
CodeMatch: Obfuscation WonŠt Conceal Your Repackaged
App

Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif, and Mira Mezini1

Abstract: Popular mobile apps are regularly installed by millions of users. This fact attracts malicious
actors to create altered, repackaged versions of those apps to steal the original ownerŠs revenue or
to trick users to infect their devices with malware. Detecting such repackaged apps is, therefore,
necessary for a secure and viable app market but is challenging due to the use of code obfuscation
and the widespread usage of libraries. Due to the recent fact, non-repackaged, legitimate apps often
share a majority of their code base and are classiĄed as repackaged by state-of-the-art detectors. We,
therefore, propose a new library Ąltering approach that relies on code representations at Ąve diferent
abstraction levels to achieve resilience against code obfuscation. Additionally, we propose to use
the most abstract representation in combination with fuzzy-hashing to detect repackaged apps. Our
evaluation shows that the overall approach leads to a better detection rate up to 50%.

Keywords: library detection; repackage detection; obfuscation; code analysis

1 Overview

Since 2012 several techniques for repackage detection have been proposed and can be
broadly classiĄed as being code-agnostic, graph-based, user-interface-based, and code-
signature-based. A challenge for all these repackage detectors is code transformation.
Developers regularly minify and optimize their apps to increase performance. Additionally,
they obfuscate their apps to protect their intellectual property. However, attackers also
apply obfuscation to hide malicious code and to evade signature-based detectors, such as
anti-virus software.
Current repackage detectors can only handle weak forms of obfuscation such as one-by-one
renaming, but more sophisticated ones, are not supported, e.g., which change the deĄning
package of classes. However, at least 20% [Gla17] of the apps found in Google Play
Store [Ink17] use such techniques. The prevalent reuse of libraries in apps further inhibits
the efectiveness of current detectors. Wang et al. [WGMC15] reported that more than 60%
of the sub-packages in apps belong to libraries. Hence, separating the libraries from the app
code is necessary. Otherwise, detectors wrongly Ćag apps as repackages which use similar
libraries because they share a large code base. Another challenge for repackage detectors
are apps generated by App Makers, e.g., apps-builder [Bui17]. In that case, the vast majority

1 Technische Universität Darmstadt, Software Technology Group, Hochschulstraße 10, 64289 Darmstadt, Deutsch-
land {glanz|amann|eichberg|reif|mezini}@cs.tu-darmstadt.de

cbe

M. Tichy, E. Bodden, M. Kuhrmann, S. Wagner, J.-P. Steghöfer (Hrsg.): SE 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 117

https://creativecommons.org/licenses/by-nc/3.0/
{glanz|amann|eichberg|reif|mezini}@cs.tu-darmstadt.de
https://creativecommons.org/licenses/by-nc/3.0/


of the code base will be the same, and the rest will still be very similar. Current approaches
will falsely Ćag such apps as repackaged.
To address the challenges, we propose a library Ąlter LibDetect and an app matcher
CodeMatch, whereby the latter uses the former. LibDetect uses Ąve hierarchically organized
representations which enable an adequate precision/recall trade-of. If a library method is only
weakly obfuscated, LibDetect will identify the method using a less abstract representation
when compared to stronger obfuscated methods. After library Ąltering, our app matcher
CodeMatch uses our most resilient representation as a foundation, sorts the output and
performs fuzzy hashing [Kor06] on top of it to withstand various sophisticated obfuscation
techniques.
For the evaluation, we built ground truths for library Ąltering and repackage detection by
manually inspecting thousands of apps. Afterwards, we executed two library Ąlters, and
four repackage detectors to compare them with our approaches. Additionally, we executed
CodeMatch with diferent library Ąlters to evaluate its independent detection quality.

2 Conclusion

We presented an approach to detect repackaged apps, which relies on abstract code
representations which are obfuscation-resilient. The approach consists of two steps (1)
a new advanced library detection approach and (2) the fuzzy hashing of the appŠs code.
Our evaluation shows that we can identify up to 50% more repackaged apps than the
state-of-the-art. These results are due to LibDetect which correctly Ąlters up to 70% more
libraries than previous approaches.
Our implementation and all evaluation data is available at [Gla17].

References

[Bui17] A. Builder. Apps Builder. http://www.apps-builder.com. Lastaccessed:
01/11/2017. 2017 (cit. on p. 11).

[Gla17] L. Glanz. CodeMatch Artifacts. http://www.st.informatik.tu-darmstadt.
de/artifacts/codematch/. Last Accessed: 06/30/2017. 2017 (cit. on pp. 11,
12).

[Ink17] G. Ink. Google Play Store. https://play.google.com/store?hl=us. Last
Accessed: 12/04/2017. 2017 (cit. on p. 11).

[Kor06] J. Kornblum. ŞIdentifying almost identical Ąles using context triggered
piecewise hashingŤ. In: Digital investigation 3 (2006), pp. 91Ű97 (cit. on
p. 12).

[WGMC15] H. Wang, Y. Guo, Z. Ma, and X. Chen. ŞWukong: A scalable and accurate
two-phase approach to android app clone detectionŤ. In: Proceedings of

the 2015 International Symposium on Software Testing and Analysis. ACM.
2015, pp. 71Ű82 (cit. on p. 11).

118 Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif, Mira Mezini

http://www.apps-builder.com
http://www.st.informatik.tu-darmstadt.de/artifacts/codematch/
http://www.st.informatik.tu-darmstadt.de/artifacts/codematch/
https://play.google.com/store?hl=us

