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Preface

This volume contains papers presented at the 25th German Conference on Bioinformat-
ics held at the Technische Universität Carolo-Wilhelmina in Braunschweig, Germany,
September 20-22, 2010. The German Conference on Bioinformatics is an annual, in-
ternational conference, which provides a forum for the presentation of current research
in bioinformatics and computational biology. It is organized on behalf of the Special
Interest Group on Informatics in Biology of the German Society of Computer Science
(GI) and the German Society of Chemical Technique and Biotechnology (Dechema) in
cooperation with the German Society for Biochemistry and Molecular Biology (GBM).
Five outstanding scientists were invited to give keynote lectures to the conference:

• Edda Klipp - ‘Cellular stress response and regulation of metabolism’

• Thomas Lengauer - ‘HIV Bioinformatics: Analyzing viral evolution for the ben-
efit of AIDS patients’

• Werner Mewes - ‘The data deluge: can simple models explain complex biological
systems?’

• Stefan Schuster - ‘Road games in metabolism - A biotechnological perspective’

• Gregory Stephanopoulos - ‘After a decade of systems biology, time for a record
card’

Besides the keynote lectures, the scientific program comprised 22 contributed talks
presenting 12 regular and 10 short papers. All accepted regular papers are collected
in these proceedings. The remaining accepted contributions, i.e. short papers and
poster abstracts, are published in a separate volume. We would like to thank the pro-
gram committee members and all reviewers for their evaluations of the contributions.
Furthermore, we would like to thank the local organizers for keeping the conference
running. The organizers are grateful to all the sponsors and supporting scientific part-
ners. Last but not least, we would like to thank all contributors and participants of
the GCB 2010.

Braunschweig, August 2010

Dietmar Schomburg and Andreas Grote
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RNALfoldz: efficient prediction of thermodynamically
stable, local secondary structures

Andreas R. Gruber1, Stephan H. Bernhart1,
You Zhou1,2, and Ivo L. Hofacker1
1 Institute for Theoretical Chemistry

University of Vienna, Währingerstraße 17, 1090 Wien, Austria
2 College of Computer Science and Technology

Jilin University, Changchun 130012, China
{agruber, berni, ivo}@tbi.univie.ac.at, zyou@jlu.edu.cn

Abstract: The search for local RNA secondary structures and the annotation of unusu-
ally stable folding regions in genomic sequences are two well motivated bioinformatic
problems. In this contribution we introduce RNALfoldz an efficient solution two
tackle both tasks. It is an extension of the RNALfold algorithm augmented by sup-
port vector regression for efficient calculation of a structure’s thermodynamic stability.
We demonstrate the applicability of this approach on the genome of E. coli and investi-
gate a potential strategy to determine z-score cutoffs given a predefined false discovery
rate.

1 Introduction

Over the past decade noncoding RNAs (ncRNAs) have risen from a shadowy existence to
one of the primary research topics in modern molecular biology. Today computational
RNA biology faces challenges in the ever growing amount of sequencing data. Effi-
cient computational tools are needed to turn these data into information. In this context,
the search for locally stable RNA secondary structures in large sequences is a well mo-
tivated bioinformatic problem that has drawn considerable attention in the community.
RNALfold [HPS04] has been the first in a series of tools that offered an efficient solution
to this task. Instead of a straight-forward, but costly sliding window approach a dynamic
programming recursion has been formulated that predicts all stable, local RNA structures
inO(N ×L2), where L is the maximum base-pair span and N the length of the sequence.
Since its publication, the RNALfold algorithm has inspired a lot of work in this field, see
e.g. Rnall by Wan et al. [WLX06] or RNAslider by Horesh et al. [HWL+09]. All
contributions so far in this field focused on improving the computational complexity of
the algorithm, but none of the approaches has ever been used to unravel results of biolog-
ical significance. In particular, de novo detection of functional RNA structures has been
addressed, but application on a genome-wide scale with a low false discovery rate seems
still out of reach. Even on the moderately sized genome of E. coli (4.6 Mb) one is drown-
ing in hundreds of thousands of local structures. Unlike in the well established field of
protein coding gene detection where one can exploit signals like codon usage, functional
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RNA secondary structures, in general, do not show strong characteristics that make them
easily distinguishable from random decoys. Successful approaches for ncRNA detection
operating solely on a single sequence [HHS08, JWW+07] are limited to specific RNA
classes, where some outstanding characteristics can be harnessed. There is no master plan
for the detection of functional RNA structures, but one would certainly want to limit the
RNALfold output to a reasonable amount. So far, only the minimum free energy (MFE)
of the locally stable secondary structures, which is intrinsically computed by the algorithm,
has been considered as potential discriminator to limit the number of secondary structures.
As demonstrated clearly by Freyhult and colleagues [FGM05] the MFE is roughly a func-
tion of the length of the sequence and the G+C content. Even normalizing the MFE by
length of the sequence does not serve as a good discriminator between shuffled or coding
sequences and functional RNA structures. A strategy that does work, however, is to com-
pare the native MFE E of the RNA molecule to the MFEs of a set of shuffled sequences of
same length and base composition [LM89]. This way we can evaluate the thermodynamic
stability of the secondary structure. A common statistical quantity in this context is the
z-score, which is calculated as follows

z =
E − µ

σ

where µ and σ are the average and the standard deviation of the energies of the set of
shuffled sequences. The more negative the z-score the more thermodynamically stable is
the structure. Efficient estimation of a sequence’s z-score has been a profound problem
already addressed in the very beginnings of computational RNA biology. A first strategy
to avoid explicit shuffling and folding was based on table look-ups of linear regression
coefficients [CLS+90]. Clote and colleagues [CFKK05] introduced the concept of the
asymptotic z-score, where the efficient calculation is also solved via table look-ups. The
current state-of-the art approach for fast and efficient estimation of the z-score is to use
support vector regression [WHS05].

The study by Clote and colleagues and a follow up to Chen et al. (1990) [LLM02] also
report on the effort to predict thermodynamically stable structures using a sliding window
approach. In this contribution we present RNALfoldz an algorithm that combines local
RNA secondary structure prediction and the efficient search for thermodynamically stable
structures. RNALfoldz is an extension of the RNALfold algorithm augmented by sup-
port vector regression for efficient calculation of a sequence’s z-score. We demonstrate the
applicability of this approach on the genome of E. coli and investigate a potential strategy
to determine z-score cutoffs given a predefined false discovery rate.

2 Methods

2.1 Fast estimation of the z-score using support vector regression

For the efficient estimation of the z-score we follow the strategy first introduced by Washietl
et al. [WHS05]. Instead of explicit generation and folding of shuffled sequences in order to
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determine the average free energy and the corresponding standard deviation support vector
regression (SVR) models are trained to estimate both values. As described in detail in the
previous work, we used a regularly spaced grid to sample sequences for the training set.
Synthetic sequences ranged from 50 to 400 nt in steps of 50 nt. The G+C content, A/(A+T)
ratio and C/(C+G) ratio were, however, extended to a broader spectrum, now ranging from
0.20 to 0.80 in steps of 0.05. A total of 17,576 sequences were used for training. For each
sequence of the training set 1,000 randomized sequences were generated using the Fisher-
Yates shuffle algorithm, and subsequently folded with RNAfold with dangling ends op-
tion -d2 [HFS+94]. SVR models for the average free energy and standard deviation were
trained using the LIBSVM package (www.csie.ntu.edu.tw/˜cjlin/libsvm).
While in the previous work input features and the dependent variables were normalized
to a mean of zero and a standard deviation of one, we apply here a different normalization
strategy that leads to a significantly lower number of support vectors for the final models.
For the regression of the average free energy model the dependent variable is normalized
by the length of the sequence, while for the standard deviation it is the square root of the
sequence length. The length still remains in the set of input features and is scaled from 0 to
1. Other features remain unchanged. We used a RBF kernel, and optimized values for the
SVM parameters were determined using standard protocols for this purpose. Final regres-
sion models were selected by balancing two criteria: (i) mean absolute error (MAE) on a
test set of 5,000 randomly drawn sequences of arbitrary length (50-400) from the human
genome, and (ii) complexity of the model (number of support vectors) , which translates to
following procedure: from the top 10% of regression models in terms of MAE we selected
the one that had the lowest number of support vectors. For the average free energy re-
gression we selected a model with a MAE of 0.453 and 1,088 support vectors, and for the
standard deviation regression a model with a MAE of 0.027 and 2,252 support vectors. To
validate our approach we finally compared z-scores derived from the SVR to traditionally
sampled z-scores on a set of 1,000 randomly drawn sequences from the human genome.
The correlation coefficient (R) is 0.9981 and the MAE is 0.072. This is in fair agreement
to results obtained when comparing two sets of sampled z-scores (R: 0.9986, MAE: 0.054,
number of shuffled sequences = 1,000).

2.2 Adaption of the RNALfold algorithm

RNALfold computes locally stable structures of long RNA molecules. It uses a Zuker
type secondary structure prediction algorithm [ZS81] and restricts the maximum base pair
span to L bases to keep the structures local. The sequence is processed from the 3’ (the
sequence length n) to the 5’ end. In order to keep the number of back trace operations low
and the output at moderate size, we want to avoid backtracing structures that differ only
by unpaired regions. Furthermore, only the longest helices possible are of interest. To
achieve this, a structure starting at base i is only traced back if the total energy F (i, n) is
smaller than that of its 3’ neighbor F (i + 1, n) while its 5’ neighbor has the same energy:
F (i−1, n) = F (i, n) < F (i+1, n). The local minimum structure is found by identifying
the pairing partner j of i so that C(i, j)+F (j +1, n) = F (i, n), i.e. the minimum energy
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from i to n is decomposed into the local minimum part i, j and the rest of the molecule.
Here, C(i, j) stands for the energy of a structural feature enclosed by the base pair i, j.
As a result of this, the output of RNALfold contains components, i.e. structures that are
enclosed by a base pair, only. Before we actually start the trace back, we evaluate two
new criteria: (1) the sequence of the structure traced back has to be within the training
parameters of the SVR, and (2) the z-score of the energy of this structure has to be lower
than a predefined bound. Criterion (1) is simply imposed by the training boundaries of
the SVMs. Boundaries have, however, been chosen carefully to cover a broad range of
today’s known spectrum of functional RNA structures. 99.79% of the sequences in the
Rfam v. 10 full data set match the base composition requirements of the SVR and 90% of
Rfam RNA families are in within the sequence length restrictions.

In order to get the exact sequence composition that is needed for the SVR evaluations,
the 3’ end of the structure (j) has to be computed first. This is done by a first, short
backtracing step, where the decomposition F (i, n) = C(i, j) + F (j + 1, n) is used to
find j. Subsequently, the average free energy given the base composition of the sequence
s(i, j) is computed by calling the corresponding SVR model. The SVR model for the
standard deviation has approximately twice the number of support vectors as the average
free energy model. To minimize calls of this model, first the minimal standard deviation
for the particular sequence length is looked up. We can then, using the free energy of
C(i, j), calculate a lower bound of the z-score. Only if this lower bound is below the
minimal required z-score, the support vector regression for the standard deviation is called
to calculate the actual z-score. If the z-score then still meets the minimal z-score criterion,
the structure is fully traced back and printed out.

3 Results

The concept of fast and efficient estimation of the z-score by support vector regression
was first introduced by Washietl et al. [WHS05], and implemented in the noncoding RNA
gene finder RNAz. The speed up of this approach compared to explicit shuffling and fold-
ing, which is usually done on 1,000 replicas, is tremendous, at minimum a factor of 1,000.
Moreover, computing time is invariant to the length of the sequence, while RNA folding
is of complexity of O(N3). When considering the z-score as evaluation criterion in the
RNALfold algorithm, calculation of the z-score becomes a time consuming factor, as in
a worst case scenario it has to be done almost for every nucleotide of the sequence. It is
therefore a crucial concern to use support vector models that do not only have good accu-
racy, but also a moderate number of support vectors (SVs). In this work we extended the
z-score support vector regression to cover a broader range of the sequence spectrum, but
managed at the same time to build models that have significantly less SVs than the models
used by RNAz. This was accomplished by normalizing the dependent variables of the re-
gression, i. e. the average free energy and the standard deviation, by the sequence length.
The dependent variables do not strictly linearly correlate with the sequence length and so
we have to keep the sequence length as an input feature. Nevertheless, redundant points
are created in the training set, which eventually leads to a smaller space to be trained. For
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the average free energy model and the standard deviation model we were able to achieve
a 6.3 and a 2.7 fold reduction, respectively, in the number of SVs compared to the RNAz
equivalents.

3.1 Evaluation of RNALfoldz predicition accuracy

For the task of predicting local RNA secondary structures one would particularly be inter-
ested in following criteria: (i) to which extent can functional ncRNAs be discovered, (ii)
how well do the molecule’s predicted boundaries match to the real coordinates, and (iii) is
there any significant difference between native, biological sequences and random decoys.
To address these questions, we applied RNALfoldz to the genome of E. coli (Accession
number: CP000948). A maximum base-pair span L of 120 nt and a z-score cutoff of -2
was used. Setting the cutoff at -2 is for sure restrictive, but it should still cover a large
fraction of the ncRNA repertoire. Both strands were considered. A total of 202,126
structures have been obtained. In comparison, the regular RNALfold returned a total of
1,387,136 structures, 824, 000 of which have a length ≥ 50 nt. The RNALfoldz output
(a true subset of the RNALfold output) is only a forth of the regular RNALfold output.

The E. coli genome Genbank file lists 119 ncRNAs with a maximum length of 120 nt
in its current annotation. To investigate the extent annotated ncRNAs are covered in the
RNALfoldz output, we define for a RNALfold/RNALfoldz prediction to be counted
as hit a minimal coverage of 90% of the ncRNA sequence. Giving this setup a total of 106
and 89 ncRNAs can be found in the RNALfold and RNALfoldz output, respectively.
Detailed results for each RNA gene are shown in an online supplementary table. With a
z-score cutoff of -2, 17 ncRNAs that were found by RNALfold are not in output set of
RNALfoldz. The detection success is directly proportional to the reduction rate of the
RNALfold output. Modulating the z-score cutoff affects both quantities (Fig. 1). The
failure to detect the 13 ncRNAs that were missed by both RNALfold and RNALfoldz
results from the fact that the RNALfold algorithm predicts only self-contained RNA
structures. For example, the two ncRNA genes rprA and ryeE that have only low cover-
ing RNALfoldz hits, have indeed multi-component structures at the MFE level (abstract
shape notation [GVR04]: [][][][], [][][]). In these cases RNALfoldz will rather
produce multiple hits than one single hit covering the whole ncRNA. Overall, our findings
confirm that most E. coli small ncRNAs are indeed more thermodynamically stable than
expected by chance and that the RNALfoldz algorithm is able to detect these structures
efficiently.

We further investigated how precisely the RNALfoldz predictions map to the coordinates
of the annotated ncRNAs. This is a legitimate issue, but one has to keep in mind that
functional RNAs adopt their structure at the transcription level, while in this experiment
we used the genomic sequence to detect these structures. So it might easily happen that
the RNA is predicted in a bigger structural context than its actual size. The underlying
dynamic programming algorithm is the same for RNALfold and RNALfoldz, and hence
results discussed here do hold for both versions. In this work we define noise as the fraction
of the RNALfoldz hit that does not overlap with the annotated ncRNA. In total, 34 out of
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Figure 1: Non-coding RNA detection success vs. reduction of the RNALfold output. Given a z-
score cutoff of 0 only one structure prediction is missed in the RNALfoldz output. With a z-score
cutoff of -2 (circle) we see a four-fold reduction of the output, while at the same time covering 84%
of the correct RNALfold ncRNA predictions.

the 89 predictions have less than 10% noise. Averaged over all hits ( ≥ 90% coverage) we
see noise of 18%. Using a classic sliding window approach with a length of 120 nt, one
would expect more than 33% noise for a window containing a tRNA sequence (average
length of tRNAs in E. coli: 78 nt). In the RNALfoldz output we find that 29 out of 73
tRNA predictions have less than 10% noise.

Finally, we address the significance of the predictions when compared to randomized con-
trols. Therefore, we performed the same experiment on randomized sequences generated
by (i) mononucleotide shuffling, (ii) simulation with an order-0 Markov model (mononu-
cleotide frequencies) , and (iii) simulation with an order-1 Markov model (dinucleotide
frequencies). Shuffling and simulations were done with shuffle from Sean Eddy’s
squid library using default parameters. A detailed comparison of the results of these four
experiments is shown in Fig. 2. In general, we observe a tendency to more stable structures
in the native sequence than in any randomized sequence. Structures with a z-score ≤ -8
are profoundly enriched in the native sequence, which might point to biological relevance
of these structures. These are, however, extremes and most ncRNAs will have z-score
values in a much higher range.

The value -2 for the z-score cutoff in this experiment was chosen arbitrarily. Moving to an
even lower value than -2 will reduce the false discovery rate, but at the same time limit the
number of ncRNAs that show such high thermodynamic stability. Using the RNALfoldz
output from the experiment with randomized sequences (order-1 Markov model), we can
calculate an empirical precision or positive predictive value (PPV), which is simply the
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Figure 2: Comparison of the distribution of stable secondary structures from the native E. coli
genome and randomized controls. The native E. coli sequence has a strong tendency to more stable
local secondary structures. RNALfoldz predictions with a z-score below -8 are exclusively found
in the native sequence.

proportion of true positives against all positive results. Assuming that thermodynamic sta-
bility is inherently linked to biologically function, we declare any RNALfoldz prediction
with a z-score below a certain threshold from the native sequence and the randomized se-
quence as true positive and as false positive, respectively. Using then a PPV of 0.75, which
corresponds to 25% estimated false positives, and, hence, a deduced z-score cutoff of -
3.86 we can find 25 of the 106 annotated ncRNAs that are detectable with the RNALfold
algorithm, while reducing the RNALfoldz to 21,715 predictions (3% of the RNALfold
output). We further investigated if we can determine more specific z-score cutoffs when
the RNALfoldz output is partitioned into different structural classes. This is motivated by
the reasonable assumption that, for example, a short stable hairpin is more likely formed
by chance than a stable, structurally more complex, multi-branched molecule. Hence, one
would set different z-score cutoffs for different structural classes. To investigate this claim
we map the MFE structures to the corresponding abstract RNA shape at the highest ab-
straction level. At this abstraction level only the helix nesting pattern is considered. As
an example, the well-known cloverleaf structure of tRNA molecules is then simply repre-
sented as [[][][]]. The six major structural classes are shown in Tab. 1. We further
partition structures according to their length into two classes short (≤ 85 nt) and long.

Fig. 3 shows structure class specific precision values in dependency of the z-score, for
those three classes that show the most deviation from the population precision. Using
now class-specific z-score values when filtering the RNALfoldz output we can raise our
prediction count from 25 to 38 ncRNAs, while keeping the expected false-positive rate
fixed at 25%. The total number of RNALfoldz predictions increases slightly to 23,225.
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Table 1: Major structural classes in the E. coli genome
frequency abstract length figure class specific z-score

shape class code cutoff (PPV 0.75)

27% [[][]] long -3.60
26% [[][]] short SC2 -4.14
21% [] short SC3 -4.16
7% [[][[][]]] long -3.80
7% [[[][]][]] long -3.74
4% [] long SC6 -3.35
8% rest -3.35

All
SC2

SC6
SC3

Figure 3: Precision values of different structural classes by the z-score. The solid line represents the
whole RNALfoldz output.

3.2 Timing

The overall complexity O(N × L2) of the core algorithm does not change, the z-score
calculation just adds a constant factor. We benchmarked both implementations on an Intel
Quad Core2 CPU with 2.40 GHz. Detailed results are shown in Tab. 2.

At a maximal base-pair span of 120 nt RNALfold is able to scan at a speed of approx.
250 kb/min. At the same settings and with a minimal z-score cutoff of -2 scanning speed
drops to 153 kb/min for RNALfoldz. The performance clearly depends on the number
of times the support vector regression has to be called. When moving to a lower z-score
cutoff of -4 the scanning speed increases to 207 kb/min.
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Table 2: Timing results [sec] for RNALfold and RNALfoldz.
L RNALfold RNALfoldz

z-score ≤ -2 z-score ≤ -3 z-score ≤ -4
120 1,123 1,842 1,477 1,359
240 2,629 3,922 3,321 3,105

4 Discussion

In this work we have presented an extension of the RNALfold algorithm to predict ther-
modynamically stable, local RNA secondary structures. Using fast support vector regres-
sion models to calculate the z-score this approach comes with only a minor overhead in
execution time compared to the former version, while yielding at the same time a much
lower number of relevant structures. We have demonstrated that already with a z-score
cutoff of -2, approx. 80% of the annotated E. coli small ncRNAs can be found in the
RNALfoldz output. Comparison to randomized genome sequences showed that the na-
tive E. coli genome sequence has a strong bias to more stable secondary structures. This
shift is, however, not significant enough to qualify RNALfoldz as a stand-alone RNA
gene finder with an acceptable false discovery rate. We see the role of RNALfoldz
mainly as a first filtering step in a cascade of computational ncRNA detection steps. In
particular, the intersection of data from high throughput sequencing, promoter and tran-
scription termination signals (see e.g. [SNS+10]) or G+C content on AT rich genomes
with RNALfoldz hits could be of value.

In this contribution, we assume that thermodynamic stability is inherently coupled to bi-
ological function. This is certainly true to some extent, but there are also a lot of RNA
classes where stability is not a major issue for function, e.g. C/D box snoRNAs or ncR-
NAs that form interaction with other RNAs. It is therefore highly unlikely that these RNA
classes will show up in the RNALfoldz output. In this context, RNALfoldz can, how-
ever, be used to define a set of highly stable loci which can then be excluded from further
analysis.

It has been noted early on that thermodynamic stability alone is not a sufficient discrim-
inator to distinguish ncRNAs from random sequences [RE00]. This is the main reason
why most ncRNA gene finders rely solely on signals from evolutionary conservation of
RNA secondary structures, or use thermodynamic stability only as an additional feature.
These methods are clearly limited by the comparative genomics data available. Investiga-
tion of species that are distantly related to any species sequenced so far, or species specific
RNA genes are, hence, out of scope for these methods. The RNALfoldz algorithm pre-
sented in this work will not be a magic tool suddenly shedding light on these dark areas.
The search for extraordinarily stable structures, however, can help to give first clues to
putatively functional RNA secondary structure elements, where other methods fail.
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Abstract: New deep-sequencing technologies are applied to tran-
script sequencing (RNA-seq) for transcriptomic studies. However,
current approaches are based on the availability of a reference ge-
nome sequence for read mapping. We present Passage, a method
for efficient read clustering in the absence of a reference genome
that allows sequencing-based comparative transcriptomic studies
for currently unsequenced organisms. If the reference genome is
available, our method can be used to reduce the computational ef-
fort involved in read mapping. Comparisons to microarray data
show a correlation of 0.69, proving the validity of our approach.

1 Background

Changes in transcription are the most important mechanism of differenti-
ation and regulation. Until recently, the transcriptional activity of a cell
was measured by PCR in the case of few genes, or microarrays were used to
investigate the whole transcriptome of an organism or tissue. Both meth-
ods require previous knowledge about the organism’s transcripts, either
in the form of ESTs or a complete reference genome sequence for primer
resp. probe design. SAGE (serial analysis of gene expression) [VZVK95]
is a method to study transcriptional activity based on sequencing of short
transcript fragments. The advent of new deep sequencing technologies
(also called next-generation or second generation sequencing methods)
now allows to study the transcriptome in unprecedented detail by directly
sequencing the pool of expressed transcripts. Using RNA-seq [WGS09]
and a known reference genome, transcriptional activity can be measured
with single-base precision.

Sequencing the pool of expressed transcripts creates millions of short (36-
500 bases) sequences, called reads. These need to be mapped against
the reference genome sequence allowing for mismatches due to sequencing
errors or SNPs, which creates a huge computational challenge. Many
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Figure 1: Schematic view of a transcriptional unit. RsaI restriction sites are
indicated by yellow triangles. Transcript fragments (red) are sequenced starting
from restriction sites in either direction, downstream from the transcription start
site (TSS) as well as upstream from the transcription termination site (TTS),
resulting in different sequence prefixes (GGG, CA, poly-T).

tools exists for that task, such as SOAP2 [LYL+09], MAQ [LRD08],
VMatch [Kur03], RazerS [WER+09], and Bowtie [LTPS09]. Some pro-
grams are able to map reads covering splice junctions (TopHat [TPS09],
QPALMA [DBOSR08]), others can map reads against several genomes
at once, such as GenomeMapper [SHO+09]. Secondly, though more and
more reference genomes are made available, the vast majority of organisms
remain unsequenced and thus beyond the scope of RNA-seq studies.

Here we present Passage [Hü09], extending the idea of SAGE to cre-
ate a new efficient method for transcriptome studies in the absence of
a reference genome sequence. It makes use of a newly established ex-
perimental protocol resulting in reads originating only from well-defined
genomic positions. Passage clusters these reads very efficiently to com-
pute expression levels. Comparative studies can also be performed easily
based on our method.

2 Material and Methods

Sample Preparation Purified mRNA is incubated with anchored Oligo
(dT13) and modified Smart (dG3) oligonucleotides. These primers contain
RsaI restriction sites. Reverse transcription is performed to obtain cDNA
which is then amplified using long-distance PCR. After purification steps,
the cDNA is cut into transcript fragments using the restriction enzyme
RsaI. This step replaces the fragmentation step (e.g. by sonication) that is
usually performed in RNA-seq protocols. Sequencing adapters are ligated
to the fragments, and the fragments are analyzed by deep-sequencing.
The universal primer site can be used for different sequencing techniques
such as GS FLXTM (Roche Diagnostics/454) and the Genome AnalyzerTM

(Illumina). Barcode sequences can be included in the adapters to allow
parallel sequencing of several samples. The resulting reads start with the
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Exact clustering
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Mismatch resolution

Figure 2: Passage workflow: Reads for one sample (after optional presorting)
are used to build a trie, resulting in a clustering of perfectly matching sequences.
The reads’ sequences are split into three parts and a hash map is built for each
such part. These hash maps are used in the mismatch resolution step to cluster
all reads with at most two mismatches, resulting in the final clustering output.

optional barcode, followed by a prefix and the genomic sequence. Three
types of fragments can be distinguished by their prefixes: 5’ UTR frag-
ments start with ACGGG, 3’ UTR fragments with ACT13, and internal frag-
ments with the restriction sequence AC (see figure 1). This protocol is
adapted from [LRR+10] describing a 3’-fingerprint analyzed on a 2-D gel
electrophoresis system to next-generation sequencing transcriptomics.

Cluster algorithm Our read clustering algorithm, Passage, employs
a three-step process. Starting from a fasta file containing read sequences,
this involves presorting, exact clustering and mismatch resolution. The
result is a file containing the number of reads contained in each cluster,
the cluster’s consensus sequence, the IDs of the reads, and a normalized
expression estimate (reads per million reads). Result files from multiple
samples can be joined into a tabular file containing one column per sam-
ple and one row per cluster, which can be analyzed with any standard
microarray analysis software.

Presorting Reads are sequenced either from the 3’, the 5’ or the in-
terior region of a transcriptional unit. This is reflected in different read
prefixes (see figure 1). Differentiating the reads by these prefixes is not
only useful for reducing computational costs, but rather to allocate the
reads to the different parts of a transcriptional unit. With the addition
of barcode sequences, different samples can be analysed in the same se-
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quencing run, adding another common prefix for all reads of that sample.
During presorting, reads are sorted according to their barcode (to distin-
guish different samples) and their prefix.

Exact clustering Based on the presorting result, each prefix is pro-
cessed as follows. A trie of read sequences is generated such that reads are
assigned to a common leaf if their sequences are identical. Since we know
that reads either overlap by 100% or not at all, this effectively clusters
all reads deriving from the same transcript fragment. Reads are placed
into the tree by matching their bases one by one to the corresponding tree
path until either a leaf is reached (and the read sequence is completely
matched) or a new branch has to be created to accomodate the read’s
sequence. The result of the tree building step is a list of clusters, each
cluster containing identical reads.

Mismatch resolution No current sequencing technology is error-free,
thus we can not expect all reads from the same locus to be identical. In
order to resolve this, we include a mismatch resolution step in our clus-
tering algorithm. If k mismatches should be allowed, the minimal perfect
match length results from equidistant distribution of these mismatches
over the clusters’ sequences. Thus we partition the clusters’ sequences
into k + 1 parts and create k + 1 hash maps. Clusters are placed into
these hash maps according to the parts of their sequences. Thus, two
clusters differing by at most k mismatches will be found in the same hash
bucket in at least one of the hash maps. To ensure similar load factors in
the presence of long common sequence prefixes, the first sequence part is
slightly longer.

Clusters of identical reads are processed according to their size, starting
with the largest cluster (in terms of the number of reads contained). From
each hash map, candidate clusters are selected for merging. Ungapped
alignments are computed and clusters are merged if their distance is at
most k mismatches. Merged clusters are removed from all hash maps and
the process is repeated until all clusters have been processed. Analysis
showed that usually there is one very large and several smaller clusters for
a given locus, and that the reads in the large cluster accurately represent
the true genomic sequence. Thus we use the largest cluster’s sequence as
the consensus sequence for the joined cluster.

3 Results

We illustrate our method using the two closely related yeast species Can-
dida albicans and Candida dubliniensis. Both are facultative pathogens,
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100pg 1µg

Dataset 1, 40bp C. albicans Y, 30◦ 4.1 † 4.6
· YF, 37◦ 3.7 5.1

C. dubliniensis · HF, 37◦ 4.9 4.8
YF, 37◦ 4.2 4.7

Dataset 2, 76bp C. dubliniensis · HF, 37◦ 7.6 / 7.6 ∗3.8 / 5.6
YF, 37◦ 4.4 / 5.5 ∗6.1 / 8.6

Table 1: Conditions and number of reads (millions) sequenced for the two
datasets. Y, yeast extract peptone dextrose, is a complete medium for yeast
growth. F, fetal calf serum (10%). H, H2O. The amount of total RNA used
for sequencing was either 100pg or 1µg. The second dataset contains replicate
sequencings. Hyphae-inducing conditions are marked with (·). Data used for
comparison with other tools is indicated with (†), those used for validation using
microarrays are marked with (∗).

C. albicans is of higher clinical importance as the most common agent
causing candidosis. Both species have a genome size of about 14Mb orga-
nized in eight chromosomes and roughly the same number of genes (6185
in C. albicans, 5983 in C. dubliniensis). Cultures were grown under differ-
ent conditions to study the induction of yeast or hyphae cell proliferation.
RNA-seq data was generated from different amounts of total RNA and
different read lengths (see table 1). In total, we analyzed 16 RNA-seq
runs, using Passage with a maximum of two mismatches.

To assess the robustness of the protocol, we compared the two sequenc-
ings for each sample in dataset 1 by mapping the reads to all annotated
genes (using Bowtie with up to two mismatches). More than 80% of the
annotated genes found in the 100pg sample were also found in the 1µg
sample, with the total number of transcripts being about twice as high in
the 1µg samples (mean 4344 vs. 2247).

Data volume reduction Both clustering steps significantly reduce data
volume (see figure 3). The efficiency of data reduction depends on the
quality of the sequencing process. Fewer mismatches allow more reads to
be clustered to their correct cluster and thus increase the reduction factor.
In our studies using 16 different datasets (8 with 40-mer reads, 8 with 76-
mer reads), exact clustering reduced data volume by about 84% (factor
6.1). Mismatch resolution results in a further reduction by about 58%
(factor 2.4), resulting in a total reduction of about 93%. The reduction
during perfect clustering can be seen as the result of summarizing the
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Figure 3: Reduction in data volume (number of reads resp. clusters) achieved
by exact clustering and mismatch resolution. 16 datasets were analysed, eight
of them with reads of length 40, eight with length 76. Longer reads (B) result
in less reduction than shorter reads (A) due to higher error rates.

transcription strength (which varies between conditions) to the number
of uniquely sequenced transcripts (which is expected to be more similar
for all conditions). During the mismatch resolution step, a reduction
is achieved by correcting for the error rate inherent in the sequencing
technology, which should also be similar for all experiments.

Runtime analysis Presorting is important to reduce runtime and
memory consumption and can be accomplished in O(n) where n is the
number of input reads. Exact clustering can also be done in O(n). The
time complexity of the mismatch resolution step depends on the average
size of the hash buckets and the initial size of the cluster list: If c exact
clusters are hashed randomly into buckets, let the average bucket size be
 . Merging the clusters can then be done in O( c

  ·  2). In the worst case,
all clusters are hashed into one bucket, yielding   = c and O(c2) runtime.
The optimal case would be   = 1, yielding O(c) runtime.

For real data, we see very small values for  : We found   = 2.5 for reads of
length 76 and   = 4 for reads of length 40. Thus, for the average case   can
be considered constant which results in a runtime of O(c) (see figure 4A).
Even in cases where a large number of clusters are collected in one hash
bucket, we observe runtime linear with respect to the sum of sizes of the
largest buckets in each hash map (see figure 4B). As c is bounded by the
number of reads, n, overall average runtime is O(n).

Comparison to other tools Passage was written to cluster short
reads and to use the size of the clusters as a measure of transcription.
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Figure 4: Runtime measurements for the mismatch resolution phase for reads
of length 40 bases (diamonds) and 76 bases (squares), respectively, with linear
regression curves. On average, runtime is linear in the number of exact clusters
used as input (A). In the case of very uneven distribution of clusters to hash
buckets, average runtime remains linear with respect to the sum of sizes of the
largest hash bucket in each of the three hash maps (B). In both cases, we observe
different slopes depending on the length of the reads.

It makes use of the fact that reads either overlap completely or not at
all. We believe that no other tool currently offers the same functionality.
However, in order to test our algorithm against other tools, we selected
the EST assemblers Cap3 [HM99] and Mira3 [CWS99] as well as the short
read de novo assemblers Velvet [ZB08] and Locas [KOS+10]. As input we
chose a FastA file with approx. 4.6 million Solexa reads of length 40
(184 million bases). Tests were performed on a computer with a 2.5Ghz
processor and 8 GB of memory.

We used Bowtie to compute a direct read mapping against the genome of
C. albicans (assembly 21, obtained from www.candidagenome.org) to get
the number of “real” clusters. We allowed at most two mismatches (after
removing the 3’ and 5’ prefixes from the respective reads). 3.97 million
reads (86%) were mappable and were consequently used for the compar-
ison. Bowtie mapped the reads to 49235 unique mapping positions, thus
all methods that produce a significantly lower number of clusters (resp.
contigs) combine expression measurements that should be kept separate.

Table 2 shows the runtime and number of assembled clusters for each pro-
gram used here. It is important to note that these were written for generic
assembly tasks while Passage is optimized for our biological protocol. We
tried to set parameters such that the results would be most closely com-
parable to those obtained by Passage. While loading the reads, Cap3’s
memory consumption grew rapidly beyond the physical limit of our ma-
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Program CPU time memory clusters/contigs mcl

Passage 1 min 1200 MB 44,817 40

Cap3a – >16000 MB – –
Mira3 12h 47 min 5600 MB 74,017 40.07
Locas 4h 38 min 5500 MB 2,650 40.08
Velvet 2 min 1300 MB 217 44.55

Bowtieb 6 min 21 MB 49,235c –

Table 2: Runtimes and resulting number of clusters/contigs for all tested pro-
grams. mcl, mean consensus length. aCap3 did not complete due to memory
restrictions; bBowtie requires a genomic sequence; cunique mapping sites.

chine. The program terminated after filling all available memory. Mira3,
Velvet and Locas worked within the limits of our setup. Velvet runs very
fast, producing only a very small number of contigs. These contigs are
also too long on average, suggesting that it did too good a job of as-
sembling mismatching reads and thus expression estimates derived from
Velvet’s output are combinations of the real expression values for different
transcripts. Locas has a much higher runtime but produces more clusters
with a better mean length, yet still far too few to produce correct expres-
sion estimates. Mira3’s clusters are also close to the optimal length, but
the program produces almost twice the number of clusters than Passage
and its more generic approach to assembly is reflected in an extremely
high runtime. These clusters have extremely vague consensus sequences
with often more than 50% ambiguous bases (r, y, s, w, k, m, b, v, d, h, n, ∗)
which again suggests that different clusters have been merged that should
have stayed separate.

Furthermore, most assemblers sacrifice specificity (in the detection of over-
laps) for speed, while Passage is guaranteed to correctly cluster all reads
with ≤ k mismatches to the assumed genomic sequence. Passage finds
about 4500 clusters less than Bowtie because we do mismatch resolution
without a reference genome, sometimes leading to the fusion of two very
small clusters from distinct genomic positions with almost identical se-
quence.

Validation with microarrays We chose two experiments to validate
the expression values computed using our approach with microarray data
(see table 1). These samples were analyzed using a custom microarray
with 50-mer probes for all C. dubliniensis ORFs (febit, Heidelberg). Two
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samples were analyzed using Passage and the resulting clusters were
mapped to the C. dubliniensis genome using Bowtie. Of 5983 genes,
5144 (86%) genes could be analyzed. We only considered clusters with
at least one read in each experiment, resulting in a list of 4377 (73.2%)
genes. Fold-changes were computed independently for the microarray and
the Passage data. First the fold-change between the two samples was
computed for each cluster. The fold-changes of all clusters mapping to a
common gene were averaged to obtain a fold-change value for each gene
analyzed. The correlation between the fold-changes obtained from the
microarray hybridizations and the Passage results was 0.69.

4 Discussion

We present a method for transcriptomic studies based on short RNA
sequencing. It is especially useful in the absence of a reference genome.
Reference sequences are only available for a tiny fraction of organisms,
and while more and more genomes are sequenced, this still remains an
issue for many research projects. Using a specialized protocol for the
creation of the transcript pool, we greatly reduce the number of different
read sequences and facilitate comparison between different samples. It
effectively limits sequence overlaps to either complete or no overlap at
all. Using this feature, our algorithm can rapidly cluster the reads and
estimate expression for the corresponding transcripts in time linear to the
number of read sequences.

A comparison to other tools shows that Passage is very fast and produces
a sensible number of clusters, which allows to compute reliable expression
estimates. We validated the expression levels computed using Passage
with microarray data. Our method allows the application of well estab-
lished software for comparative transcriptomics such as R [R D09] and
Mayday [BSN10] to any (currently unsequenced) organisms and meta-
transcriptomic samples. If a genome sequence is available, Passage clus-
ters can be mapped against that reference to elucidate genomic locations
as well as assign the short cluster to longer (predicted) transcripts. Here,
our algorithm also reduces the computational effort necessary for map-
ping, due to the great reduction in the number of sequences that need to
be mapped, thus meeting one of the great challenges of NGS technologies.
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Abstract: With the increasing availability of large-scale interaction networks derived
either from experimental data or from text mining, we face the challenge of interpret-
ing and analyzing these data sets in a comprehensive fashion. A particularity of these
networks, which sets it apart from other examples in various scientific fields lies in
their k-partiteness. Whereas graph partitioning has received considerable attention,
only few researchers have focused on this generalized situation. Recently, Long et
al. have proposed a method for jointly clustering such a network and at the same time
estimating a weighted graph connecting the clusters thereby allowing simple interpre-
tation of the resulting clustering structure. In this contribution, we extend this work
by allowing fuzzy clusters for each node type. We propose an extended cost func-
tion for partitioning that allows for overlapping clusters. Our main contribution lies in
the novel efficient minimization procedure, mimicking the multiplicative update rules
employed in algorithms for non-negative matrix factorization. Results on clustering
a manually annotated bipartite gene-complex graph show significantly higher homo-
geneity between gene and corresponding complex clusters than expected by chance.
The algorithm is freely available at http://cmb.helmholtz-muenchen.de/
fuzzyclustering.

1 Introduction

With the relatively cheap availability of biological high-throughput methods such as mi-
croarrays, machine learning techniques gain more and more importance in the field of
bioinformatics. Learning approaches often focus on the analysis of homogeneous data
sets that can be represented as a network having vertices of a single type only. How-
ever, many real-world networks are heterogeneous and involve objects of multiple, related
types, thus forming k-partite graphs consisting of diverse types of vertices. A key ques-
tion of clustering-based approaches is how to interpret the global organization of these
networks as the coexistence of their structural subunits associated with more highly inter-
connected parts. Identifying these a priori unknown building blocks such as for instance
the common genetic origin of different diseases is crucial for the understanding of the
structural and functional properties of such networks.
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Most available clustering methods cannot be applied to k-partite networks because they
do not treat the single node types (partitions) separately and therefore do not represent
the global community structure correctly. While this has been addressed in terms of algo-
rithms for some time now [Bar07, GL04, KAKS97, ZHS07, LWZY06], not many possible
applications exist yet in bioinformatics, although the field commonly deals with such net-
works [KHT09]. A particular issue that may hamper application to bioinformatics may be
that most existing algorithms identify separated, disjoint clusters by assigning each data
point to exactly one cluster [Mac67, JD88], whereas most biological networks consist of
highly overlapping cohesive groups of vertices. A single data point can therefore belong
to more than only one cluster, e.g. a large fraction of proteins belong to several protein
complexes simultaneously [RBDK+08]. So far only a few approaches exist that allow the
detection of overlapping clusters by assigning either each data point a degree of belonging
to clusters or to several clusters respectively [Bez81, PDFV05].

In order to identify clusters in heterogeneous data and moreover connect these clusters be-
tween the different node types, we developed a fuzzy partitional clustering method based
on a non-negative matrix factorization (NMF) model [LS99]. We demonstrate that we
can identify biological meaningful overlapping clusters in k-partite graphs. We applied
our method to a bipartite gene-protein complex graph representing the manually annotated
Corum core set [RBDK+08]. The extracted clusters show significantly higher homogene-
ity between gene and corresponding complex clusters than expected by chance.

2 A multiplicative update rule for fuzzy k-partite clustering

Recently, an algorithm for the partitioning of k-partite graphs has been put forward in
[LWZY06]. It clusters each node set of the graph separately; then the clusters are con-
nected via a smaller, weighted k-partite graph. The algorithm consists of an alternating
minimization procedure: first the nodes in each layer are clustered in order to minimize
the distance to the small representative graph (change). Then the hidden graph (backbone
graph) is updated according to the same cost function.

A key assumption made in [LWZY06] is that the assignment in the first step is made in a
binary fashion. This hard clustering is a feature that often is achieved by soft clustering
algorithms when not forcing explicit cluster overlap [Bez81]. However it can be easily
seen that the cost function put forward in [LWZY06] is not fully minimized by this ap-
proximation.

Here, we address the minimization using a multiplicative update algorithm. In contrast to
the above method, by not choosing any binary assignment a priori, we observe a close to
binary assignment mostly in the hidden nodes, whereas the clustering in each node-type is
soft. The resulting algorithm is similar in structure to multiplicative algorithms for NMF,
with the difference that we address a three-matrix factorization problem, see e.g. [DS06],
and have to deal with a multi-summand cost function.
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Figure 1: (a) definition of a 3-partite graph G with notation used. (b) approximation of G using a
smaller 3-partite graph H defined on fuzzy node clusters.

2.1 Definitions and factorization model

A k-partite graph is a graph G = (V,E) and a partition of the vertices V into k disjoint
sets Vi such that no two vertices in the same subset are adjacent. So edges are only allowed
between different subsets (‘colors’). Let ni := |Vi| be the number of vertices in partition i.
We represent the graph as a set of ni×nj matrices A(ij) with 1 ≤ i < j ≤ k. Commonly,
each matrix element is either 0 or 1, but we only restrict the matrices to have non-negative
coefficients thereby allowing weighted graphs as well. We can readily include directed
instead of undirected k-partite graphs by specifying incidence matrices also for i > j. It is
easy to see that the following cost function and optimizations generalize to this situation.

We want to approximate G by a smaller cluster network H (backbone network), which is
defined on fuzzy clusters of each G-partition Vi. For simplicity we for now fix the number
of Vi-clusters to mi. We say that a non-negative ni ×mi-matrix C(i) is a fuzzy clustering
of Vi, if it is right-stochastic i.e.

∑
l c

(i)
kl = 1 for all k. Then we search for a k-partite graph

H with mi×mj incidence matrices B(ij) and fuzzy clusterings C := (C(i))i=1,...,k such
that the connectivity explained by H is as close as possible to G after clustering.

We can measure this difference in many different ways. In [LWZY06], this choice has
been circumvented by specializing on arbitrary Bregman divergences, which still allow
efficient reformulation of gradient-type algorithms without knowing the specific formula.
This is also possible in our case of multiplicative update rules, as has been shown for
NMF in [DS06]. However, for simplicity, we choose the minimum square distance as cost
function. This implies minimization of

f(H,C) :=
∑
i<j

∥∥∥A(ij) −C(i)B(ij)(C(j)).
∥∥∥2

F
(1)

where ‖.‖2F denotes the squared Frobenius norm, i.e. the square sum of the matrix ele-
ments. The model, the used definitions and the approximation are illustrated in figure 1.
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2.2 Derivation of the algorithm

We want to minimize f(H,C) from (1) using a local algorithm extending gradient descent.
We assumed an undirected k-partite graph, so A(ij) is undefined for i > j. Hence, we
now set A(ij) := (A(ji)). for i > j (and similarly for B(ij)). Then we find

∂f

∂b
(ij)
rs

= −2
(
(C(i)).A(ij)C(j) − (C(i)).C(i)B(ij)(C(j)).C(j)

)
rs

∂f

∂c
(i)
rs

= −2
∑
j )=i

(
A(ij)C(j)(B(ij)). −C(i)B(ij)(C(j)).C(j)(B(ij)).

)
rs

.

Minimizing f by alternating gradient descent, we now simply start from an initial guess
of B(ij),C(i) and alternate between updates of the B(ij) and the C(i) with according
learning rates. Such update rules however have two disadvantages: for one, the choice of
update rate η (possibly different for B, C and i, j) is unclear; in particular, for too small
η convergence may take too long or may not be achieved at all, whereas for too large η
we may easily overshoot the minimum. Moreover, the resulting matrices may become
negative. Therefore, we follow Lee and Seung’s idea for NMF [LS99] and rewrite this
into multiplicative update rules. Hence, let us choose update rates

η(ij)
rs :=

b
(ij)
rs

2
(
(C(i)).C(i)B(ij)(C(j)).C(j)

)
rs

η(i)
rs :=

c
(i)
rs

2
(∑

j )=i C(i)B(ij)(C(j)).C(j)(B(ij)).
)

rs

Plugging this into the gradient descent equations, this results in the desired multiplicative
update rules

b(ij)
rs ← b(ij)

rs

(
(C(i)).A(ij)C(j)

)
rs(

(C(i)).C(i)B(ij)(C(j)).C(j)
)
rs

(2)

c(i)
rs ← c(i)

rs

(∑
j )=i A

(ij)C(j)(B(ij)).
)

rs(∑
j )=i C(i)B(ij)(C(j)).C(j)(B(ij)).

)
rs

(3)

2.3 Algorithm formulation and relation to other work

We note that we can readily show that these update rules do not increase the cost function
(1). This can be shown via auxiliary functions similar to NMF [LS01] and multi-factor
NMF [DS06], which has been applied in a related model for co-clustering of microarray
data [CDGS04]. This theoretical result implies convergences of the update rules. However
in contrast to early statements in NMF [LS01], this does not necessarily imply convergence
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Figure 2: Toy example of a bipartite graph (a) from [LWZY06], with its backbone network and fuzzy
clusters (b). Note that neither of the two clusterings are binary.

to stationary points of the Euclidean norm (zero of the differential from (1)), since the
update steps may be too small to reach those points. Another possible drawback of such
multiplicative updates is the fact that once a matrix entry has been set to zero (which may
happen due to zeros in A(ij) or to numerics), the coefficient will never then be able to
become positive again during learning.

We have not yet taken into account the constraint that the cluster matrices C(i) are re-
quired to be right-stochastic i.e. C(i)e = e for e = (1, . . . , 1). For simplicity, we force
this constraint by regularly projecting each row of C(i) onto the sphere of the 1-norm.
Alternatively, we may introduce this constraint as Lagrange parameter, and get modified
cost function with weighted Lagrange parameters. We can still prove non-increasingness
of the multiplicative update rule along the lines of [DS06]. The final fuzzy k-partite clus-
tering algorithm is summarized in algorithm 1. An implementation is freely available at
http://cmb.helmholtz-muenchen.de/fuzzyclustering. In figure 2, we
illustrate the feasibility of the algorithm on a small bipartite toy example.

Our algorithm contains two nested loops over the number of partitions. The update steps
are fully vectorized and contain only matrix products of non-square matrices. The total
time complexity of the algorithm can therefore be estimated as

#iterations×O(k2 nmax1nmax2 mmax) . (4)

Here, nmax1 and nmax2 denote the sizes of the largest and the second-largest partition, mmax
is the maximum number of clusters to extract within any partition. Hence, the algorithm
is fast and efficient. The runtime is linear in each partition size and grows only quadratic
in the total number of nodes in the case of graphs with similarly large partitions.

In order to extend cost functions in (unipartite) data clustering to include fuzzy clusters,
commonly a so-called fuzzification factor m > 1 is introduced [Bez81,Dun73]. Instead of
squared norm minimization of the residuals, a higher residual power is minimized, which
results in overlapping non-trivial cluster assignments. However, we will find that already
the standard case m = 1 may suffice to introduce non-trivial overlapping clusters. This is
because we are interested in co-clustering, which is different from standard data clustering
where only a unipartite graph and hence C(i) = C(1) is assumed.
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Algorithm 1: fuzzy k-partite clustering

Input: k-partite graph G with possibly non-negatively weighted edge matrices A(ij), i <
j, number of clusters m1, . . . ,mk

Output: fuzzy clustering C(i) and k-partite cluster graph H given by matrices B(ij)

1 Initialize C(i),B(ij) to random non-negative matrices.
2 Normalize c

(i)
rs ← c

(i)
rs /(

∑
t c

(i)
rt ) for all i, r, s

repeat
update fuzzy clusters
for i← 1, . . . , k do

3 C(i) ← C(i) ⊗ (
∑

j )=i A
(ij)C(j)B(ij).)> (

∑
j )=i C

(i)B(ij)C(j).C(j)B(ij).)

4 Normalize c
(i)
rs ← c

(i)
rs /(

∑
t c

(i)
rt ) for all r, s

end
update k-partite cluster graph H
for i← 1, . . . , k − 1 do

for j ← i + 1, . . . , k do
5 B(ij) ← B(ij) ⊗ (C(i).A(ij)C(j))> (C(i).C(i)B(ij)C(j).C(j))

end
end

until convergence;
Note: ⊗ and > symbolize elementwise multiplication and division, respectively.

3 Fuzzy clusters and backbone of a gene-complex hypergraph

In order to illustrate the applicability of our method to heterogeneus biological data we
employ the Corum core set [RBDK+08] that reflects a non-redundant catalogue of experi-
mentally verified mammalian protein complexes manually annotated at MIPS. A bipartite
graph G = (V,E) with |V | = 4877 and |E| = 8738 was constructed from these data. The
two disjoint node sets are represented by protein complexes and their associated genes fur-
ther referred to as Vc and Vg , respectively. We then focused on a reduced data set G′ with
|V ′| = 4090 and |E′| = 7946 retrieved by extracting the maximally connected subgraph.
The remaining graph consisted of 1728 complex (Vc) and 2362 gene (Vg) vertices.

The determination of the number of clusters for each node type, in which the graph has
to be decomposed, is difficult, and even in the case of unipartite k-means does not al-
low a direct and computationally simple answer. To address this issue we approximated
the number of clusters to be found in the complex and the gene partition respectively by
limiting the maximal number of clusters kc for Vc according to kc = 1√|Vc|/2A, and
then scaled the number of clusters kg for Vg by kg = @kc

√|Vg|/|Vc|6. We calculated
the value of the cost function for each pairwise combination starting from kc=1. Due
to random initial conditions, the algorithm is inherently indeterministic. Therefore, we
discuss performance over 10 runs each. Figure 3(a) shows the distribution of cost func-
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Figure 3: (a) Approximation of cluster numbers kc, kg . (b) Distribution of cluster sizes for kc =
5, kg = 5. Hierarchical clustering of (c) complex and (d) gene clusters (see fig 4(c) for backbone
network for kc, kg = 5). The clustered backbone for kc = 11, kg = 12 is shown in (e).

tion values for the particular parameter settings. As final parameters kc and kg we chose
(kc, kg) ∈ {(5, 5), (11, 12), (19, 22)}, where we observe significant drops of the cost func-
tion. With this, we detect organizational structures on different levels of resolution. In the
following we will mostly discuss the smallest graph with 5 clusters each (see figure 3(b)).

Figure 3 shows that our method is able to identify overlapping clusters. In the resulting
five clusters, the majority of elements is assigned to a single cluster. However, there exists
a considerable amount of nodes assigned to several clusters simultaneously, see figures
3(c,d). Almost ten percent of complexes (193) and genes (187) are assigned to two clusters
with p >= 0.3. For instance, the genes ITGB2 and MCRS1 are even part of threes clusters
with p >= 0.3. This clearly demonstrates the need for a fuzzy approach. The clusters
vary strongly in size (figure 3(b)). and their interconnectivity is sparse, see figure 4(c).
However, in the case of kc=11 and kg=12 we already have a resolution level that is fine
enough to see details, and several binary clusters become apparent (figure 3(e)).

In order to evaluate whether both the extracted clusters and their interconnections given
by the backbone graph are biologically feasible, we employed FunCat classifications. For
all genes we mapped Gene Ontology associations to their according FunCat categories to
achieve comparability between the node types (http://mips.gsf.de/proj/funcatDB/). Usu-
ally, complexes and genes are annotated with the lowest FunCat category or GO term
respectively. In our analysis we took a subset of 13 FunCat main categories. Subcategory
annotations were mapped to the according main category terms for consistency reasons.
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Figure 4: (a,b) FunCat annotation profile for complex and gene clusters. (c) shows the normalized
backbone connectivity, and (d) the normalized positive crosscorrelations of the FunCat profiles from
(a) and (b). (e) Shows statistics over 1000 random networks, proving significance of the clusters
(dashed line) with a p-value of p < 10−3.

From figure 4(a) and (b) we see that the extracted clusters can be easily interpreted bi-
ologically, as most of them have a high fraction of functional annotations with a certain
FunCat term. Moreover, from visual comparison, see figure 4, we see that interconnected
clusters also seem to be functionally correlated. In order to quantify this, we determined
for each cluster how it is associated with each of the 13 FunCat categories by weighting a
cluster elements FunCat classification by its degree of membershipto the particular cluster
and calculated Pearson correlation of FunCat annotations of the complex and gene clus-
ters. As expected, we find a high similarity between the clusters interconnectivity and their
functional correlation. This shows that our fuzzy partitioning approach yields biologically
meaningful results by identifying functionally related clusters.

To evaluate the significance of these results we compared our findings with the results of
a random model. Assuming that a random network does not form functionally related
clusters, we applied a bipartite randomization procedure to our original network. We gen-
eralized the degree-preserving rewiring for complex networks, first introduced by Maslov
and Sneppen [MS02]: In every randomization step we randomly picked two edges and ex-
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changed their endpoints of one type (either proteins or complexes) without creating multi-
ple edges or self-loops. This rewiring procedure leads to a loss of degree-correlations be-
tween first and second neighbors. Hence, one can observe the degree of randomization by
the course of these quantities over the process. This also tells us how many randomization
steps are needed. In practice, degree-correlations vanished after around one randomization
step per edge. So, for our analyses we used five times this number as in [WAH+08].

We determined the clusters’ FunCat profiles and calculated normalized positive correla-
tions. To have a distance measure, we calculated the difference between the normalized
backbone connectivity and the normalized positive cross-correlation matrix. Comparing
these distances to clusterings using the hard approach from [LWZY06], we found much
smaller values. As an example, a histogram is shown in figure 4(e), which illustrates that
out of 1000 iterations only a single random entry is smaller than the 0.89, resulting in a
p-value < 10−3. This shows the significance of our results.

4 Conclusion

In this contribution, we presented a novel computationally efficient and scalable graph
partitioning algorithm. Unlike other methods in the field it allows for the identification
of overlapping clusters in k-partite graphs of heterogeneous data. It is based on an ef-
ficient minimization procedure, mimicking the multiplicative update rules employed in
algorithms for non-negative matrix factorization. We verified our approach on a bipar-
tite network of protein complexes where we demonstrated that we successfully identified
functionally correlated clusters.

Partitioning on a local level, i.e. aiming at detecting quite small clusters, our algorithm
will enable reclassification, annotation or even detection of misclassified elements in het-
erogeneus data sets. Partitioning into large-scale clusters, we focus on understanding their
global organization. For instance, simple bipartite graph analysis has recently brought
insights into the organization of microRNA interactions [RKS+10]. At the moment, we
extend this work by integrating predictions of microRNA target sites with protein com-
plexes, disease information and different types of annotations.
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Abstract:
The ability of some RNA molecules to switch between different metastable con-

formations plays an important role in cellular processes. In order to identify such
molecules and to predict their conformational changes one has to investigate the re-
folding pathways. As a qualitative measure of these transitions, the barrier height
marks the energy peak along such refolding paths. We introduce a meta-heuristic to
estimate such barriers, which is an NP-complete problem. To guide an arbitrary path
heuristic, the method uses RNA shape representative structures as intermediate check-
points for detours. This enables a broad but efficient search for refolding pathways.
The resulting Shape Triples meta-heuristic enables a close to optimal estimation of the
barrier height that outperforms the precision of the employed path heuristic.

1 Introduction

RNA plays a central role in living cells. Numerous RNAs are able to switch between
different structures within their life time due to thermodynamics, temperature changes
(thermometers), ligand binding (riboswitches) or other signals [FHMS+01]. Such multi-
stable RNAs regulate gene expression directly or are connected to regulatory mechanisms,
e.g. splicing [LC93]. For the correct prediction and study of such structural changes it
is necessary to identify the lowest energy refolding pathway in the underlying RNA en-
ergy landscape. The energy barrier height surmounted along such paths can be used to
estimate refolding probabilities [GFW+08] or to study the kinetics of the folding process
[WSSF+04].

Maňuch et al. have shown that the calculation of the exact barrier height is a hard,
NP-complete problem for RNA secondary structure landscapes [MTSC09]. Therefore,
exact approaches rely on the full enumeration of the low energy parts of the landscape
[SvdPS99, FHSW02, KH05], resulting in exponential runtimes. Heuristics have been in-
troduced to avoid the exponential behaviour while still providing a reasonable estimate
of the barrier height. The first greedy approach by Morgan and Higgs considers direct
paths only [MH98] which are of minimal length. Subsequently, the barrier estimation
was improved via more advanced direct path heuristics [FHMS+01, TOSY06, GFW+08].
In order to avoid the restriction of direct pathways, heuristics were introduced that allow

Bogomolov et al. 41



for minor detours in the landscape [LFH09, DLVHC10]. Such methods revealed the high
potential of non-direct pathways.

Our Shape Triples approach aims to improve the barrier height approximation of arbitrary
path heuristics by splitting the pathway prediction xs ! xt into xs ! r ! xt, where r
is a defined checkpoint for a detour. We use RNA shapes and their representative struc-
tures, the so called shreps [GVR04], to define the detour checkpoints r. This is based on
the observation that intermediate structures xi along low barrier pathways can show very
different branching patterns compared to the start and target structures xs, xt. Since RNA
shapes group structures based on their branching pattern, we can use shreps to access the
pattern of xi. By pivoting on the shreps of all shapes, we have a good chance to catch the
optimal detour while the number of shapes is very small compared to the number of RNA
structures.

The resulting Shape Triples meta-heuristic, i.e. a high-level strategy that guides other path
heuristics [Bla09], enables an efficient and precise estimation of barrier heights within
RNA energy landscapes.

To evaluate our method, we show for two bistable RNA molecules the increased precision
of the meta-heuristic compared to the employed path heuristic for a large number of refold-
ing paths. We further show that in most cases the exact barrier height can be determined
using our Shape Triples approach.

2 Preliminaries

In order to formulate our algorithms and results, we introduce the concept of energy land-
scapes, the barrier height problem, and their application to RNA. This is followed by an
overview of RNA shape abstractions.

Energy Landscapes and Barrier Heights

In order to describe and investigate folding processes, the concept of discrete energy land-
scapes is applied frequently [Wri32, Sta02, FHSW02]. It is defined by a triple 〈X, E, N〉,
i.e. a finite set of states X , an associated energy function E : X → R, and a neigh-
borhood relationship N : X → P(X), where P denotes the powerset. The folding
process is mainly influenced by the local minima M ⊆ X of the landscape defined by
∀m∈M∀x∈N(m) : E(m) ≤ E(x).

A folding trajectory corresponds to a walk (or path) w = (x1, . . . , xl) ∈ X l of length l
within the energy landscape that respects the neighborhood relation (∀i : xi ∈ N(xi−1)).
With W (xs, xt) we denote the infinite set of all possible walks starting in xs and ending
in xt.

The barrier height B denotes the lowest energy peak to make two structures xs, xt acces-
sible to each other, i.e.

B(xs, xt) = min{ max{ E(x ∈ w) | w ∈W (xs, xt) }} . (1)

The barrier height heavily influences the folding probabilities within a certain energy land-
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scape [FFHS00]. It can be used to derive energy landscape abstractions like barrier trees
[HS88, FHSW02] and enables studies of folding kinetics [WSSF+04, GFW+08].

The energy barrier problem is to determine the exact barrier height B of two given states
of an energy landscape.

RNA Secondary Structure Landscapes

In order to investigate the folding behavior of an RNA molecule the energy landscape of
its secondary structures can be used [FFHS00, LFH09]. Given the nucleotide sequence
S ∈ {A,U,G,C}n of an RNA of length n, a secondary structure x is a set of base pairs
{(i, j) | 1 ≤ i < j ≤ n} such that (a) Si, Sj form a Watson-Crick (A-U, G-C) or a G-U
base pair, with (b) at most one base pair per position, i.e. ∀(i,j),(k,l) : j '= k∧(i = k ⇔ j = l),
such that (c) all pairs are non-crossing, i.e. ∀(i,j),(k,l) : i < k < j ⇔ i < l < j. The free
energy of a given structure x can be calculated by a base pair based decomposition into
structural elements [ZS81]. We use the implementation from the Vienna RNA Package1

v1.7.2 within the Energy Landscape Library2 v3.2.0 [MWB07]. All energies are given in
kcal
mol where calculations use parameters “-d2 -T 37”. For details of the method applied
and the energy parameters we refer to literature [ZS81, Hof03].

The neighborhood within an energy landscape reflects small structural changes along the
folding process. To this end we apply so called single moves [FFHS00], i.e. the insertion
or deletion of a single base pair. Thus, the neighborhood of a given structure x is defined
by N(x) = {x′ | |bp(x)− bp(x′)| = 1}, using its number of base pairs bp(x) = |x|.
The discrete energy landscape of an RNA S is thus defined by X as all secondary structures
x of S, E as the free energy function defined by Zuker and Stiegler [ZS81], and the single
move neighborhood N .

Maňuch et al. have shown the NP-completeness of the energy barrier problem in such
RNA energy landscapes [MTSC09].

RNA Shape Abstractions

RNA shapes, introduced by Giegerich et al. [GVR04], are a coarse grained model of RNA
secondary structures. The shape abstraction is a homomorphic mapping of the secondary
structure set X of an RNA into a set of compact representations of the different branching
pattern covered by X . Five levels of abstraction are introduced and we denote these πi(x),
the shape abstraction of the i-th level of a given RNA structure x. For details on the
method we refer to literature [GVR04, SVR+06]. Throughout this manuscript we use the
RNAshapes3 implementation v2.1.5.

Given an RNA energy landscape 〈X, E, N〉, we denote with Pi the set of all shape ab-
stractions of level i of X , i.e. Pi = πi(X) = { πi(x) | x ∈ X}. Thus each shape pi ∈ Pi

describes a class of structures of X . The structure with minimal energy within the class
is called the shape representative structure or shrep r(pi), i.e. ∀x∈X : (πi(x) = pi) →
E(x) ≥ E(r(pi)).

In the following we will use the RNA shape abstraction concept to generate a new and

1Vienna RNA Package available at http://www.tbi.univie.ac.at/∼ivo/RNA/
2ELL available at http://www.bioinf.uni-freiburg.de/Software/
3RNAshapes available at http://bibiserv.techfak.uni-bielefeld.de/download/
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efficient meta-heuristic to estimate the barrier height between two RNA structures.

3 Methods

Since we want to present a meta-heuristic that employs an arbitrary path heuristic, we
briefly review two existing direct path methods for the energy barrier problem, namely
the MH heuristic by Morgan and Higgs [MH98] as well as a breadth-first-search (BFS)
approach [FHMS+01]. Both, the MH and BFS heuristic, can be implemented in our new
RNA Shape Approaches presented afterwards. The exhaustive Shape Network approach
exploits the potential of the RNA shape abstraction for the energy barrier problem. This
is followed by our efficient Shape Triples meta-heuristic that enables a fast and precise
barrier approximation.

RNA Direct Path Heuristics

Direct path heuristics find an approximate solution to the energy barrier problem for two
RNA structures xs, xt. Considering only single moves (base pair insertion/deletion), a
direct path ŵ is a walk w(xs, xt) of minimal length, i.e. of base pair distance d(xs, xt) =
|(xs∪xt)\ (xs∩xt)| [MH98]. In the following the abbreviation BDP(xs, xt) will be used
to denote the barrier height between xs and xt estimated by a direct path heuristic.

The MH heuristic: Morgan and Higgs introduced a simple greedy heuristic to explore
direct paths [MH98]. It uses an iterative conflict-driven scheme of base pair insertions and
deletions and evaluates the maximal energy reached within the resulting walk. Applied
in several iterations, while storing the path with lowest barrier found, it returns an upper
bound on the barrier height. For details on the method refer to the literature [MH98,
FHMS+01, GFW+08].

The BFS heuristic: Flamm et al. improved the greedy MH approach using a limited
breadth-first-search (BFS) [FHMS+01]. Starting from the initial structure xs, it enumer-
ates all single moves possible in direct walks towards the target structure xt. From these
walks only the best m candidates are considered for extension in the next iteration. This
continues until the full walk length of d(xs, xt), and thus the target structure xt, is reached.
BFS enables better barrier height approximations compared to MH to the cost of increasing
runtime correlated with m [GFW+08]. In the following, we denote a BFS search with
cut-off m with BFSm.

Drawbacks of Direct Paths: Direct path heuristics are fast, but at the cost of precision,
since only a small “corridor” of the energy landscape is investigated. Thus, the barrier
height estimated via direct paths is usually higher than the exact one, i.e. BDP(xs, xt) ≥
B(xs, xt) [MH98]. Lorenz et al. have shown that lowest barrier pathways often contain
detours and that rerouting via non-direct structures can significantly improve barrier height
approximations [LFH09].

Shape Approaches

The central idea of our Shape Approaches is to use energy minimal shrep structures as
intermediate checkpoints to reroute the path calculation of a given path heuristic, i.e. to
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go from the start structure xs via shreps to target xt. The resulting non-direct detour paths
are more likely to enable a precise barrier estimate than the employed path heuristic alone.
For simplicity, we exemplify the Shape Approaches employing a direct path heuristic as
MH or BFS.

The Shape Network approach: In order to evaluate the potential of any Shape Approach
we use the Shape Network (SN), which uses the notion of shapes to create an abstraction
of the energy landscape. The Shape Network is a fully connected, labeled graph where
each node represents the shrep r(pi) of a shape pi ∈ Pi of a given fixed shape abstraction
level i. In the following, we ignore the level identifier i and abbreviate r(pi) = rp to
ease the presentation. Each edge between two nodes rp, rp′ is labeled with a barrier height
approximation via direct paths BDP(rp, rp′) (e.g. using MH or BFS).

Utilizing a simple variation of the dynamic programming algorithm by Floyd for the short-
est path problem [Flo62], we get the barrier height approximation BF(rp, rp′) for any two
shreps rp, rp′ via any path within the Shape Network. Thus, using this BF estimate we can
get an upper bound BSN(xs, xt) of the barrier height between two RNA structures xs, xt

including detours via an implicit sequence of shreps by

BSN(xs, xt) = min
p,p′∈P

{ max

BDP(xs, rp),
BF(rp, rp′),
BDP(rp′ , xt)

 , BDP(xs, xt) } (2)

The major drawback of the Shape Network approach is the high computational cost to
calculate the Shape Network via |P |2 direct path calculations where computation time
depends on the heuristic (see direct path section). Afterwards the Floyd algorithm runs
efficiently in O(|P |3) and results in the barrier height approximation BF between all pairs
of shreps. Once BF is calculated, these approximations can be used to estimate the barrier
height between any two structures using BSN from Eq. 2 with (2·|P |+1) path calculations
each.

Thus, the Shape Network approach is a useful tool when interested in a vast number of
barrier heights, e.g. to calculate a barrier tree representation of the energy landscape’s
minima [FHSW02]. Beyond that, we can convert the Shape Network itself into an even
coarser barrier tree abstraction covering the shrep structures that might reflect general
properties of the energy landscape. Finally, the Shape Network approach gives a lower
bound for meta-heuristics based on the Shape Approach idea.

The Shape Triples approach: In the following, we will introduce our Shape Triples (ST)
meta-heuristic which enables a fast and efficient barrier height approximation. It is based
on the observation that the majority of the barrier paths within the Shape Network are very
short. We get already good upper bounds BST(xs, xt) on the barrier height when only
investigating detours with one intermediate shape representative rp, i.e.

BST(xs, xt) = min
p∈P
{ max

{
BDP(xs, rp),
BDP(rp, xt)

}
, BDP(xs, xt) }. (3)

Thus, our two Shape Approaches yield new barrier height approximations BSN and BST
between the two structures xs, xt. These estimates are related via:

B(xs, xt) ≤ BSN(xs, xt) ≤ BST(xs, xt) ≤ BDP(xs, xt). (4)
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function GETBST(xs, xt, P )
B ← BDP(xs, xt) 0 initialization of barrier estimate
for all (p ∈ P ) do

if (E(rp) < B) then 0 low energy shreps only
B ← min{ B, max{BDP(xs, rp), BDP(rp, xt)}} 0 update B if needed

end if
end for
return B 0 final BST(xs, xt) estimate

end function

Figure 1: Scheme for an efficient calculation of BST(xs, xt).

In order to calculate BST(xs, xt) from Eq. 3 we do not have to consider all shrep structures
as possible intermediate checkpoints for detours. Every indirect path using a shrep r with
E(r) > BDP(xs, xt) will result in a worse barrier height estimation than already given by
BDP (see Eq. 3). Thus we can use an adaptive scheme to reduce the computational cost
for calculating BST that considers only shreps with energy below the best barrier height
estimation found so far as given in Fig. 1. The scheme can be further improved when using
an energy sorted shape/shrep enumeration: as soon as a shrep exceeds the current barrier
estimate the iteration can be terminated. Note, the same applies to the Shape Network
approach.

4 Results and Discussion

We investigate the Shape Approaches using the RNA molecules L45 and SL from Tab. 1.
SL is the spliced leader RNA from Leptomonas collosoma taken from [LC93]. It was
shown that the ability of this molecule to switch between two metastable structures heavily
influences its splicing behavior. L45 is a bistable artificial RNA taken from [LFH09].

In order to evaluate the methods, we study the barrier height error, i.e. the approximated
(Eq. 2/3) minus the exact barrier height (Eq. 1). To this end we pick 5000 random pairs
(xs, xt) of local minima for SL with structural distance ≥ 7 and energy ≤ 0. The exact

ID shape i 2 3 4 5 structures
L45 |Pi| = 528 68 57 13 |X| = 5,999,391,327
SL |Pi| = 6305 594 336 49 |X| < 1.725× 1018

L45 S GGGCGCGGUUCGCCCUCCGCUAAAUGCGGAAGAUAAAUUGUGUCU

xs (((((.....)))))(((((.....)))))(((((.....)))))

xt ((((((((((.....(((((.....))))).....))))))))))

SL S AACUAAAACAAUUUUUGAAGAACAGUUUCUGUACUUCAUUGGUAUGUAGAGACUUC

xs ..((...((((((..(((((.((((...)))).)))))..))).)))..)).....

xt .......................((((((((((((.....)))))..)))))))..

Table 1: RNA shape/structure numbers and sequences S for the energy landscapes investigated. For
SL we estimated |X| via sequence length n using the upper bound of 1.07427 · n−3/2 · 2.35467n

from [CKKS09]. The structures xs/xt correspond to the switch structures of the bistable molecules.
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Figure 2: Evaluation of the Shape Approaches for RNA SL. (left) Direct path BFS-heuristic for cut-
off 1 and 5 in comparison to Shape Network and Shape Triples approach at shape level i=3. (right)
Performance of the Shape Triples approach when applying different direct path heuristics and shape
levels i. Boxes cover 50% of the distribution while solid lines mark the median.

barrier height is calculated using an exhaustive approach implemented in the barriers
program [FHSW02].

Figure 2 (left side) evaluates the Shape Approaches compared to the BFS direct path
heuristics for SL. The Shape Network approach performs best among all methods and
finds the exact barrier for ≥75% of the pairs (SN+BFS5). This shows the potential of de-
tour pathways using RNA shapes. Furthermore, the much simpler Shape Triples heuristic
shows only a slightly higher error on average and still outperforms the direct path heuristic.

The figure also compares (on the right) the performance of the Shape Triples approach for
different shape levels and direct path heuristics. Here, BFS clearly beats the MH-heuristic
and increasing BFS cut-offs lower the error (as in [GFW+08]). More importantly, the
Shape Triples approach always yields better results, depicting the robustness of the method
and its independence of the direct path method applied. Finally, increased abstraction
(shape level) reduces the precision of the method. This is expected since less detours in
the landscape are considered (see Tab. 1 for shape numbers). Nevertheless, the differences
get less significant when employing a more precise path heuristic like BFS5 (in green).

Table 2 evaluates the Shape Triples approach for the structure pairs from Tab. 1. In most
cases BST matches or is close to the exact barrier height B and improves the upper bound
from direct path results (BDP). Note, even for high shape abstraction levels we gain a
significant improvement. First experiments reveal that an increase of the BFS cut-off can
further improve our BST results (data not shown).
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Shape Triples BST(xs, xt)

ID B(xs, xt) shape i 2 3 4 5

L45 -7.5 only BFS5 -4.87 with BFS5 -7.5 -7.5 -6.4 -6.2
BDP(xs, xt) ≥ -4.87 |Pi|% 16.7 33.8 31.6 38.5

SL 0.5 only BFS5 2.6 with BFS5 0.5 0.51 0.51 2.6
BDP(xs, xt) ≥ 1.9 |Pi|% 5.9 9.4 14.8 18.4

Table 2: Barrier height evaluation for the xs/xt structure pairs from Tab. 1. Given is the ex-
act barrier B(xs, xt), the estimate via only direct path BFS5, the lowest barrier for such direct
paths BDP(xs, xt), and the Shape Triples approximations BST(xs, xt) for different shape level us-
ing BFS5. |Pi|% denotes the percentage of |Pi| from Tab. 1 used to calculate BST (see Methods).

The number of shapes |Pi| grows slowly exponential with increasing sequence length (see
Tab. 1) [NS09, LPC08]. Nevertheless, the percentage of shapes considered to calculate
BST drops drastically as shown by |Pi|% in Tab. 2. Therefore, even for increasing sequence
length, the computation effort of the Shape Triples approach remains low.

We compare our results to the κ,λ-neighborhood approach presented in [LFH09]. There,
detours are rerouted through energy minimal structures within the κ,λ-neighborhood, i.e.
via energy minimal structures within the structural distances κ and λ to the start and target
structures, respectively. Using a BFS100 heuristic (R. Lorenz, pers. commun.), Lorenz
et al. are able to estimate the exact barrier height of -7.5 for L45 [LFH09]4. The Shape
Triples approach reproduces the same exact barrier height for different shape levels (see
Tab. 2) while using a much faster BFS5 with cut-off 5 instead of 100 (see Methods).

5 Conclusion

We have introduced RNA shape based meta-heuristics to estimate the barrier height be-
tween RNA structures, an important problem to study multistable RNA molecules. The
methods use shape representative structures (shreps) as intermediate checkpoints to reroute
a given path heuristic. This enables a broader search in the energy landscape as done by
the employed heuristic alone. We have shown that our Shape Triples approach is able
to estimate barrier heights close to the optimum using a BFS5 heuristic. The approach
scales with the number of investigated shreps as shown in Fig. 1. Thus, the use of different
shape levels enables a trade-off between barrier precision and computational performance
(see Tab. 2) where the latter depends on the performance of the individual path heuristic
applied.

While being introduced for direct path heuristics only, the method is applicable to any other
path heuristic. Thus, we plan to investigate the use of the RNATABUPATH [DLVHC10],
currently using a different RNA energy scheme, that was shown to yield slightly bet-
ter results than BFS by allowing for minor detours. When employing RNATABUPATH

4Note, in [LFH09] the energy difference ΔE = (B(xs, xt)−E(xs)) is given. Thus, the barrier height was
recalculated by (E(xs) + ΔE).
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within the Shape Triples approach it may be possible to improve the results even further
(see Eq. 4).

We plan to investigate different shrep selection strategies to further speedup the method.
Possible directions are the structural distance to start and target structure or a shape dis-
tance based evaluation.

Furthermore, the method is basically not restricted to RNA shapes but open to any sam-
pling of low energy structures of the underlying RNA energy landscape. Thus, any scheme
for an efficient calculation of such a set of structures can be used to replace the set of shape
representatives in the Shape Triples approach (Fig. 1) and might even improve the results.

Therefore, we consider the Shape Triples meta-heuristic to be a very useful tool to combine
results from different algorithmic fields to gain very precise barrier height estimates for
arbitrary RNA structures.
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Abstract: We propose a method for comparing protein structures or, more specifi-
cally, protein binding sites using a histogram-based representation that captures im-
portant geometrical and physico-chemical properties. In comparison to hitherto exist-
ing approaches in structural bioinformatics, especially methods from graph theory and
computational geometry, our approach is computationally much more efficient. More-
over, despite its simplicity, it appears to capture and recover functional similarities
surprisingly well.

1 Introduction

With the steady improvement of structure prediction methods, the inference of protein
function based on structure information becomes more and more important. The com-
parison of protein structures, for which quite a number of methods have already been
proposed, is a central task in this regard. One class of methods focuses on geometrical
aspects and, correspondingly, makes use of tools from computational geometry. As exam-
ples of this type of approach, we mention geometric hashing [RW97] and labeled point
cloud superposition [FH09]. Another idea is to use graphs as formal models of molecular
structures. Here, the focus is more on the physical and chemical properties, which are of-
ten modeled as nodes of a graph, while geometrical or topological properties are captured
in a more indirect way via weighted edges. Typical examples of this approach include
measures based on sub-graph isomorphism [NB07], graph edit distance [FMKH09], and
graph kernels [G08].

Geometrical and graph-based approaches are appealing, especially since they produce
more than just a numerical degree of similarity. Usually, they also provide useful ex-
tra information, e.g., correspondences between basic structural units. The price to pay is
a high computational complexity. In fact, many of the aforementioned methods lead to
NP-hard optimization problems and scale poorly with the size of the structures. This com-
plexity prevents them from being used in large-scale studies like cluster analysis requiring
all-against-all comparisons.

∗The first two authors contributed equally to this work.
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A possible alternative to methods of the above kind is offered by feature-based approaches
in which a protein structure is first represented in terms of a fixed number of features,
that is, a vector of fixed dimensionality. The comparison of objects is thus reduced to
the comparison of feature vectors. Since the original object cannot be recovered from
a finite number of features, this transformation normally comes with a significant loss
of information. Consequently, it is unclear to what extent the similarity of the original
structures is mirrored by the similarity of their respective feature vectors. On the other
hand, this approach has an obvious advantage with regard to complexity, as feature vectors
can be compared quite efficiently.

In this paper, we propose a feature-based approach to the comparison of protein binding
sites. More specifically, our idea is to summarize important information about the geo-
metrical and physico-chemical properties of protein binding sites in terms of histograms.
This idea is largely motivated by the successful use of similar approaches in the field of
image processing, where the distribution of the brightness or the colors of a picture are
represented in terms of histograms [RTG00, VB00]. A similar approach has also been
applied in the field of structural bioinformatics [SSS+07] for the analysis of homologous
proteins.

2 Modeling Protein Binding Sites

Our approach builds upon CavBase [SKK02], a database for the automated detection,
extraction, and storing of protein cavities (hypothetical binding sites) from experimentally
determined protein structures. In CavBase, a set of points is used as a first approximation
to describe a binding pocket.

The geometrical arrangement of the pocket and its physicochemical properties are first rep-
resented by predefined pseudocenters – spatial points that represent the center of a particu-
lar property. The type and the spatial position of the centers depend on the amino acids that
border the binding pocket and expose their functional groups. Currently, CavBase consid-
ers seven types of pseudocenters (hydrogen-bond donor, acceptor, mixed donor/acceptor,
hydrophobic aliphatic, metal ion, pi, aromatic).

Pseudocenters can be regarded as a compressed representation of areas on the cavity sur-
face where certain protein-ligand interactions are experienced. Consequently, a set of
pseudocenters is an approximate representation of a spatial distribution of physicochemi-
cal properties.

3 Transforming Protein Binding Sites into Histograms

A histogram h is a partition of a set of observations O ⊂ X into a finite number of
discrete units. Formally, h can be represented as a B −→ R mapping, where B is a
finite set of bins, and h(b) denotes the number (fraction) of observations falling into bin
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b. We call a histogram h normalized if
∑

b∈B h(b) = 1. Each bin b is associated with
a subset X[b] of the domain X , so that h(b) = |O ∩ X[b]| before normalization and
h(b) = |O|−1|O ∩ X[b]| in the normalized case. The set of bins is assumed to form a
partition of X , i.e., X[a] ∩X[b] = ∅ for a 8= b and

⋃
b∈B X[b] = X .

To obtain histograms from a protein binding site, we will use two important properties,
namely its distribution of pseudocenters and the distribution of distances between pseudo-
centers, thereby capturing both, the physico-chemical properties as well as the geometry
of the binding site.

To combine both pseudocenter and distance information, our representation is based on
sets of pairwise distances: Di,j is the set of all distances between pseudocenters of type i
and j, with 1 ≤ i ≤ j ≤ np (np denoting the number of pseudocenter types). To obtain
a corresponding histogram hi,j , we use B = {1, . . . , dmax} and let X[b] = [b − 1, b[. All
histograms are normalized to ensure equal weights (except empty histograms). Thus, a
structure is represented by a set of n = np(np + 1)/2 histograms.

4 Distance Measures

Consider two structures represented, respectively, by histograms g1, . . . , gn and h1, . . . , hn.
Moreover, let δ be a distance measure suitable for comparing histograms. The overall
distance between the two structures can then be obtained by aggregating the distances
δ(gi, hi), for example in terms of the Euclidean norm of the vector

(δ(g1, h1), . . . , δ(gn, hn)) .

In the literature, two types of distance measures on histograms are distinguished, namely
bin-by-bin and cross-bin measures. The former are rather simple and only compare values
in the same bin. The distance between two histograms is then defined by the sum of
distances for all bins. Cross-bin measures, on the other hand, also compare values in
different bins. In order to aggregate these distances, they also require the existence of a
ground distance on B; in our case, we can simply define |a − b| as distance between bins
a and b.

Since cross-bin measures proved superior to bin-by-bin measures in a previous study
[FH10], we focus on the former type. More precisely, we consider the Quadratic Form
Distance,

dQF (g, h) =
√

(pg − ph)T A(pg − ph) ,

where A is a matrix whose entries ai,j specify the similarity between bins bi and bj with

ai,j = 1− di,j

maxi,j{di,j} ,

the Earth Mover’s Distance,
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dEMD(g, h) =


min

{∑
Bn

fi,k |{fi,k : (i, k) ∈ Bn}
}

subject to:∑
k:(i,k)∈Bn

(fi,k − fk,i) = g(b)− h(b) ∀ b ∈ B
fi,k ≥ 0 ∀ (i, k) ∈ Bn

and Cumulative Distributions. The latter approach replaces the original histogram h by
the corresponding cumulative distribution, defined by H(b) =

∑
a≤b h(a), and then mea-

sures the distance on these distributions. Here, we use the Kolmogorov-Smirnov distance

dKS(g, h) = max
b∈B
{|G(b)−H(b)|}

and the match distance
dM (g, h) =

∑
b∈B
|G(b)−H(b)|.

5 Experimental Results

In our experiments, we first used a dataset from a previous study designed to assess the
performance of global structural alignment methods. This dataset contains 355 protein
binding sites comprising two classes of proteins, ATP binding and NADH binding pro-
teins. Binding sites known to bind the corresponding ligands in similar conformation were
derived from CavBase; in case of multiple binding sites belonging to the same structure,
only one representative was selected at random. See [FMKH09] for a more thorough de-
scription of the dataset.

As a second, more complex dataset (Table 1), we selected a number of different, highly
populated functional enzyme classes according to the ENZYME database [BWF+00].
Protein structures belonging to the selected classes were derived from the Protein Data
Bank and corresponding cavities where extracted from CavBase.

Since CavBase may contain multiple cavities for the same protein, not all of them being
functionally important, we selected only those binding sites that contained at least two
residues belonging to the catalytic center of the protein according to the catalytic activity
atlas annotation (CSA) version 2.2.12 [PBT04]. In case of multiple instances for the same
structure, we took the binding site with the largest number of catalytic residues.

5.1 Classification Performance on a Two-Class Problem

As a first proof-of-concept, we assessed the performance of our distance measure on a
two-class classification problem, namely of ATP- versus NADH-binding proteins. More
precisely, we used a k-nearest neighbor (k-NN) classifier combined with different cross-
bin measures to discriminate the two classes. As performance criteria, we measured the
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EC number Function Number of proteins
2.1.1.45 thymidylate synthase 153
3.4.21.4 trypsin 373

3.4.23.16 HIV-1 retropepsin 291
3.4.24.27 thermolysin 70

1.9.3.1 cytochrome-c oxidase 233
4.2.1.1 carbonate dehydratase 316
3.4.25.1 proteasome endopeptidase 167
2.6.1.1 aspartate transaminase 106

Table 1: Dataset of 8 different EC classes.

accuracy of the methods in terms of their classification rates (determined through leave-
one-out cross validation) as well as their efficiency in terms of runtime.

For comparison, we also applied kernel methods (the shortest path (SP) kernel [BK05],
the random walk (RW) kernel [G08] and the fingerprint (FP) kernel [FMM+09]), graph-
based methods (the iterative graph alignment (IGA) [WHKK07] and the evolutionary
graph alignment (GAVEO) [FMKH09]) and geometric approaches (the labeled point cloud
superposition (LPCS) [FH09]).

Table 2 summarizes the results of these approaches. As can be seen, there are clear differ-
ences in terms of performance: The highest classification accuracy is achieved by LPCS,
followed by the fingerprint kernels. The graph-alignment methods (IGA and GAVEO)
perform less strongly, and the worst classification rates are produced by the graph kernels.

The runtime reported in the table includes the time needed for an all-against-all comparison
of the 355 structures and the time needed to perform a leave-one-out cross validation. As
can be seen, all methods require at least one day.

k RW SP LPCS FP IGA GAVEO
1 0.597 0.606 0.935 0.842 0.766 0.789
3 0.597 0.628 0.916 0.882 0.718 0.766
5 0.597 0.634 0.890 0.873 0.724 0.780
runtime (h) 1149.88 171.14 361.58 35.98 2136.88 > 5000

Table 2: Classification rates and runtime in hours of a k-NN classifier using different values of k and
different distance measures.

Table 3 summarizes the results for our histogram approach using different cross-bin dis-
tance measures and bins of size 1 (as they will be used in the whole work). Interestingly,
the accuracy values are quite high, even outperforming some of the competitor methods,
although LPCS still performs best. However, considering the runtime efficiency of the
histogram approach, the results show that we can retrieve comparably good results within
only a fraction of the time.
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k dQF dM dKS dEMD

1 0.862 0.865 0.859 0.772
3 0.856 0.882 0.854 0.749
5 0.845 0.865 0.837 0.732

runtime (h) 0.785 0.470 0.472 11.53

Table 3: Classification rates of cross-bin measures on the NADH/ATP data set.

Rank pdb code Protein score
1 2ACK Acetylcholinesterase (AChE) 0
2 1AX9 Acetylcholinesterase (AChE) 0.180
3 1GQS Acetylcholinesterase (AChE) 0.203
...

...
...

...
98 2V98 Acetylcholinesterase (AChE) 0.402
99 1ZGC Acetylcholinesterase (AChE) 0.404

100 1G6R Aspartate aminotransferase (mAspAT) 0.405

Table 4: Top ranks retrieved by querying the CavBase with the main pocket of 2ACK. Omitted
entries contained exclusively acetylcholinesterases.

5.2 Database Querying

In a second experiment, we applied our approach on the task of querying the complete
CavBase for similar structures. Given the simplicity of the approach, one may doubt its
suitability for a task of this kind.

We chose the main pocket of acetylcholinesterase from T. californica (pdb code: 2ACK)
as a query structure. This protein has previously been used to query the CASTp database
with a similarity measure that combines structural similarity with evolutionary conserva-
tion [BAL03]. Binkowski et al. retrieved further acetylcholinesterase structures on all top
ranks, a result they attributed to the uniqueness of the protein structure.

Table 4 shows some results of our query using the match distance. Surprisingly, and de-
spite the simplicity of our approach, the top 99 ranks are exclusively occupied by other
acetylcholinesterase structures before the first false positive shows up on position 100.
This is consistent with the results of Binkowski et al. and suggests that important informa-
tion is indeed captured by our histogram representation.

5.3 Discriminating Enzyme Classes

The third experiment investigates whether our approach can be used to discern binding
pockets of different enzyme classes. To this end, we selected several highly populated
enzyme classes from the Protein Data Bank and calculated the corresponding distance
matrix using our histogram approach with the match distance.
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k dQF dM dKS

1 0.941 0.944 0.945
3 0.920 0.919 0.926
5 0.905 0.912 0.916

Table 5: Classification accuracy on the multi-class enzyme dataset.

Since the class information is known, we visualize the distance matrix by means of a heat
map, which is shown in Figure 1. Again, it can be seen that important information is
captured by the histogram approach, as several classes show a high similarity within the
class.

Figure 1: Heat map depicting the distance matrix based on match distance for the EC dataset. Dif-
ferent EC classes are seperated by black lines.

Based on the above distance matrix, we additionally performed a hierarchical clustering
using repeated bisection and subsequent k-way refinement. Comparing the resulting clus-
tering with the original EC class yields a Rand index of R = 0.8633, indicating that the
clustering is in good agreement with the real class structure.

Finally, the distance matrix was again used for a nearest neighbor classification, this time
on a multi-class problem. Table 5 shows the classification accuracies for a leave-one-out
cross validation, using different distance metrics.

6 Conclusions

In this paper, we have introduced a very simple though extremely efficient method for
comparing protein structures in terms of a histogram-based representation. The main in-
terest of the paper is probably less the method itself, but more its strong performance in
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our experimental studies on classification and retrieval. In light of the simplicity of the
representation and the distinctive loss of information it implies, this performance was un-
expected. On the other hand, it is true that similar representations have been used quite
successfully in other fields, too, where the loss of information is arguably not smaller.

Due to its runtime efficiency and scalability, our approach is amenable to applications that
cannot be tackled by other methods. It can be used as a kind of filter, for example, to
preselect structures from very large datasets, thereby reducing the amount of data to be
processed afterward by more complex structure comparison algorithms. Using the method
for clustering, as we have already done in our experiments, is another example. Indeed,
the need for an all-against-all comparison does usually prevent the use of computationally
complex methods here.

Acknowledgements: The authors like to thank the reviewers for useful suggestions that
helped to improve the paper and, moreover, for bringing the approach of Sander et al. to
their attention.
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Abstract: The current high-throughput sequencing technologies produce gigabytes of
data even when prokaryotic genomes are processed. In a subsequent assembly phase,
the generated overlapping reads are merged, ideally into one contiguous sequence.
Often, however, the assembly results in a set of contigs which need to be stitched
together with additional lab work. One of the reasons why the assembly produces
several distinct contigs are repetitive elements in the newly sequenced genome. While
knowing order and orientation of a set of non-repetitive contigs helps to close the gaps
between them, special care has to be taken for repetitive contigs. Here we propose an
algorithm that orders a set of contigs with respect to a related reference genome while
treating the repetitive contigs in an appropriate way.

1 Introduction

The sequencing of genomes has become easier and cheaper with the current massively
parallel sequencing methods [Mar08]. Following a shotgun approach, these methods frag-
ment the genome randomly into small parts. The ends of those fragments are sequenced
and referred to as reads, both reads of one fragment form a mate pair. In a subsequent
assembly phase, an assembler software tries to merge overlapping parts of the reads into
longer contiguous sequences [Pop09], the so called contigs. If the size of the fragments
is known, the mate pairs have a defined distance and this information can also help in the
assembly. Ideally, the result is a single sequence which resembles the complete genome.
However, there are a few obstacles that lead to several contigs instead of a single one. Be-
sides non-random fragmentation and areas of an unusual GC content, repeats play a major
role in this process [MKS10]. For the latter the assembly software can not distinguish
between the reads from different occurrences of the repeating region. Thus, reads with
the same sequence from several distinct origins are merged together to a single repetitive
contig.

In general, the output of the assembly phase is a set of contigs and maybe a rough scaffold
derived for example from mate pair information. In order to retrieve the complete genomic
sequence, the gaps between the contigs have to be filled by running additional experiments
in the lab. If two contigs are known to be adjacent, then it is possible to close the gap with
a (long range) PCR or with primer walking for even larger gaps. For the tedious process of
gap closing it is therefore beneficial to know the layout of the contigs, meaning the order
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and orientation of them. Mate pair information can again help in this situation, but it fails
for gaps longer than the fragment size, and it is also not reliable on repetitive sequences.

Fortunately, many genomes have already been sequenced completely and if one of them
is related to the newly sequenced genome then it can be used as a reference to estimate a
proper layout. There are a few programs that deal with this task: Projector2 [vHZKK05]
maps the contigs on a single template genome and designs primer pairs for gap closure,
OSLay [RSH07] finds an optimal syntenic layout, other programs like PGA [ZZLB08] and
treecat [HS10a] are even able to utilize several reference genomes to predict a consensus
layout. Still problematic for the above mentioned programs are major rearrangements in
the reference genomes as well as repeating regions. To cope with the latter, all programs
except for treecat employ or at least suggest a repeat masking step.

In this paper we address the problem of repeating contigs in prokaryotic genomes with
the goal to find a better layout for a set of contigs according to a closely related reference
genome. Therefore we present a novel algorithm that includes repeating contigs as often
as necessary in a computed layout. This greatly reduces the complexity of the layout graph
while not removing the repetitive contigs.

After introducing the basic concept of a contig adjacency graph in Section 2, we address in
Section 3 how repeating contigs can be discovered from a given set of contigs. In Section 4
we present a specially designed algorithm that uses the repeat information to estimate a
more appropriate layout for the contigs. Section 5 contains an evaluation of the algorithm
and a comparison of the repeat integration with other contig ordering programs.

2 Contig adjacency graph

Let Σ={A, C,G, T} be the alphabet of nucleotides. We denote by Σ∗ the set of all finite
strings over Σ, by |s| :=   the length of string s= s1 . . . s , and by s[i, j] := si . . . sj with
1≤ i≤j≤  the substring of s that starts at position i and ends at position j.

Suppose we are given a set of contigs C= {c1, . . . , cn}, ci ∈Σ∗, and a reference genome
g ∈ Σ∗ that has already been finished. The contig adjacency graph for these sequences
is then the weighted graph GC,g = (V,E) that contains for each contig ci ∈ C two
vertices: li as the left connector and ri as the right connector of contig ci, thus V =
{l1, . . . , ln, r1, . . . , rn}. A function contig(v) refers to the contig for which vertex v rep-
resents the left or right connector. The graph GC,g is fully connected, E =

(
V
2

)
, and we

term A = {{v, v′} | contig(v) 8= contig(v′)} the set of adjacency edges that connect the
contigs among each other.

The edge weights are given by a function w : E → R+
0 , and we are particularly inter-

ested in the weights of the adjacency edges A. These shall provide a score of how likely
the involved connectors are adjacent with respect to the reference genome. One method
to calculate the weights based on matching the contigs onto the reference genome is de-
scribed in [HS10a]. There, the pairwise matches from different contigs are used to calcu-
late a score for the adjacency of the involved contig connectors. While the scores increase
with the length of the corresponding matches, they are weighted by their distance. A high
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weight w({ri, lj}), for example, supports that the right connector (or head) of contig ci is
adjacent to the left connector (or tail) of contig cj . We call the sum of all edge weights of
a particular node v∈V the total support of that node, denoted by Sv =

∑
v′∈V w({v, v′}).

To estimate how significant an adjacency edge e = {v, v′} ∈A is for a given contig con-
nector v ∈ V , we consider the relative support: S rel

v (e) = w(e)
Sv

. Intuitively, this fraction
tells how specific the connection is for the given contig connector. A single high weight
edge results in a relative support close to one, while many equally good connections will
lower the value. Note that in general S rel

v ({v, v′}) 8= S rel
v′ ({v, v′}).

Given a contig adjacency graph, a natural task is to find a subgraph of it that contains all
relevant adjacencies in order to ease the gap closure phase of the sequencing project. We
call any subgraph with this property a layout graph of a set of contigs. A basic approach
could be to find a tour of maximal weight that contains each contig once and in a specified
direction. This leads essentially to the problem of finding a longest Hamiltonian cycle in
GC,g and is thus NP hard. Moreover, a meaningful biological result can differ from it,
especially if some contigs appear several times on the genome. In this case, a repetitive
contig has to be included several times into an adequate layout. In the next section we
describe how to detect such repetitive contigs.

3 Repeat detection

Our approach for contig ordering distinguishes between repetitive and non-repetitive con-
tigs. Assuming that repeating regions are conserved between closely related species, we
can determine if a contig c∈C is repetitive by matching it onto a given reference genome g.
A match of c in g is represented as a pair m=

(
(sb, se), (tb, te)

)
where the indices denote

the starting and ending positions of the two substrings c[sb, se] and g[tb, te]. An alignment
of the substrings is supposed to yield a high score. Reverse complement matches can be
modeled with this notation as well, but are left out for simplicity.

Given a set of matches Mc,g of contig c on the reference genome g, we can determine
which matches are repetitive and from this derive if the contig occurs repetitively: We
call a match m =

(
(sb, se), (tb, te)

) ∈ Mc,g repetitive if there exists another match
m′ =

(
(s′b, s

′
e), (t

′
b, t

′
e)

)∈Mc,g such that (i) the contig substring of m is included in the
substring of m′ (sb ≥ s′b and se ≤ s′e), and (ii) the match positions on the reference are
not overlapping ({tb, . . . , te}∩ {t′b, . . . , t′e} = ∅). The exact positions of the matches may
vary for different matching procedures and/or scoring functions, so we allow for condition
(i) a slack of ρ1 times the length of m. By default we use a value of 10% for ρ1.

We call a contig repetitive if it has at least one repetitive match m of sufficient length.
Sufficient means that at least a fraction of ρ2 of the contig is covered by the repetitive
match: se−sb ≥ ρ2 · |c|. As default we set ρ2 = 0.9. We call all contigs that are not
repetitive for the sake of a shorter notation regular contigs.

Contigs that are repetitive on the newly sequenced genome are not necessarily repetitive on
the employed reference genome. To extend, as well as verify, the prediction of repetitive
contigs, one can use the information on how many reads have been merged to form a
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contig provided from the assembly phase. For each contig the average read coverage can
be calculated, and by looking at the deviation from the median of these values, it can
be observed if a contig is over- or underrepresented with reads. Highly overrepresented
contigs are most likely repetitive since the reads gathered from all repeat occurrences are
merged to a single contig. Even more, the ratio with respect to the median can serve as a
rough estimate for the number of occurrences of a repetitive contig.

4 Repeat-aware layout algorithm

In this section we adopt the contig adjacency discovery algorithm that was proposed
in [HS10a] to be aware of repetitive contigs and include them appropriately. The over-
all strategy is to distinguish between regular and repetitive contigs and to process both sets
one after another. The absence of repetitive contigs in the first set implies that most contigs
should have exactly two neighbors. Following this observation, we describe in Section 4.1
an algorithm for creating a basic layout graph. In the subsequent Section 4.2 we address
how this layout graph can be augmented with the repetitive contigs in a meaningful way.

4.1 Layouting the non-repetitive parts of the genome

To devise a basic layout graph for the regular contigs, two steps are necessary:

1. The contig adjacency graph that contains the edge weights for all contig connectors
has to be computed. Note that the graph is created for repetitive and regular contigs,
thus the procedure starts with matching all contigs onto the given reference genome.
The score calculation is performed as in [HS10a] with the difference that repetitive
matches are ignored for the calculation of scores between regular contigs. This helps
to reduce misleading edges for a contig caused for example if it is flanked by repeats.
Of course, for repetitive contigs all matches are used.

2. In the second step, the calculated edge weights can be used to extract the adjacencies
with the highest support and collect them in a layout graph. We want to discover
those adjacencies from the contig adjacency graph that are most likely present in
the true order of the regular contigs. Since we do not resolve repetitive contigs
at this stage, the result should be a set of linear chains of the contigs which can
also be present in the form of one or several cycles. Our algorithm processes all
edges between regular contigs in decreasing weight order and greedily integrates
them one by one into an initially empty layout graph, except if any of the involved
contig connectors is already used. With this heuristic approach we generate multiple
fragments of good adjacencies that are in general joined to larger chains during the
course of the algorithm.

This procedure finds for most regular contigs appropriate neighbors. However, if very
small contigs lie between two large contigs then we sometimes observe a shadowing effect,
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Figure 1: Shadowing effect: If a small contig c2 is on a reference genome located between the larger
contigs c1 and c3, in the contig adjacency graph the correct edges to c2 can have a lower weight than
the edge {r1, l3}.

as illustrated in Figure 1: The adjacency edge between the large contigs can have a high
weight that shadows the edge weights to the small contig. Thus, the algorithm would not
include the small contig into the layout graph. This behavior is generally unwanted but,
as we will see in Section 4.2, it can be advantageous for small repetitive contigs. That is
why we do not abandon the effect, e. g. by ignoring the size of the matches in the weight
function. Instead, we compensate the shadowing effect for the affected regular contigs by
integrating them into the initial layout as good as possible. Therefore, we look at all edges
that were not integrated in step 2. Again, in decreasing weight order we include an edge
if any of the two connectors is still unused in the layout. To control that only very specific
edges edges are incorporated, we test if the additional edge has a high relative support
S rel of at least τ1. Although the shadowing edge stays in the layout, in most cases the
correct edges from the small contig will also be included, resulting in a triangle shape of
connections as in Figure 1.

4.2 Adding the repetitive contigs

Starting with the basic layout graph of the previous subsection, the task is now to in-
clude the repetitive contigs into the layout. For genome finishing, the gain through repet-
itive contigs is only limited since they are not well suited for a primer-based closing of
gaps. Primers for the repetitive sequence will bind unspecifically to several regions on the
genome and should thus be avoided. Nonetheless, we believe that it is very helpful in the
finishing phase of a sequencing project for a researcher to be informed which repetitive
contigs interrupt the gap between two regular contigs. However, the order of the repetitive
contigs in a gap plays, to our opinion, only a secondary role because this information can
not directly help in the finishing process: If both primers are based on repetitive contigs,
this will produce even more unpredictable results. Our idea in Algorithm 1 is therefore
to place each repetitive contig as often as necessary between the corresponding regular
contigs into the basic layout graph.

The important edges that we want to integrate in our basic layout are those which connect
a repetitive contig with a regular one, see line 1. We demand that the relative support of
these edges with respect to the repetitive contig is higher than a threshold τ2. This avoids
the incorporation of arbitrarily weak edges. The edges between repetitive contigs are not
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Algorithm 1: Repetitive contigs integration algorithm
Input: set of contigs C, set of repetitive contigsR ⊂ C, contig adjacency graph

G = (V,E), basic layout graph GL

Output: repeat-aware layout graph GL of the contigs
let Erep ={{v, v′} | contig(v)∈R, contig(v′) /∈R and S rel

v ({v, v′})>τ2}1

foreach edge e∈Erep, sorted by decreasing weight w(e) do2

if e={v1, l} contains the left connector l of a contig c∈R then3

let r be the right connector of contig c4

if exists v2 =arg maxv∈V

{
w({v1, v}) | {r, v}∈Erep

}
then5

duplicate l and r to l′ and r′6

VL = VL ∪ {v1, l
′, r′, v2}7

EL = EL ∪ {{v1, l
′}, {l′, r′}, {r′, v2}}8

remove {v1, l} and {r, v2} from Erep9

end10

else // e = {r, v1} contains the right connector of a contig c∈R11

perform lines 4 to 10 analogously12

end13

end14

considered in this approach, as motivated above. For the interesting edges, we try to find
for each involved regular contig connector a suitable counterpart that is also connected to
the other end of the repetitive contig, as shown in lines 4 to 10 for the left connectors. This
procedure is based on the following observation: As illustrated in Figure 2, a repetitive
contig c∈R usually has several good edges for its right and its left connector leading to
different regular contigs. The problem is to determine which edges belong to a particular
repeat occurrence on the reference genome. The shadow effect, which was an obstacle

c
l r

c4
l 4

c5
l 5

c6
r6

c1
r1

c2
l 2

c3
r3

... ...

Figure 2: Typical scenario for the adjacency edges of a repetitive contig c ∈ R. The dashed lines
depict the best edge from a contig connector on the right to a contig connector on the left.

for regular contig ordering, becomes here now an advantage. In the example of Figure 2,
the edge {r1, l5} has a high weight if the contigs c1 and c5 are only separated by the
occurrence of the relatively small repeating contig c. The strategy is hence to search, for
any regular node that is connected to one side of a repetitive contig, for a counterpart that
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is connected to the other side, such that the edge from the node to the counterpart has the
highest weight.

This way, we find for each significant occurrence of a repetitive contig the two surrounding
regular contigs with respect to the reference genome. For all occurrences we add two new
connectors of the repetitive contig and the appropriate edges to the layout graph.

5 Results

We evaluated our algorithm on two biological datasets. The aim was to correctly place
the repetitive contigs between the regular contigs allowing them to appear more than once.
None of the programs for comparative contig arrangement that we are aware of was de-
signed to handle repetitive contigs explicitly. Still, we applied some of them to our data
in order to see whether they would recover a part of the connections nevertheless. Af-
ter introducing the datasets, we will explain the evaluation procedure and then show the
results.

Dataset For the evaluation we prepared a set of contigs and acquired two reference
genomes. All genomic sequences belong to the Corynebacteria genus. The contigs orig-
inate from a 454 sequencing run of the Corynebacterium urealyticum strain DSM7109
conducted at the Center for Biotechnology (CeBiTec) of Bielefeld University. The assem-
bly yielded 223 contigs with a total size of 2 316 966 bases. We discarded all ‘contigs’
with a size of less than 500 bases resulting in a set of 69 contigs. This step was taken since
many small contigs that consist of only two or three reads can be very confusing in the
mapping process. Nevertheless, the N50 contig size, which is a more robust characteri-
zation for the size distribution of contig sets than the mean or median, stays the same for
both sets.
As reference sequences we took the already finished genome of Corynebacterium ure-
alyticum strain DSM7109 [TTT+08] (NCBI Number NC_010545) and the closely related
genome of Corynebacterium jeikeium K411 (NC_007164).

To ease the evaluation we renumbered and renamed the 69 contigs. Therefore, the contigs
were mapped onto the perfect reference, C. urealyticum, and ordered according to their
matches using the tool r2cat [HS10b]. The program revealed that 15 contigs are repetitive
while the remaining 54 contigs were regular according to Section 3. The regular contigs
were renumbered consecutively in their true order such that adjacencies can easily be seen.
The repetitive contigs were numbered in arbitrary order and prefixed with the letter ’r’. As
the next step we manually inspected the matches using r2cat and noted for each pair of
adjacent regular contigs which repetitive contigs have an occurrence between them.

Experimental Setup The manually annotated list of repeating contigs between regular
contigs serves for the experiments as a standard of truth. To see which of these connections
can actually be discovered, we applied the following programs on the described datasets:
Projector2 [vHZKK05], OSLay [RSH07], PGA [ZZLB08], treecat [HS10a] and our new
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Table 1: Experimental results of ordering the repetitive C. urealyticum contigs. Each program was
applied on the described datasets. The results of PGA were varying, since it is a randomized algo-
rithm, so we give the mean values for applying the program 20 times.

perfect reference C. jeikeium reference
Program TP FP TPR PPV TP FP TPR PPV

Projector2 10.0 0.0 0.06 1.00 1.0 5.0 0.01 0.17
OSLay 15.0 1.0 0.09 0.94 4.0 2.0 0.03 0.67
PGA 24.4 16.1 0.15 0.60 20.4 27.9 0.13 0.42
treecat 29.0 1.0 0.18 0.97 20.0 8.0 0.13 0.71
repcat 140.0 7.0 0.89 0.95 54.0 37.0 0.34 0.59

algorithm repcat (repeat-aware contig arrangement tool) which is derived from treecat.
All programs were used with their standard parameters as proposed in the publication or
as pre-given on the web-service unless otherwise stated. At the webform of Projector2
we switched off repeat masking for contigs and target genome and reduced the minimum
contig size to 500 bases such that all contigs could be considered. PGA, unfortunately,
filters all contigs smaller than 3.5 kb and discards this way all repetitive contigs, so we
modified their perl script to include all contigs. The algorithm from repcat is adopted
from treecat and inherits some of its parameters for the contig adjacency graph creation:
We set the standard deviation of the insertion/deletion size to σ1 = 2 000 bases and the
lost fragment weighting factor ϕ to 0. Furthermore, for the repeat detection we used the
default parameters stated in Section 3 and selected for the layouting the experimentally
evaluated parameters τ1 =90% and τ2 =0.1%.

In the following evaluation, we assess how well repetitive contigs can be integrated into
an ordering. As motivated in Section 4.2, the interesting connections are those from a
repetitive contig to a regular contig. Therefore, we extracted those connections from the
output of the programs and compared them with our manually annotated standard of truth.
If a repetitive contig is present in between a gap, we count the connections to the corre-
sponding regular contigs as true positives (TP). If an adjacency is not given in our list, we
count this as a false positive (FP). For example, if the repetitive contigs r008, r012, and
r013 are between 048 and 049, we count a connection from r013 to 048 as TP, whereas a
connection from r003 to 049 is a FP, except if for example r003 would occur between 049
and 050 as well.

Evaluation We ran all programs on both datasets and counted the TP and FP values as
described above. The manually annotated repeat list revealed that the 15 repetitive contigs
occurred in 79 instances on the genome. For each occurrence two true positive connections
could be predicted, so the sum of all positive predictions is P = 158. Given TP, FP and P
we calculated the sensitivity (also called true positive rate, TPR = TP

P ) and the precision
(also called positive predictive value, PPV= TP

TP+FP ) of the predicted connections. Table 1
shows the resulting values for each program and dataset.
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We would like to note here that a direct comparison of the values between the different
programs has to be handled with caution. While our algorithm was specially built to
include repeating contigs as often as necessary into a layout, the objectives of Projector2
and OSLay are to devise a linear ordering where each contig occurs exactly once. These
programs can generate at most two true positive connections per repetitive contig, that
is a maximum of TPmax = 30 for our dataset. PGA combines five such linear layouts
and achieves thus at most TPmax = 150 correct connections. The program treecat is not
restricted by this number but will stop to add edges if both connectors of a repetitive
contig have been integrated into a layout. Our new algorithm can in principle predict two
true positive connections for every occurrence of a repetitive contig, thus gaining a clear
advantage over the other programs in this setting. Regardless of that, we believe that an
appropriate placing of repetitive contigs is very helpful for a sequencing project and the
alternative to mask and discard repeats is not a sufficient solution.

The results for the perfect reference show that the predictions are in general quite accurate.
Projector2 and OSLay find only a fraction of their TPmax. PGA and treecat recover some
more true positives, but PGA surprises with a rather high number of false positives. Our
new algorithm repcat recovers nearly 90% of the possible true positive connections. This
is somehow expected, since it is the only of the applied methods that handles repeats
explicitly.

For the more realistic reference C. jeikeium, the true positives decrease for all programs
while the false positives increase. Especially the results of our algorithm are hit by this
tendency, although it still finds many more of the correct repeat adjacencies than any of
the other programs.

6 Conclusion

In the context of ordering contigs to assist the gap closure of prokaryotic sequencing
projects, we propose a novel algorithm that includes an explicit handling of repetitive con-
tigs. While the common objective of related applications is to find a linear layout, this is
obviously not feasible for repetitive contigs. Hence, our approach orders the non-repetitive
contigs first and then integrates all repetitive contigs in between the gaps, as often as nec-
essary. We believe that this strategy is more adequate than discarding all repetitive contigs
since it allows to assess which of these sequences should be expected in the gaps.

In this setting, the contig adjacency graph turns out to be a valuable concept that is flexible
enough to be extended to handle repetitive contigs. However, the reduction to a layout
graph always contains the risk of losing important adjacencies. An interactive visualization
of the whole graph could help to unleash its true potential.

Considering the problem of repetitive contigs, a next step could be to verify to which
degree of synteny an ordering of repetitive elements is feasible and if the information from
several reference genomes helps or maybe even confuses.
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Abstract: Metabolic engineering aims to improve the production of desired biochem-
icals and proteins in organisms and therefore, plays a central role in Biotechnology.
However, the design of overproducing strains is not straightforward due to the com-
plexity of metabolic and regulatory networks. Thus, theoretical tools supporting the
design of such strains have been developed. One particular method, CASOP, uses the
set of elementary flux modes (EFMs) of a reaction network to propose strategies for the
overproduction of a target compound. The advantage of CASOP over other approaches
is that it does not consider a single specific flux distribution within the network but the
whole set of possible flux distributions represented by the EFMs of the network. More-
over, its application results not only in the identification of candidate loci that can be
knocked out, but additionally proposes overexpression candidates. However, the uti-
lization of CASOP was restricted to small and medium scale metabolic networks so
far, since the entire set of EFMs cannot be enumerated in such networks. This work
presents an approach that allows to use CASOP even in genome-scale networks. This
approach is based on an estimation of the score utilized in CASOP through a sample of
EFMs within a genome-scale network. Using EFMs from the genome-scale metabolic
network gives a more reliable picture of the metabolic capabilities of an organism re-
quired for the design of overproducing strains. We applied our new method to identify
strategies for the overproduction of succinate and histidine in Escherichia coli. The
succinate case study, in particular, proposes engineering targets which resemble known
strategies already applied in E. coli. Availability: Source code and an executable are
available upon request.

1 Introduction

Using microorganisms to overproduce certain metabolites and proteins is the central objec-
tive of metabolic engineering [Lee09]. While many applications consider the improvement
of the production of native compounds, there is also an increasing number of attempts
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in which entire heterologous pathways have been engineered [NKL10, AS09]. Small
molecule compounds whose production have been engineered span from alcohols and
lipids, for instance, used in bio-fuel production, to plastics and pharmaceuticals. Usually,
the design of strains that overproduce a desired target compound involves a large number of
modifications of the metabolic and regulatory network including gene knockouts/knockins
and the overproduction of proteins [KJSW10]. Yet the complexity of metabolic and regu-
latory networks associated with the cost and effort to manipulate organisms is still a major
challenge in the development of improved production designs. A large set of theoretical
tools has been developed that aim at simplifying this process [BPM03, KR10, TS10]. A
common feature of these methods is the prediction of metabolic flux distributions prior
and after perturbations. These predictions are then combined with either deterministic or
stochastic procedures that try to identify knockout and knockin combinations that improve
the production of the target compound with as few genetic modifications as possible.

Recently, a new method called Computational Approach for Strain Opti-mization aiming
at high Productivity (CASOP, [HK10]) based on the concept of elementary flux modes
(EFMs, [SDF99]) has been proposed. However, this approach has been limited to small
and medium-scale metabolic networks, so far, since the enumeration of all EFMs can only
be performed in such networks [KS02]. In this work we want to outline an approach that
allows us to circumvent this limitation of CASOP. Instead of computing the scores utilized
in CASOP from the entire set of EFMs we compute them from a subset of the EFMs in a
genome-scale network. This subset of EFMs is obtained from a sampling procedure that is
similar to a previously described method to enumerate EFMs in genome-scale metabolic
networks [KdFBS09]. Using our approach, CASOP can be applied even to genome-scale
networks.

2 Methods

2.1 CASOP

Using the EFMs of a reaction network, CASOP calculates for each reaction a Z2-score that
indicates whether the flux through this reaction needs to be increased or decreased, in order
to improve the production of a particular target compound. Similar to other methods, the
reasoning behind CASOP is that the organism tries to optimize its growth yield. However,
in contrast to most methods, CASOP does not assume that the organism attains the optimal
flux, but rather uses a combination of optimal and, to a certain extent, sub-optimal flux
distributions.

Computing CASOP-scores

In the following we give a short overview over CASOP. For a more detailed description
see [HK10]. In order to determine scores for the knockout or overexpression of enzymes,
CASOP considers two versions of a metabolic network that contain a biomass reaction
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defining the proportion of building blocks the organism requires for its reproduction. The
first network corresponds to the wild-type model. In the second network, the biomass
reaction is coupled with the production of the target metabolite such that, in weights, 10%
of biomass and 90% of the target metabolite are consumed. EFMs are computed in both
networks. Afterward each EFM i is assigned a weight νi that depends on its yield in the
biomass reaction, Y i

Biomass/S (ratio between carbon source inflow and flux through the
(modified) biomass reaction). The weights of the EFMs are adjusted using a parameter k
such that increasing values of k attribute higher weights to EFMs with higher yields. In
this work we used a value of k = 5.

Afterward, a reaction importance measure is computed for each reaction in both networks
as the sum of the weights of the EFMs containing this reaction. As the name suggests, the
reaction importance measure allows to assess the impact of a perturbation of an enzyme
catalyzing it on the production of biomass and/or the target metabolite. If one reaction has
a high importance within the network containing the production of the target metabolite,
but a low importance in the other network, this reaction is a candidate for overexpression
since increasing the flux through it increases the flux through EFMs producing the target
metabolite. In contrast, a reaction that has a low importance for the production of the target
metabolite, but a high importance for sole biomass production can be removed, since it fa-
vors the flux through EFMs that do not produce the target metabolite. Hence, the Z2-scores
of CASOP, that indicate candidates for knockout and overexpression, are computed as the
difference between the reaction importances of each reaction between the two networks.
These scores take values between -1 and +1. A positive score indicates a reaction that is
candidate for overexpression and a negative score indicates a knockout candidate. Please
note that, in contrast to [HK10] we split reversible reactions in irreversible forward and
backward directions. Thus, reversible reactions are assigned two CASOP scores allowing
us to assess the role of forward and backward direction separately.

Building on the Z2-scores, the CASOP procedure then knocks out the enzymes in silico
that catalyzes the reaction with the most negative score by removing all EFMs containing
this reaction (or other reactions catalyzed by this enzyme). Subsequently, the Z2-scores
are recomputed for the reduced set of EFMs and the procedure is iterated.

Assessing the production of the desired product

CASOP allows one to assess the impact of a genetic modification on the production of
a specific target metabolite. However, no statement about the change of the production
after several consecutive modifications, such as multiple knockouts, is possible. In order
to observe the improvement in the production of the target metabolite, we introduce the
measure YM which allows us to assess the relative change in yield of metabolite M after
several knockouts. We make use of the weights νi that CASOP assigns to each EFM
i (see [HK10]) in the network in which the production of the target metabolite is not
associated with biomass production. Given a set of n EFMs in this network with the

Bohl et al. 73



individual yields in the target metabolite Y i
M/S of each EFM i, we derive YM as

YM =
n∑

i=1

νi · Y i
M/S .

Since we multiply the weight of each EFM with the production of the target metabo-
lite, YM can be considered as a weighted average of the yields of the EFMs in the target
metabolite. If YM increases after a knockout, we expect this knockout to increase the pro-
duction of the target metabolite M . Note that YM does not correspond to an actual yield,
but serves as an indicator of the effect of a knockout strategy.

2.2 Enumeration of EFMs in genome-scale metabolic networks

Until recently, the computation of EFMs has been limited to small and medium-scale
metabolic networks. However, fluxes within small-scale networks might be inconsistent
with the corresponding fluxes within the underlying genome-scale network [KdFS09].
Several approaches for the computation of EFMs in genome-scale metabolic networks
have been developed. One approach, the so-called K-shortest procedure, computes EFMs
in increasing number of reactions [dFPR+09]. Another approach, the EFMEvolver [KdFBS09]
uses a genetic algorithm to sample large numbers of EFMs in these networks more effi-
ciently.

Here we used a more direct approach than EFMEvolver to compute EFMs. The similarity
between both methods concerns the linear programming formulation to compute a single
EFM given a metabolic network (for more details see [KdFBS09]). However, instead of
using a genetic algorithm, we used an iterative procedure to enumerate EFMs. Starting
from an initial EFM using the target reaction, one of its reactions is selected randomly.
Subsequently this reaction is blocked by setting its flux to zero and therefore, a new EFM
is computed by solving the linear programming formulation. Iterating this procedure,
several EFMs are obtained while the number of blocked reactions increases. If no EFM is
found given a particular set of blocked reactions, the last reaction is removed from this set.
Additionally, with a small probability, all reactions are removed from the set of blocked
reactions. This procedure allows one to increase the diversity of the EFMs that are detected
since resetting the set of blocked reactions corresponds to initializing a new independent
sampling procedure. More details on the sampling procedure will be given elsewhere.

3 Results and Discussion

We applied our method to two cases: the production of succinate from glucose (studied
in [HK10]) and the production of histidine from fructose in Escherichi coli. In each case,
we started with an initial sample of 106 EFMs for the two networks that are required in our
procedure. As a genome-scale metabolic model of E. coli, we used iAF1260 [FHR+07].
Besides the carbon source, we supplied the network with the following compounds: NH+

4 ,
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NO−
3 , S02−

4 , Fe2+, Fe3+, CO2, H+, K+, Ca2+, cobalt, molybdate, Na+, Pi, O2, H2O,
Cl−, Cu2+, Mg2+, Mn2+ and Zn2+ that are required for the survival of the cell.

3.1 Case study I: Succinate production

Figure 1: Z2 scores of central metabolism of the wild-type network for succinate overproduction.
The width of the arrows corresponds to the values of the scores. Dashed lines indicate negative
scores, bold lines positive scores. Metabolite nodes connected by straight lines are identical. A list
of abbreviations can be found in the supplementary material of [FHR+07].

The Z2-scores for reactions within central metabolism are displayed in Fig. 1. While the
relative scores for many reactions matched those discussed in [HK10] there were some
differences. For instance, reactions of the glyoxylate shunt have high overexpression rat-
ings, while this was not the case in [HK10]. The importance of such a modification to
increase succinate production has been demonstrated by [LBS05]. Additionally, the over-
expression of Ppc, as indicated by our analysis, is also known to improve succinate produc-
tion [LBS05]. Most interestingly, fumarase (Fum) that reversibly converts fumarate into
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malate received the highest knockout rating. This case exemplifies the advantage of com-
puting the Z2-scores of both directions of reversible reactions independently. In [HK10]
both directions of reversible reactions were not considered independently and, in conse-
quence, the score of Fum was relatively low. However, knocking out fumarase increases
YSUCC almost ten-fold (Fig. 2A). This strong increase in production is probably due to
the fact that this deletion interrupts the TCA cycle. In consequence, the concentration
of fumarate increases which entails an increase in the concentration of the desired target
metabolite succinate. Furthermore, fumarate, which is a side-product of several biosyn-
thetic pathways, can only be disposed through conversion into succinate after this knock-
out if fumarate is not excreted.
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Figure 2: YM in the two case-studies. Knockouts are cumulative from left to right. A Succinate
production. B Histidine production.

After knocking out fumarase, the fumarate transporter (Dcu) that exists in 3 isoforms,
received the lowest Z2-score. Knocking out the corresponding genes yielded a strain in
which succinate production is coupled to growth. That is, biomass can only be produced
when co-producing succinate. Interestingly, after this knockout, the Z2-score of the succi-
nate dehydrogenase SdhABCD, which is known to improve succinate production [LBS05]
and had the second lowest score in the wild-type, indicates that there is no influence of a
SdhABCD knockout on the production of succinate anymore. Thus, the knockout of fu-
marase and the fumarate transporter appears to represent an alternative knockout strategy
to the knockout of succinate dehydrogenase.

In the next step, the ribulose-5-phosphate-3-epimerase (Rpe) was suggested for knockout.
The forth proposed knockout involves the inflow reaction of ammonium. Knocking out
this reaction corresponds to removing ammonium from the growth medium. This mod-
ification is not lethal, since we provided nitrate as alternative nitrogen source, but at the
expense of reducing the growth rate [BZ90]. Moreover, nitrate can only serve as nitrogen
source in the absence of oxygen [LK87]. Indeed, oxygen inflow is also assigned a rela-
tively low Z2-score. This indicates that the utilization of nitrate as electron acceptor and
ammonium source under anaerobic conditions can improve succinate production. The fifth
proposed knockout removed the export of α-ketoglutarate further reducing the number of
possible pathways to excrete TCA cycle intermediates besides succinate.

76 Bohl et al.



3.2 Case study II: Histidine production

As a second case study we examined the production of histidine from fructose (Fig. 2B).
In the first step, pyruvate dehydrogenase was suggested as knockout (Fig. 3). In the second
step, the phosphoribosylglycinamide formyltransferase (PurN) was suggested as knockout.
Removing this reaction drastically increased YHIS (Fig. 2B). This knockout illustrates the
need of considering all reactions within a genome-scale metabolic network as knockout
candidates. The reaction catalyzed by PurN consumes 10-Formyltetrahydrofolate (10-
FTHF) as a co-factor. However, 10-FTHF is also required for histidine biosynthesis. In
purine biosynthesis, the reaction catalyzed by PurN can also be catalyzed by the trans-
formylase PurT that uses formate rather than 10-FTHF. Thus, knocking out PurN in-
creases the 10-FTHF pool available for histidine biosynthesis. Furthermore, a strain with
a PurN knockout grows slower than the wild-type [BAH+06], indicating that the capac-
ity of purine production might be reduced. This is of additional advantage for histidine
production, since 5-Phospho-α-D-ribose-1-diphosphate (PRPP) is a common precursor of
histidine and purine biosynthesis. In the following two steps, threonine dehydrogenase
and pyruvate kinase were knocked out. Especially, the knockout of the threonine dehy-
drogenase is of interest, since it removes one of the two pathways of glycine biosynthesis
from threonine. Thus, glycine biosynthesis via serine might be increased which in turn in-
creases the cellular 10-FTHF pool whose major source is glycine biosynthesis via serine.
In the fifth step, the formyltetrahydrofolate deformylase PurU that converts 10-FTHF to
formate and tetrahydrofolate was knocked out.

3.3 Influence of sample sizes on Z2-scores

In order to test the reliability of the Z2-scores we obtained using a sample of 106 EFMs
(Sample A), we recomputed the scores for independent samples with a higher number of
EFMs: 2·106 EFMs (Sample B) and 3.7·106 EFMs (Sample C). The maximum deviations
over the five knockouts between sample A and B increased over the knockout depth from
0.05 to 0.09 after the forth knockout. In all cases this maximum deviation was smaller
between sample B and sample C. Here, the maximum deviation was 0.07. Slight deviations
occurred in the order by which the reactions were knocked out in the three samples. After
the forth knockout, the export of pyruvate rather than α-ketoglutarate received the lowest
Z2-score in the larger samples. Thus, the Z2-scores are relatively robust if sample sizes are
sufficiently large. However, for greater knockout depths, larger samples of EFMs might
be required.

4 Conclusions

In this work we have presented CASOP GS as an approach that allows one to apply
CASOP to genome-scale metabolic networks. Furthermore, we have introduced a mea-
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Figure 3: Z2 scores for histidine production. For details see Fig. 1.

sure that allows one to assess the changes in the production of a target metabolite after
multiple genetic modifications. Besides these improvements of CASOP, our approach
offers several important advantages over other theoretical methods for strain improve-
ment such as OptKnock [BPM03], OptGene [PRFN05] and other recently proposed ap-
proaches [KR10, TS10].

First, and most importantly, our approach provides the user with a ranking of reactions
whose removal/overexpression improves the production of a target metabolite. Thus,
rather than presenting a complete knockout strategy, the user has the possibility to choose,
which reaction is most suitable for knockout or overexpression. This is of particular im-
portance for the incorporation of prior knowledge about difficulties and side-effects of
certain gene-manipulations. For example the principal knockout candidate might require
removing a gene whose deletion is known to cause pleiotropic effects (e.g. a slow growth
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rate), while the second rated knockout might yield a strain with a only slightly reduced
growth rate.

Second, some approaches only consider a specific part of the metabolic network due to
computational limitations. In contrast, our approach takes all reactions within an organ-
ism into account. In consequence, we do not only identify candidates for knockouts in
the primary metabolism, but also in other parts of the metabolism. This is of particular
importance for the overproduction of histidine, since reactions from nucleotide and amino
acid metabolism appear to be suitable knockout targets.

Third, most approaches concentrate only on knockouts, while our approach, since it is an
extension of CASOP, also proposes overexpression candidates to increase the production
of the target metabolite. This is important since the overexpression of genes is frequently
used for strain improvement.

CASOP GS offers many advantages over other approaches for the design of production
strains. However, a shortcoming is that the regulatory network is not considered. In or-
der to circumvent this problem, we are currently working on an improved version that
takes into account regulatory rules by only allowing for EFMs that are consistent with the
regulation of metabolism. This, regulation will be implemented in the form of Boolean
logic. Moreover, the proposed knockouts of the histidine case study are currently being
implemented in E. coli in order to validate our results.
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Abstract: The regulation of many cellular processes is influenced by miRNAs, and
bioinformatics approaches for predicting miRNA targets evolve rapidly. Here, we
propose conditional profile HMMs that learn rules of miRNA-target site interaction
automatically from data. We demonstrate that conditional profile HMMs detect the
rules implemented into existing approaches from their predictions. And we show that
a simple UTR model utilizing conditional profile HMMs predicts target genes of miR-
NAs with a precision that is competitive compared to leading approaches, although it
does not exploit cross-species conservation.

1 Introduction

miRNAs are short (∼ 22 nt) endogeneous RNAs that bind to partially complementary
sites on mRNA target sequences. They induce cleavage of the miRNA-mRNA duplex
or repress translation of the bound mRNA [BSRC05]. Hence, miRNAs influence gene
expression and introduce a novel level of gene regulation. For instance, several miRNA
signatures have already been successfully associated with human cancers. In animals,
miRNAs preferentially bind to the 3’ untranslated region (UTR) of the mRNA, and for
binding a high complementarity between miRNA and target is required only at the 5’ end
of the miRNA. Computational miRNA target prediction plays a key role in deciphering
the functional role of miRNAs. Several dozen programs have been therefore developed in
the last years, and in the following, we describe the main idea behind some of the most
widely used programs.

[LSJR+03] propose an algorithm for the prediction of targets of vertebrate miRNAs called
TargetScan. TargetScan requires perfect complementarity between positions 2 and 8 at the
5’-end of the miRNA and a potential target, and the free energy of binding between miRNA
and target is computed. Predictions are verified using orthologous UTR sequences from
other organisms. [LBB05] propose a refined version called TargetScanS, which demands
a shorter region of the target to be complementary to nucleotides 2 − 7 of the miRNA.
TargetScan 5.0 [FFBB09] additionally considers the distance from the 3’ UTR and AU
content.
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In contrast to TargetScan, miRanda [EJG+03] does not require perfect complementarity
at the seed region, but uses an algorithm similar to Smith-Waterman sequence alignment
with similarity scores of +5 for G:C and A:U basepairs, +2 for G:U basepairs, and −3
for mismatches, and the scores for the first 11 positions of the alignment are weighted by
a factor of 2. Potential target sites (TSs) are filtered for a minimum similarity score and a
minimum free energy.

PicTar [KGP+05] searches for perfectly complementary seed regions of 7 nt starting from
position 1 or 2 of the miRNA. Mismatches in the seed region are allowed if these do
not increase the free energy. Additionally, a filter with respect to the free energy of the
complete miRNA-mRNA duplex is applied.

DIANA-microT [MRS+09] prefers perfect complementarity of 7 to 9 nt starting from
position 1 or 2 of the miRNA. However, if the considered TS shows good complementarity
to the 3’ end of the miRNA, the length of this seed region may be reduced to 6 nt, and
single G:U basepairs are allowed. DIANA-microT uses orthologous UTRs from up to 27
organisms for assessing the conservation of TSs. Finally, the score of a potential UTR
target is computed as a weighted average of all predicted TSs.

In contrast to previous approaches, we propose a fully statistical approach for predicting
TSs of given miRNAs that is capable of learning rules of miRNA-TS binding from data
sets comprising pairs of miRNAs and associated TSs. This approach employs an extension
of profile hidden Markov models (HMMs) [KBM+94], which we call conditional profile
HMM (CoProHMM), and learns parameters by the discriminative maximum supervised
posterior (MSP) principle [CdM05, GKK+07]. Since all parameters of CoProHMMs are
learned from training data, this approach is not biased towards heuristic assumptions about
miRNA-TS interaction like the existence or length of a seed region.

2 Methods

In the following, we introduce CoProHMMs for modeling the binding between miRNA
and TS. We describe how we learn CoProHMMs from data, and explain how we combine
several predictions of a learned CoProHMM to predict target genes of a given miRNA.

2.1 Conditional profile HMMs

At the basis of the CoProHMM modeling miRNA TSs, we use a standard profile HMM
architecture [KBM+94], which is illustrated in Fig. 1. This architecture is also referred
to as “plan9” due to its 9 transitions at each layer of the model. We define a total of K
match states Mk, which emit a nucleotide of the TS with a probability that is conditional
on the nucleotide at position k of the miRNA. Here, we use K = 22, since this is the
length of a typical miRNA and, hence, the model covers all positions of the miRNA that
are potentially interacting with the TS. If a TS and the associated miRNA are perfectly
complementary, we anticipate that only match states are visited for emitting the complete
sequence of the TS. Otherwise, silent delete states Dk allow for the insertion of gaps into
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I1I0 IKI2 IK+1

MK+1M1M0 MKM2

DK+1D2 DKD0 D1

Figure 1: Plan9 architecture of the proposed CoProHMMs. Circles represent silent delete states that
do not emit nucleotides of the TS, diamonds represent insert states that emit nucleotides of the TS
without considering the nucleotides of the miRNA, and rectangles represent match states that emit
nucleotides of the TS with probabilities conditional on the nucleotides of the miRNA. Admissible
paths start at D0 and end at DK+1. States with dashed borders are not visited in admissible paths.

the TS, insert states Ik allow for including gaps in the miRNA, and match states also
allow to replace nucleotides. In Fig. 1, edges represent transition probabilities not fixed
to 0. From each node of column k, we can reach node Ik in the same column, and nodes
Mk+1 and Dk+1 in the next column. Each admissible path starts at D0 and ends at DK+1.
Hence, the states M0, IK+1, and MK+1 are never visited in admissible paths, and are only
included to simplify recursive definitions in the following.

We parameterize the transition probabilities and the emission probabilities by normalized
exponentials [Mac98, BB01] using real-valued parameters, since this allows for an uncon-
strained numerical optimization of the parameters with respect to the discriminative MSP
principle.

According to the plan9 architecture, we define the transition probability PT (V |Sk, βT,Sk
)

of going from node Sk ∈ {Ik,Mk, Dk} to node V given parameters βT,Sk
as

PT (V |Sk, βT,Sk
) =

{
exp(βV |Sk

)P
Ṽ ∈{Ik,Mk+1,Dk+1} exp(βṼ |Sk

) if V ∈ {Ik,Mk+1, Dk+1}
0 otherwise

,

where βT,Sk
= (βIk|Sk

, βMk+1|Sk
, βDk+1|Sk

), βV |Sk
∈ R.

In contrast to standard profile HMMs, we use conditional probabilities depending on the
nucleotides of the miRNA for the emissions of the match states. For match state Mk, we
define the conditional emission probability PMk

(a|rk, βMk
) of symbol a in the TS given

the k-th symbol rk of the miRNA and parameters βMk
as

PMk
(a|rk, βMk

) =
exp(βa|rk,Mk

)∑
ã∈Σ exp(βã|rk,Mk

)
, (1)

where βMk
= (βA|A,Mk

, βC|A,Mk
, . . . , βU |U,Mk

), βa|b,Mk
∈ R. Finally, we parameterize

the emission probability PIk
(a|βIk

) of symbol a at insert state Ik given parameters βIk
in

analogy to equation (1).

We define forward variables FSk
( , x|r, β) as the probability of observing the first   sym-

bols of the TS sequence x and visiting node Sk in state interval s( , x|r) given parameters
β and the sequence r of the miRNA, i.e.,

FSk
( , x|r, β) = P (x1, . . . , x , Sk ∈ s( ,x|r)|r, β) . (2)
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A node Sk is visited in state interval s( , x|r) if it is contained in a path from D0 to DK+1,
and the symbols x1 to x  have been emitted either by predecessors of Sk in the path or by
Sk itself, whereas x +1 is emitted by a successor of Sk in this path. We use these forward
variables for defining the likelihood P (x|ts, r, βts) of TS x given the class ts of TS, the
sequence of the miRNA r, and parameters βts , i.e.

P (x|ts, r, βts) = FDK+1(L,x|r, βts). (3)

Using this definition, the likelihood P (x|ts, r, βts) is not necessarily normalized over all
possible sequences x ∈ ΣL of given length L.

Similar to original profile HMMs, we recursively derive the forward variables of match
state Mk using its predecessors Sk−1 ∈ {Ik−1, Dk−1,Mk−1} from the previous column
of the plan9 architecture (cf. Fig. 1) as

FMk
( , x|r, β) = PMk

(x |rk, βMk
)∑

Sk−1

FSk−1( − 1, x|r, β) PT (Mk|Sk−1, βT,Sk−1). (4)

In analogy, we derive the forward variables of insert states and delete states.

We initialize the forward variables as follows: We can observe D0 only before the emission
of the first symbol. Hence, we set FD0( , x|r, β) to 1 if   = 0 and to 0 otherwise. We
cannot reach M0 in any admissible path and, thus, FM0( , x|r, β) = 0. Finally, we set
FSk

(0, x|r, β) = 0 for all emitting states Sk.

2.2 Discriminative training

For learning the parameters of the CoProHMM discriminatively, we need an additional
background model. Here, we use a homogeneous Markov model of order 1 with parame-
ters βbg that do not depend on the miRNA r, i.e.,

P (x|bg , r, βbg) = PhMM(1)(x|βbg). (5)

We derive the class posterior of class c ∈ {ts, bg} using the likelihoods P (x|c, r, βc) of
equations (3) and (5) as

P (c |x, r, β) =
P (c|β)P (x|c, r, βc)∑
c̃ P (c̃|β)P (x|c̃, r, βc̃)

, (6)

where P (c|β) denotes the a-priori probability of class c, which we parameterize in analogy
to equation (1).

For Bayesian inference, we define a prior on the parameters β. For the homogeneous
Markov model of class bg , we use a transformed product-Dirichlet prior [Mac98] with
equivalent sample size (ESS) [HGC95] αbg ·K. We define another transformed product-
Dirichlet prior with ESS αts for the parameters of the CoProHMM, which is the product of
independent transformed Dirichlet priors for each set of transition parameters and each set
of emission parameters. We use Dirichlet priors, since these are conjugate to the likelihood
of the homogeneous Markov model and to the distribution of transitions and (conditional)
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emissions. Hence, their hyper-parameters can be intuitively interpreted as pseudo counts.
In the following studies, we use αbg = αts = 4.

We learn all parameters β on a set of labelled training data (x1, r1, c1), . . . , (xN , rn, cN ).
These training data comprise a sufficient number of TSs, i.e. cn = ts , and non-TSs of
several miRNAs. Learning the parameters on the TSs of multiple miRNAs conjointly is
motivated by the expectation that by this means, CoProHMM may detect general rules
of miRNA-TS binding, that could not be detected if we, for instance, learned a standard
profile HMM on the TSs of a single miRNA.

We optimize the parameters with respect to the discriminative MSP principle [CdM05,
GKK+07], i.e.,

β∗ = argmax
β

[
N∏

n=1

P (cn |xn, rn, β)

]
q (β |αbg , αts) , (7)

where q (β |αbg , αts) denotes the product-Dirichlet priors on the parameters β. This opti-
mization must be carried out numerically, which we accomplish by a quasi-Newton second
order method.

2.3 Predicting target genes

In the following, we describe how we utilize a CoProHMM for predicting target genes of a
miRNA r. We assume that the CoProHMM has already been trained on a set of miRNAs –
not necessarily including r – and associated TSs and non-TSs. To this end, we extract the
UTR yn of each gene n. Using a sliding window of width |r|, we apply the CoProHMM
to each sub-sequence of yn and compute the log-likelihood according to equation (3)
given miRNA r. For each UTR, we consider the I sub-sequences yielding the largest
log-likelihoods sn,i, which end at positions qn,i. Let dn = qn,1 and d′n = |yn| − qn,1

be the distance of the sub-sequence with the largest log-likelihood to the 3’ and 5’ end
of the UTR, respectively. Let (pn,1, . . . , pn,I) denote the positions (qn,1, . . . , qn,I) sorted
ascendingly. Let zn = (sn,1, . . . , sn,I , dn, d′

n, pn,1, . . . , pn,I) denote the vector of these
features representing UTR yn.

By inspecting histograms of the scores sn,i, we find that these may be modeled by a
mixture of two Gaussian densities, i.e.,

P (sn,i|βs
c,i) = P (us= 1|βs,m

c,i ) N (si|µ1,i,c, κ1,i,c)+P (us= 2|βs,m
c,i ) N (si|µ2,i,c, κ2,i,c),

where βs
c,i = (βs,m

c,i , µ1,i,c, κ1,i,c, µ2,i,c, κ2,i,c), µk,i,c and κk,i,c denote the mean and
the log-precision of Gaussian density k, respectively, and the component probabilities
P (us = u|βs,m

c,i ) are parameterized in analogy to equation (1).
To allow for variability in TS positioning, we model dn and d′n each by a mixture of two
gamma densities, i.e.,

P (dn|βd
c ) = P (ud = 1|βd,m

c ) G(dn|αd
1,c, β

d
1,c) + P (ud = 2|βd,m

c,i ) G(dn|αd
2,c, β

d
2,c),

where βd
c = (βd,m

c , αd
1,c, β

d
1,c, α

d
2,c, β

d
2,c), and αd

k,c and βd
k,c denote the log-shape and

log-rate of gamma density k, respectively. We define the density P (d′n|βd′
c ) in analogy.
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We model the distances pn,i+1 − pn,i by another gamma density, i.e.,

P (pn,i+1 − pn,i|βp
c ) = G(pn,i+1 − pn,i|αp

c , β
p
c ),

where βp
c = (αp

c , β
p
c ).

The complete likelihood of zn representing UTR yn of gene n employing convenient
independence assumptions amounts to

P (zn|c, βc) ∝
I∏

i=1

P (sn,i|βs
c,i) P (dn|βd

c ) P (d′n|βd′
c )

I−1∏
i=1

P (pn,i+1 − pn,i|βp
c ). (8)

In the following studies, we use I = 5.

In analogy to equation (6), we define the class posterior in terms of likelihoods P (zn|c, βc)
and a-priori class probabilities P (c|β). As for the training of the TS model, we optimize
the parameters with respect to the discriminative MSP principle (cf. equation (7)) using
a training data set of target and non-target genes. In this case, we use beta priors on the
parameters of the component probabilities, normal-gamma priors on the parameters of the
Gaussian densities, and the conjugate prior according to the definition of the exponential
family for the gamma densities. Again, we use an ESS of 4 for both classes. We finally
predict target genes based on the class posterior.

3 Results & Discussion

In the following, we first investigate if CoProHMMs can learn characteristics of TSs from
data. To this end, we use TSs predicted by existing approaches. Second, we evaluate the
utility of CoProHMMs for the prediction of target genes of miRNAs on benchmark data.

3.1 Pilot study: Learning CoProHMMs from predictions

We learn CoProHMMs on the predictions of miRanda and TargetScan to investigate if
CoProHMMs can learn the rules implemented into these approaches from their predic-
tions. We choose miRanda and TargetScan, because their approaches differ notably. If
CoProHMMs can detect such characteristics from predictions, we might expect that they
are also capable of learning novel or refined rules of miRNA-TS binding from experimen-
tally verified TS.

We extract all human TSs and associated miRNAs predicted by TargetScan and miRanda
from miRNAMap1 [HCT+08]. For TargetScan, we use all 244,389 TSs, while we ran-
domly sample 500,000 TSs from the predictions of miRanda. We generate a non-target
data set by randomly selecting miRNAs from the mature human miRNAs listed at miR-
Base2 [GJSvDE08]. As non-TSs of these miRNAs, we randomly draw 500,000 sub-

1ftp://mirnamap.mbc.nctu.edu.tw/miRNAMap2/miRNA Targets/Homo sapiens/
miRNA targets hsa.txt.tar.gz

2http://www.mirbase.org
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sequences of length |r| ± 3 from 3’-UTRs of human genes according to NCBI Genbank3

human genome build 37.1.

We present a graphical representation of the CoProHMMs learned on the miRanda data
set and the TargetScan data set in Fig. 2. Here, we depict only the most interesting region
around the seed, while the complete CoProHMMs for miRanda and TargetScan as well as
other approaches are available online4. For the states, we use the same shapes as in Fig. 1.
The thickness of outgoing edges represents the transition probabilities to the successors
of a node. We illustrate the emission probabilities of insert states by a row of grayscale
boxes, where the first box corresponds to A, the second box corresponds to C, the third
box corresponds to G, and the fourth box corresponds to U. The darker a box, the higher is
the corresponding emission probability. In analogy, the conditional emission probabilities
of match states are represented by a matrix comprising such rows, where each row corre-
sponds to the conditional probability distribution given one nucleotide of the miRNA. The
probabilities of visiting a state are visualized by the darkness of the background of each
node. The darker the background of a node the higher the probability of visiting this node.

seed regionz }| {
5’- 1 2 3 4 5 6 7 8 9 10 11

· · ·

(a) miRanda data set

seed regionz }| {
5’- 1 2 3 4 5 6 7 8 9 10 11

· · ·

(b) TargetScan data set

Figure 2: CoProHMMs learned on the miRanda data set (a) and TargetScan data set (b).

Considering the CoProHMM learned on the miRanda data set, we recover many rules built
into miRanda. From the conditional emission probabilities of the match states, we observe
a general tendency to complementary base pairings between the TS and the miRNA. This
tendency is especially pronounced for the match states in the seed region, but can also be
observed for the match states at position 1 and positions 9 to 11. We also detect a slight
preference for G:U wobble basepairs. These observations are most likely a result of the
Smith-Waterman like alignment employed by miRanda. Additionally, miRanda assigns a

3http://www.ncbi.nlm.nih.gov
4http://www.jstacs.de/index.php/MiRNAs
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weight of 2 to the first 11 positions of the alignment, which is reflected by the increased
probabilities of visiting match states in the seed region, although this preference already
begins to decline at position 8 of the learned CoProHMM.

As a second example, we consider the CoProHMM learned on the TargetScan data set in
Fig. 2(b). Notable differences between the CoProHMM for the TargetScan data set and the
miRanda data set can be observed for the conditional emission probabilities at the match
states. At positions 2 to 8 of Fig. 2(b), we find complementary basepairs almost exclu-
sively, while a slight preference for complementary basepairs is present at the bordering
positions 1 and 9. In contrast, the remaining positions exhibit only very slight preferences
for specific basepairs. Again, these findings are closely related to the main characteristics
built into TargetScan. The perfect complementarity at positions 2 to 8 of the CoProHMM
reflects the requirements of TargetScan. We also observe a preference for complementary
basepairs at positions 1 and 9, which most likely can be attributed to the fact that initial
perfect matches in the seed region may be elongated to either side in TargetScan.

These findings suggest that CoProHMMs are indeed capable of recovering the rules built
into miRanda and TargetScan from prediction and, hence, may also be capable of inferring
the rules underlying miRNA-TS binding from experimentally verified TSs, once these
become available in sufficient quantity.

3.2 Benchmark study: Predicting miRNA target genes

We investigate the utility of CoProHMMs for the prediction of miRNA target genes using
the pSILAC data of Selbach et al., which have also been used in recent benchmark studies
[SST+08, AMP+09]. To this end, we learn a CoProHMM using a foreground data set
that comprises 12 verified TSs and 667 predicted TSs within UTRs of verified target genes
extracted from mirecords5 v. 1 [XZC+09]. As these TSs are too few to reliably learn the
models, we also include the TargetScan data set and 405,569 TSs predicted by DIANA-
microT. We use predictions of these two approaches, since they yield reasonable precisions
in the benchmark studies. We use the same background data set as in the pilot study. We
assign a weight of 500 to all verified TSs and a weight of 50 to all predicted TSs in verified
target genes to reflect our increased confidence in these data, while we assign a weight of
1 to all other TSs. All TSs of miRNAs contained in the Selbach benchmark data set are
excluded when training the CoProHMM to allow for unbiased evaluation.

We extract the UTRs of all genes considered in [SST+08] according to [AMP+09]. For
these genes, Selbach et al. measured the influence of overexpression or underexpression
of a miRNA on the abundance of the corresponding proteins for 5 different miRNAs. For
each of these miRNAs, we partition the UTRs into target and non-target UTRs using a
threshold of −0.2 on the protein log-fold changes. We assess the performance of the
UTR model using the predictions of the CoProHMM in a 5-fold cross validation. In each
iteration of the cross validation, we train the parameters of the UTR model on the numeric
vectors zn obtained for 4 of the 5 miRNAs, and we compute the log-likelihood ratios
using this trained UTR model for the numeric vectors obtained for the remaining miRNA.

5http://mirecords.biolead.org/download data.php?v=1
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Figure 3: ROC curve (a) and precision-recall curve (b) of the classifier using the UTR model (solid
black line) and the classifier using the best score of the CoProHMM within each UTR sequence
(dotted black line) compared to other approaches.

In analogy to [AMP+09], we finally use all log-likelihood ratios to compute sensitivity,
precision, and false positive rate for different thresholds.

In Fig. 3, we compare the performance of the classifier using the UTR model (solid black
line) to other approaches by means of the precision-recall curve and the ROC curve. As
a reference, we also include the performance of a classifier that only uses the best score
of the CoProHMM over each UTR sequence, i.e., sn,1, (dotted black line). Considering
Fig. 3(a), we find that even this classifier using only the best score yields a substantially
higher sensitivity than miRanda and Seed for a broad range of false positive rates. Sur-
prisingly, the classifier using the simple UTR model, which does not exploit conservation
across species, achieves comparable or slightly improved sensitivities compared to mi-
Randa, Seed, PicTar, and microT, while it performs only slightly worse than TargetScan
5.0 for false positive rates below 0.06.

Turning to the precision-recall curve in Fig. 3(b), we find a similar picture. Notably, the
classifier using the UTR model again achieves comparable or even higher precisions than
miRanda, Seed, PicTar, and microT. However, it can outperform TargetScan 5.0 only for
very low sensitivities and yields lower precisions for sensitivities between 0.03 and 0.28.

The performance of both classifiers using CoProHMMs is astonishing, because, in con-
trast to most of the other approaches, they do not exploit conservation across different
species. Hence, the inclusion of cross-species conservation into CoProHMMs and the
proposed UTR model, and the integration of CoProHMMs into other approaches might be
a worthwhile direction of future research.
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4 Conclusions

miRNAs are involved in the regulation of many cellular processes, and the prediction of
miRNA targets is one of the most active fields of bioinformatics. Here, we propose a novel
statistical model called conditional profile HMM (CoProHMM) for learning the rules of
miRNA-TS interaction from data. We demonstrate that CoProHMMs are capable of re-
constructing patterns of miRNA-TS binding built into existing programs from predictions
of these approaches.

Conservation is key feature of most miRNA target prediction approaches leading to higher
precision at the expense of sensitivity. Interestingly, we find in a benchmark study that
a simple UTR model utilizing CoProHMMs yields a competitive precision compared to
leading approaches for predicting target genes, although it does not exploit conservation
across species.

We anticipate that the number of experimentally verified TSs will rapidly increase in the
next years. Only recently, [CZMD09, HLB+10] have independently published novel bio-
logical data that shed light on miRNA targeting. Briefly, the two experimental approaches
use in-vivo crosslinking, Ago2 immunoprecipitation and cDNA sequencing, and have been
able to determine TSs of several miRNAs with high accuracy. Since the power of statis-
tical approaches like CoProHMMs highly depends on the quality of the training data, we
might speculate that the performance of CoProHMMs will even increase using these data.
Additionally, CoProHMMs might be a suitable approach to extract new and refined rules
of miRNA-TS binding from such verified TSs.

We make an implementation of CoProHMMs and the UTR model available to the scientific
community with the next release of the open source Java library Jstacs6.
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Abstract: Investigations into the origins and evolution of regulatory mechanisms re-
quire quantitative estimates of the abundance and co-occurrence of functional protein
domains among distantly related genomes. Currently available databases, such as the
SUPERFAMILY, are not designed for quantitative comparisons since they are built
upon transcript and protein annotations provided by the various different genome an-
notation projects. Large biases are introduced by the differences in genome annota-
tion protocols, which strongly depend on the availability of transcript information and
well-annotated closely related organisms.

Here we show that the combination of de novo gene predictors and subsequent
HMM-based annotation of SCOP domains in the predicted peptides leads to consistent
estimates with acceptable accuracy that in particular can be utilized for systematic
studies of the evolution of protein domain occurrences and co-occurrences. As an
application, we considered four major classes of DNA binding domains: zink-finger,
leucine-zipper, winged-helix, and HMG-box. We found that different types of DNA
binding domains systematically avoid each other throughout the evolution of Eukarya.
In contrast, DNA binding domains belonging to the same superfamily readily co-occur
in the same protein.

1 Introduction

The expression of genomically encoded information is subject to tight regulation and con-
trol in all organisms that have been studied in detail. These regulatory rules are imple-
mented in a highly complex network of several biochemically distinct mechanism that
act at multiple levels of the gene expression cascade. They include specific chromatin
states, the action of transcription factors, regulated mRNA export, alternative splicing,
translational control, post-transcriptional and post-translational modifications, and con-
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trolled degradation of both RNA and polypeptides. Surprisingly, it appears that different
phylogenetic clades emphasize certain types of mechanisms while reducing or even abol-
ishing others. Regulation in eubacteria, for example, appears to be dominated by tran-
scription factors networks, trypanosomes use the post-transcriptional processing of large
polycistronic transcripts, ciliates utilize extensive amplification of DNA in creating their
macro-nuclei, and crown group eukaryotes have evolved an elaborates system of histone
modifications. An understanding of the diversity of life thus requires the investigation of
the origin(s) and evolution of these different regulatory mechanisms and their interplay.

The most direct approach towards this goal is the comprehensive reconstruction of the
evolutionary histories of the many protein families that play a role in the various modes
of evolution. In practice, however, this is an exceedingly difficult and tedious task, since
homologies even between highly conserved proteins become hard to establish in com-
parisons across kingdoms or even across the three domains of life. This is not only for
technical reasons: Proteins are composed of recognizable protein domains that implement
well-defined functions such as catalytic activities, specific binding, and anchoring in mem-
branes. Over large time-scales, these components have been combined in a combinatorial
fashion to produce new functionalities, so that individual proteins often have multiple an-
cestors that contributed different domains [MBE+08, KAK00]. A more modest approach
thus aims at tracing the distribution of protein domains comparatively. In a recent study of
chromatin evolution, we demonstrated that this is indeed feasible [PSK10]. More detailed
insights can be gained from considering domain combinations. For instance, Itoh et al.
[INK+07] showed that there are many animal-specific or even vertebrate-specific domain-
combinations. Network analysis of domain co-occurrences, furthermore, demonstrates a
growing core of combinations in multicellular organisms [WA05].

Typically, studies of this type are based on existing annotation. For instance, the protein
annotation compiled in KEGG, ENSEMBL and Pfam [FMSB+06] domains were used in
[INK+07], ref. [PSK10] was based on the SUPERFAMILY database [WPZ+09], whose
HMM models in turn are based on the SCOP (Structural Classification of Proteins) domain
definitions [AHC+08].

We recently attempted to investigate the origins of the proteins associated with the mi-
croRNA pathway using a rather straightforward approach: For each of the most promi-
nent proteins associated with the microRNA pathway (Drosha, Dicer, DGCR8, TRBP, and
TRBP), we searched the SUPERFAMILY database for putative homologs. To this end, we
collected the functional domains of these proteins from the literature and then identified
the SUPERFAMILY peptide entries in which these known domains co-occurred. Some-
what surprisingly, this approach did not recover the phylogenetic distributions reported in
detailed, homology-based studies [CR07, MDB08]. Apart from domains that were miss-
ing completely (such as PIWI), we observed that many domains are annotated only in a
small subset of the species that are expected to contain them. We concluded from this
pilot study that existing peptide annotations are a problematic data source for quantitative
cross-species comparisons. The issues are twofold:

1. A comprehensive analysis of the evolution of gene function requires a reasonably
complete collection and annotation of protein domains. Of course, the current
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knowledge is not complete, and there are still novel functional domains yet to be
discovered. Interestingly in that regard, co-occurrence data can help to detect unde-
scribed and divergent protein domains [TGMB09]. Furthermore, most protein do-
mains in well-studied model organisms are evolutionarily very old, suggesting that
the innovation of protein domains is a relatively infrequent phenomenon [BBHS10].
For example, a recent study showed that the majority of “plant-specific” DNA bind-
ing domains originated much earlier then the comparably recent expansion into the
diverse gene families present in higher plants [SeoopstfDbd08].

2. The annotation of protein domains is performed on protein sequences retrieved from
sequence databases. For each species, these “protein models” are constructed by
combining the genomic DNA sequence, EST and cDNA data, and computational
predictions. Large differences in EST and/or cDNA coverage as well as in the com-
putational procedures imply that domain annotations can be very different even for
phylogenetically closely related species. For example, the current version (1.73)
of SUPERFAMILY annotates 64225 domains in human, but only 45312 in chim-
panzee, 21208 in gorilla and 14748 in the alpaca, although one would expect a very
similar gene complement throughout the eutherian mammals.

In this contribution, we focus on the second issue and investigate strategies to construct
inventories of protein domains that avoid the biases arising from gene annotation. While
it would certainly be desirable to obtain a complete set of protein domains encoded in any
given genome, this is not feasible at present. Our goal here is thus more moderate: we
are content with estimates that are consistent between different genomes and thus allow
quantitative comparisons. To this end, we re-annotate protein domains using the following
three different collections of (putative) polypeptides for each genome: (1) computational
translations of annotated transcripts available in sequence databases, (2) conceptual trans-
lations of the entire genomic DNA in all 6 reading frames, and (3) protein predictions
generated by a de novo gene predictor.

2 Materials and Methods

As test system we use the genomes of three apes (human GRCh37.57, chimp CHIMP2.1.57,
and gorilla gorGor3.57). The genomes were downloaded from the ENSMBL website
(www.ensembl.org), version 57. Transcript files were downloaded from the cDNA
section of the corresponding genome builds. The three ape species are so similar that
we can expect a virtually identical complement of protein domains. Even in very rapidly
evolving gene families, such as the KRAB-ZNF family of transcriptional repressors [NHZS10],
the copy numbers differences in between primates are restricted to a few percent. The most
extreme case are olfactory receptors [Nii09], where the number of functional copies dif-
fers by up to 25% between human and chimp due to massive gene loss [GN08]. This
difference, however, will not be clearly detectable at domain level, since many of the very
recent pseudogenes are expected to yield inconspicuous hits to the HMM domains mod-
els. In contrast to expected similarity of the great apes, their transcriptome and proteome
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Table 1: Summary statistics of source data. The number of domains refers to query set of 100
randomly selected SCOP entries. n.d.: not determined.

Species Human Chimpanzee Gorilla Yeast
Data set RCh37.57 CHIMP2.1.57 gorGor3.57 SGD1.01.57

number of peptides investigated
transcripts 76592 34142 27325 5885
genscan 118894 96615 113532 4197

number of detected domains
transcripts 5551 3769 3386 621
genscan 3392 2796 3323 614
genomic translation 23 n.d. n.d. 409

annotations differ by nearly a factor of three, Tab. 1.

Gene predictions were performed using genscan [BK97, BK98]. To this end, the chro-
mosomes were split into fragments between 500kb and 600kb since genscan does not
accept larger input files. The sequences of the predicted genes were extracted directly from
the genscan output. The chromosome fragments were constructed with substantial over-
laps to avoid artifacts arising from incomplete gene predictions at fragment boundaries,
leading to redundant predictions within the overlapping regions. These were removed
before further analysis.

We also tested GeneMark [LTHCM05] as an alternative gene predictor and obtained
comparable results. We decided to focus on genscan because: (1) it has been reported
to perform well across distantly related species (teleost fishes, nematodes, amphioxus, and
fungi) without retraining its internal model [Kor04], (2) because it is much faster than the
alternatives, and (3) because it is the mostly widely used gene predictor [MMNH04].

Protein domains are represented as Hidden Markov Models (HMMs) [Edd96, DEKM98,
Edd98]. In order to save computations resources we randomly selected 100 domains from
the SUPERFAMILY database [WPZ+09], version 1.73 (10.01.2010) for the statistical
analysis. We used HMMER 3.0rc1 to map the HMMs to the protein sequences with
the the same E-value cut-off as the SUPERFAMILY: E ≤ 10−4. In case of overlapping
HMM hits, we retain only the best-scoring match.

3 Results

Scatter-plots of the number of domain occurrences measured on the set of annotated tran-
script and on the de novo gene predictions shows a significant correlation, Fig 1. In con-
trast, an attempt to estimates the domain numbers by running the HMMs on translated
genomic DNA failed miserably: only a small fractions of the known domains can be re-
covered. This is not surprising. Although there is a statistically significant correlation
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between protein domain boundaries and exon boundaries [LWWG05], about two thirds
of the annotated protein domains domains are interrupted by at least one introns, and on
average a domain contains 3 or 4 introns [BPMS09]. Thus most domains are undetectable
in conceptual translations of the genomic DNA.

In the human data, the majority of domains is observed more frequently in annotated
transcripts than in genscan predictions (Fig. 1a). This effect is less pronounced in chim-
panzee (Fig. 1b). In yeast, on the other hand, the correspondence between transcript-based
domain annotation and the genscan-based results is excellent. We can understand these
differences because of dramatic differences in the quality and coverage of the transcript
annotation. In the human genome, for example, a large number of annotated isoforms
and alternative transcripts are annotated as a result of extensive cataloging efforts. Thus,
multiple transcripts may incorporate the same genomic domain. A comparable density of
data is not available for any other species, which results in an inevitable underestimation
of annotated transcripts (as in the two ape genomes). Transcript annotation and genscan
predictions agree extremely well in yeast, however. The data in Table 2 show a good over-
all correlation between the domain counts as reported by the SUPERFAMILY database
and those computed from the genscan predictions, although counts can deviate largely
in some species. For instance, in Trypanosoma brucei we detect 146 zinkfingers using
gene predictions compared to only 7 annotated in SUPERFAMILY.

To investigate the suitability of gene predictions for the assessment of domain co-occurren-
ces, we selected two very abundant classes of DNA binding domains: zink-finger domains
(ZNF) and winged-helix domains. If the two domain types were distributed randomly, we
would expect about 17.8 co-occurrences, estimated from the data in the SUPERFAMILY
(30712 transcripts, of which 1324 contain a ZNF domain and 414 have a winged-helix do-
main). Surprisingly, not a single co-occurrence between these two domains is observed in
the SUPERFAMILY data in any species, even though both domains are conserved through-
out the Eukarya, Table 2.

In the genscan-based analysis, we detected co-occurrences of ZNF and winged-helix do-
mains only in the clades Kinetoplastida (Leishmania and Trypansoma) and in Phytophtora.
Upon closer inspection, these can can be identified as artifacts. In Kinetoplastida, the prob-
lem is caused by the unusual structure of the transcriptome of Kinetoplastida, which con-
sists of long, polycistronic mRNAs that are processed by transsplicing [MCVdRFM+10].
Our hits fall into a highly conserved polycistron of more than 10kb length, for which
genscan predicts a “polyprotein”. Interestingly, no spurious co-occurrences are found
in the nematode C. elegans, whose polycistronic messages contain much fewer proteins.
The second artifact are two hits in Phytophtora: one is again a putative artifact genscan,
which here predicts a chimera of RNA polymerase III subunit C34 and a hypothetical zink-
finger protein. The second hit covers a protein annotated as homolog of the EAP30 subunit
of the ELL complex containg two winged-helix domains. In the latter case, the zink-finger
domain is most likely located in an additional downstream exon that is conserved between
Phytophtora sojae and Phytophtora ramorum.

The exclusive usage of one of the two types of DNA binding domains is statistically
highly significant. In human, for instance, we expect 11.7 co-occurrences (5090 ZNF
and 274 winged-helix domains in 118894 genscan predictions) while none is observed
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Figure 1: Correlation of the number of protein domains. Top row: Annotated transcripts compared to
de novo predicted “genes” for (a) human, (b) chimp, and (c) yeast. Below: While domain prediction
based on existing annotation yield systematic differences between human and chimp (d), congruent
abundances are obtained from genscan predictions (e). Linear regression is shown as red line in
panels (e) and (f). Different gene predictors (genscan and GeneMark) yield comparable results
(f), shown here for yeast.

(p < 10−5). This indicates a selective pressure against their co-occurrences. We therefore
also investigated two additional families of DNA binding domains, namely the leucine
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Table 2: Domain occurrences and co-occurrences of zink-finger and winged-helix domains. The
table shows the number of domains (Dom.), the number of “genes”, i.e., genscan predictions that
contain the domain (Genes), and for comparison the number of genes that contain the domain in
SUPERFAMILY (SF). For species marked with *, multiple entries from different strains or variants
in the SUPERFAMILY database exist, and SF values tend to over-count in these cases.

ZNF [57667] winged helix [46785] co-occurrence
Species Dom. Genes SF Dom. Genes SF Dom. Genes SF
Giardia lamblia 7 6 4 16 13 11 0 0 0
Trichomonas vaginalis 23 14 9 100 98 89 0 0 0
Trypanosoma brucei 156 148 6 34 32 24 1 1 0
Leishmania major * 29 14 6 50 27 23 2 1 0
Naegleria gruberi 20 7 6 67 45 47 0 0 0
Plasmodium falciparum * 5 5 12 3 3 38 0 0 0
Tetrahymena 1 1 13 3 3 39 0 0 0
Thalassiosira pseudonana 15 11 8 145 138 130 0 0 0
Phytophthora ramorum 81 46 34 80 75 62 6 2 0
Clamydomonas 18 13 7 48 44 37 0 0 0
Arabidopsis thaliana * 151 115 74 186 168 241 0 0 0
Oryza sativa * 284 224 307 151 146 443 0 0 0
Dictyostelium 21 10 12 42 37 48 0 0 0
Aspergilus niger 64 51 34 68 65 47 0 0 0
Schizosaccaromyces pombe * 34 24 38 43 41 80 0 0 0
Caenoharbditis elegans * 58 27 144 15 14 165 0 0 0
Drosophila melanogaster * 853 301 322 126 122 152 0 0 0
Homo sapiens * 5090 1048 1324 274 256 414 0 0 0

zippers (SUPERFAMILY ID 57979) and the “high mobility group” (HMG) domains (SU-
PERFAMILY ID 47095). We again observe only very few candidate co-occurrences with
other DNA binding domains in the species listed in Table 2 (our co-occurences between
leucine-zipper and winged-helix and one between HMG and winged-helix). Inspection of
these five cases revealed that four of them are clear artifacts of genscan, which predicts
a fusion protein. The last candidate, human LARP1B, is predicted by genscan to have
an additional internal exon containing a leucine-zipper domain. More likely, however,
genscan stumbled across a retro-pseudogene deriving from FOSL1 located in an intron
of LARP1B. Conversely, SUPERFAMILY, reports the co-occurrence of leucine-zipper and
zink-finger in some isoforms of the paralogous human ATF2 and ATF7 genes, which are
not found in our genscan-based approach.

We therefore conclude that the major types of DNA binding domains, and possibly other
evolutionarily unrelated domains of similar function, strongly avoid each other in Eukarya.
In contrast, domains with complementary functions readily co-occur with each other. A
good example are zink-fingers and the “Küppel associated box” (KRAB) domain. The
KRAB domain is a small (75 AA) protein domain [SUPERFAMILY ID 57667] that func-
tions as a transcriptional repressor and is predicted to act via protein-protein interactions.
It appears in a highly prolific family of evolutionarily very young transcription factors.
Among the species listed in Table 2, it appears only in human. We detected 446 domains
in 421 “genes”, in agreement with the literature [NHZS10]. In contrast to the winged-helix
domain, however, it readily combines with zink-finger domains: 351 genscan predic-
tions (i.e., a third) of the 1048 ZNF proteins and 5/6 of the KRAB domain proteins belong
to the KRAB-ZNF family, again in good agreement with the literature.
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4 Discussion

Although a plethora of annotation data are available in publicly accessible databases for
most of the published genomes, quantitative comparisons remain difficult due to dramatic
differences in annotation methodology and data coverage. Consequently, comparative
studies typically resort to testing for relative enrichment rather than considering abso-
lute numbers of domains. In studies focusing on the evolution of regulatory mechanisms
and regulatory complexity, however, absolute gene counts play an important role. For ex-
ample, the fraction of transcription factors increases approximately quadratically with the
total number of genes in eubacteria [vN03]. A result like this requires an estimate of the
total number of genes with reasonable reliability and accuracy. Similarly, investigations
into lineage-specific variations of regulatory schemes require plausible statistics of protein
domains and their combinations [PSK10]. For prokaryotes, this task is more or less solved
by the common practice of annotating all open reading frames. The HMM models of pro-
tein domains are easily searched against the (translation of) these ORFs and included e.g.
in the SUPERFAMILY database. False positives in the ORF annotation pose little problem
since they are very unlikely to contain recognizable protein domains.

In Eukarya, however, the situation is different. Direct annotation of ORFs on the genome
level does not work for most organisms since introns interrupt many domains. On the
other hand, databases of experimentally determined transcripts are often subject to massive
sampling biases. Here, we show that protein domains can be annotated with acceptable
accuracy using de novo gene predictors such as genscan. This strategy also avoids
methodological biases such as the enrichment of 3’-exons in poly-A ESTs.

We emphasize that it is impossible in practice to devise a fair benchmark for domain
co-occurrence counts since the ground truth depends on the complete knowledge of all
transcripts, even if one settles for the definition that two particular protein domains co-
occur if they appear together in at least one protein-coding transcript. Therefore, we have
to resort to comparing counts between closely related species for which we can plausibly
expect to obtain similar numbers.

In easy cases, such as yeast, where the transcript structure is simple and data coverage is
excellent, gene prediction and transcript annotation yield nearly identical results. For large
mammalian genomes, on the other hand, estimates of domain numbers depend strongly
on transcript coverage, while gene predictions yield numbers that are consistent among
closely related species. Our investigation suggests that the biases and artifacts in the
genscan are small compared to the numerous problems of annotation-based approaches.
In particular, we observe very a small number of false positive co-occurrences arising from
the incorporation of additional introns and the erroneous prediction of fusion proteins.

As an application of genome-wide domain counts, we investigated the co-occurrences of
four major types of DNA binding domains (zink-fingers, leucine-zipper, HMG-box do-
mains, and winged-helix domains). We found a strong and statistically highly significant
anti-correlation of the four different domains. In constrast, evolutionarily related DNA
binding domains readily co-occur in DNA binding proteins. It will be interesting to inves-
tigate whether a similar avoidance can be observed among other evolutionarily unrelated
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protein domains that share a common molecular function.
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Abstract: METAtarget is a new method for reverse engineering of metabolic

networks and the detection of targets enzymes from high-throughput metabolomics

data. Using KEGG REACTION, reactant partners are identified and the ratio of

product to substrate metabolite concentrations is employed as surrogate for the

reaction activity. A test statistics is introduced to assess changes in the activity of

reactions between different disease states. In an application of METAtarget to

breast cancer, we investigate the dependence of tumor metabolism on hormone

receptor status. To this end, we analyze metabolomics data that were generated

within the METAcancer project and compare the identified reactions with data on

enzyme expression that are obtained from publicly available breast cancer gene

expression series. As result, deregulation of key enzymes and reactions of

glycolysis, glutaminolysis and other metabolic pathways are detected.

1 Introduction

In recent years, techniques for metabolic profiling based on mass spectrometry (MS) and

nuclear magnetic resonance spectrometry (NMR) advanced and now allow the

simultaneous monitoring of hundreds of metabolites [Fi01, GS04]. Metabolomics

emerged as an additional high-throughput technology complementary to other -omics

approaches like genomics, transcriptomics and proteomics. In cancer research, liquid and

gas chromatography-based MS have been successfully applied to the analysis of body

fluids and tissues [De08, De09, Sr09].

Uncovering of the biochemical pathways that constitute the human metabolism

represents one of the major achievements of biochemical research over the past 100

years [GHW05]. This knowledge has been an invaluable information source to improve

human health by providing new insights into nutrition, disease mechanisms and the

effect of drugs. In the postgenomic era metabolic pathway knowledge has been

integrated with information from sequencing of genomes and is publicly available from

databases like KEGG [Ka10], Reactome [Ma09] and BioCarta (www.biocarta.com).
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Consequently, suitable tools for the integration of metabolomics data together with

pathway knowledge are urgently needed and will facilitate and accelerate the

interpretation of experimental data. Currently, several tools are available for the

visualization of metabolomics data in context of biochemical networks. Metscape

[Ga10] and MetaNetter [Jo08] are plugins for cytoscape, a powerful and widely-used

software environment for models of biomolecular interaction networks [Sh03]. Web-

based metabolic network explorers include the KEGG atlas [Ok08] and iPath [Le08].

Going beyond a network visualization, PROFILE clustering orders metabolites

according to their distance in KEGG pathways and visualizes metabolic changes in

context of the functional clustering [De08]. TICL is a tool for network generation from

metabolite lists that includes a significance assessment for the relevance of the generated

networks [An09].

Here we present METAtarget, a method for quantitative analysis of metabolomics data

in context of biochemical pathways. METAtarget employs the ratio of product to

substrate concentrations as surrogate for the activity of metabolic reactions. A suitable

test statistic is defined in order to measure changes of reaction activities between two

disease states. METAtarget delivers a list significantly changed reactions and the

associated enzymes that are possible targets for a therapeutic intervention.

As an application of METAtarget, we analyze GC-MS data that were generated in the

framework of METAcancer, a European collaboration on the metabolism of breast

cancer. Comparing metabolic profiles of estrogen receptor positive (ER+) and receptor

negative (ER-) breast cancer, METAtarget delivers a list of metabolic reactions that are

regulated depending on hormone receptor status. Using an independent gene expression

data set on breast cancer, we evaluate the hypothesis that the detected changes in

metabolism are associated with transcriptional regulation of enzymes.

2 Material and Methods

2.1 Assessing the activity of metabolic reactions

The simplest design of a metabolomics experiment deals with the comparison of

diseased and healthy tissue or of different tissues types in disease states a and b. Let us

denote the concentration of a metabolite Z in two tissue types by Za and Zb. As it is

commonpraxis for the analysis of –omics data, we assume that the variables Z are

transformed to the log-scale. For the log-scale concentrations of the product X and the

substrate Y of a metabolic reaction we define the statistics� Ò ®]�:<�®]�7<�®]�:<¡ ®]�7<×�³�]�:��:<, ¥:¡�³�]�7��7<, ¥7,
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wherein Na and Nb are the numbers of tissues in disease states a and b. The numerator of

t can be interpreted in two ways: (i) as a different effect of the disease state on the

product compared to the substrate and (ii) as a measure how the product-substrate ratio

changes when comparing the two disease states a and b. The statistics defined above can

be read as Welch’s t-statistics in the difference variable X –Y. Significance is assessed by

Welch’s t-test.

METAtarget extracts information about reactions and enzymes from the KEGG database

(www.genome.jp/kegg). Only metabolites annotated as “main” reaction partners in

KEGG RPAIR are considered as pair of substrate and product. For each pair of substrate

and product, the regulation of the reaction is assessed by the statistics t and Welch’s t-

test. P-values < 0.05 after Bonferroni correction for the number of tested reactions are

considered statistically significant.

2.2 Breast cancer metabolomics data

METAcancer (www.metacancer-fp7.eu) is an EU-funded project aiming at the analysis

of the breast cancer metabolome and the discovery of new molecular markers. A series

of more than 200 breast cancers was investigated using three different metabolic

platforms, GC-MS, LC-MS and NMC. Here, we analyze the METAcancer GC-MS data

that include measurements of 124 KEGG annotated metabolites in 188 ER+ and 58 ER-

breast cancers. Estrogene receptor status of the METAcancer samples was determined

immunohistologically, tumors with ½ 10% ER positive cells were considered as ER

positive. Prior to analysis, metabolomics data were transformed to the log2-scale.

2.3 Breast cancer transcriptomics data

Three publicly available breast cancer gene expression series GSE2034, GSE7390 and

GSE11121 were downloaded from the GEO repository (www.ncbi.nlm.nih.gov/geo). All

data sets were generated using the same kind of microarrays (Affymetrix HG-U133A

GeneChips). The expression series were merged to a large expression data set of 684

nodal negative breast cancers. Microarray data were preprocessed with the standard

mas5 method and transformed to the log2-scale. As immunohistological data for

estrogen receptor (ER) status were not available for all samples, ER status was derived

from gene expression data. Samples with ESR1 absolute expression ½ 10 (measured by

probe set 205225_at) were considered as ER positive, samples with ESR1 expression <

10 as ER negative. 176 of the 684 breast cancers were ER negative, 508 ER positive.

Significance of differential expression between ER+ and ER- tumors was assessed by

Welch’s t-test. P-values < 0.05 after Bonferroni correction for the number of genes were

considered statistically significant.

3 Results

GC-MS profiling of 246 breast cancers within the METAcancer project led to the

identification of 468 metabolites. 162 out of these could be mapped to known chemical

structures and metabolite names, 124 could be found in the KEGG database. Using

KEGG RPAIR we identified 91 substrate-product pairs that were main reactants in

metabolic reactions.

Budczies et al. 105



Next, we analyzed the substrate-product pairs for differential regulation between ER+

and ER- breast cancers. Using the statistics t (cf. material and methods section) we

detected 13 differentially regulated pairs of reactants. Bar plots show the differential

expression between ER+ and ER- breast cancer for substrates and products (Fig. 1A) and

the substrate / product ratio for ER+ and ER- breast cancer (Fig. 1B).

Using KEGG REACTION the 13 reactant pairs could be mapped to 51 metabolic

reactions (Tab. 1). In KEGG REACTION, the reactant pairs are stored with the EC

numbers of the catalysing reactions. This information, together with the information on

the human genome was used to map the reactant pairs to 29 human genes.

Fig. 1: Substrate-product pairs that are differently regulated in ER+ compared to ER- breast

cancer. Significance was assessed by the statistics t (cf. material and methods). A Fold change

between ER+ and ER- breast cancer in pairs of substrates and products. B Fold change between

substrates and products in ER+ and ER- breast cancer.

A

B
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Tab. 1: Differently regulated metabolic reactions between ER+ and ER- breast cancer. After

mapping of metabolites to reactions using KEGG RPAIR, differently regulated substrate-product

pairs were detected by the analysis of metabolomics data. For each substrate-product pair the

numerator of the statistics t, a difference of differences (dd), is reported. Catalyzing enzymes were

identified using KEGG ENZYME. Enzymes were investigated for differential expression between

ER+ and ER- tumors using an independent breast cancer genes expression data set. Meaning of the

check marks behind the gene symbols: “+” = significant up-regulation, “-“ = significant down-

regulation, “~” = no differential regulation, no check mark = not represented by the microarray.
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To evaluate the hypothesis that metabolic changes are associated with transcriptional

regulation of enzymes, we analyzed an independent gene expression data set of 684

breast cancers. 27 of the 29 enzymes identified before were represented on the

microarray, 16 were differentially expressed between ER+ and ER- breast cancer. As

shown in Tab. 1, six enzymes were up-regulated in ER+ breast cancer, while ten

enzymes were down-regulated.

Examples for the detected reactions are conversion of glucose to glucose-6-phosphate

being the first step of glycolysis and conversion of glutamine to glutamate being the first

step of glutaminolysis. Both reactions belong to catabolic pathways that can be used for

the production of energy and have been described as up-regulated in cancer cells

[VCT09]. Fig. 2 shows the differential expression of the human enzymes catalysing

these reactions.

Fig. 2: Differentially expressed enzymes between ER+ and ER- breast cancer. A Enzymes

catalyzing the first step of glycolysis, glucose -> glucose-6-phosphate. B Enzymes catalyzing the

first step of glutaminolysis, glutamine -> glutamate. Green bars indicate significant differential

expression (after Bonforroni correction for testing 27 genes).

B

A
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For glycolysis, only hexokinase 3 (HK3) turns out to be differentially expressed between

ER+ and ER- breast cancer (down-regulated in ER+ tumors with fold change 1.6). For

glutaminolysis, a number of enzymes are differentially expressed between ER+ and ER-

tumors (4 up-regulated, 7 down-regulated). Many of these enzymes catalyse several

reactions, for example the asparagine synthetase (ASNS) and the tri-functional

carbamoyl-phosphate synthetase 2, aspartate tracarbamylase, and dihydroorotase (CAD)

that use glutamine as amide-N-donor.

Fig. 3: Differential expression of glutaminase (GLS) and glutaminase 2 (GLS2) between ER+ and

ER- breast cancer. Histograms show the distribution of GLS and GLS2 expression as they are

measured by the microarrays (log-2 scale).

A

B
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Among human genes, only the two isoenzymes glutaminase (GLS, also termed kidney

type glutaminase) and glutaminase 2 (GLS2, also termed liver type glutaminase)

exclusively convert glutamine to glutamate. Fig. 3 shows the expression of GLS (down-

regulated in ER+ tumors, fold change 1.7) and the expression of GLS2 (up-regulated in

ER+ tumors, fold change 1.7) in ER+ and ER- breast cancer.

4 Discussion

Changes in metabolite concentrations are the final response of a cell to genetic or

environmental changes. Metabolite concentrations reflect the outcome of regulation at

many molecular levels that takes place in living cells. Indeed, to monitor the final

outcome of many regulatory layers is one of the strengths of the metabolomics approach.

Regulation of metabolite concentrations can take place at the following levels:

- DNA level: loss of function mutations of enzymes

- RNA level: regulation of enzyme expression (epigenetic, transcriptional or

post-transcriptional)

- Protein level: phosphorylation or other post-translational modifications of

enzymes

- Interaction level: allosteric regulation of enzymes

A difficulty in the analysis of metabolomics data is connected with backward analysis of

the causal chain, in order to understand the mechanism of metabolic regulation and to

detect targets for a possible therapeutic intervention. METAtarget implements a reverse

engineering step for metabolic networks by using the ratio of product to substrate

concentrations as surrogate for the activity of enzymes. METAtarget is based on

information on reactant pairs and enzymes that is obtained from the KEGG REACTION

database.

In this paper we have assessed the significance metabolic changes by Welch’s t-test.

Validity of this approach depends on at least approximate normal distribution of the

difference variables X –Y. As a more conservative alternative, but with costs of losing

power, a rank statistics based approach (Mann-Whitney test) can be applied. As

unimportant for significance assessment, we did not take into account reversibility or the

direction of reactions. Denotation of a reactant as substrate or product is arbitrary.

Using METAtarget, we have analyzed the metabolism of breast cancer cells in

dependence of hormone receptor status. Worldwide, immunohistological determination

of estrogene receptor status is part of the breast cancer routine diagnostics. Patients with

ER+ tumors are known to benefit from hormone therapy (for example treatment with

tamoxifen), while ER- breast cancer is known to be a more aggressive breast cancer

subtype. Most of the ER- tumors are highly proliferating and have tumor grades 2 or 3

[DRL07]. Furthermore, these tumors include the triple-negative subtype that is difficult

to treat and has a poor prognosis.
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Analyzing metabolomics data generated within the METAcancer project, we have

identified 13 reactant pairs with a shifted equilibrium depending on ER status. The

expression pattern of the corresponding 29 enzymes was analyzed in three publicly

available gene expression series. 7 enzymes turned out to be significantly up-regulated,

10 enzymes significantly down-regulated in ER+ tumors compared to ER- tumors, while

12 enzymes remained unchanged. All 29 enzymes are interesting as targets, because

manipulation of enzyme activity could restore the metabolism towards a less aggressive

type. On the other side, differential expression of the 17 regulated enzymes is expected

to contribute to the regulation of breast cancer metabolism in dependence of hormone

receptor status.

In particular, we detected an up-regulation of glycolysis and glutaminolysis in ER-

tumors, compatible with a higher demand on energy of a more aggressive cancer.

Targeting these pathways could be an opportunity for treatment. More inside in the

regulation processes has been provided by analyzing the gene expression of enzymes

that catalyze the entry reaction of glycolysis and of glutaminolysis (Fig. 2).

The expression of glutaminases has been extensively studied before und shown to

exhibit tissue-specific expression profiles [SO09]. Co-expression of GLS and GLS2 is a

frequent event in human cancer [Pé05]. Furthermore, high GLS expression has been

described as being associated with high proliferation rates, whereas repression of GLS

and prevalence of GLS2 has been described to be related to quiescent or resting states

[LKM69]. This observation is compatible with high expression of GLS in the strong

proliferation ER- tumors and higher average expression GLS2 in ER+ tumors, an entity

that also contains weak proliferating G1 tumors.

In summary, METAtarget is a new method for reverse engineering of metabolic

networks and the detection of targets enzymes from high-throughput metabolomics data.

In an application to METAcancer, deregulation of key reactions of glycolysis,

glutaminolysis and other pathways could be detected between ER+ and ER- breast

cancer.
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Abstract: The main challenge when analyzing ChIP-Seq data is the identification of
DNA-protein binding sites by finding genomic regions that are enriched with sequenc-
ing reads. We present a new tool called qips especially suited for processing ChIP-Seq
data containing broader enriched regions. Our tool certainly finds all enriched regions
that are not exceeded by higher significant alternatives.

1 Introduction

Chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-
Seq) [JMMW07] is a common method for genome-wide profiling protein-DNA interac-
tions. In ChIP-Seq antibodies specifically select the proteins of interest together with any
piece of randomly fragmented DNA bound to them, and the origins of the selected DNA
fragments are then determined by sequencing and mapping to a reference genome. Pro-
tein binded regions feature an increased number of mapped sequencing reads. Several
software packages were recently published for finding enriched regions in ChIP-Seq se-
quencing data; a good survey can be found in [PWM09]. Most tools, for example SISSRs
[JCB+08], F-Seq [BGCF08], or QuEST [V+08], concentrate on finding short peaks in-
dicating nearly punctate protein bindings as it would be typical for transcription factors,
whereas nucleosomes or polymerases bind to much broader regions. Some other tools like
MACS [Z+08] and CisGenome [JJM+08] can also find longer enriched regions by merg-
ing overlapping short regions found in fixed-length sliding windows, but long regions are
likely to be cut when a short sliding window is applied, and increasing the windows size
would make it impossible to estimate the region boundaries precisely. SICER [ZSZ+09]
tries to overcome this problem by partitioning the genome into non-overlapping windows
and searching for sequences of succeeding enriched windows which may be interrupt by
a limited number of non-enriched windows. However, the precision of this approach is
limited the granularity of the applied window grid.

In this paper, we present a new algorithm that indentifies enriched regions of arbitrary
length and boundaries in ChIP-Seq data. Our method finds an optimal set of enriched
regions, which means that it reports an enriched region if there is no better, i.e. more
significant, alternative overlapping region. Note that prior approaches for analyzing ChIP-

Gogol-Döring et al. 113



Seq data do not guarantee to find optimal region sets.

Our tool qips (quantification of IP-Seq) also features a new way for estimating the average
DNA fragment length from single-end sequencing data; this is discussed in Section 2.1.
In Section 2.2 we describe how qips estimates the statistical background from mappability
information or, if available, a control data set. A quick approximation formula for scoring
candidate regions is presented in Section 2.3. The algorithm for finding enriched regions
is described in Section 2.4. We discuss our results in Section 3.1.

2 Methods

The analysis of ChIP-Seq data starts with the mapping of the sequenced reads to a refer-
ence genome G using a tool like Bowtie [LTPS09] or RazerS [WER+09]. The position
of a read in G is the center of the subsequence of G to which the read matches. A read
is only used for the following analysis if there is a single ‘best’ match of it in G, because
otherwise we cannot infer its true origin. However, this also means that it is hard to detect
protein bindings in repetitive genomic regions. This is a general limitation of the ChIP-
Seq technology, and our statistical model explicitely take it into account; see Section 2.2
For avoiding biases due to PCR artifacts, we retained only one read at the same posi-
tion and the same strand orientation. To identify the centers of the ChIP-Seq fragments,
which are usually much longer than the sequenced reads, we shift each read downstream
by s = (f − q)/2, where f is the average fragment length and q the read length. Our
method for accurately estimating f from single-end reads is described in Section 2.1.

In the final set of uniquely mapped, non-redundant, and shifted reads we then search for
enriched regions, namely for intervals [a, b] ⊂ G containing significantly more read po-
sitions than expected by chance, which means that the p-value p[a, b] relative to a given
background model is below a certain user-defined threshold α. Our background model
assumes an uniform distribution of the reads over all (mappable) positions i ∈ G or, if
available, it accounts for a second control data set obtained, e.g., from a ChIP-Seq using
Immunoglobulin G (IgG); see Section 2.2. As qips was designed to find enriched regions
of arbitrary size, we must also decide whether two neighboring enriched regions [a, b] and
[a′, b′] could in fact be a single enriched region [a, b′]. We prefer [a, b′] instead of [a, b] and
[a′, b′], if and only if the combined region is more significant than the two sub-regions, i.e.
if p[a, b′] < min(p[a, b], p[a′, b′]) ≤ α. qips computes an optimal set of enriched regions,
which is defined as follows:

Definition: Let I = {i1, i2, . . . , in} be a set of intervals in a genome G. Two intervals
[a, b] and [a′, b′] overlap if a ≤ b′ and a′ ≤ b. A subset R ⊆ I is a set of enriched regions
if the intervals in R are pairwise disjoint and if p(r) ≤ α for all r ∈ R. R is optimal if for
each interval i ∈ I \R exists an interval r ∈ R overlapping with i and p(r) ≤ p(i).

R is unique if p(i) 8= p(i′) for any two overlapping intervals i 8= i′ ∈ I , otherwise there
are several optimal sets. We assume that the differences between those alternative sets have
only minor practical relevance and can therefore be ignored. Our tool finds an optimal set
of enriched regions for n reads in time O(n2) and linear space; see Section 2.4.

114 Gogol-Döring et al.



2.1 Estimating the Fragment Length

ChIP-Seq DNA fragments are usually sequenced only from a single end, so it is not pos-
sible to deduce their lengths directly from the data. On the other hand, measuring the
fragment length using laboratory equipment does not account for a length bias introduced
in the sequencing procedure. Several authors therefore described methods for estimating
average fragment lengths from single-end data, either using shift distances between peaks
with different strand orientation [Z+08] [V+08] [JJM+08], or the distances between for-
ward reads and their closest reverse read [JCB+08]. All these approaches assume (nearly)
punctate peaks in the data, so they are less appropriate for ChIP-Seq of proteins binding
to broader regions. Some methods are also susceptible for noise in the data or could be
affected by a locality bias, which is the preference for reads being mapped to genomic
positions where they overlap to other reads; see Figure 1A. We found locality biases of
varying intensities in numerous public available data sets from different labs, and since it
is partly caused by the limited mappability of short reads to large genomes, it can hardly
be avoided completely.

Our method for estimating the average fragment length f relies on the shift between read
distributions of different strand orientation: For each forward read at position i we compute
the frequency Fi(d) of forward reads and the frequency Ri(d) of reverse reads at position
i+ d. We define the total read frequencies F (d) =

∑
i Fi(d)/k and R(d) =

∑
i Ri(d)/k,

where the normalization factor k is the total number of forward strand reads. Figure 1A
illustrates that R typically resembles F shifted downstream. The mode of R added to the
read length q would be a simple estimate for the fragment length f . Here we use a different
approach that is less prone to noise and yields more accurate results for skewed fragment
length distributions. We computed for shift widths d > 0 the average A(d) of the squared
difference (F (j)− R(j + d))2 over all j /∈ [−q, q] ∪ [d− q, d + q], i.e. we exclude all j
where F (j) or R(j) could be affected by a locality bias. Then the average fragment length
is estimated by f = q + argmindA(d).

We tested our method on various data sets, and it yielded reasonable results even for data
containing very broad or unspecific binding, like ChIP-Seq targeting H3K36me3 histone
marks or using IgG. For proving the accuracy of our method, we also sampled single-end
reads from a paired-end ChIP-Seq data set [WXZ+10] and compared the estimates from
different tools to the actual fragment lengths; see Figure 1B.

2.2 Modeling the Statistical Background

A q-mer is unique if it occurs only once in a genome G, and its position in G is called a
(uniquely) mappable position. Repetitive regions of G are characterized by a lower den-
sity of mappable positions and therefore contain less reads than regions with higher map-
pability. However, only few software tools for ChIP-Seq data analysis take mappability
variations in genomes into account [REA+09]. Let mp[a, b] be the number of mappable
positions in [a, b] ⊆ G, then the maximal number of reads in [a, b] after shifting the reads

Gogol-Döring et al. 115



0.010

0.015

0.020

0.025

0.030

-400 -300 -200 -100 0 100 200 300 400

1.000

forward strand

reverse strand

mode 243
mean 244
median 247

qi
ps

24
5

M
A
C
S

40
5

S
IS
S
R
s
10
9

0 100 200 300 400 500
Fragment Length [nt]

A B

Figure 1: A: Typical normalized read frequencies F and R for a ChIP-Seq data with read length
q = 36. The peaks between the dotted vertical lines at −q and +q reflect a locality bias. The dashed
line is R shifted to the left by f−q, where f is the estimated fragment length. B: The fragment length
distribution of a paired-end ChIP-Seq data set [WXZ+10]. qips estimated the average fragment
length very accurately, whereas the results of the two other tools considerably diverged from the
actual lengths.

downstream by s is given by:

maplen[a, b] = mp[a− s, b− s] + mp[a + s, b + s].

Our background model assumes that reads in the data set S are spread independently over
the genome G by a Poisson process, which means that, given an interval [a, b] ⊂ G, the
reads may occur at any position i ∈ [a, b] with the same rate µ = λ/maplen[a, b], where
λ = E(countS [a, b]) is the expected number of reads in [a, b]. These assumptions may
be questionable, especially the independence between the reads; nevertheless, this kind of
model is very common because there is a lack of better alternatives.

We apply two ways for estimating the λ in a given interval [a, b]:

1. The expected number λM of reads in [a, b] assuming an uniform distribution of all
countS(G) reads in S to the maplen(G) mappable positions in G is:

λM =
maplen[a, b]
maplen(G)

count(G).

In order to get a more local estimation of λM , one could also use a region Gpart ⊂ G
containing [a, b] instead of the whole genome G.

2. A second estimation λC is done if a control data set C is available. We calculate the
density of reads in C by:

µC =
countC [a− s, b + s]
maplen[a− s, b + s]

,

i.e. we enlarge [a, b] in both sides by the shift width s to avoid clipping effects due
to variations in the fragment lengths. The read density µS in S can be estimated
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given µC after normalizing for the different read quantities in both data sets, so we
get:

λC = µS maplen[a, b] = µC
countS (G)
countC (G)

maplen[a, b].

If both estimates are available, then we use the maximum λ = max(λM , λC).

2.3 Computing p-Values

Let T = {t1, t2, . . . , tn} be s set of different read positions, ti < tj for i < j. Regard-
ing all intervals containing exactly the reads at the positions ti, . . . , tj is [ti, tj ], obviously
[ti, tj ] is the interval with maximum read density, so we can restrict the search for en-
riched regions on intervals starting and ending at read positions. This is a great saving of
time, because the typical number of reads in a ChIP-Seq data set is two to three orders of
magnitude smaller than the genome length.

Starting with a fixed read position ti, the probability for finding the next k = count [ti +
1, tj ] reads within the interval [ti + 1, tj ] is given by an Erlang distribution:

f(x; k, µ) =
µkxk−1e−µx

(k − 1)!
,

where x = maplen[ti + 1, tj ]. The p-value is defined by the cumulative density function:

p[ti, tj ] =
∑

x≤maplen[ti+1,tj ]

f(x; k, µ) =
γ(k, λ)
(k − 1)!

,

where γ is the lower incomplete gamma function. Note that p[ti, tj ] only depends on the
actual number k and expected number λ of reads in [ti + 1, tj ].

In practice, it is often more convenient to deal with logarithmic scores than with p-values,
so we further define score[ti, tj ] = − log(p[ti, tj ]). Since Algorithm 1 has to calculate a
huge amount of scores, we substituted the time consuming computation of the function γ
by the following approximation formula:

score[ti, tj ] ≈ λ− k log(λ) + log(k!)− 0.08 log(k)1.6

This way we speed up our program by more than 50 times compared to a direct compu-
tation of γ using the GNU Scientific Library (GSL) [GDT+10]. For scores ≥ 10, the
approximations diverge by less then 5% from the exact values; see Figure 2A.

2.4 Finding Optimal Sets of Enriched Regions

Let T = {t1, . . . , tn} be a sorted set of interval boundaries. FINDOPTIMALSET (see
Algorithm 1) calculates an optimal set R of enriched regions in two steps: First, it deter-
mines for each start position ti ∈ T the optimal end position tE[i], where [ti, tE[i]] must
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Figure 2: A: Comparison between exact and approximated scores. B: Fraction of detected regions
depending on the required minimum overlap between actual and predicted regions for qips (this
paper), MACS, and SICER with different parameter settings.

not overlap with any higher scoring region starting at tk > ti. Second, the algorithm se-
lects intervals [ti, tE[i]] with increasing starting positions ti. Obviously, the resulting set
R is a set of non-overlapping enriched regions. We show that R is optimal as follows: Let
M be the set of intervals with maximum score in I = {[ti, tj ] | ti, tj ∈ T}, letM′ ⊂ M
be the intervals in M with maximum start position, and [ti, tj ] ∈ M′ the interval with
minimum tj . The array E is constructed such that E[ti] = j and E[tk] < i for all k < i,
hence i is not skipped in line 18 of Algorithm 1, and therefore [ti, tj ] ∈ R. The opti-
mality of R follows by applying structural induction to the remaining sets of boundaries
{t1, . . . , ti−1} and {tj+1, . . . , tn}.
The algorithm can easily be modified such that it restricts the search to a subset of I .
For example, qips allows to set the minimum and maximum length as well as the min-
imum number of reads in a candidate region. Moreover, it is possible to exclude any
interval containing a drop, which we define here as an interval [ti, tj ] having a certain
minimum length and either contains less reads than expected by chance, or has a mappa-
bility map[ti, tj ]/(tj − ti) below a minimum threshold. A drop cuts the search space into
two parts, hence the run time of the algorithm gets linear after choosing appropriate drop
parameters.
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✄ FINDOPTIMALSET (T = {t1 . . . tn})
S[j]← 0 for all j ∈ {1, . . . , n}1

for i← n down to 1 do2

smin ← − log(α)3

sopt ← 04

jopt ← nil5

for j ← i to n do6

if score[ti, tj ] > max(smin , sopt) then7

sopt ← score[ti, tj ]8

jopt ← j9

smin ← max(smin , S[j])10

S[i]← sopt11

E[i]← jopt12



Find optimal end
position tE[i] for start
position ti

R← {}13

i← 114

while i < n do15

if E[i] 8= nil then16

R← R ∪ {[ti, tE[i]]}17

i← E[i] + 118

else19

i← i + 120


Select optimal
regions [ti, tE[i]]

return R21

Algorithm 1: Finding an optimal set of enriched regions. T is a sorted set of interval boundaries, i.e.
read positions, and α the p-value threshold. score[ti, tj ] = − log(p[ti, tj ]).
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3 Results and Discussion

3.1 Results

We simulated threefold enriched regions, each of length 10kb, on a µ = 1% read density
background. This data set was used to compare qips with SICER, which is a tool especially
designed for searching long enriched regions, and with the popular peak finder MACS.
The output of SICER depends very much on the input parameters, so we tried several
settings. MACS was started with the --nolambda command line option for finding
longer enriched regions. qips detected all enriched regions in the data set, whereas MACS
totally missed about 12% of them. MACS and SICER (for some settings) also splitted
some of the enriched regions into smaller parts.

We measured the overlap between two regions by the number of common bases divided
by the length of the longer region. An enriched region was counted among the detected
regions, if its overlap to one region in the tool output file was above a certain threshold.
Figure 2B shows the sensitivity of the three tools depending on this overlap threshold. It
can be seen that qips detects enriched regions more precisely than the competitors.

3.2 Discussion

Our approach performs an exhaustive search of all possibly enriched regions and, con-
sequently, should have better chances to detect enriched regions than a heuristical ap-
proach that limits the search space. The results presented above illustrate that, at least
in some cases, qips indeed has some advantages compared to previously published tools
like SICER or MACS. On the other hand, our algorithm takes quadratic run time and is
therefore significantly more time-consuming than other tools. Applying a relaxed drop
condition can significantly improve the run time, but this also increases the risk for miss-
ing high scoring enriched regions. A thorough test of our tool both for simulated and real
ChIP-Seq data would help to find a good balance between the sensitivity and the perfor-
mance of our software. This is future work.

3.3 Implementation

We implemented qips in C++ and Python, using the GNU Scientific Library [GDT+10]
and SeqAn [DWRR08]. The program is controlled by a make file, so it can simply be
parallelized by specifying the GNU make -f command line option, or distributed to a
computer cluster using the Sun Grid Engine qmake tool.

Our software will be published free and open source.
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Abstract:
Despite recent advances in DNA chip technology current microarray gene expres-

sion studies are still affected by high noise levels, small sample sizes and large num-
bers of uninformative genes. Combining microarray data with cellular pathway data by
using new integrative analysis methods could help to alleviate some of these problems
and provide new biological insights.

We present a method for learning simple decision rules for class prediction from
pairwise comparisons of cellular pathways in terms of gene set expression levels rep-
resenting the up- and down- regulation of pathway members. The procedure generates
compact and comprehensible sets of rules, describing changes in the relative ranks of
gene expression levels in pairs of pathways across different biological conditions. Re-
sults for two large-scale microarray studies, containing samples from prostate cancer
and B-cell lymphoma patients, show that the method provides robust and accurate rule
sets and new insights on differentially regulated pathway pairs. However, the main
benefit of these predictive models in comparison to other classification methods like
support vector machines lies not in the attained accuracy levels but in the ease of inter-
pretation and the insights they provide on the relative regulation of cellular pathways
in the biological conditions under consideration.

1 Introduction

Classification of microarray gene expression samples often suffers from several limitations
resulting from the high dimensionality of the data, a typically small number of available
samples, and from various sources of technical and biological noise. In recent years, sev-
eral methods have extended or replaced classical machine learning methods to provide
more compact, robust and easily interpretable classification models. These approaches re-
duce the prediction model complexity and increase its robustness by using regularization
and shrinkage techniques [AMD+05, GHT07], by generating more human-interpretable
machine learning models, which are based on simple decision rules [A+06, BK08], or
by using more robust data representations and model formulations, e.g. computing dis-
cretized expression values or rank scores [LGGV08, WEB05] or only considering relative
expression values by comparing pairs of genes [G+04a, TNX+05].

In this paper, we address the problem of low model robustness due to noise by combining
ideas from the techniques mentioned above with an approach to analyse the data at the
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level of pathways instead of at the single-gene level. Briefly, we map the genes in a
microarray study onto cellular pathways and processes from public databases and learn
simple decision rules for sample classification by comparing gene expression levels in
pairs of pathways. Rules describing single pathway-pairs are then weighted and combined
into a unified classification model by applying a boosting algorithm. The approach can
be understood as a methodological extension of the “top-scoring pairs” (TSP) algorithm
[G+04a, TNX+05], which identifies discriminative pairs of genes in microarray data, and
has therefore been named “top-scoring pathway pairs” (TSPP) algorithm. Moreover, we
draw inspiration from other pathway-based microarray analysis approaches, which use
summarized expression values for genes in cellular pathways and processes for enrichment
analysis (e.g. the methods GSEA [S+05], MaxMean [ET07] and the global test [G+04b])
or as features for sample classification [G+05].

In contrast to previous methods comparing single gene expression values or summarized
expression values for single pathways against fitted threshold values, TSPP provides in-
creased robustness by at the same time combining expression levels of multiple genes
into “pathway expression fingerprints” and making pairwise, relative comparisons between
pathways. In summary, the TSPP approach is not designed to compete with existing mi-
croarray sample classification and data mining methods, but to complement them with the
following added benefits:

• New biological insights can be gained from easily interpretable decision rules on the
relative up- and down-regulation of cellular pathways.

• The prediction models are applicable to data from other microarray platforms with-
out requiring that all platforms contain the same genetic probes and that cross-study
normalization is applied (the integration takes place at the level of pathways, and
the gene expression values are replaced by rank scores).

• By summarizing the expression values of multiple genes belonging to the same path-
way, the dimensionality of the data is reduced (from about 50.000 genes to a few
hundred pathways) and the summarized “pathway expression fingerprints” have a
higher robustness than single gene expression vectors (however, at the expense of
losing detail; therefore single-gene based methods should be applied additionally).

2 Methods

The TSPP algorithm identifies, scores and combines decision rules based on pathway-pairs
according to the following five-step procedure:

1. Rank score transformation:

A gene expression matrix X with dimension n×p (n: number of samples, p: number
of genes) and class labels y for the samples is read as input and transformed into a
“rank matrix” R by sorting the expression values for each gene across the n samples
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and replacing them with their position index in the sorted vector (ties are handled
by replacing equal values by the mean of the corresponding position indices).

2. Pathway mapping:

Gene sets representing cellular pathways and processes are extracted from a public
database (e.g. KEGG, Gene Ontology, BioCarta or Reactome). Pathway assign-
ments are computed for the p genes in the microarray input data by testing whether
they occur in these gene sets. For genes which cannot be assigned to a pathway the
corresponding rows are removed from matrix R.

3. Scoring of pathway pairs:

To score a pair of pathways as being useful for discriminating between two sample
class labels 1 and 2, e.g. “tumour (1) vs. normal (2)” or “drug treatment (1) vs.
no treatment (2)”), the pathway-submatrices R1 and R2, corresponding to these two
samples classes, are extracted from matrix R based on the mappings from step 2.
The matrices R1 and R2 are then reduced to vectors r1 and r2 by replacing each
column of expression level ranks by its median value. For a two-class problem, the
score for a pathway-pair is then obtained by comparing the median ranks in pathway
1 to those in pathway 2 and computing the maximum of two relative frequencies:
The relative frequency of samples which are up-regulated for class 1 and down-
regulated for class 2, and vice versa, the relative frequency of cases which are down-
regulated for class 1 and up-regulated for class 2 (i.e. there are two possibilities for
the relation of sample ranks in two pathways to differ across the sample classes).
Given the sets of column indices for two sample classes S1 and S2, the final score
can thus be computed as follows:

partial score1 =
∑
i∈S1

I(r1i >= r2i) +
∑
i∈S2

I(r1i < r2i) (1)

partial score2 =
∑
i∈S1

I(r1i < r2i) +
∑
i∈S2

I(r1i >= r2i) (2)

score =
max(partial score1, partial score2)

|S1|+ |S2| (3)

where I is the indicator function. For a multi-class problem, a similar score can
be obtained by computing the mean of the scores obtained for all pairs of sample
classes.

4. Identification of top-scoring pairs:

By default top-scoring pathway pairs (TSPPs) are identified by performing an ex-
haustive search across all pairs of pathways. This should be feasible in most prac-
tical applications, because the number of pathways is typically much smaller than
the number of genes, and the scoring method is kept simple. Moreover, the method
does not assume that all genes in a pathway are either up- or down-regulated, but
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searches for pairs of pathways for which many genes occurring in the first pathway
change their relation of expression level ranks across the sample classes to genes
in the second pathway. Nevertheless, it might be beneficial to investigate whether
alterations in the pathway definitions can provide improved results. Therefore, the
user can alternatively let the algorithm introduce “mutations” into the pathway gene
sets, by randomly adding or deleting genes up to a small user-defined maximum
number of mutations, and replacing the exhaustive search by a previously published
evolutionary search algorithm [JUA05]. Only one modification is applied to this
algorithm: A genome contains two bit-vectors representing two pathways and mu-
tations are only applied to one of these bit-vectors, selected randomly. The scoring
function in the evolutionary algorithm is the same as for the exhaustive search.

5. Classification model generation:

Each TSPP provides a simple decision rule for classifying microarray samples de-
pending on the relative median expression value ranks of their genes in a pair of
pathways. To combine multiple TSPPs into a unified classification model, we use
the TSPP decision rules as “base classifiers” in the Adaboost.M1 algorithm [FS96],
adding one decision rule at a time to the boosting model based on the order of the
TSPP-scores computed in step 3. This boosting scheme assigns weights to each
decision rule in the combined ensemble model, accounting for a rule’s prediction
accuracy and capacity to correctly classify samples that were misclassified by deci-
sion rules added in previous iterations of the algorithm. Previous experiments with
boosting and ensemble techniques applied to microarray data [GGK09] have shown
that improvements can be obtained both in terms of robustness and accuracy.

Figure 1: An overview of the workflow in the TSPP algorithm (example data is derived from a
human prostate cancer microarray dataset [S+02b])
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3 Results

The TSPP algorithm was applied to the gene expression matrices from two public microar-
ray studies covering different types of cancer: B-cell lymphoma [S+02a] (7129 genes and
77 samples) and prostate cancer [S+02b] (12600 genes and 102 samples). Both datasets
contain samples from two biological classes: In the B-cell lymphoma dataset 58 sam-
ples were obtained from patients suffering from diffuse large B-cell lymphoma (class D),
while the remaining samples derive from a related follicular B-cell lymphoma (class F).
The prostate cancer expression measurements were obtained from 50 healthy control tis-
sues (class C) and 52 tumour tissues (class T) (for details on the normalization and pre-
processing of the datasets, see the Data Sets section).

To evaluate the predictive accuracy for TSPP-models generated for these datasets, we ap-
plied an external leave-one-out cross-validation (LOOCV) procedure using different num-
bers of top-scoring pairs k (for k = 1, 3, 5, 10 and 15) and including all modelling steps
in the cross-validation procedure. The parameter k can be regarded as a bias/variance
trade-off, enabling the user to control the complexity of the generated classifiers. The
cross-validation results, computed both for mappings of genes to KEGG pathways and to
Gene Ontology (GO) terms, include the average accuracy, sensitivity and specificity for
each LOOCV run and are shown in Tables 1 and 2.

Table 1: Leave-one-out cross-validation results (TSPP on KEGG database)

Dataset No. of top- Sensitivity Specificity Avg.
scoring pairs (%) (%) Accuracy (%)

1 83.7 71.7 77.5
3 87.8 73.6 80.4

Prostate cancer 5 85.7 77.4 81.4
10 77.6 73.6 75.5
15 79.6 64.2 71.6
1 64.9 85.0 70.1
3 68.4 90.0 74.0

Lymphoma 5 78.9 90.0 81.8
10 77.2 90.0 80.5
15 75.4 90.0 79.2

In summary, average classification accuracies above 70% were obtained in all cases, and
for both datasets the best accuracies (prostate cancer: 81.4%, DLBCL: 81.8%) were
achieved when using 5 top-scoring pairs, suggesting that k = 5 represents a reasonable
bias/variance trade-off. The sensitivity and specificity scores were in a roughly similar
percentage range.

Apart from using the decision rules for class prediction, their simplicity also makes them
suitable for direct human interpretation. The ten top-scoring pathway pairs for each dataset
are shown in Tables 4 and 5. Interestingly, the top-ranked rule for the prostate cancer
dataset contains the KEGG-pathways “Prostate cancer” and “Insulin signaling”, which
are both known to be de-regulated in the disease [SK03, H+01]. However, the results
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Table 2: Leave-one-out cross-validation results (TSPP on GO database)

Dataset No. of top- Sensitivity Specificity Avg.
scoring pairs (%) (%) Accuracy (%)

1 83.7 67.9 75.5
3 89.8 67.9 78.4

Prostate cancer 5 89.8 69.8 79.4
10 91.8 66.0 78.4
15 85.7 67.9 76.5
1 68.4 80.0 71.4
3 57.9 90.0 66.2

Lymphoma 5 71.9 90.0 76.6
10 52.6 90.0 62.3
15 71.9 85.0 75.3

Table 3: Leave-one-out cross-validation results (Gene-based: eBayes & SVM)

Dataset No. of features (genes) Sensitivity Specificity Avg. Accuracy (%)
2 88.0 84.6 86.3
6 96.0 88.5 92.2

Prostate cancer 10 96.0 86.5 91.2
20 90.0 88.5 89.2
30 90.0 90.4 90.2
2 91.4 68.4 85.7
6 93.1 78.9 89.6

Lymphoma 10 94.8 94.7 94.8
20 96.6 84.2 93.5
30 98.3 100.0 98.7

also point to relative de-regulations in other pathways with less obvious associations to
the cancer disease, e.g. “Pyrimidine metabolism” and “Glycerolipid metabolism”, with a
score close to the best-ranked pair. Similarly, for the B-cell dataset the top-ranked path-
way pairs contain pathways known to be associated with B-cell neoplasia, e.g. the “Wnt
signaling pathway” [QERR03, LB03], whereas for other pathways no direct and specific
associations with the disease are known. In spite of the class-imbalance in this dataset,
the prediction models did not display a preference to assign samples to the majority class;
however, similar to other statistical methods for microarray data analysis, problems with
robustness can occure whe the sample size per condition is very small. Thus, when plan-
ning a microarray study, the experimenter might first want to study the literature on sample
size estimation [LHC10], microarray study design [Chu02] and sampling techniques to al-
leviate these problems [VHKNW09].

It is also important to note that in a top-scoring pathway pair (TSPP) not necessarily both
pathways are differentially regulated across the sample classes, but one pathway might
have a constant expression, while the other pathway is highly de-regulated in one of the
sample classes. The main benefit of comparing pairs of pathways lies in the possibility
to avoid comparing single pathways against fitted thresholds, which would more likely
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be affected by experimental bias and thus provide prediction models with higher gener-
alization error. However, if a user’s main goal is not to obtain a prediction model from
the TSPP-algorithm, but to identify pathway associations, then TSPPs in which one of the
pathways is not differentially regulated across the sample classes can easily be identified
and filtered out by computing the variance for the corresponding gene expression vectors
and removing TSPPs containing a pathway with low variance.

When using the evolutionary search methodology and allowing the algorithm to intro-
duce small numbers of random gene deletions and insertions into the pathways (up to five
genes), in spite of the higher flexibility of this method, in all experiments the prediction
accuracies are either similar or lower than those obtained for the original pathways using
an exhaustive search (data not shown). The weaker performance might result from an en-
trapment in local minima due to the expansion of the search space, but could also suggest
that the original pathways and processes are already well defined and therefore hard to
optimize based on an evolutionary search procedure.

Overall, the results from the cross-validation analysis and the lists of top-scoring pathways
show that the method can generate compact predictive models with both high interpretabil-
ity and high accuracy in comparison with a random model predictor (when measuring this
using the “proportional chance criterion” by Huberty [Hub94], we obtain p-values < 0.01
in all cases). To put these results into relation with existing machine learning methods
based on single genes as predictors, we applied a C-SVM from the e1071 R software
package [DHL+05], a wrapper for the well-known LibSVM library [CL01], with different
kernel functions, including the radial basis function and polynomial kernels with a degree
up to 3 (the results for the best kernel, a linear SVM, are reported in Table 3). The gene-
based SVM-models achieve higher average accuracies than pathway-based models, with
the best models reaching more than 90% accuracy on both datasets; however, these mod-
els only contain information on the relevance of single genes for the prediction and do not
enable an interpretation of the data on the level of cellular pathways and processes. Al-
though the simple decision rules generated by the TSPP algorithm do not reach the highest
accuracies obtained by the support vector machine on single genes, their high interpretabil-
ity and significant predictive information content allow the user to quickly identify cases,
in which the relative gene expression in pathway pairs is differentially regulated across
different biological conditions.

To investigate the utility of top-scored pathway pairs (TSPPs) in more detail, we have
mapped the genes in these pathways onto their corresponding proteins in a large-scale
protein-protein interaction network, consisting of 38857 interactions between 9392 pro-
teins assembled from direct binary interactions in a previous study [GBKV10]. Figure 2
a) shows the largest connected component of an example mapping for the TSPP with the
highest score on the Prostate cancer dataset, “hsa05215 Prostate cancer” vs. “hsa04910
Insulin signaling pathway” (see also Figure 1), revealing a strong network of interac-
tions between these pathways, which also share a significantly large set of overlapping
genes/proteins (q-value = 5.1E-17, when testing the hsa04910 pathway against all other
KEGG pathways using the one-sided Fisher exact test and adjusting for multiple testing
with the Benjamini-Hochberg method [BH95]). However, the TSPP-method also points
the user to differentially regulated pathway pairs which would not be detected as signif-
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Table 4: Top-ranked pathway pairs (Prostate cancer data)

Rank Pathway 1 Pathway 2 Direction Score
1 hsa05215 Prostate hsa04910 Insulin down 0.81

cancer signaling pathway
2 hsa00240 Pyrimidine metabolism hsa00561 Glycerolipid metabolism up 0.80
3 hsa04540 Gap junction hsa05210 Colorectal cancer up 0.78
4 hsa04115 p53 signaling pathway hsa00230 Purine metabolism down 0.75
5 hsa04510 Focal adhesion hsa00071 Fatty acid metabolism down 0.75
6 hsa04514 Cell adhesion hsa04610 Complement and up 0.72

molecules (CAMs) coagulation cascades
7 hsa03050 Proteasome hsa01430 Cell Communication up 0.69
8 hsa04920 Adipocytokine hsa04730 Long-term up 0.69

signaling pathway depression
9 hsa04810 Regulation of hsa04530 Tight down 0.65

actin cytoskeleton junction
10 hsa04512 ECM-receptor interaction hsa04110 Cell cycle down 0.63

The 10 top-ranked pathways for the prostate cancer dataset based on the TSPP-score (Direction “down” means
that in the healthy control samples, pathway 1 is down-regulated in relation to pathway 2, whereas in the prostate
cancer samples, pathway 1 is up-regulated in relation to pathway 2, and respectively, “up” means the pathways
have opposite relations in the two sample classes).

icantly associated based on an overlap-based significance test, e.g. Figure 2 b) shows
the largest connected component for the TSPP “hsa04115 p53 signaling pathway” vs.
“hsa00230 Purine metabolism”, with only two overlapping proteins, but a multitude of
direct binary protein-protein interactions between the two pathways. Further experimen-
tal evidence for an association between these pathways is provided by a study showing
that the inhibition of de novo purine synthesis by the drug “AG2034”, which also inhibits
prostate cancer cell growth, increases the expression levels of p53 [OKM09]. Thus, al-
though the up- and down-regulation of top-scoring pathway pairs does not necessarily
result from a regulatory relationship between the pathways, the analysis of the TSPPs can
help to point the user to associations between pathways, which would remain unnoticed
by other methods, such as an overlap-based Fisher test.

.

3.1 Data sets

3.1.1 Diffuse large B-cell lymphoma (DLBCL)

The DLBCL data set [S+02a] contains expression values for 7,129 genes and 77 microar-
ray samples, 58 of which were obtained from patients suffering from diffuse large B-
cell lymphoma (D), while the remaining samples derive from a related B-cell lymphoma,
called follicular lymphoma (F). The experiments in this microarray study had been carried
out on an Affymetrix HU6800 oligonucleotide platform [Aff01].

To pre-process the raw data, we applied the “Variance stabilizing normalization” [HvHS+02]
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Table 5: Top-ranked pathway pairs (B-Cell lymphoma data)

Rank Pathway 1 Pathway 2 Direction Score
1 hsa00020 Citrate hsa04310 Wnt signaling down 0.88

cycle (TCA cycle) pathway
2 hsa00052 Galactose hsa04664 Fc epsilon RI down 0.87

metabolism signaling pathway
3 hsa04670 Leukocyte hsa03050 Proteasome up 0.87

transendothelial migration
4 hsa04514 Cell adhesion hsa00030 Pentose up 0.86

molecules (CAMs) phosphate pathway
5 hsa04730 Long-term depression hsa00240 Pyrimidine metabolism up 0.85
6 hsa00562 Inositol hsa00051 Fructose an up 0.84

phosphate metabolism mannose metabolism
7 hsa00220 Urea cycle and hsa00980 Metabolism of xenobiotics down 0.84

metabolism of amino groups by cytochrome P450
8 hsa04540 Gap junction hsa00330 Arginine and up 0.84

proline metabolism
9 hsa00252 Alanine and hsa04630 Jak-STAT down 0.84

aspartate metabolism signaling pathway
10 hsa00970 Aminoacyl-tRNA hsa04912 GnRH down 0.81

biosynthesis signaling pathway

The 10 top-ranked pathways for the B-Cell lymphoma dataset based on the TSPP-score (Direction “down” means
that in the DLBCL samples, pathway 1 is down-regulated in relation to pathway 2, whereas in the follicular B-
cell lymphoma samples, pathway 1 is up-regulated in relation to pathway 2, and respectively, “up” means the
pathways have opposite relations in the two sample classes).

Figure 2: Analysing TSPPs in a protein-protein interaction network: a) Largest connected compo-
nent for KEGG pathways: “Prostate cancer” and “Insulin signaling” (blue: Prostate cancer, red:
Insulin signaling, green: members in both pathways); b) Largest connected component for KEGG
pathways “P53 signaling” and “Purine metabolism” (blue: P53 signaling, red: Purine metabolism,
green: members in both pathways)
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to filter out intensity-dependent variance (this was done using the vsn-library and the
expresso-package in the R statistical learning environment [Tea10]). Moreover, we ap-
plied thresholding based on the suggestions in the supplementary material of the original
publication [S+02a] and a “fold change”-filter to remove all genes with less than a 3-fold
change between the maximum and minimum expression value.

3.1.2 Prostate cancer

The prostate cancer data set [S+02b] consists of expression measurements for 12,600 ge-
netic probes across 50 healthy control tissues (C) and 52 prostate cancer tissues (C). All
experiments have been carried out on Affymetrix Hum95Av2 arrays [Aff01]. Due to the
large number of samples and memory limitations of the expresso-package (used to normal-
ize the other two data sets), we applied the fast GeneChip RMA (GCRMA) normalization
algorithm [WI05]. Moreover, we employed thresholding based on the suggestions in the
original publication of the dataset [S+02b] and a fold change filter to remove all probes
with less than a 2-fold change between the maximum and minimum expression value.

Table 6: Data sets used in this paper

Data set Platform No. of No. of samples references
genes class 1; class 2

B-cell lymphoma Affymetrix 7,129 58 (D) ; 19 (F) [S+02a]
Prostate cancer Affymetrix 12,600 52 (T) ; 50 (C) [S+02b]

4 Conclusion

We present a new method for extracting pathway-based decision rules from combined
gene expression data and gene sets representing cellular pathways and processes. When
applying prediction models derived from these decision rules for sample classification on
two public microarray cancer datasets, we obtain compact and easily interpretable models
with significant predictive information content. The generated decision rules are robust
against monotonic transformations of the data, and the algorithm is easy to implement
and has a comparatively short run-time due to the reduction of the data dimensionality
when considering summarized pathway expression values instead of gene expression val-
ues. Moreover, these models also enable a different interpretation of microarray data by
analysing the data at the level of pathways. Specifically, the top-scoring pathway pairs can
point the user to regulatory relationships or other functional associations between the cor-
responding pathways. In summary, the TSPP algorithm provides both a novel method to
generate compact and accurate classification models and a new exploratory tool to analyse
microarray data at the level of pairwise pathway-relations.
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