMN) oder (3) Standardmodellierungssprachen
mit domänenspezifischen Erweiterungen, z. B. um Nachhaltigkeits- oder auch
Gesundheitsaspekte (z. B. BPMN4CP), modelliert [Br15]. Insbesondere die
Modellierungssprachen aus der Kategorie (1) und (3) besitzen typischerweise eine
unpräzise Kontrollflusssemantik sowie eine fehlende Werkzeugunterstützung, wodurch
deren Verbreitungsgrad reduziert ist. Dies führt häufig dazu, dass MS Visio zur
Dokumentation eingesetzt wird [Ko15]. Jedoch unterstützen insbesondere MS Visio und
vorhandene Erweiterungen kaum die Analysefähigkeit und Austauschbarkeit der Modelle
für (1) und (3). Daher wird in diesem Beitrag eine leichtgewichtige Methode zur präzisen
Beschreibung der Kontrollflusssemantik beliebiger graphischer Modellierungssprachen
als MS Visio Add-In vorgestellt. Auf dieser Grundlage wird eine IT-gestützte Analyse
und XML-basierte Speicherung der Modelle sowie deren Kontrollflusssemantik möglich.
Im Vergleich zu anderen Software-Werkzeugen wird die Sprache nicht durch das
Werkzeug vorgegeben, sondern kann durch den Modellierer selbstständig definiert und

1 Karlsruher Institut für Technologie (KIT), Institut für Angewandte Informatik und Formale

Beschreibungsverfahren (AIFB), Andreas.Drescher@kit.edu

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 315

https://creativecommons.org/licenses/by-sa/4.0/

entsprechend die Kontrollflusssemantik durch die Muster präzisiert werden, um z. B.
kontrollflussabhängige Analysen zu ermöglichen.

2 Werkzeugpräsentation

Das Software-Werkzeug wurde als MS Visio Add-In mit Visual Studio 2017 entwickelt
und ist unter http://wiwi.link/Visio4Analyse zum Download verfügbar. Es wurde
unterstützend das .NET Framework 4.6.1, die Office Developer Tools für Visual Studio
2017 und Visual C# 2017 verwendet. Im Folgenden wird zunächst der Prozess zur
Erstellung einer musterbasierten Kontrollflusssemantik beschrieben. Zur Beschreibung
der Methode wurde BPMN aus (2) ausgewählt, da typischerweise die Sprachen aus (1)
und die Erweiterungen aus (3) keine komplexere Kontrollflusssemantik besitzen, wie z. B.
eine BPMN-Aufgabe oder ein komplexes Gateway. Nachfolgend können die Modelle
analysiert oder auch mit anderen Software-Werkzeugen austauscht werden. Die
entstehende Analysefähigkeit wird durch eine interaktive Simulation in BPMN
demonstriert.

2.1 Erstellung einer musterbasierten Kontrollflusssemantik

Für die präzise Beschreibung der Kontrollflusssemantik einer Sprache werden die
Kontrollflussmuster der Workflow Pattern Initiative (WPI) eingesetzt [Ru06]. Die
Kontrollflussmuster beschreiben das wiederkehrende Verhalten der logisch-kausalen
Abhängigkeiten des Kontrollflusses. Daher können sie zur leichtgewichtigen Präzisierung
der Kontrollflusssemantik verwendet werden. Derzeit unterstützt das entwickelte Add-In
alle Basiskontrollflussmuster und ausgewählte erweiterte Verzweigungs- und
Zusammenführungsmuster, d. h. die Kontrollflussmuster: Sequenz, Parallele Aufspaltung,
Synchronisation, Exklusive Auswahl, Mehrfachauswahl, Strukturierte synchronisierte
Zusammenführung, Mehrfachzusammenführung, Strukturierter, Blockierender und
Abbrechender Diskriminator sowie Strukturierte, Partielle und Blockierende
Zusammenführung.

Abb. 1: Musterbasierte Kontrollflusssemantik

Der Prozess zur Erstellung einer präzisen Kontrollflusssemantik wird in Abb. 1 skizziert
und die erforderlichen Daten werden mit Dialogfenstern spezifiziert. Im ersten Schritt
werden die METADATEN definiert, d. h. der Name der Kontrollflusssemantik sowie die

Modellierungs-

sprache

Metadaten
definieren

Syntaxelement
spezifizieren

SYNTAXELEMENT

Fälle
defi-

nieren

FALL

Verbin-
dungs-

elemente

316 Andreas Drescher

kontrollflussabhängigen Verbindungselemente, die den Kontrollfluss in MS Visio
graphisch abbilden. Beispielsweise ist die Kontrollflusssemantik in BPMN vom Sequenz-
und Nachrichtenfluss sowie von der Datenassoziation abhängig. Nachfolgend kann die
Kontrollflusssemantik der Syntaxelemente durch die Auswahl des Notationselementes in
MS Visio mit verschiedenen Fällen spezifiziert werden. Ein FALL definiert das Verhalten
«vor der Ausführung» oder «nach der Ausführung» und wird einem Kontrollflussmuster
abhängig von der Anzahl der ein- bzw. ausgehenden Verbindungselemente zugeordnet.
Ein Fall für eine BPMN-Aufgabe kann z. B. wie folgt definiert werden: Bei mehr als
einem ausgehenden Sequenzfluss (>1), beliebig vielen eingehenden Sequenzflüssen (>0),
keinem / keiner ein- bzw. ausgehenden Nachrichtenfluss (==0) / Datenassoziation (==0)
und dem Verhalten «nach der Ausführung» kann die Aufgabe dem Muster Parallele
Aufspaltung zugeordnet werden. Für die Spezifikation der erforderlichen Anzahl der
Verbindungselemente werden die Operatoren größer (>), größer gleich (>=), gleich (==),
ungleich (!=), kleiner gleich (<=) und kleiner (<) angeboten. Die Kontrollflusssemantik
der Modellierungssprache ist präzise beschrieben, wenn alle möglichen Fälle definiert
wurden. Die Rahmenbedingungen der leichtgewichtigen Methode werden durch die
Notation sowie der Kontrollflussmuster bestimmt. Die Spezifikation der Syntaxelemente
wird mit Hilfe der Notation realisiert, so dass ein Notationselement mit den
entsprechenden graphischen Verbindungselementen für die präzise Beschreibung
existieren muss. Daher ist die Beschreibung der Kontrollflusssemantik eines Link-
Ereignisses oder Ad-Hoc Teilprozesses problematisch. Darüber hinaus ist eine
Verschachtelung mehrere Kontrollflussmuster bei komplexeren Fällen (z. B. eine BPMN-
Aufgabe mit angehefteten Ereignissen) erforderlich und die Kontrollflusssemantik muss
durch die Kontrollflussmuster abbildbar sein.

2.2 Interaktive Simulation von Geschäftsprozessen

Die präzise Kontrollflusssemantik ermöglicht den Einsatz von kontrollflussabhängigen
Analyseverfahren, wie z. B. die interaktive Simulation. In der Praxis ist es jedoch häufig
schwierig die genauen Eingabedaten für ein Simulationsmodell zu erhalten. Daher steht
insbesondere bei der interaktiven Simulation die spielerische Auseinandersetzung mit den
möglichen Verhaltensweisen und der damit einhergehenden Visualisierung zur Förderung
der Verständlichkeit von Szenarien im Vordergrund. Alternative Analyseverfahren sind
z. B. die Überprüfung der inhaltlichen Korrektheit oder die Testfallgenerierung.

Für die interaktive Simulation des Prozessmodells erhält zunächst jedes Element auf der
Zeichenfläche (engl. Shape) in MS Visio einen Zustand. Mögliche Zustände sind (1)
«unmarkiert», (2) «markiert», (3) «markiert, nicht ausführbar» oder (4) «hervorgehoben».
Ein Shape besitzt den Zustand 1, wenn es aufgrund des aktuellen Zustandes der
Geschäftsprozessinstanz nicht ausgeführt werden kann. Es besitzt keine spezielle visuelle
Kennzeichnung. Den Zustand 2 hat ein Shape, wenn es aufgrund des zutreffenden Falles
«nach der Ausführung» des ausgeführten Shapes, ausgeführt werden kann. Zusätzlich
muss für das auszuführende Shape ein «vor der Ausführung» Fall zutreffen, sodass das
Shape visuell mit Grün hervorgehoben wird. Sofern der zutreffende Fall «vor der

Eine musterbasierte KontrollĆusssemantik zur interaktiven Simulation 317

Ausführung» noch nicht erfüllt ist, der durch das Kontrollflussmuster bestimmt wird,
erhält das Shape den Zustand 3. Es wird visuell mit Rot hervorgehoben. Wenn
beispielsweise im Dialog in Abb. 2 die Shapes Aufgabe B und D ausgewählt wurden, so
muss der Kontrollfluss bei Gateway 2 warten, bis die beiden Aufgaben C und E ausgeführt
wurden. Sofern erst eine der beiden Aufgaben ausgeführt wurde, wird das Gateway 2 mit
dem Zustand 3 gekennzeichnet. Sobald beide Aufgaben ausgeführt wurden, erhält das
Gateway 2 den Zustand 2. Den Zustand 4 besitzt ein Shape, wenn es den Zustand 1
erhalten würde, zugleich aber optionale Ausführungsmöglichkeiten existieren.
Dementsprechend kann der Zustand 4 nur in Verbindung mit den implementierten
Kontrollflussmustern Exklusive Auswahl und Mehrfachauswahl (vgl. Abb. 2) auftreten.
Nach der Auswahl eines oder mehrerer Shapes erhalten die ausgewählten Shapes den
Zustand 2 und die anderen Shapes den Zustand 1. Der Zustand 4 wird mit Gelb
hervorgehoben.

Abb. 2: BPMN Schritt-für-Schritt-Simulation – Kontrollflussmuster Mehrfachauswahl

Für den Start der Simulation müssen die Startelemente ermittelt werden. Startelemente
sind dadurch gekennzeichnet, dass sie keine eingehenden Verbindungselemente besitzen,
in keinem anderen Shape (z. B. Teilprozess) enthalten und mit keinem anderen Shape
verknüpft (z. B. angeheftete Ereignisse in BPMN) sind. Sofern mehrere Startelemente
existieren, werden diese mit dem Zustand 4 markiert. Der Folgezustand einer
Geschäftsprozessinstanz wird durch das Klicken auf ein Shape mit dem Zustand 2 oder 4
ermittelt.

3 Ausblick

Als weiterführende Schritte sollen Anwender-Studien zur Bewertung der
Gebrauchstauglichkeit der musterbasierten Kontrollflusssemantik und der interaktiven
Simulation durchgeführt werden. Die Methode und das Add-In sollen dann schrittweise
mit dem Feedback verbessert werden. Die nächste Entwicklungsstufe umfasst unter
anderem die Simulation mehrerer Fälle inklusive quantitativer Kennzahlen, sodass
Aussagen über die Mindestdauer und die Ressourcen- oder Kapazitätsauslastung möglich
sind. Ebenfalls sollen die weiteren 31 Kontrollflussmuster der WPI in das Add-In
integriert werden.

Start Gateway 1

Aufgabe B

Aufgabe E

Aufgabe C

Gateway 2

Ende

Aufgabe D

Aufgabe A

318 Andreas Drescher

4 Literaturverzeichnis

[Br15] Braun, R. et al.: Extending a Business Process Modeling Language for Domain-
Specific Adaptation in Healthcare. In (Thomas, O.; Teuteberg, F. Hrsg.): Smart
Enterprise Engineering, 2015; S. 468–481.

[Ko15] Kocbek, M. et al.: Business Process Model and Notation. The Current State of
Affairs. In Computer Science and Information Systems, 2015, 12; S. 509–539.

[Ru06] Russell, N.; Hofstede, A.H.M. t.; Aalst, W. M. P. v. d.; Mulyar, N.: Workflow
Control-Flow Patterns: A Revised View. BPMcenter.org, 2006.

Eine musterbasierte KontrollĆusssemantik zur interaktiven Simulation 319

Development of a prototype for Smart Glasses-based

process modelling

Sven Jannaber1, Benedikt Zobel1, Lisa Berkemeier1 and Oliver Thomas1

Abstract: The integration of mobile technology is considered a major challenge for the BPM
domain. Wearable devices such as smart glasses have already been successfully applied in high-
mobility fields such as technical services. However, the utilization of smart glasses to document
and model processes still remains on a conceptual level and has not yet been instantiated. This
paper demonstrates a prototype for process modelling on smart glasses. It is shown how glasses-
specific functionality, e.g. voice recognition, can be incorporated into a modelling environment
that facilitates the run-time modelling of processes, even for modelling novices.

Keywords: BPM, process modelling, smart glasses, run-time modelling

1 Towards mobile process modelling

Business process management (BPM) is considered one of the top five management
topics for today´s enterprises [Lu12]. An integral part of every BPM endeavour is the
modelling of business processes [BNT10]. Studies show that the mere documentation of
operational activities within an enterprise is able to increase the organizational
performance [Me05]. However, despite technological advances, process modelling still
relies on traditional modelling methods using desktop computers and complex software
suites. This is especially detrimental for high mobility domains such as technical
customer service (TCS), which puts heavy emphasis on highly mobile service
technicians that perform on-site services such as maintenance and repair [Ma17]. To
cope with these requirements, smart glasses have emerged as a suitable tool to support
service technicians during service execution [Ni16]. However, while smart glasses have
proven to be beneficial in terms of additional information provision [Ni17], challenges
arise when implementing process aware information systems on such devices. Major
problems particularly address the integration and visualization of processes, since smart
glasses come with specific hardware-related restrictions regarding visualization that are
diametric to current forms of process models. Consequently, the research question is
stated as follows: “How can business processes be captured and documented in a way

that allows for utilization within a process aware information system on Smart

Glasses?” Research on this matter has already conceptualized the use of smart glasses
themselves as a means to capture processes [Me17]. Hence, the paper at hand introduces
a prototype that addresses this issue by demonstrating how smart glasses functionality
can be utilized for process modelling, even in run-time to process execution and on-site.

1 Osnabrück University, IMWI, Katharinenstraße 3, 49074 Osnabrück, [firstname.lastname]@uos.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 321

https://creativecommons.org/licenses/by-sa/4.0/

2 A prototype for Smart Glasses-based process modelling

The prototype for process modelling with smart glasses is represented in an exemplary
case from the TCS domain in Figure 1. The figure shows part of a process for the
replacement of a coil. The technician as end-user of the prototype is recording the
process using an intuitive user interface, which does not require modelling experiences.
Each modelling action done via the prototype interface results in the ongoing
construction of a process model in the background. In the presented case, the EPC
language has been chosen for demonstration purposes. The primary form of interaction
with the prototype is voice command, as the user has free hands to fulfill his task. The
voice control is activated if the icon displaying a mouth (lower right) is green. If there is
no connection and the symbol is red, other interaction interfaces like control buttons can
be used. When documenting a process, the technician needs to insert and label a function
via voice command, as done with the function “Remove Cover” in the example shown in
Figure 1. Subsequently, the system requires a feedback to confirm the description.
Afterwards, the system awaits the next user interaction, which may be a new function or
e.g. a resource. Functions are followed by events that are automatically generated on the
basis of the function label. The resulting model can for example be used for the process
guidance with smart glasses: The functions will appear as instructions in the glasses’
display, the events can be utilized as a confirmation step. Especially untrained
technicians benefit from this documentation, as they receive instructions from their
viewing perspective, which are easy to follow and provided hands-free.

Please name the step you

would like to add.

Insert new step labeled

„Remove Cover“.

Accept the element

label?

Do you want to attach an additonal

media element?

Yes No X

Image Video XNo

Mechanic has

arrived

Remove Cover

Open Bonnet

Engine is

visible

Cover is

removed

Change Coil

Coil is changed

Figure 1: Adding and naming of a new process step

322 Sven Jannaber, Benedikt Zobel, Lisa Berkemeier, Oliver Thomas

Besides the text-based instructions, smart glasses offer functionalities such as voice or
video respectively picture recording. Thereby, the documented process is enhanced by
further procedural knowledge as displayed in Figure 2. The technician takes a picture of
a service object such as a coil in our example. Therefore, the voice command “record”
initiates the camera. After 5 seconds, the picture is taken and displayed to the user
afterwards. The user can decide whether to approve the picture or not. If the picture is
disapproved, the system returns to the last screen to take another shot. If the picture is
confirmed, the technician can proceed with the next step. The recordings are saved as
information objects and are assigned to functions as resources. The documentation
process can be stopped at any time if the user triggers the button marked with an “x” on
every screen.

Mechanic has

arrived

Remove Cover

Open Bonnet

Engine is

visible

Cover is

removed

Change Coil

Coil is changed

Record X

Yes No X

After saying Record, you

have 5 seconds to adjust

the camera.

You will see a proof of the

picture afterwards.

Do you approve of this picture?

Picture

Figure 2: Adding of a media element

As service processes in TCS typically yield a high degree of variability, the documented
processes can be adapted and extended at any time. Via voice command, the technician
can add or delete new steps or create decision trees by inserting a split. The system
transforms these splits into logical operators from the EPC language, such as an XOR to
indicate alternative process paths. Additionally, the overall system architecture provides
for a manual quality check and enhancement of the resulting models as shown in
Figure 3. The architecture encompasses both modelling via smart glasses (focus of this
contribution) as well as a back office system that offers traditional modelling software
functionality. As demonstrated in Figure 1 and 2, the modelling concept provides that
high mobility workers, such as service technicians within the TCS domain, use the
prototype to document operational activities in form of process models. However, the
expressiveness of such models is limited, since hardware-specific restrictions (e.g. small
display size) have to be considered.

Development of a prototype for Smart Glasses-based process modelling 323

Figure 3: System architecture of the Smart Glasses modelling prototype

Additionally, technicians as end-users are often modelling novices, which may lead to
modelling errors. Hence, the backend modelling system ensures that each modelled
process using the prototype is manually checked from domain experts. Subsequent to
model checking, the models are distributed to a central server, which stores them in a
database. Afterwards the models can be used for guiding inexperienced technicians
through service processes by visualizing them as instructions on smart glasses.

Bibliography

[BNT10] Becker, J., Niehaves, B., Thome, I.: How Many Methods Do We Need ? – A Multiple Case Study
Exploration into the Use of Business Process Modeling Methods in Industry. In: AMCIS 2010
Proceedings, 2010.

[Lu12] Luftman, J., Zadeh, H.S., Derksen, B., Santana, M., Rigoni, E.H., Huang, Z. (David): Key
information technology and management issues 2011-2012: an international study. J. Inf.
Technol. 27(3), pp. 198–212 (2012).

[Ni16] Niemöller, C.; Metzger, D.; Fellmann, M.; Thomas, O.: Shaping the Future of Mobile Service
Support Systems – Ex-Ante Evaluation of Smart Glasses in Technical Customer Service
Processes. In: Informatik 2016. Klagenfurt, 2016

[Ni17] Niemöller C., Metzger D., Thomas, O. "Design and Evaluation of a Smart-Glasses-based Service
Support System", In: Leimeister JM, Brenner W. (eds): Proceedings der 13. Internationalen
Tagung Wirtschaftsinformatik (WI 2017), St. Gallen, pp. 106-120 (2017)

[Ma17] Matijacic, M.; Fellmann, M.; Kammler, F.; Özcan, D.; Nüttgens, M.; Thomas, O.: Elicitation and
Consolidation of Requirements for Mobile Technical Customer Services Support Systems – A
Multi-Method Approach. In: Proceedings of the 34th International Conference on Information
Systems (ICIS 2013), pp. 1-16, 2013.

[Me05] Melenovsky, M.J.: Business process management’s success hinges on business-led initiatives.
Gart. Res. Stamford, CT. 1–6 (2005).

[Me17] Metzger, D.; Niemöller, C.; Berkemeier, L.; Brenning, L.; Thomas, O.: Vom Techniker zum
Modellierer - Konzeption und Entwicklung eines Smart Glasses Systems zur
Laufzeitmodellierung von Dienstleistungsprozessen. In: Smart Service Engineering, pp. 193-213,
2017.

324 Sven Jannaber, Benedikt Zobel, Lisa Berkemeier, Oliver Thomas

A web-based modeling tool for studying the learning of
conceptual modeling

Benjamin Ternes1, Stefan Strecker1

Abstract: How do we learn conceptual modeling? What are common learning difficulties? Which
tool support assists learners in what respect? We report on the design and development of a web-based
modeling tool aimed at studying the learning of conceptual modeling by observing learner interactions
with graphical model editors. Learner interactions with graphical model editors are tracked, recorded
and analyzed at the individual and aggregate learner levels with support for graphically reproducing
the learner-editor interactions over time. In this short paper, we report on the current state of the tool
development.

Keywords: Learning of conceptual modeling; Web-based modeling tool; Prototyping.

1 Introduction

Viewed as an activity, conceptual modeling involves an intricate array of cognitive processes
and performed actions including abstracting, conceptualizing, associating, interpreting,
visualizing, and, in group settings, communicating, discussing and agreeing. The learning
of conceptual modeling, hence, constitutes a complex and challenging task for learners not
only at the introductory level. Designing modeling tool support for learners presupposes
a differentiated understanding of learning processes, common learning difficulties, and
learning barriers. However, surprisingly little is currently known about the learning of
conceptual modeling [SSD14, pp. 488]. Research on learning conceptual modeling has
only recently seen increasing interest with contributions, e.g., focusing on business process
modeling (e.g. [Pi12]), on cognitive aspects (e.g. [TVC17]), and on learning outcomes (e.g.
[SDS16]).

In an attempt to contribute to Ąlling this gap, we embarked on a long-term research program
with which we aim to better understand how modelers learn a modeling language resp.
modeling method and how tool support assists learners in what respect. As part of that
research program, we develop a web-based modeling tool aimed at identifying patterns
by recording learner interactions with graphical model editors, e.g., patterns of learning
difficulties. The current running prototype explores design and implementation strategies for
tracking learner-editor interactions, handling and persistency of tracking data and tracking
data analytics.

1 University of Hagen, Enterprise Modelling Research Group, Universitätsstr. 41, 58084 Hagen, Germany
{benjamin.ternes}|{stefan.strecker}@fernuni-hagen.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 325

https://creativecommons.org/licenses/by-nc/3.0/
{benjamin.ternes}|{stefan.strecker}@fernuni-hagen.de
https://creativecommons.org/licenses/by-sa/4.0/

2 Tool presentation

Two essential requirements drive the software development, ease-of-use (and installation,
conĄguration) as well as platform independence to the greatest possible extent (based
on our primary application scenario of a distance learning context with cohorts of up to
1,500 learners). Hence, in an early design decision, we opted for a web application with a
JavaScript-driven browser frontend and an Java EE (Enterprise Edition)-based backend (see
Fig. 1). Thus, the tool can be used with popular web browsers and operating systems.

The principle tool operation is as follows: The core component of the web frontend
implements the generic handling of nodes and edges on the drawing canvas including
higher level features such as creating, reading, and updating entire diagrams. Appropriate
resources are dynamically loaded and added to the page as needed, usually in response to
user interactions. The created conceptual models are internally represented and stored in
the JavaScript Object Notation (JSON) format. Stencil sets are processed by the frontend
and provide explicit typing, connection rules, visual appearance, and other features that
differentiate a model editor from generic vector-oriented drawing tools.

Fig. 1: The software architecture on conceptual design level.

The frontend prototype currently implements two graphical editors we use in an introductory
course on conceptual modeling: A variant of the Entity-Relationship Model [Ch76] for data
modeling and a subset of the MEMO Organisation Modeling Language [Fr11] for business
process modeling (see Fig. 2). With respect to the user interface paradigm, we opted for the
widely used stencil set (left) and modeling canvas (right) approach but consider the user

326 Benjamin Ternes, Stefan Strecker

interface subject to future research on better supporting the learning process after having
identiĄed patterns of learning and learning difficulties.

Fig. 2: Overview of the web-based modeling tool.

The backend prototype implements a tracking and an analytic component including
algorithms for tracking and functionalities for analyzing learner-editor interactions. In more
detail, the prototype implements an algorithm which records the learner-editor interactions
while working on, e.g., modeling tasks. An additional analysis interface extends the current
prototype, and preliminary comprises two analysis functionalities for reconstructing the
learner interactions (see Fig. 3): A step-by-step replay and an automatic replay. Corresponding
analytics and visualizations of tracked data will be added in future work.

Fig. 3: Overview of the implemented replay analysis.

Please note that due to privacy and security issues, the tool can only be accessed via a VPN
connection to the university network at the following link: http://tool.fernuni-hagen.de.
Further information about the prototype, such as the JSON structure that is used for model
serialization, are provided upon request.

A web-based modeling tool for studying the learning of conceptual modeling 327

http://tool.fernuni-hagen.de

3 Limitations and outlook

Observing learning conceptual modeling by learner-editor interaction is a principle limitation
of our approach, and neglects other, presumably equally important aspects of the learning
process, e.g., learner motivation and willingness-to-learn, use of additional tools outside of
our modeling tool, e.g., online tutorial videos etc. In another respect, observing learner-tool
interaction is a second- or third-best approach: Asking learners to think out loud (e.g.
[Ha16]) while modeling promises further and more detailed insights into their reasoning
and is on our agenda as an additional mean of studying the learning of conceptual modeling.
We plan to add support for thinking out loud to the prototype in a future version.

Tool development is also confronted with technical challenges, e.g., with performance
issues under heavy load which need further investigation and systematic testing (potentially
having more than 1,000 students using the tool at the same time). Likewise, the prototype
needs further testing of run-time stability under high load which we consider especially
important with regard to the implementation of the tracking algorithm. These limitations
and challenges remain on our research agenda.

References

[Ch76] Chen, P. P.-S.: The Entity-Relationship ModelŮToward a UniĄed View of Data. ACM
Transaction Database Systems, 1(1):9Ű36, 1976.

[Fr11] Frank, U.: MEMO Organisation Modelling Language (2): Focus on Business Processes.
Technical report, ICB-Research Report No. 49, Institute for Computer Science and Business
Information Systems (ICB), University Duisburg-Essen, 2011.

[Ha16] Haisjackl, C.; Barba, I.; Zugal, S.; Soffer, P.; Hadar, I.; Reichert, M.; Pinggera, J.; Weber,
B.: Understanding Declare Models: Strategies, Pitfalls, Empirical Results. Software and
Systems Modeling, 15(2):325Ű352, 2016.

[Pi12] Pinggera, J.; Soffer, P.; Zugal, S.; Weber, B.; Weidlich, M.; Fahland, D.; Reijers, H. A.;
Mendling, J.: Modeling Styles in Business Process Modeling. In: Enterprise, Business-
Process and Information Systems Modeling. LNBIP, vol 113. Springer, Berlin, Heidelberg,
pp. 151Ű166, 2012.

[SDS16] Sedrakyan, G.; De Weerdt, J.; Snoeck, M.: Process-mining enabled feedback: Ťtell me what
i did wrongŤ vs. Ťtell me how to do it rightŤ. Computers in Human Behavior, 57:352Ű376,
2016.

[SSD14] Sedrakyan, G.; Snoeck, M.; De Weerdt, J.: Process mining analysis of conceptual modeling
behavior of novicesŰempirical study using JMermaid modeling and experimental logging
environment. Computers in Human Behavior, 41:486Ű503, 2014.

[TVC17] Turetken, O.; Vanderfeesten, I.; Claes, J.: Cognitive Style and Business Process Model
Understanding. In: Advanced Information Systems Engineering Workshops. CAiSE 2017.
LNBIP, vol 286. Springer, Cham, pp. 72Ű84, 2017.

328 Benjamin Ternes, Stefan Strecker

Autorenverzeichnis

A
Abu-Alqumsan, Mohammad, 261

B
Bai, Yu, 245
Berkemeier, Lisa, 321
Burdusel, Alexandru, 299

D
Doan, Khanh-Hoang, 135
Dörndorfer, Julian, 23
Drescher, Andreas, 315

F
Fill, Hans-Georg, 55
Fritsche, Lars, 301

G
Gerten, Prof. Dr. Rainer, 307
Gogolla, Marti, 135
Golubski, Wolfgang, 151
Grabowski, Markus, 245
Greenyer, Joel, 167
Gritzner, Daniel, 167
Grosche, Andreas, 103

I
Igel, Burkhard, 103

J
Jannaber, Sven, 321
John, Stefan, 299

K
Kaiser, Bernhard, 245
Klamma, Ralf, 199

Kolagari, Ramin Tavakoli, 119
Krieter, Sebastian, 297
Kulcsár, Géza, 301
Kuryazov, Dilshod, 183

L
Lange, Peter de, 199
Laue, Ralf, 87
Leblebici, Erhan, 39
Leich, Thomas, 297

M
Mann, Zoltán Ádám, 71
Metzger, Andreas, 71
Michel, Jochen, 281

N
Nehls, Holger, 281
Nicolaescu, Petru, 199

P
Pittl, Benedikt, 55

Q
Queins, Stefan, 151

R
Ratiu, Daniel, 281
Rauh, Alexander, 151
Regnat, Nikolaus, 17
Reich, Jan, 311
Reussner, Ralf, 183
Reuter, Christian, 275
Riebisch, Matthias, 215
Roth-Dietrich, Prof. Dr. Gabriele, 307

S
Schäfer, André, 307
Schmid, Klaus, 119
Schoenen, Stefan, 71
Schürr, Andy, 15, 39
Seel, Christian, 23
Slotosch, Oscar, 261
Spinczyk, Olaf, 103
Stehle, Tilmann, 215
Störrle, Harald, 233
Strecker, Stefan, 325
Strüber, Daniel, 299

T
Tchangou, Maxime, 311
Ternes, Benjamin, 325

Thomas, Oliver, 321
Thüm, Thomas, 297
Tomaszek, Stefan, 39

V
Velasco, Santiago, 311

W
Wägemann, Tobias, 119
Walter, Robert, 281
Wang, Lin, 39
Winkler, Thomas, 199
Winter, Andreas, 183

Z
Zobel, Benedikt, 321
Zschaler, Steffen, 299

	Titelseite
	Vorwort
	Sponsoren
	Tagungsleitung
	Programmkomitee
	Inhaltsverzeichnis
	Eingeladene Vorträge
	Graph-Transformation-Driven Correct-by-Construction Development of Communication System Topology Adaptation Algorithms – Andy Schürr
	Why SysML does often fail – and possible solutions – Nikolaus Regnat

	Wissenschaftliche Beiträge
	A Framework to Model and Implement Mobile Context-Aware Business Applications – Julian Dörndorfer, Christian Seel
	Model-driven Development of Virtual Network Embedding Algorithms – Stefan Tomaszek, Erhan Leblebici, Lin Wang, Andy Schürr
	Transforming Enterprise Models to Linked Data – Benedikt Pittl, Hans-Georg Fill
	Towards a run-time model for data protection in the cloud – Zoltán Ádám Mann, Andreas Metzger, Stefan Schoenen
	Nutzung von Bilddatenbanken zur Erstellung von Symbolen – Ralf Laue
	Exploiting Modular Language Extensions in Legacy C Code – Andreas Grosche, Burkhard Igel, Olaf Spinczyk
	Optimal Product Line Architectures for the Automotive Industry – Tobias Wägemann, Ramin Tavakoli Kolagari, Klaus Schmid
	Extending a UML and OCL Tool for Meta-Modeling – Khanh-Hoang Doan, Marti Gogolla
	Measuring the Quality of System Specifications in Use Case Driven Approaches – Alexander Rauh, Wolfgang Golubski, Stefan Queins
	Synthesis of Cost-optimized Controllers from Scenario-based GR(1) Specifications – Daniel Gritzner, Joel Greenyer
	Collaborative Modeling enabled by Versioning – Dilshod Kuryazov, Andreas Winter, Ralf Reussner
	Enhancing MDWE with Collaborative Live Coding – Peter de Lange, Petru Nicolaescu, Thomas Winkler, Ralf Klamma
	Modellierung plattformübergreifender Quellcode-Entsprechungen für die koordinierte Co-Evolution portierter Software-Systeme – Tilmann Stehle, Matthias Riebisch

	Praxisforum – Eingeladene Industriebeiträge
	Implementing Knowledge Management in Agile Projects by Pragmatic Modeling – Harald Störrle
	Systematic Refinement of CPS Requirements – Markus Grabowski, Bernhard Kaiser, Yu Bai
	Modeling and Safety-Certification of Model-based Development Processes – Oscar Slotosch, Mohammad Abu-Alqumsan
	Controlled Complexity for Future Mobility – Methodology, Guidelines and Tooling – Christian Reuter
	Taming the Software Development Complexity with Domain Specific Languages – Daniel Ratiu, Holger Nehls, Robert Walter, Jochen Michel

	Tutorials
	Feature Modeling and Development with FeatureIDE – Thomas Thüm, Sebastian Krieter, Thomas Leich
	Henshin: A Model Transformation Language and its Use for Search-Based Model Optimisation in MDEOptimiser – Daniel Strüber, Alexandru Burdusel, Stefan John, Steffen Zschaler
	eMoflon: A Tool for Tools and Transformations – Lars Fritsche, Géza Kulcsár

	Werkzeugpräsentation
	Graphical App Designer – Prof. Dr. Gabriele Roth-Dietrich, Prof. Dr. Rainer Gerten, André Schäfer
	Interactive information zoom on Component Fault Trees – Santiago Velasco, Jan Reich, Maxime Tchangou
	Eine musterbasierte Kontrollflusssemantik zur interaktiven Simulation – Andreas Drescher
	Development of a prototype for Smart Glasses-based process modelling – Sven Jannaber, Benedikt Zobel, Lisa Berkemeier, Oliver Thomas
	A web-based modeling tool for studying the learning of conceptual modeling – Benjamin Ternes, Stefan Strecker

	Autorenverzeichnis

