
CASM: Implementing an Abstract State Machine based
Programming Language ∗

Roland Lezuo, Gergö Barany, Andreas Krall

Institute of Computer Languages (E185)
Vienna University of Technology

Argentinierstraße 8
1040 Vienna, Austria

{rlezuo,gergo,andi}@complang.tuwien.ac.at

Abstract: In this paper we present CASM, a general purpose programming language
based on abstract state machines (ASMs). We describe the implementation of an inter-
preter and a compiler for the language. The demand for efficient execution forced us
to modify the definition of ASM and we discuss the impact of those changes. A novel
feature for ASM based languages is symbolic execution, which we briefly describe.
CASM is used for instruction set simulator generation and for semantic description
in a compiler verification project. We report on the experience of using the language
in those two projects. Finally we position ASM based programming languages as an
elegant combination of imperative and functional programming paradigms which may
liberate us from the von Neumann style as demanded by John Backus.

1 Introduction

Most of the well known programming languages have a sequential execution semantics.
Statements are executed in the order they appear in the source code of the program (im-
perative programming). The effects of a statement – changes to the program’s state – are
evaluated before the next statement is considered. Examples of such programming lan-
guages are assembly languages, C, Java, Python and many more. Actually there are so
many languages based on the imperative paradigm that it may even feel ”natural”.

However, there seems to be a demand for alternative programming systems. John Backus
even asked whether programming can be liberated from the von Neumann style [Bac78].
John Hughes tries to convince the world that functional programming matters [Hug89].
Hudak et al. conclude that, although not used by the masses, aspects of functional pro-
gramming are being incorporated into main stream imperative languages [HHPJW07].

Functional languages describe side-effect free application of functions to their arguments
which makes them presumably easier to understand. They struggle to gain real-world

∗This work is partially supported by the Austrian Research Promotion Agency (FFG) under contract 827485,
Correct Compilers for Correct Application Specific Processors and Catena DSP GmbH.

75

acceptance however. While not claiming to be a representative source, but merely an indi-
cator, the popular source code repository hoster github1 (more than 4 million repositories)
lists no functional language amongst its 10 most popular ones. Actually, even assembly
languages (17th most popular) are more popular than Haskell (18th most popular with
approx. 16000 projects using it) according to github’s language statistics.

In this paper we report on CASM a general purpose programming language based on Ab-
stract State Machines (ASMs). ASMs were introduced by Gurevich (originally named
evolving algebras) in the Lipari Guide [Gur95]. One of the core concepts of ASM (as
the name indicates) is the state. Another core concept of ASM is the concept of a rule,
which describes exactly how the state is changed by means of updates applied to the state.
Application of a rule itself is side-effect free, one of the core concepts of functional pro-
gramming.

The CASM language was originally designed to describe programming language seman-
tics, a purpose for which ASMs are known to be well suited [SSB01,ZG97,Gau95,KP97,
Gle04, HS00, GH93]. We perform correctness proofs in a compiler verification project
using symbolic execution. Having the ASM models of a machine language at hands it
suggests itself to reuse them for implementing an instruction set simulator [BHK10]. To
create a fast simulator we added a type system and developed a compiler for the CASM
language.

The remainder of this paper is structured as follows. Section 2 discusses previous work
on ASM based programming languages, in section 3 we describe the CASM language,
section 4 briefly introduces the implemented type system, section 5 explains implementa-
tion details of the interpreter and compiler, in section 6 we report on our experience using
CASM in various projects and section 7 finally concludes the paper and gives directions
for further work.

2 Related Work

The ASM method is well known and there have been quite a few efforts to create a widely
accepted framework for ASM tools. However, most of the projects ceased to exist. One
reason it seems to be so difficult to provide a generally accepted framework and language
for all ASM users may be the fact that ASM’s applications are so broad. On the one hand
it is used to create very high level models [Bö03], and on the other it is used to model very
low level aspects of hardware (like we do). The demands of the users vary greatly and this
may be the reason there is quite a number of attempts to create ASM tools. In a sense this
work adds to the misery, but it is driven by the very specific needs of compiler verification
(symbolic execution) and simulator synthesis (very fast performance). This section tries
to distinguish the CASM language from other ASM based languages.

Schmid introduced AsmGofer in [Sch01b]. AsmGofer is an interpreter for an ASM based
language. It is written in the Gofer2 language (a subset of Haskell) and covers most of the

1http://github.com
2http://web.cecs.pdx.edu/˜mpj/goferarc/index.html

76

features described in the Lipari guide. The author notes however that the implementation
is aimed at prototype modeling and too slow for performance critical applications.

Castillo describes the ASM Workbench in [Cas01]. Similar to CASM he added a type
system to his language. The ASM Workbench is implemented in ML3 in an extensible
way. Castillo describes an interpreter and a plugin for a model checker, which allows
to translate certain restricted classes of abstract state machines to models for the SMV4

model checker.

Schmid also describes compiling ASM to C++ [Sch01a]. His compiler uses the ASM
Workbench language as input. He proposes a double buffering technique avoiding col-
lection update sets to increase runtime performance. There is no report of the achieved
performance. CASM uses a so called pseudo state (more details are in section 5.1.3) to
implement update sets efficiently.

Anlauff introduces XASM, a component based ASM language compiled to C [Anl00].
The novel feature of XASM is the introduction of a component model, allowing imple-
mentation of reusable components. XASM supports functions implemented in C using
an extern keyword. CASM does not feature modularization, but can be extended using C
code as well. XASM was used as the core of the gem-mex system, a graphical language
for ASMs.

Farahbod designed CoreASM, an extensible ASM execution engine [FGG05]. The Core-
ASM project is actively maintained and early prototypes of our compiler verification
proofs even used CoreASM. Unfortunately performance of the CoreASM interpreter is
very poor, which ultimately lead to the development of CASM. Execution speed was
increased by a factor of 3000 [LK12]. The CASM language is heavily inspired by the
CoreASM language, but over time they have diverged.

3 The CASM language

In this section we introduce the most important aspects of the CASM language. The Lipari
guide [Gur95] contains a formal definition of the constructs presented in this section. Also
the CoreASM handbook may be a useful reference [Far] as CASM roots in the CoreASM
language. In section 3.7 the most important differences between the two languages are
pointed out.

3.1 State and Execution model

The state of an ASM is a so called static algebra over a set of universes (types) [Gur95].
These universes form a superuniverse X in which at least 3 distinct elements (true, false
and undef) are defined. The state contains r-ary functions (mapping Xr to X) and relations

3http://en.wikipedia.org/wiki/Standard_ML
4http://www.cs.cmu.edu/˜modelcheck/smv.html

77

(mapping Xr to true, false). For all locations of a function, unless not explicitly defined
otherwise, the value undef is assigned. CASM programs describe a (potentially infinite)
sequence of state changes by alternating calculation and application of update sets.

The state of a CASM program is formed by a number of functions (possibly 0). An exam-
ple is given in listing 1.

function foo : -> Boolean
function bar : Int -> Int

Listing 1: A state

Function foo is a 0-ary function, and is very similar to a global boolean variable in common
programming languages. Function bar is a 1-ary function, mapping an Int to another Int.
This can be interpreted as an array, although there are no bounds and the function may be
only partially defined. The special value undef will be returned for all locations where bar
is undefined. In that sense a 1-ary CASM function is more like a hash-map. The arguments
to a function are called a location.

CASM programs are formulated as a set of rules. There is a top-level rule which will be
executed repeatedly until the program terminates itself. A rule can’t change the state while
being executed, which implies that all calculations are side-effect free. The rule returns
the changes to the state, as a so called update set. An update set is a set of updates, each
of which describes a function, a location and the new value. Update sets are applied to the
state whenever the top-level rule concludes (returns). Listing 2 shows an example of a rule
(and the state it operates on).

function x : -> Int
function y : -> Int
function z : -> Int

rule swap = {
x := y
y := x

}

Listing 2: Parallel swap

Assuming an initial state of {x = 3, y = 2, z = 1} the calculated update set of a (single)
invocation of swap is {(x, 2), (y,3)}. The update is then applied to the state, yielding {x =
2, y = 3, z = 1}.

When a function is assigned different values (for the same location) the update set is said
to be inconsistent. In CASM a non-revocable runtime error is raised when an update set
becomes inconsistent. Listing 3 shows an example for a rule triggering a runtime error.

function b : -> Boolean
rule inconsistent = {

b := true
b := false

}

Listing 3: Inconsistent update set - runtime error

78

3.1.1 Update Rule and Function Signatures

The previous examples informally introduced the update rule (:=) and function signatures.

A function signature defines the types of the function arguments (comma-separated be-
tween : and ->) and the type the function maps to (after ->).

The general form of an update rule is f(l) := v, where f is a function and l a location.
A location has to match the argument types of the function signature. v is an expression
of the function’s type which will be evaluated and assigned to the function at the given
location. The state will not be changed when the update rule is executed, but the effects
of the update will be added to the update set of the environmental rule. Only the update
rule can change the state (or more precisely, add updates to an update set).

3.1.2 Types, Composition and Enumerations

CASM offers 3 built-in primitive types. They are Boolean for boolean values (true, false),
Int for integer values and String for character strings.

An enumeration can be defined using the enum keyword. Each enumeration defines a new
type with the same name as the enumeration. Each member of the enumeration becomes a
new globally unique identifier of the enumeration’s type. An example is given in listing 4.

enum MyEnum = { one, two, three }
function x : -> MyEnum

rule example =
x := three

Listing 4: Enumeration Type

CASM offers two kinds of type composition. A List is a sequence of zero or more ele-
ments of equal type. The Tuple is a sequence with a fixed number of elements of possibly
different type. CASM disallows user-provided recursive data types in the current version.
An example is given in listing 5.

function stack : -> List(Int)
function aMapping : -> List(Tuple(String,Int))

Listing 5: Composition Type

3.2 Expressions, Variables and Derived Values

For Int types the usual set of operators is provided via built-ins. Expressions are very
similar to the C programming language (without any side-effects however).

CASM does not offer a notion of local state, so there are no local variables in the common
sense. There is however the possibility to bind expressions to a local name using the let
rule. In contrast to CoreASM let rules are statically scoped.

79

derived d(a : Int, b : Boolean) = (a >= 3) and b
function foo : Int -> Boolean

rule bar =
let x = 2*3 in
let y = 3*x in

foo(y) := d(x, true)

Listing 6: Nested Let Rules

Some expressions may be used extensively in a program and in more than one rule. Such
expressions can be declared globally using the derived keyword. A derived accepts typed
arguments, just like functions, and is a single expression. Listing 6 gives an example of a
derived and nested let rules (assigning true to function foo at location 18).

3.3 Block Rule and Control Flow

The block rule, syntactically expressed by curly brackets, combines the update sets of
all enclosed rules into one single update set. Each of the enclosed rules is invoked on the
same state and because all rules are side-effect free the order in which the rules are invoked
does not matter. The resulting update set is formed by applying the union operator on all
calculated update sets. When merging is performed inconsistent updates need to trigger a
runtime error. Listing 2 already made use of the block rule.

The CASM language offers an if-then-else rule (an example can be seen in listing 11). In
the context of an ASM based language it is an if-then-else rule (not a statement). Thinking
of if-then-else as a rule also helps to comprehend the semantics. if-then-else produces
an update set (like any other CASM rule does). The update set is either the update set
produced by the rule in the if-branch or the one in the else-branch, depending on the
boolean value of the expression following the if keyword.

There also is a switch-case statement, with the usual semantics and an optional default
case label.

rule r1(a:Int) = skip

rule r2 =
call r1(3)

rule r3 =
let rr = @r1 in
call (rr)(5)

Listing 7: Direct and indirect call

The call rule invokes another rule. There are two flavors of the call rule, a direct and
an indirect one. In the direct case the rule to be invoked is known statically and directly
coded in the source file, while in the indirect case the rule to be invoked is calculated by
an expression of type RuleRef. A RuleRef can be produced by the @ operator (similar to
C’s & operator). Listing 7 shows a direct and an indirect call (note the additional brackets

80

around the expression). One can also see that rules can have typed arguments. CASM’s
call rule differs from the definition given in the Lipari guide, see section 3.7 for more
details.

3.4 Sequential Block Rule

Some problems can naturally be described by imperative programming. CASM supports
sequential programming by means of the seqblock rule. Statements enclosed by a seqblock
are executed in exactly the specified order. Additionally the state change induced by pre-
vious rules is visible to subsequent ones. The update set of a seqblock rule is calculated
by subsequently merging the update sets of the enclosed rules. Two updates to the same
function and location from different rules do not conflict however, the later overwrites the
previous one. Effectively the update set describes what would have happened if the rules
were applied using a sequential semantics.

It is important to note that the state is not actually changed. The rules are evaluated using
the state which would result from applying the previous update sets. A temporary state is
created and each calculated update set is applied to it. This temporary state is discarded at
the end of the seqblock.

Listing 8 shows an implementation of swap using a seqblock rule. Please note the use
of the temporary variable t, because the update to x is visible to the second update rule
(compare to listing 2). Again assuming an initial state of {x = 3, y = 2, z = 1} the update
set of the first update rule is {(x,2)}. This update set is applied to the initial state resulting
in the temporary state {x = 2, y = 2, z = 1}. The second update rule results in the update
set {(y,3)}. Applying to the temporary state the gives {x = 2, y = 3, z = 1}, this state is
discarded however. Merging the update sets gives the update set of the seqblock rule itself,
it is {(x,2), (y,3)}. This final update set will be applied to the state when the swap rule
concludes.

function x : -> Int
function y : -> Int
function z : -> Int

rule swap =
let t = x in
seqblock

x := y
y := t

endseqblock

Listing 8: Sequential swap

81

3.5 Forall and Iterate

The forall rule is used in combination with an iterate-able expression (e.g. a range of
integers, an enumeration). For each element of the iterate-able expression the rule given in
the body is invoked. The update sets produced by the body are understood to be executed
in parallel. An example is given in listing 9 where it is used to create a list of 4 elements.
function x : -> Int

rule create =
forall i in [0..3] do
x(i) := i

Listing 9: Forall

The iterate rule on the other hand repeatedly invokes its rule body until the produced
update set is empty. Each invocation is understood to be executed in a sequential manner,
so each rule is invoked using the temporary state produced by the previous iteration. An
example is given in listing 10 where the rule is used to atomically perform a fold operation
(using addition) on a list. The update set returned by the iterate rule is {(i,10),(f,45)}.
function a : Int -> Int initially { 0->0, 1->1, /* skipped */ , 9->9 }
function i : -> Int initially { 0 }
function f : -> Int initially { 0 }

rule fold =
iterate
if i < 10 then {

i := i + 1
f := f + a(i)

}

Listing 10: Iterate

3.6 Stacks and Lists

There are rules and built-in functions which can be used with List types. Rules pop and
push are used to implement stacks. The built-in functions cons, peek and tail construct
and consume lists. There also is a nth function to access the nth element of a list (or tu-
ple). These functions are (parametric) polymorphic in their nature and need to be handled
correctly by the type system. Listing 11 gives an example.
function list : -> List(Int)

rule foo =
seqblock
push 3 into list
if peek(list) != 3 then assert false
let x = nth(list, 1) in list := cons(x, list)

endseqblock

Listing 11: List built-ins and rules

82

3.7 Differences to other ASM based languages

CASM differs in two major aspects from other ASM based programming languages (i.e.
CoreASM).

The Lipari guide defines rule arguments to be passed-by-name. Passing by-name has some
interesting features, but is difficult to be implemented efficiently [BG93]. In CASM the
semantics of the call rule specify arguments to be passed by-value. Please note that pass-
by-value is semantically equivalent to pass-by-name when all arguments are constants.
Therefore the restricted call rule of CASM can be simulated by evaluating all argument
expressions (e.g. using a let rule) before invoking an unrestricted call. We merely enforce
this policy on the CASM programmer by performing this evaluation before invoking the
called rule.

The other difference is the scope of variables introduced by the let rule. CoreASM installs
variable names into an environment passed to rules invoked by a call rule. So listing 12 is
valid in CoreASM, but not in CASM. Environments are not passed to rules invoked by a
call rule in CASM. The main reason for this is that the type inference and type checking
would be unable to handle this.
function y : -> Int

rule callee = y := x
rule caller =

let x = 3 in
call callee()

Listing 12: Only valid in CoreASM

4 CASM Type System

CASM is a static5, strongly typed language and no implicit type conversion is performed.
To reduce the often redundant notation of types the programmer is allowed to omit the
type if it can be deduced automatically. CASM only demands types for the arguments of
functions, rules and derived as well as for a function’s type. Optionally the programmer
can provide type information for the type of a derived and a named expression type bound
via a let rule. This may improve readability of the source code and may be needed to guide
the type inference system in some corner cases. These corner cases often result from the
special value of undef which is compatible to every type.
function assign : -> List(Int)

rule foo =
let uList : List(Int) = undef in
let uElem = nth(1, uList) in

assign := [uElem]

Listing 13: Type Annotation needed

5except indirect calls

83

Listing 13 shows an example the CASM type system implementation can not handle with-
out annotation. The first let binds the name uList to the value undef. The second let binds
the name uElem to the nth (1st in this case) element of a list or tuple. nth (a built-in func-
tion) returns undef if any of its arguments is undef. uElem’s type could not be computed
(locally) when no additional type information would be provided by the programmer. Al-
though limitations in the implementation of the type system exist, they very rarely occur
in real world programs.

To specify the argument types of rules and deriveds may be superfluous, but increases
readability and documentation. But especially for derived it prevents parametric polymor-
phism, which may be a useful feature after all. We are considering to change this in a
future version of CASM.

5 Interpreter and Compiler

We have developed an interpreter and a compiler for CASM. The interpreter is capable of
concrete and symbolic execution of CASM programs. We have also developed a compiler
generating C++ code.

The CASM interpreter is a simple abstract syntax tree (AST) interpreter. For creating the
parser traditional compiler tools like lex and yacc have been used. Type inference and type
checking is performed on the AST. The program is rejected if any types can’t be calculated
or any type mismatch is detected.

During symbolic execution some (or all) values of the state can hold symbolic instead
of concrete values. Evaluation of operators then depends on whether all operands are
concrete values or if there is at least one symbolic one. As long as all operands have
concrete values the operator is evaluated as usual. But if there is at least one symbolic
operand the operator itself returns a new symbol. This returned symbol is linked to the
fact that it had been calculated by applying the operator to the specific operands. E.g. an
addition of the symbol s3 and the concrete value 23 will result in a new symbol s4. s4 will
be linked to the fact s4 := s3 + 23. Should s4 ever be used as an operand a new symbol
will be created as result, linked to the fact that s4 was used as an operand. Any symbol
appearing as the result of a program can that way be traced back to an initial symbol
provided as input to the program.

Things get interesting when control flow branches on a symbolic value [Kin76]. For the
sake of brevity we only consider if-then-else rules here. The conditional expression must
be of Boolean type in CASM, so it can only have two possible values (true, false). When
the boolean value is symbolic, both possible values need to be considered. The program
forks assuming the expression to be true in one case and false in the other one. These
assumptions become part of the facts known about the symbols. The sum of all facts
learnt about symbols along a path of execution is called path condition. Path conditions
can be used to automatically generate test cases [VPK04]. The CASM interpreter does not
directly support this, but it can easily be implemented by using the generated trace files.

84

5.1 Compilation scheme and efficient runtime

The typed AST is also used to compile the CASM program to C++. Our current CASM
compiler implementation performs only a limited set of optimizations to keep the gener-
ated C++ files small. The runtime system makes heavy use of C++ template mechanism
and inlining and hence the generated machine code is therefore quite compact resulting in
satisfying performance for common CASM code patterns.

5.1.1 Efficient Memory Allocation

During evaluation of a rule a number of updates and update sets have to be generated
dynamically. The lifetime of these objects is limited however. All update sets and the
updates they contain can safely by deleted when the top-level rule has concluded and
all updates have been committed to the state. We therefore allocate these objects in a
dump memory area. When the top-level rule concludes, the dump memory is reset and all
objects it contained are invalid. New updates are allocated overwriting the old ones. This
technique reduces overhead for dynamic memory allocation to almost zero.

5.1.2 Optimization for very small update sets

For the workloads we operate on we observed that most update sets are very small (<= 4
in most cases). Our current implementation for update sets therefore use a small number
(4) of pre-allocated slots. Only after all pre-allocated slots of an update set are occupied
a hash-map is used to store any additional updates part of the update set. A hash-map
needs to be used as update sets are frequently tested for membership (to detect conflicting
updates).

5.1.3 Pseudo State

Handling of the update sets is crucial for the performance of the compiled code. CASM
uses hash-maps to implement update sets. The underlying assumption justifying this de-
sign decision is that update sets are small and the global state is large. A concept called
pseudo state is used to realize temporary states needed to implement sequential execution
semantics (see section 3.4). When reading a state function from within a seqblock the
update set is queried first. If there has been an update to that function (and location) by
a preceding rule, the value from the update set is returned. Otherwise the value is read
from the global state. All rules return the update set produced according to their semantics
(described in section 3). Using this mechanism the update sets only needs to be applied to
the state when the top-level rule concludes. Merging and querying hash-maps is efficient
as long as they are reasonably small.

85

6 Evaluation of the CASM language

6.1 Hardware modeling

We successfully used CASM in two projects to model CPU architectures and will briefly
report the results here. Details can be found in the cited papers.

One project focused on fast design space exploration synthesizing cycle-accurate simula-
tors from a CASM model of a microprocessor. The microprocessor model is proven to
be coherent to the CASM specification of its instruction set architecture. We were able
to model the instruction set and two variants of pipelined MIPS processors in just a few
hundred lines of code. This is in size similar to a MIPS model formulated in a special-
ized hardware description language and demonstrates the expressiveness of the CASM
language. The synthesized simulator is capable of executing benchmark programs of the
SPECInt suite with a very satisfying peak performance of 1 MHz. This roughly translates
into 15 million (basic) CASM rules to be executed per second. More details are reported
in [LK13].

In a compiler verification project CASM is used to model a complex (non-interlocking)
DSP processor. Combining parallel and sequential execution modes emerged as the cru-
cial feature to describe cycled circuits. All hardware blocks are described in a parallel
execution block, whereas their internal operations are described by a sequential execution
block. We primarily use symbolic execution to perform simulation proofs in a translation
validation approach. Some details are reported in [LK12].

6.2 Functional and Imperative programming style

In the introduction it was claimed that ASM based languages in a way combine imperative
and functional programming styles. This property of the CASM language proved to be
very useful in our experience. In this section we want to point out this property giving an
illustrative example.

Börger and Bolognesi give a recursive ASM version of quicksort in [BB03]. Their im-
plementation is very short and concise, like it is in most functional languages, but is not
in-place as well. Imperative implementations swap elements directly (in-place) in the ar-
ray avoiding copies of the whole input data. Functional languages need to construct a new
list containing the resulting array (they can not destroy the input data) which induces O(n)
additional space requirements. ASM based languages calculating quicksort in one compu-
tation step return an update set describing the new state of the array. This update set also
uses O(n) additional space. We present an in-place, non-recursive version of quicksort.

86

function stack : -> List(Tuple(Int, Int)) initially { [] }
function array : Int -> Int
function p : -> Int initially { undef }
function l, r, ll, rr, pivot : -> Int
function need_pop, need_partition : -> Boolean

Listing 14: Quicksort (state)

1 rule partition_one_step =
2 seqblock
3 iterate
4 if array(ll) < array(pivot) then
5 ll := ll + 1
6 iterate
7 if array(rr) >= array(pivot) and
8 ll < rr then
9 rr := rr - 1

10 if ll < rr then {
11 array(ll) := array(rr)
12 array(rr) := array(ll)
13 }
14 else
15 need_partition := false
16 endseqblock
17
18 rule partition =
19 if pivot = undef then {
20 pivot := r
21 rr := r - 1
22 ll := l
23 need_partition := true
24 }
25 else if need_partition then
26 call partition_one_step
27 else {
28 p := ll
29 if pivot != ll then {
30 array(pivot) := array(ll)
31 array(ll) := array(pivot)
32 }
33 }

Listing 15: Partition

34rule quicksort_one_step =
35if p = undef then
36call partition
37else seqblock
38if l < p-1 then
39push [l,p-1] into stack
40if p+1 < r then
41push [p+1,r] into stack
42need_pop := true
43endseqblock
44
45rule quicksort =
46if need_pop then {
47let top = nth(stack, 1) in
48if top != undef then {
49stack := tail(stack)
50l := nth(top, 1)
51r := nth(top, 2)
52pivot := undef
53p := undef
54need_pop := false
55}
56else
57program(self) := undef
58}
59else
60call quicksort_one_step
61
62rule init = {
63push [0,SIZE] into stack
64need_pop := true
65program(self) := @quicksort
66}

Listing 16: in-place, non-recursive Quicksort

Listing 14 shows the state needed to perform the algorithm. It uses a stack to keep track
of the parts of the array still to be sorted. The quicksort rule pops a new part to be sorted
of the stack and stores the left and right indices into l and r. Line 48 tests if there is still
further work to do and if so lines 49-45 contain the necessary initializations. The CASM
idiom in line 57 terminates the whole computation. As long as a part of the array still
needs to be sorted the rule quickstep one step will be executed. The rule partition will be
called until a partition has been found. If the remaining parts are not trivial small they are
pushed onto the stack and a new part needs to be popped from the stack need pop.

The partition rule initially determines a pivot element (the last element of the part to be

87

sorted here) and either swaps two elements of the array (rule partition one step) or swaps
the pivot element to its final position p. Because the partition one step rule concludes
after swapping two elements of the array the resulting update set is size bound and not
dependent on the input data. Otherwise the update sets would need up to O(n) memory
(i.e. on input y0, y1, . . . yn, x0, x1, . . . xm, p : yi < p∧xj > p : 0 ≤ i ≤ n, 0 ≤ j ≤ m).

To keep the observable computations small and the program simpler partition one step
utilizes the iterate rule in lines 4 and 7 when searching for elements to be swapped. Oth-
erwise it would need to keep track of the search similar to need partition.

An ASM based language shares many features of a functional programming language.
Large parts of the program are executed side-effect free, and while executing them the
global state is read-only. One could think of the state as an explicit argument to each rule,
the returned update set would then be the result of a functional application. The state only
changes between invocations of the top-level rule, so the assumed implicit state argument
changes for the next invocation. In that sense each single application of an ASM top-level
rule is functional.

By combining parallel and sequential execution modes a programmer can chose the gran-
ularity of the computations steps seen by an observer of the program. This can, as demon-
strated, be used to implement an in-place version of quicksort while basically program-
ming a functional style.

The beauty of ASM based languages is the clear separation of invoking rules and applying
changes to the state. They closely resemble what Backus called an applicative state transi-
tion system (AST system), on a much smaller scale though. What he calls a formal system
for functional programming (FFP system) correspond to a rule and his SYSTEM state is
just the state of the program.

7 Conclusion and Further Work

In this paper we presented CASM, a general purpose programming language based on the
abstract state machine (ASM) method. We presented core features of the language and
described how we are able to efficiently compile CASM to C++. The CASM compiler
was successfully used to generate an instruction set simulator for the MIPS architecture
capable of executing SPECInt benchmark with a peak performance of 1 MHz. We also
developed an interpreter capable of symbolic execution which is successfully used in an
ongoing compiler verification project.

The CASM language in a way combines functional and imperative programming aspects.
We found this feature very useful and convenient and tried to showcase it using a small
example.

While using the language common programming pattern arise which lead to new rules be-
ing implemented and new built-in functions being added. We are also working on a faster
compilation and runtime implementation further increasing the performance of generated
simulators.

88

References

[Anl00] Matthias Anlauff. XASM- An Extensible, Component-Based Abstract State Machines
Language. In Yuri Gurevich, PhilippW. Kutter, Martin Odersky, and Lothar Thiele,
editors, Abstract State Machines - Theory and Applications, volume 1912 of Lecture
Notes in Computer Science, pages 69–90. Springer Berlin Heidelberg, 2000.

[Bö03] Egon Börger. Abstract State Machines: A Method for High-Level System Design and
Analysis, 2003.

[Bac78] John Backus. Can programming be liberated from the von Neumann style?: a func-
tional style and its algebra of programs. Commun. ACM, 21(8):613–641, August 1978.

[BB03] Egon Börger and Tommaso Bolognesi. Remarks on Turbo ASMs for Functional Equa-
tions and Recursion Schemes. In Egon Börger, Angelo Gargantini, and Elvinia Ric-
cobene, editors, Abstract State Machines 2003, volume 2589 of Lecture Notes in Com-
puter Science, pages 218–228. Springer Berlin Heidelberg, 2003.

[BG93] John Bergin and Stuart Greenfield. Teaching parameter passing by example using
thunks in C and C++. SIGCSE Bull., 25(1):10–14, March 1993.

[BHK10] Florian Brandner, Nigel Horspool, and Andreas Krall. DSP instruction set simulation.
In Shuvra S. Bhattacharyya, Ed Deprettere, Rainer Leupers, and Jarmo Takala, editors,
Handbook of Signal Processing Systems, pages 679–705. Springer, August 2010.

[Cas01] Giuseppe Del Castillo. The ASM Workbench - A Tool Environment for Computer-
Aided Analysis and Validation of Abstract State Machine Models Tool Demonstration.
In Proceedings of the 7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS 2001, pages 578–581, London, UK,
UK, 2001. Springer-Verlag.

[Far] Roozbeh Farahbod. CoreASM Language User Manual.

[FGG05] Roozbeh Farahbod, Vincenzo Gervasi, and Uwe Glässer. CoreASM: An extensible
ASM execution engine. In Proc. of the 12th International Workshop on Abstract State
Machines, pages 153–165, 2005.

[Gau95] Thilo S. Gaul. An Abstract State Machine specification of the DEC-Alpha Processor
Family, 1995.

[GH93] Yuri Gurevich and James K. Huggins. The Semantics of the C Programming Lan-
guage. In Egon Börger, Gerhard Jäger, Hans Kleine Büning, Simone Martini, and
Michael M. Richter, editors, Computer Science Logic, volume 702 of LNCS, pages
274–308. Springer, 1993.

[Gle04] Sabine Glesner. An ASM Semantics for SSA Intermediate Representations. In Wolf
Zimmermann and Bernhard Thalheim, editors, Abstract State Machines 2004. Ad-
vances in Theory and Practice, volume 3052 of Lecture Notes in Computer Science,
pages 144–160. Springer Berlin / Heidelberg, 2004.

[Gur95] Yuri Gurevich. Evolving algebras 1993: Lipari guide, pages 9–36. Oxford University
Press, Inc., New York, NY, USA, 1995.

[HHPJW07] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of
Haskell: being lazy with class. In Proceedings of the third ACM SIGPLAN conference
on History of programming languages, HOPL III, pages 12–1–12–55, New York, NY,
USA, 2007. ACM.

89

[HS00] James K. Huggins and Wuwei Shen. The Static and Dynamic Semantics of C, 2000.

[Hug89] John Hughes. Why functional programming matters. The Computer Journal, 32:98–
107, 1989.

[Kin76] James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–
394, July 1976.

[KP97] Philipp W. Kutter and Alfonso Pierantonio. The Formal Specification of Oberon.
Springer Journal of Universal Computer Science, 3(5):443–503, 1997.

[LK12] Roland Lezuo and Andreas Krall. A Unified Processor Model for Compiler Verifica-
tion and Simulation Using ASM. In ABZ, pages 327–330, 2012.

[LK13] Roland Lezuo and Andreas Krall. Using the CASM Language for Simulator Synthesis
and Model Verification. In Proceedings of the 2013 Workshop on Rapid Simulation
and Performance Evaluation: Methods and Tools, RAPIDO ’13, pages ?–? ACM,
2013.

[Sch01a] J. Schmid. Compiling Abstract State Machines to C++. Journal of Universal Com-
puter Science, 7(11):1068–1087, 2001. http://www.jucs.org/jucs_7_11/
compiling_abstract_state_machine.

[Sch01b] Joachim Schmid. Introduction to AsmGofeer, 2001.

[SSB01] Robert Stärk, Joachim Schmid, and Egon Börger. Java and the Java Virtual Machine -
Definition, Verification, Validation, 2001.

[VPK04] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test input generation with
Java PathFinder. SIGSOFT Softw. Eng. Notes, 29(4):97–107, July 2004.

[ZG97] Wolf Zimmermann and Thilo Gaul. On the Construction of Correct Compiler Back-
Ends: An ASM Approach. Journal of Universal Computer Science, 3:504–567, 1997.

90

