
Observations on Knowledge Transfer of Professional
Software Developers during Pair Programming

Franz Zieris1, Lutz Prechelt2

This is an extended abstract of the paper with the same title [ZP16] which was presented at
the 38th International Conference on Software Engineering (2016).

Keywords: pair programming; knowledge transfer; grounded theory

1 Background, Context, and Research Method

Pair programming (PP) in industrial settings is usually understood as either a productive
practice in the XP-sense [Be99] or as a mentoring technique to bring new team members
up to speed. It appears to be common sense that pair programmers are either good enough
to perform a productive session (without any relevant knowledge transfer) or their skill
levels are too far apart to be productive, so they retreat to a knowledge transfer session. But
such a strict dichotomy does not capture the full reality of industrial software development:
Knowledge transfer is a key ingredient of any pair programming session (especially between
two experts), and even a knowledge-wise inferior developer can have big positive inĆuence
on the PP sessionŠs progression.

In contrast to just looking for an efect of pair programming on developersŠ knowledge levels,
we want to understand the actual process of how knowledge transfer happens during pair
programming. For this, we record in-vivo PP sessions of industrial software developers and
analyze this material (consisting of screen capture, webcam, and audio) on an utterance-level
granularity employing Grounded Theory Methodology [SC90].

2 Results

In a previous article [ZP14], we reported our initial Ąndings on what we called ŞKnowledge
Transfer SkillŤ in pair programming: Good pairs manage to (1) not pursue multiple
knowledge needs at once, (2) recognize complex Topics and split them into separate Topics,

1 Freie Universität Berlin, Institut für Informatik, Takustr. 9, 14195 Berlin, Deutschland zieris@inf.fu-berlin.de
2 Freie Universität Berlin, Institut für Informatik, Takustr. 9, 14195 Berlin, Deutschland prechelt@inf.fu-berlin.de

cbe

M. Tichy, E. Bodden, M. Kuhrmann, S. Wagner, J.-P. Steghöfer (Hrsg.): SE 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 127

https://creativecommons.org/licenses/by-nc/3.0/
zieris@inf.fu-berlin.de
prechelt@inf.fu-berlin.de
https://creativecommons.org/licenses/by-nc/3.0/


(3) recognize complicated Topics and deal with them in stages, and (4) not lose sight of
Topics. In our recent study [ZP16], we analyzed well over 400 knowledge transfer episodes
from 13 PP sessions and were able to conceptualize more observations that are relevant for
understanding knowledge transfer in pair programming:

• There is usually no pair member who is more knowledgeable in all relevant areas.
Even in sessions dedicated to introducing a new team member, the senior developer
learned something along the way.

• Occasionally, it is the knowledge-wise inferior developer who has the bigger positive
impact on the sessionŠs progress, either through solving a problem (insight) or by
avoiding a mistake (diligence).

• Existing knowledge is not just “pulled” from the more knowledgeable developer
through asking questions; developers will also start explanations (“push”), even if
her partner did not speciĄcally ask for it. In PP, knowledge gaps can be dealt with
even if the developer in need is not aware of them.

• When new understanding is being “produced” by one pair member alone (e.g.,
by reading source code), sinking into silence is a bad choice compared to uttering
intermediate insights as they would allow the partner to both help and learn.

• When both developers cooperatively work on new understanding, one developer
occasionally pulls ahead. The pair then needs to get close together again to fully use
their complementary knowledge. This resynchronization requires some additional
efort, which will pay of later.

• But even equally quick grasp of both developers does not guarantee common
understanding: Producing new understanding as a pair always requires some additional
synchronization. Otherwise the pair risks ending up on parallel tracks and taking
avoidable detours in their process.

References
[Be99] Beck, Kent: Extreme Programming Explained: Embrace Change. Addison-Wesley Profes-

sional, 1999.

[SC90] Strauss, Anselm L.; Corbin, Juliet M.: Basics of Qualitative Research: Grounded Theory
Procedures and Techniques. SAGE, 1990.

[ZP14] Zieris, Franz; Prechelt, Lutz: On Knowledge Transfer Skill in Pair Programming. In: Proc.
8th ACM/IEEE IntŠl. Symposium on Empirical Software Engineering and Measurement.
ESEM Š14, ACM, New York, NY, USA, pp. 11:1Ű11:10, 2014.

[ZP16] Zieris, Franz; Prechelt, Lutz: Observations on Knowledge Transfer of Professional Software
Developers During Pair Programming. In: Proc. 38th IntŠl. Conf. on Software Engineering
Companion. ICSE Š16, ACM, New York, NY, USA, pp. 242Ű250, 2016.

128 Franz Zieris, Lutz Prechelt


