Gesellschaft fiir Informatik e.V. (GI)

publishes this series in order to make available to a broad public
recent findings in informatics (i.e. computer science and informa-
tion systems), to document conferences that are organized in co-
operation with GI and to publish the annual GI Award dissertation.

Broken down into

* seminar

 proceedings

* dissertations

* thematics

current topics are dealt with from the vantage point of research
and development, teaching and further training in theory and prac-
tice. The Editorial Committee uses an intensive review process in
order to ensure high quality contributions.

The volumes are published in German or English.

Information: http://www.gi-ev.de/service/publikationen/Ini/

ISSN 1617-5468
ISBN 978-3-88579-267-3

This volume contains papers presented at the 25" German Conference on Bioin-
formatics held at the Technische Universitit Carolo-Wilhelmina in Braunschweig,
Germany, September 20-22, 2010.The German Conference on Bioinformatics is
an annual, international conference, which provides a forum for the presentation
of current research in bioinformatics and computational biology. It is organized
on behalf of the Special Interest Group on Informatics in Biology of the German
Society of Computer Science (GI) and the German Society of Chemical Technique
and Biotechnology (Dechema) in cooperation with the German Society for Bio-
chemistry and Molecular Biology (GBM).

el

D.Schomburg, A. Grote (Eds.): GCB 2010

173

GI-Edition

Lecture Notes
in Informatics

Dietmar Schomburg,
Andreas Grote (Eds.)

German Conference on
Bioinformatics 2010

September 20 - 22, 2010
Braunschweig, Germany

Proceedings










Dietmar Schomburg, Andreas Grote (Editors)

German Conference on Bioinformatics 2010

September 20-22, 2010
Technische Universitat Carolo Wilhelmina zu
Braunschweig, Germany

Gesellschaft fiir Informatik e.V. (GI)



Lecture Notes in Informatics (LNI) - Proceedings
Series of the Gesellschaft fiir Informatik (GI)

Volume P-173

ISBN 978-3-88579-267-3
ISSN 1617-5468

Volume Editors

Prof. Dr. Dietmar Schomburg
Technische Universitdt Carolo-Wilhelmina zu Braunschweig
Email: d.schomburg@tu-bs.de

Dr. Andreas Grote
Technische Universitdt Carolo-Wilhelmina zu Braunschweig
Email: andreas.grote@tu-bs.de

Series Editorial Board

Heinrich C. Mayr, Universitat Klagenfurt, Austria (Chairman, mayr@ifit.uni-klu.ac.at)
Hinrich Bonin, Leuphana-Universitét Liineburg, Germany

Dieter Fellner, Technische Universitdt Darmstadt, Germany
Ulrich Flegel, SAP Research, Germany

Ulrich Frank, Universitdt Duisburg-Essen, Germany
Johann-Christoph Freytag, Humboldt-Universitdt Berlin, Germany
Thomas Roth-Berghofer, DFKI

Michael Goedicke, Universitdt Duisburg-Essen

Ralf Hofestadt, Universitit Bielefeld

Michael Koch, Universitdt der Bundeswehr, Miinchen, Germany
Axel Lehmann, Universitdt der Bundeswehr Miinchen, Germany
Ernst W. Mayr, Technische Universitat Miinchen, Germany

Sigrid Schubert, Universitdt Siegen, Germany

Martin Warnke, Leuphana-Universitdt Liineburg, Germany

Dissertations

Dorothea Wagner, Universitdt Karlsruhe, Germany
Seminars

Reinhard Wilhelm, Universitdt des Saarlandes, Germany
Thematics

Andreas Oberweis, Universitdt Karlsruhe (TH)

©Gesellschaft fiir Informatik, Bonn 2010
printed by Kollen Druck+Verlag GmbH, Bonn



Preface

This volume contains papers presented at the 25th German Conference on Bioinformat-
ics held at the Technische Universitat Carolo-Wilhelmina in Braunschweig, Germany,
September 20-22, 2010. The German Conference on Bioinformatics is an annual, in-
ternational conference, which provides a forum for the presentation of current research
in bioinformatics and computational biology. It is organized on behalf of the Special
Interest Group on Informatics in Biology of the German Society of Computer Science
(GI) and the German Society of Chemical Technique and Biotechnology (Dechema) in
cooperation with the German Society for Biochemistry and Molecular Biology (GBM).
Five outstanding scientists were invited to give keynote lectures to the conference:

e FEdda Klipp - ‘Cellular stress response and regulation of metabolism’

e Thomas Lengauer - ‘HIV Bioinformatics: Analyzing viral evolution for the ben-
efit of AIDS patients’

e Werner Mewes - ‘The data deluge: can simple models explain complex biological
systems?’

e Stefan Schuster - ‘Road games in metabolism - A biotechnological perspective’

e Gregory Stephanopoulos - ‘After a decade of systems biology, time for a record
card’

Besides the keynote lectures, the scientific program comprised 22 contributed talks
presenting 12 regular and 10 short papers. All accepted regular papers are collected
in these proceedings. The remaining accepted contributions, i.e. short papers and
poster abstracts, are published in a separate volume. We would like to thank the pro-
gram committee members and all reviewers for their evaluations of the contributions.
Furthermore, we would like to thank the local organizers for keeping the conference
running. The organizers are grateful to all the sponsors and supporting scientific part-
ners. Last but not least, we would like to thank all contributors and participants of
the GCB 2010.

Braunschweig, August 2010

Dietmar Schomburg and Andreas Grote



Organizers

Conference Chair

Dietmar Schomburg, Braunschweig

Local Organizers

Wolf-Tilo Balke (TU Braunschweig)
Séndor Fekete (TU Braunschweig)
Reinhold Haux (TU Braunschweig)
Dieter Jahn (TU Braunschweig)
Frank Klawonn (Ostfalia University
of Applied Sciences)

Constantin Bannert (TU Braun-
schweig)

Antje Chang (TU Braunschweig)

Programm committee

Mario Albrecht, Saarbriicken
Wolf-Tilo Balke, Braunschweig
Tim Beibarth, Gottingen
Thomas Dandekar, Wiirzburg
Sandor Fekete, Braunschweig
Georg Fiillen, Rostock

Robert Giegerich, Bielefeld
Reinhold Haux, Braunschweig
Ralf Hofestadt, Bielefeld
Matthias Heinemann, Ziirich
Dieter Jahn, Braunschweig
Frank Klawonn, Wolfenbiittel
Edda Klipp, Berlin

Ina Koch, Berlin

Oliver Kohlbacher, Tiibingen
Thomas Lengauer, Saarbriicken
Hans-Peter Lenhof, Saarbriicken

Andreas Grote (TU Braunschweig)
Katharina Hanke (TU Braun-
schweig)
Adam Podstawka (TU Braun-
schweig)
Alexander Riemer (TU Braun-
schweig)
Maurice Scheer (TU Braunschweig)

Michael Marschollek, Hannover
Werner Mewes, Miinchen

Michael Meyer-Hermann Frankfurt
Burkhard Morgenstern, Gottingen
Stefan Posch, Halle

Matthias Rarey, Hamburg

Falk Schreiber, Gatersleben

Stefan Schuster, Jena

Gregory Stephanopoulos, Cam-
bridge USA

Jens Stoye, Bielefeld

Andrew Torda, Hamburg

Martin Vingron, Berlin

Christian von Mering, Ziirich
Edgar Wingender, Gottingen
Andreas Ziegler, Liibeck



Sponsors and supporters

Supporting scientific societies

Gesellschaft fiir Chemische Technik und Biotechnologie e.V.

(DECHEMA)
http://www.dechema.de E DECHEMA

Gesellschaft fur Biochemie und Molekularbiologie e.V. (GBM)
http://www.gbm-online. de GBM

Gesellschaft fiir Informatik e.V. (GI)
http://www.gi-ev.de d

Non-profit sponsors

Technische Universitat Braunschweig
http:/ /www.tu-braunschweig. de

Framria ey

Commercial sponsors

Biobase - Biological Databases

http://www.biobase-international.com BIO BﬁE E

Fidibdital PATARASES

CLC bio

http://www.clcbio.com {I{t"ﬂ
Convey Computer

http: / /www. conveycomputer.com & » conveY
genomatix

hitp:/ /www.genomatiz. de genomatix



geneXplain
http://www.genexplain.com

MEGWARE Computer Cluster
http://www.megware.com

Thalia
http://www.thalia.de

Transtec - IT & Solutions
http://www.transtec.de

gena A plair

IMEGWARE
o ——
Thalio

& transtec



Table of Contents

Preface 5
Organizers 6
Sponsors and supporters 7
Table of Contents 9
Submissions 11
Andreas R. Gruber, Stephan H. Bernhart, You Zhou, Ivo L. Ho-
facker
RNALfoldz: efficient prediction of thermodynamically stable, local secondary
structures . . . ... oL 11
Florian Battke, Stephan Korner, Steffen Hiittner, Kay Nieselt
Efficient sequence clustering for RNA-seq data without a reference genome . 21

Florian Blochl, Maria L. Hartsperger, Volker Stiimpflen, Fabian J.
Theis

Uncovering the structure of heterogenous biological data: fuzzy graph parti-
tioning in the k-partite setting . . . . . . . ... oo oL 31
Sergiy Bogomolov, Martin Mann, Bjorn Vof§, Andreas Podelski,
Rolf Backofen

Shape-based barrier estimation for RNAs . . . ... ... ... .. ...... 41
Thomas Fober, Marco Mernberger, Gerhard Klebe, Eyke Hiillermeier
Efficient Similarity Retrieval of Protein Binding Sites based on Histogram

Comparison . . . . . . ... 51
Peter Husemann, Jens Stoye
Repeat-aware Comparative Genome Assembly . . . . . .. .. ... ... ... 61

Katrin Bohl, Luis F. de Figueiredo, Oliver Hadicke, Steffen Klamt,
Christian Kost, Stefan Schuster, Christoph Kaleta

CASOP GS: Computing intervention strategies targeted at production im-
provement in genome-scale metabolic networks . . . .. ... ..o oL 71
Jan Grau, Daniel Arend, Ivo Grosse, Artemis G. Hatzigeorgiou,
Jens Keilwagen, Manolis Maragkakis, Claus Weinholdt, Stefan Posch
Predicting miRNA targets utilizing an extended profile HMM . . . . . . . .. 81



Arli A. Parikesit, Peter F. Stadler, Sonja J. Prohaska

Quantitative Comparison of Genomic-Wide Protein Domain Distributions . . 93
Jan Budczies, Carsten Denkert, Berit M. Miiller, Scarlet F. Brockmoller,
Manfred Dietel, Jules L. Griffin, Matej Oresic, Oliver Fiehn
METAtarget — extracting key enzymes of metabolic regulation from high-

throughput metabolomics data using KEGG REACTION information . . . . 103
Andreas Gogol-Déring, Wei Chen
Finding Optimal Sets of Enriched Regions in ChIP-Seq Data . . . . . .. .. 113

Enrico Glaab, Jonathan M. Garibaldi, Natalio Krasnogor
Learning pathway-based decision rules to classify microarray cancer samples . 123

Index of authors 135

10



Gruber et al. 11

RNALfoldz: efficient prediction of thermodynamically
stable, local secondary structures

Andreas R. Gruber!, Stephan H. Bernhart!,
You Zhou'+2, and Ivo L. Hofacker!
! Institute for Theoretical Chemistry
University of Vienna, Wihringerstra3e 17, 1090 Wien, Austria
2 College of Computer Science and Technology
Jilin University, Changchun 130012, China
{agruber, berni, ivo} @tbi.univie.ac.at, zyou@jlu.edu.cn

Abstract: The search for local RNA secondary structures and the annotation of unusu-
ally stable folding regions in genomic sequences are two well motivated bioinformatic
problems. In this contribution we introduce RNALfoldz an efficient solution two
tackle both tasks. It is an extension of the RNALfold algorithm augmented by sup-
port vector regression for efficient calculation of a structure’s thermodynamic stability.
‘We demonstrate the applicability of this approach on the genome of E. coli and investi-
gate a potential strategy to determine z-score cutoffs given a predefined false discovery
rate.

1 Introduction

Over the past decade noncoding RNAs (ncRNAs) have risen from a shadowy existence to
one of the primary research topics in modern molecular biology. Today computational
RNA biology faces challenges in the ever growing amount of sequencing data. Effi-
cient computational tools are needed to turn these data into information. In this context,
the search for locally stable RNA secondary structures in large sequences is a well mo-
tivated bioinformatic problem that has drawn considerable attention in the community.
RNALfold [HPS04] has been the first in a series of tools that offered an efficient solution
to this task. Instead of a straight-forward, but costly sliding window approach a dynamic
programming recursion has been formulated that predicts all stable, local RNA structures
in O(N x L?), where L is the maximum base-pair span and N the length of the sequence.
Since its publication, the RNALfo1d algorithm has inspired a lot of work in this field, see
e.g. Rnall by Wan et al. [WLX06] or RNAslider by Horesh et al. [HWLT09]. All
contributions so far in this field focused on improving the computational complexity of
the algorithm, but none of the approaches has ever been used to unravel results of biolog-
ical significance. In particular, de novo detection of functional RNA structures has been
addressed, but application on a genome-wide scale with a low false discovery rate seems
still out of reach. Even on the moderately sized genome of E. coli (4.6 Mb) one is drown-
ing in hundreds of thousands of local structures. Unlike in the well established field of
protein coding gene detection where one can exploit signals like codon usage, functional
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RNA secondary structures, in general, do not show strong characteristics that make them
easily distinguishable from random decoys. Successful approaches for ncRNA detection
operating solely on a single sequence [HHS08, JWWT07] are limited to specific RNA
classes, where some outstanding characteristics can be harnessed. There is no master plan
for the detection of functional RNA structures, but one would certainly want to limit the
RNALfold output to a reasonable amount. So far, only the minimum free energy (MFE)
of the locally stable secondary structures, which is intrinsically computed by the algorithm,
has been considered as potential discriminator to limit the number of secondary structures.
As demonstrated clearly by Freyhult and colleagues [FGMO5] the MFE is roughly a func-
tion of the length of the sequence and the G+C content. Even normalizing the MFE by
length of the sequence does not serve as a good discriminator between shuffled or coding
sequences and functional RNA structures. A strategy that does work, however, is to com-
pare the native MFE F of the RNA molecule to the MFEs of a set of shuffled sequences of
same length and base composition [LM89]. This way we can evaluate the thermodynamic
stability of the secondary structure. A common statistical quantity in this context is the
z-score, which is calculated as follows

E—p
o)

z =

where 1 and o are the average and the standard deviation of the energies of the set of
shuffled sequences. The more negative the z-score the more thermodynamically stable is
the structure. Efficient estimation of a sequence’s z-score has been a profound problem
already addressed in the very beginnings of computational RNA biology. A first strategy
to avoid explicit shuffling and folding was based on table look-ups of linear regression
coefficients [CLST90]. Clote and colleagues [CFKKO035] introduced the concept of the
asymptotic z-score, where the efficient calculation is also solved via table look-ups. The
current state-of-the art approach for fast and efficient estimation of the z-score is to use
support vector regression [WHSO05].

The study by Clote and colleagues and a follow up to Chen et al. (1990) [LLMO02] also
report on the effort to predict thermodynamically stable structures using a sliding window
approach. In this contribution we present RNALfoldz an algorithm that combines local
RNA secondary structure prediction and the efficient search for thermodynamically stable
structures. RNALfoldz is an extension of the RNALfold algorithm augmented by sup-
port vector regression for efficient calculation of a sequence’s z-score. We demonstrate the
applicability of this approach on the genome of E. coli and investigate a potential strategy
to determine z-score cutoffs given a predefined false discovery rate.

2 Methods
2.1 Fast estimation of the z-score using support vector regression

For the efficient estimation of the z-score we follow the strategy first introduced by Washietl
et al. [WHSO05]. Instead of explicit generation and folding of shuffled sequences in order to
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determine the average free energy and the corresponding standard deviation support vector
regression (SVR) models are trained to estimate both values. As described in detail in the
previous work, we used a regularly spaced grid to sample sequences for the training set.
Synthetic sequences ranged from 50 to 400 nt in steps of 50 nt. The G+C content, A/(A+T)
ratio and C/(C+G) ratio were, however, extended to a broader spectrum, now ranging from
0.20 to 0.80 in steps of 0.05. A total of 17,576 sequences were used for training. For each
sequence of the training set 1,000 randomized sequences were generated using the Fisher-
Yates shuffle algorithm, and subsequently folded with RNAfold with dangling ends op-
tion —d2 [HFST94]. SVR models for the average free energy and standard deviation were
trained using the LIBSVM package (www.csie.ntu.edu.tw/~cjlin/libsvm).
While in the previous work input features and the dependent variables were normalized
to a mean of zero and a standard deviation of one, we apply here a different normalization
strategy that leads to a significantly lower number of support vectors for the final models.
For the regression of the average free energy model the dependent variable is normalized
by the length of the sequence, while for the standard deviation it is the square root of the
sequence length. The length still remains in the set of input features and is scaled from O to
1. Other features remain unchanged. We used a RBF kernel, and optimized values for the
SVM parameters were determined using standard protocols for this purpose. Final regres-
sion models were selected by balancing two criteria: (i) mean absolute error (MAE) on a
test set of 5,000 randomly drawn sequences of arbitrary length (50-400) from the human
genome, and (ii) complexity of the model (number of support vectors) , which translates to
following procedure: from the top 10% of regression models in terms of MAE we selected
the one that had the lowest number of support vectors. For the average free energy re-
gression we selected a model with a MAE of 0.453 and 1,088 support vectors, and for the
standard deviation regression a model with a MAE of 0.027 and 2,252 support vectors. To
validate our approach we finally compared z-scores derived from the SVR to traditionally
sampled z-scores on a set of 1,000 randomly drawn sequences from the human genome.
The correlation coefficient (R) is 0.9981 and the MAE is 0.072. This is in fair agreement
to results obtained when comparing two sets of sampled z-scores (R: 0.9986, MAE: 0.054,
number of shuffled sequences = 1,000).

2.2 Adaption of the RNALfold algorithm

RNALSfold computes locally stable structures of long RNA molecules. It uses a Zuker
type secondary structure prediction algorithm [ZS81] and restricts the maximum base pair
span to L bases to keep the structures local. The sequence is processed from the 3’ (the
sequence length n) to the 5° end. In order to keep the number of back trace operations low
and the output at moderate size, we want to avoid backtracing structures that differ only
by unpaired regions. Furthermore, only the longest helices possible are of interest. To
achieve this, a structure starting at base i is only traced back if the total energy F'(i,n) is
smaller than that of its 3’ neighbor F'(i + 1,n) while its 5° neighbor has the same energy:
F(i—1,n) = F(i,n) < F(i+1,n). The local minimum structure is found by identifying
the pairing partner j of ¢ so that C'(4, j) + F((j +1,n) = F(i,n), i.e. the minimum energy
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from ¢ to n is decomposed into the local minimum part ¢, j and the rest of the molecule.
Here, C(i,7) stands for the energy of a structural feature enclosed by the base pair ¢, j.
As a result of this, the output of RNALfold contains components, i.e. structures that are
enclosed by a base pair, only. Before we actually start the trace back, we evaluate two
new criteria: (1) the sequence of the structure traced back has to be within the training
parameters of the SVR, and (2) the z-score of the energy of this structure has to be lower
than a predefined bound. Criterion (1) is simply imposed by the training boundaries of
the SVMs. Boundaries have, however, been chosen carefully to cover a broad range of
today’s known spectrum of functional RNA structures. 99.79% of the sequences in the
Rfamv. 10 full data set match the base composition requirements of the SVR and 90% of
Rfam RNA families are in within the sequence length restrictions.

In order to get the exact sequence composition that is needed for the SVR evaluations,
the 3’ end of the structure (j) has to be computed first. This is done by a first, short
backtracing step, where the decomposition F'(i,n) = C(i,7) + F(j + 1,n) is used to
find j. Subsequently, the average free energy given the base composition of the sequence
s(4,7) is computed by calling the corresponding SVR model. The SVR model for the
standard deviation has approximately twice the number of support vectors as the average
free energy model. To minimize calls of this model, first the minimal standard deviation
for the particular sequence length is looked up. We can then, using the free energy of
C(i, ), calculate a lower bound of the z-score. Only if this lower bound is below the
minimal required z-score, the support vector regression for the standard deviation is called
to calculate the actual z-score. If the z-score then still meets the minimal z-score criterion,
the structure is fully traced back and printed out.

3 Results

The concept of fast and efficient estimation of the z-score by support vector regression
was first introduced by Washietl et al. [WHSO05], and implemented in the noncoding RNA
gene finder RNAz. The speed up of this approach compared to explicit shuffling and fold-
ing, which is usually done on 1,000 replicas, is tremendous, at minimum a factor of 1,000.
Moreover, computing time is invariant to the length of the sequence, while RNA folding
is of complexity of O(N3). When considering the z-score as evaluation criterion in the
RNALfold algorithm, calculation of the z-score becomes a time consuming factor, as in
a worst case scenario it has to be done almost for every nucleotide of the sequence. It is
therefore a crucial concern to use support vector models that do not only have good accu-
racy, but also a moderate number of support vectors (SVs). In this work we extended the
z-score support vector regression to cover a broader range of the sequence spectrum, but
managed at the same time to build models that have significantly less SVs than the models
used by RNAz. This was accomplished by normalizing the dependent variables of the re-
gression, i. e. the average free energy and the standard deviation, by the sequence length.
The dependent variables do not strictly linearly correlate with the sequence length and so
we have to keep the sequence length as an input feature. Nevertheless, redundant points
are created in the training set, which eventually leads to a smaller space to be trained. For
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the average free energy model and the standard deviation model we were able to achieve
a 6.3 and a 2.7 fold reduction, respectively, in the number of SVs compared to the RNAz
equivalents.

3.1 Evaluation of RNALfoldz predicition accuracy

For the task of predicting local RNA secondary structures one would particularly be inter-
ested in following criteria: (i) to which extent can functional ncRNAs be discovered, (ii)
how well do the molecule’s predicted boundaries match to the real coordinates, and (iii) is
there any significant difference between native, biological sequences and random decoys.
To address these questions, we applied RNALfoldz to the genome of E. coli (Accession
number: CP000948). A maximum base-pair span L of 120 nt and a z-score cutoff of -2
was used. Setting the cutoff at -2 is for sure restrictive, but it should still cover a large
fraction of the ncRNA repertoire. Both strands were considered. A total of 202,126
structures have been obtained. In comparison, the regular RNALfold returned a total of
1,387,136 structures, 824, 000 of which have a length > 50 nt. The RNALfoldz output
(a true subset of the RNALfold output) is only a forth of the regular RNALfold output.

The E. coli genome Genbank file lists 119 ncRNAs with a maximum length of 120 nt
in its current annotation. To investigate the extent annotated ncRNAs are covered in the
RNALfoldz output, we define for a RNALfold/RNALfoldz prediction to be counted
as hit a minimal coverage of 90% of the ncRNA sequence. Giving this setup a total of 106
and 89 ncRNAs can be found in the RNALfold and RNALfoldz output, respectively.
Detailed results for each RNA gene are shown in an online supplementary table. With a
z-score cutoff of -2, 17 ncRNAs that were found by RNALfold are not in output set of
RNALfoldz. The detection success is directly proportional to the reduction rate of the
RNALfold output. Modulating the z-score cutoff affects both quantities (Fig. 1). The
failure to detect the 13 ncRNAs that were missed by both RNALfold and RNALfoldz
results from the fact that the RNALfold algorithm predicts only self-contained RNA
structures. For example, the two ncRNA genes rprA and ryeE that have only low cover-
ing RNALfoldz hits, have indeed multi-component structures at the MFE level (abstract
shape notation [GVRO4]: [1[111 (1, [1[]1[]). Inthese cases RNALfoldz will rather
produce multiple hits than one single hit covering the whole ncRNA. Overall, our findings
confirm that most E. coli small ncRNAs are indeed more thermodynamically stable than
expected by chance and that the RNALfoldz algorithm is able to detect these structures
efficiently.

We further investigated how precisely the RNALfo1ldz predictions map to the coordinates
of the annotated ncRNAs. This is a legitimate issue, but one has to keep in mind that
functional RNAs adopt their structure at the transcription level, while in this experiment
we used the genomic sequence to detect these structures. So it might easily happen that
the RNA is predicted in a bigger structural context than its actual size. The underlying
dynamic programming algorithm is the same for RNALfold and RNALfoldz, and hence
results discussed here do hold for both versions. In this work we define noise as the fraction
of the RNALfoldz hit that does not overlap with the annotated ncRNA. In total, 34 out of



16 Gruber et al.

o
8 -
O
Qo
@
|2}
<Z( Z-score
o
[in ©
e B’
= |
S -1
o
Q
3 -2
© o _|
5 <
s |--3
—-4
I --5
l-s
7
o f
T T T T T
0 20 40 60 80

% of RNALfold output

Figure 1: Non-coding RNA detection success vs. reduction of the RNALfold output. Given a z-
score cutoff of 0 only one structure prediction is missed in the RNALfoldz output. With a z-score
cutoff of -2 (circle) we see a four-fold reduction of the output, while at the same time covering 84%
of the correct RNALfold ncRNA predictions.

the 89 predictions have less than 10% noise. Averaged over all hits ( > 90% coverage) we
see noise of 18%. Using a classic sliding window approach with a length of 120 nt, one
would expect more than 33% noise for a window containing a tRNA sequence (average
length of tRNAs in E. coli: 78 nt). In the RNALfoldz output we find that 29 out of 73
tRNA predictions have less than 10% noise.

Finally, we address the significance of the predictions when compared to randomized con-
trols. Therefore, we performed the same experiment on randomized sequences generated
by (i) mononucleotide shuffling, (ii) simulation with an order-0 Markov model (mononu-
cleotide frequencies) , and (iii) simulation with an order-1 Markov model (dinucleotide
frequencies).  Shuffling and simulations were done with shuffle from Sean Eddy’s
squid library using default parameters. A detailed comparison of the results of these four
experiments is shown in Fig. 2. In general, we observe a tendency to more stable structures
in the native sequence than in any randomized sequence. Structures with a z-score < -8
are profoundly enriched in the native sequence, which might point to biological relevance
of these structures. These are, however, extremes and most ncRNAs will have z-score
values in a much higher range.

The value -2 for the z-score cutoff in this experiment was chosen arbitrarily. Moving to an
even lower value than -2 will reduce the false discovery rate, but at the same time limit the
number of ncRNAs that show such high thermodynamic stability. Using the RNALfoldz
output from the experiment with randomized sequences (order-1 Markov model), we can
calculate an empirical precision or positive predictive value (PPV), which is simply the
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2-score

native mononucleotide order-0 order-1
Markov model Markov model

Figure 2: Comparison of the distribution of stable secondary structures from the native E. coli
genome and randomized controls. The native E. coli sequence has a strong tendency to more stable
local secondary structures. RNALfoldz predictions with a z-score below -8 are exclusively found
in the native sequence.

proportion of true positives against all positive results. Assuming that thermodynamic sta-
bility is inherently linked to biologically function, we declare any RNALfoldz prediction
with a z-score below a certain threshold from the native sequence and the randomized se-
quence as true positive and as false positive, respectively. Using then a PPV of 0.75, which
corresponds to 25% estimated false positives, and, hence, a deduced z-score cutoff of -
3.86 we can find 25 of the 106 annotated ncRNAs that are detectable with the RNALfold
algorithm, while reducing the RNALfoldz to 21,715 predictions (3% of the RNALfold
output). We further investigated if we can determine more specific z-score cutoffs when
the RNALfoldz output is partitioned into different structural classes. This is motivated by
the reasonable assumption that, for example, a short stable hairpin is more likely formed
by chance than a stable, structurally more complex, multi-branched molecule. Hence, one
would set different z-score cutoffs for different structural classes. To investigate this claim
we map the MFE structures to the corresponding abstract RNA shape at the highest ab-
straction level. At this abstraction level only the helix nesting pattern is considered. As
an example, the well-known cloverleaf structure of tRNA molecules is then simply repre-
sented as [ [] [] []]. The six major structural classes are shown in Tab. 1. We further
partition structures according to their length into two classes short (< 85 nt) and long.

Fig. 3 shows structure class specific precision values in dependency of the z-score, for
those three classes that show the most deviation from the population precision. Using
now class-specific z-score values when filtering the RNALfoldz output we can raise our
prediction count from 25 to 38 ncRNAs, while keeping the expected false-positive rate
fixed at 25%. The total number of RNALfoldz predictions increases slightly to 23,225.
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Table 1: Major structural classes in the E. coli genome

frequency abstract length  figure  class specific z-score
shape class code cutoff (PPV 0.75)
27% (11 long -3.60
26% [rrenl short SC2 -4.14
21% [] short SC3 -4.16
7% [ereereInd long -3.80
7% [eereIleIn long -3.74
4% [] long SC6 -3.35
8% rest -3.35

0.9+

0.8

precision

0.7 4

0.6 4

T T T T T
-10 8 6 4 2
z-score

Figure 3: Precision values of different structural classes by the z-score. The solid line represents the
whole RNALfoldz output.

3.2 Timing

The overall complexity O(N x L?) of the core algorithm does not change, the z-score
calculation just adds a constant factor. We benchmarked both implementations on an Intel
Quad Core2 CPU with 2.40 GHz. Detailed results are shown in Tab. 2.

At a maximal base-pair span of 120 nt RNALfold is able to scan at a speed of approx.
250 kb/min. At the same settings and with a minimal z-score cutoff of -2 scanning speed
drops to 153 kb/min for RNALfoldz. The performance clearly depends on the number
of times the support vector regression has to be called. When moving to a lower z-score
cutoff of -4 the scanning speed increases to 207 kb/min.
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Table 2: Timing results [sec] for RNALfold and RNALfoldz.

L RNALfold RNALfoldz
z-score < -2 z-score < -3 z-score < -4
120 1,123 1,842 1,477 1,359
240 2,629 3,922 3,321 3,105

4 Discussion

In this work we have presented an extension of the RNALfold algorithm to predict ther-
modynamically stable, local RNA secondary structures. Using fast support vector regres-
sion models to calculate the z-score this approach comes with only a minor overhead in
execution time compared to the former version, while yielding at the same time a much
lower number of relevant structures. We have demonstrated that already with a z-score
cutoff of -2, approx. 80% of the annotated E. coli small ncRNAs can be found in the
RNALfoldz output. Comparison to randomized genome sequences showed that the na-
tive E. coli genome sequence has a strong bias to more stable secondary structures. This
shift is, however, not significant enough to qualify RNALfoldz as a stand-alone RNA
gene finder with an acceptable false discovery rate. We see the role of RNALfoldz
mainly as a first filtering step in a cascade of computational ncRNA detection steps. In
particular, the intersection of data from high throughput sequencing, promoter and tran-
scription termination signals (see e.g. [SNST10]) or G+C content on AT rich genomes
with RNALfoldz hits could be of value.

In this contribution, we assume that thermodynamic stability is inherently coupled to bi-
ological function. This is certainly true to some extent, but there are also a lot of RNA
classes where stability is not a major issue for function, e.g. C/D box snoRNAs or ncR-
NAs that form interaction with other RNAs. It is therefore highly unlikely that these RNA
classes will show up in the RNALfoldz output. In this context, RNALfoldz can, how-
ever, be used to define a set of highly stable loci which can then be excluded from further
analysis.

It has been noted early on that thermodynamic stability alone is not a sufficient discrim-
inator to distinguish ncRNAs from random sequences [REQO]. This is the main reason
why most ncRNA gene finders rely solely on signals from evolutionary conservation of
RNA secondary structures, or use thermodynamic stability only as an additional feature.
These methods are clearly limited by the comparative genomics data available. Investiga-
tion of species that are distantly related to any species sequenced so far, or species specific
RNA genes are, hence, out of scope for these methods. The RNALfoldz algorithm pre-
sented in this work will not be a magic tool suddenly shedding light on these dark areas.
The search for extraordinarily stable structures, however, can help to give first clues to
putatively functional RNA secondary structure elements, where other methods fail.
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Abstract: New deep-sequencing technologies are applied to tran-
script sequencing (RNA-seq) for transcriptomic studies. However,
current approaches are based on the availability of a reference ge-
nome sequence for read mapping. We present PASSAGE, a method
for efficient read clustering in the absence of a reference genome
that allows sequencing-based comparative transcriptomic studies
for currently unsequenced organisms. If the reference genome is
available, our method can be used to reduce the computational ef-
fort involved in read mapping. Comparisons to microarray data
show a correlation of 0.69, proving the validity of our approach.

1 Background

Changes in transcription are the most important mechanism of differenti-
ation and regulation. Until recently, the transcriptional activity of a cell
was measured by PCR in the case of few genes, or microarrays were used to
investigate the whole transcriptome of an organism or tissue. Both meth-
ods require previous knowledge about the organism’s transcripts, either
in the form of ESTs or a complete reference genome sequence for primer
resp. probe design. SAGE (serial analysis of gene expression) [VZVK95]
is a method to study transcriptional activity based on sequencing of short
transcript fragments. The advent of new deep sequencing technologies
(also called next-generation or second generation sequencing methods)
now allows to study the transcriptome in unprecedented detail by directly
sequencing the pool of expressed transcripts. Using RNA-seq [WGS09]
and a known reference genome, transcriptional activity can be measured
with single-base precision.

Sequencing the pool of expressed transcripts creates millions of short (36-
500 bases) sequences, called reads. These need to be mapped against
the reference genome sequence allowing for mismatches due to sequencing
errors or SNPs, which creates a huge computational challenge. Many
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Figure 1: Schematic view of a transcriptional unit. Rsal restriction sites are
indicated by yellow triangles. Transcript fragments (red) are sequenced starting
from restriction sites in either direction, downstream from the transcription start
site (TSS) as well as upstream from the transcription termination site (TTS),
resulting in different sequence prefixes (GGG, CA, poly-T).

tools exists for that task, such as SOAP2 [LYL'09], MAQ [LRDO0g],
VMatch [Kur03], RazerS [WER109], and Bowtie [LTPS09]. Some pro-
grams are able to map reads covering splice junctions (TopHat [TPS09],
QPALMA [DBOSRO08]), others can map reads against several genomes
at once, such as GenomeMapper [SHOT09]. Secondly, though more and
more reference genomes are made available, the vast majority of organisms
remain unsequenced and thus beyond the scope of RNA-seq studies.

Here we present PASSAGE [Hii09], extending the idea of SAGE to cre-
ate a new efficient method for transcriptome studies in the absence of
a reference genome sequence. It makes use of a newly established ex-
perimental protocol resulting in reads originating only from well-defined
genomic positions. PASSAGE clusters these reads very efficiently to com-
pute expression levels. Comparative studies can also be performed easily
based on our method.

2 Material and Methods

Sample Preparation Purified mRNA is incubated with anchored Oligo
(dTy3) and modified SMART (dGs) oligonucleotides. These primers contain
Rsal restriction sites. Reverse transcription is performed to obtain cDNA
which is then amplified using long-distance PCR. After purification steps,
the ¢cDNA is cut into transcript fragments using the restriction enzyme
Rsal. This step replaces the fragmentation step (e.g. by sonication) that is
usually performed in RNA-seq protocols. Sequencing adapters are ligated
to the fragments, and the fragments are analyzed by deep-sequencing.
The universal primer site can be used for different sequencing techniques
such as GS FLX™ (Roche Diagnostics/454) and the Genome Analyzer™
(Ilumina). Barcode sequences can be included in the adapters to allow
parallel sequencing of several samples. The resulting reads start with the
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Figure 2: PAssAGE workflow: Reads for one sample (after optional presorting)
are used to build a trie, resulting in a clustering of perfectly matching sequences.
The reads’ sequences are split into three parts and a hash map is built for each
such part. These hash maps are used in the mismatch resolution step to cluster
all reads with at most two mismatches, resulting in the final clustering output.

optional barcode, followed by a prefiz and the genomic sequence. Three
types of fragments can be distinguished by their prefixes: 5> UTR frag-
ments start with ACGGG, 3° UTR fragments with ACTy3, and internal frag-
ments with the restriction sequence AC (see figure 1). This protocol is
adapted from [LRR*10] describing a 3’-fingerprint analyzed on a 2-D gel
electrophoresis system to next-generation sequencing transcriptomics.

Cluster algorithm Our read clustering algorithm, PASSAGE, employs
a three-step process. Starting from a fasta file containing read sequences,
this involves presorting, exact clustering and mismatch resolution. The
result is a file containing the number of reads contained in each cluster,
the cluster’s consensus sequence, the IDs of the reads, and a normalized
expression estimate (reads per million reads). Result files from multiple
samples can be joined into a tabular file containing one column per sam-
ple and one row per cluster, which can be analyzed with any standard
microarray analysis software.

Presorting Reads are sequenced either from the 3’, the 5’ or the in-
terior region of a transcriptional unit. This is reflected in different read
prefizes (see figure 1). Differentiating the reads by these prefixes is not
only useful for reducing computational costs, but rather to allocate the
reads to the different parts of a transcriptional unit. With the addition
of barcode sequences, different samples can be analysed in the same se-
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quencing run, adding another common prefix for all reads of that sample.
During presorting, reads are sorted according to their barcode (to distin-
guish different samples) and their prefix.

Exact clustering Based on the presorting result, each prefix is pro-
cessed as follows. A trie of read sequences is generated such that reads are
assigned to a common leaf if their sequences are identical. Since we know
that reads either overlap by 100% or not at all, this effectively clusters
all reads deriving from the same transcript fragment. Reads are placed
into the tree by matching their bases one by one to the corresponding tree
path until either a leaf is reached (and the read sequence is completely
matched) or a new branch has to be created to accomodate the read’s
sequence. The result of the tree building step is a list of clusters, each
cluster containing identical reads.

Mismatch resolution No current sequencing technology is error-free,
thus we can not expect all reads from the same locus to be identical. In
order to resolve this, we include a mismatch resolution step in our clus-
tering algorithm. If k£ mismatches should be allowed, the minimal perfect
match length results from equidistant distribution of these mismatches
over the clusters’ sequences. Thus we partition the clusters’ sequences
into k + 1 parts and create k + 1 hash maps. Clusters are placed into
these hash maps according to the parts of their sequences. Thus, two
clusters differing by at most k& mismatches will be found in the same hash
bucket in at least one of the hash maps. To ensure similar load factors in
the presence of long common sequence prefixes, the first sequence part is
slightly longer.

Clusters of identical reads are processed according to their size, starting
with the largest cluster (in terms of the number of reads contained). From
each hash map, candidate clusters are selected for merging. Ungapped
alignments are computed and clusters are merged if their distance is at
most k£ mismatches. Merged clusters are removed from all hash maps and
the process is repeated until all clusters have been processed. Analysis
showed that usually there is one very large and several smaller clusters for
a given locus, and that the reads in the large cluster accurately represent
the true genomic sequence. Thus we use the largest cluster’s sequence as
the consensus sequence for the joined cluster.

3 Results

We illustrate our method using the two closely related yeast species Can-
dida albicans and Candida dubliniensis. Both are facultative pathogens,



Battke et al.

25

100pg Lug

Dataset 1, 40bp  C. albicans Y, 30° 4.1 T 4.6
- YF, 37° 3.7 5.1

C. dubliniensis - HF, 37° 4.9 4.8

YF, 37° 4.2 4.7

Dataset 2, 76bp  C. dubliniensis - HF,37° 7.6 /76 x3.8/5.6
YF, 37° 44 /55 6.1 /8.6

Table 1: Conditions and number of reads (millions) sequenced for the two
datasets. Y, yeast extract peptone dextrose, is a complete medium for yeast
growth. F, fetal calf serum (10%). H, H2O. The amount of total RNA used
for sequencing was either 100pg or 1ug. The second dataset contains replicate
sequencings. Hyphae-inducing conditions are marked with (-). Data used for
comparison with other tools is indicated with (}), those used for validation using
microarrays are marked with (x).

C. albicans is of higher clinical importance as the most common agent
causing candidosis. Both species have a genome size of about 14Mb orga-
nized in eight chromosomes and roughly the same number of genes (6185
in C. albicans, 5983 in C. dubliniensis). Cultures were grown under differ-
ent conditions to study the induction of yeast or hyphae cell proliferation.
RNA-seq data was generated from different amounts of total RNA and
different read lengths (see table 1). In total, we analyzed 16 RNA-seq
runs, using PASSAGE with a maximum of two mismatches.

To assess the robustness of the protocol, we compared the two sequenc-
ings for each sample in dataset 1 by mapping the reads to all annotated
genes (using Bowtie with up to two mismatches). More than 80% of the
annotated genes found in the 100pg sample were also found in the lug
sample, with the total number of transcripts being about twice as high in
the 1ug samples (mean 4344 vs. 2247).

Data volume reduction Both clustering steps significantly reduce data
volume (see figure 3). The efficiency of data reduction depends on the
quality of the sequencing process. Fewer mismatches allow more reads to
be clustered to their correct cluster and thus increase the reduction factor.
In our studies using 16 different datasets (8 with 40-mer reads, 8 with 76-
mer reads), exact clustering reduced data volume by about 84% (factor
6.1). Mismatch resolution results in a further reduction by about 58%
(factor 2.4), resulting in a total reduction of about 93%. The reduction
during perfect clustering can be seen as the result of summarizing the
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Figure 3: Reduction in data volume (number of reads resp. clusters) achieved
by exact clustering and mismatch resolution. 16 datasets were analysed, eight
of them with reads of length 40, eight with length 76. Longer reads (B) result
in less reduction than shorter reads (A) due to higher error rates.

transcription strength (which varies between conditions) to the number
of uniquely sequenced transcripts (which is expected to be more similar
for all conditions). During the mismatch resolution step, a reduction
is achieved by correcting for the error rate inherent in the sequencing
technology, which should also be similar for all experiments.

Runtime analysis Presorting is important to reduce runtime and
memory consumption and can be accomplished in O(n) where n is the
number of input reads. Exact clustering can also be done in O(n). The
time complexity of the mismatch resolution step depends on the average
size of the hash buckets and the initial size of the cluster list: If ¢ exact
clusters are hashed randomly into buckets, let the average bucket size be
¢. Merging the clusters can then be done in O(§ - £%). In the worst case,
all clusters are hashed into one bucket, yielding £ = ¢ and O(c?) runtime.
The optimal case would be ¢ = 1, yielding O(c) runtime.

For real data, we see very small values for ¢: We found ¢ = 2.5 for reads of
length 76 and ¢ = 4 for reads of length 40. Thus, for the average case ¢ can
be considered constant which results in a runtime of O(c) (see figure 4A).
FEven in cases where a large number of clusters are collected in one hash
bucket, we observe runtime linear with respect to the sum of sizes of the
largest buckets in each hash map (see figure 4B). As ¢ is bounded by the
number of reads, n, overall average runtime is O(n).

Comparison to other tools PASSAGE was written to cluster short
reads and to use the size of the clusters as a measure of transcription.

Battke et al.
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Figure 4: Runtime measurements for the mismatch resolution phase for reads
of length 40 bases (diamonds) and 76 bases (squares), respectively, with linear
regression curves. On average, runtime is linear in the number of exact clusters
used as input (A). In the case of very uneven distribution of clusters to hash
buckets, average runtime remains linear with respect to the sum of sizes of the
largest hash bucket in each of the three hash maps (B). In both cases, we observe
different slopes depending on the length of the reads.

It makes use of the fact that reads either overlap completely or not at
all. We believe that no other tool currently offers the same functionality.
However, in order to test our algorithm against other tools, we selected
the EST assemblers Cap3 [HM99] and Mira3 [CWS99] as well as the short
read de novo assemblers Velvet [ZB08] and Locas [KOS™10]. As input we
chose a FastA file with approx. 4.6 million Solexa reads of length 40
(184 million bases). Tests were performed on a computer with a 2.5Ghz
processor and 8 GB of memory.

We used Bowtie to compute a direct read mapping against the genome of
C. albicans (assembly 21, obtained from www.candidagenome.org) to get
the number of “real” clusters. We allowed at most two mismatches (after
removing the 3’ and 5’ prefixes from the respective reads). 3.97 million
reads (86%) were mappable and were consequently used for the compar-
ison. Bowtie mapped the reads to 49235 unique mapping positions, thus
all methods that produce a significantly lower number of clusters (resp.
contigs) combine expression measurements that should be kept separate.

Table 2 shows the runtime and number of assembled clusters for each pro-
gram used here. It is important to note that these were written for generic
assembly tasks while PASSAGE is optimized for our biological protocol. We
tried to set parameters such that the results would be most closely com-
parable to those obtained by PASSAGE. While loading the reads, Cap3’s
memory consumption grew rapidly beyond the physical limit of our ma-
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Program CPU time memory  clusters/contigs mecl
PASSAGE 1 min 1200 MB 44,817 40
Cap3® - >16000 MB - -
Mira3 12h 47 min 5600 MB 74,017  40.07
Locas 4h 38 min 5500 MB 2,650 40.08
Velvet 2 min 1300 MB 217 44.55
Bowtie® 6 min 21 MB 49,235¢ -

Table 2: Runtimes and resulting number of clusters/contigs for all tested pro-
grams. mcl, mean consensus length. “Cap3 did not complete due to memory
restrictions; *Bowtie requires a genomic sequence; “unique mapping sites.

chine. The program terminated after filling all available memory. Mira3,
Velvet and Locas worked within the limits of our setup. Velvet runs very
fast, producing only a very small number of contigs. These contigs are
also too long on average, suggesting that it did too good a job of as-
sembling mismatching reads and thus expression estimates derived from
Velvet’s output are combinations of the real expression values for different
transcripts. Locas has a much higher runtime but produces more clusters
with a better mean length, yet still far too few to produce correct expres-
sion estimates. Mira3’s clusters are also close to the optimal length, but
the program produces almost twice the number of clusters than PASSAGE
and its more generic approach to assembly is reflected in an extremely
high runtime. These clusters have extremely vague consensus sequences
with often more than 50% ambiguous bases (r,y, s, w, k,m,b,v,d, h,n, )
which again suggests that different clusters have been merged that should
have stayed separate.

Furthermore, most assemblers sacrifice specificity (in the detection of over-
laps) for speed, while PASSAGE is guaranteed to correctly cluster all reads
with < k mismatches to the assumed genomic sequence. PASSAGE finds
about 4500 clusters less than Bowtie because we do mismatch resolution
without a reference genome, sometimes leading to the fusion of two very
small clusters from distinct genomic positions with almost identical se-
quence.

Validation with microarrays We chose two experiments to validate
the expression values computed using our approach with microarray data
(see table 1). These samples were analyzed using a custom microarray
with 50-mer probes for all C. dubliniensis ORF's (febit, Heidelberg). Two
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samples were analyzed using PASSAGE and the resulting clusters were
mapped to the C. d