H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 109

Temporal Graph Analysis using Gradoop

Christopher Rost! Andreas Thor? Erhard Rahm3

Abstract: The temporal analysis of evolving graphs is an important requirement in many domains but
hardly supported in current graph database and graph processing systems. We therefore have started
with extending Gradoop for temporal graph analysis by adding time properties to vertices, edges and
graphs and using them within graph operators. We outline these extensions and show their use in a
bibliographic scenario to analyze temporal citation patterns.

Keywords: Temporal Graph; Temporal Graph Data Model; Graph Analysis

1 Introduction

The flexible analysis of graph data has gained significant interest in the last decade and is
supported by graph database systems (e.g., Neo4j) and a growing number of distributed graph
processing systems [Jul7]. While graphs typically evolve continuously, graph processing
systems mostly focus on the analysis of static graphs representing the state (or snapshot) of
a graph at a specific point in time. Changes like the addition of vertices and edges can occur
comparatively slowly (e.g., in bibliographic networks) or at high frequency (e.g., as a stream
of posts in a social network). An important requirement in many domains is to analyze the
temporal dimension of graphs, e.g., to analyze the evolution of certain relationships like
the citation patterns of publications or the development of co-authorships in bibliographic
networks. For streaming-like changes there are specific analysis requirements, in particular
to support fast, real-time reaction to certain changes such as the spread of hate messages in
social networks.

In this short paper, we report on work in progress on temporal graph analysis using
GrapooP [Jul6, Jul8], a distributed, open source framework for graph analytics. It
supports extended property graphs as well as many declarative operators, e.g., for pattern
matching and structural grouping, that can be used to realize complex workflows for graph
analysis. Inspired by the temporal extensions in SQL:2011 [KM12] we extend the GRADOOP
graph data model by time properties for valid and transactional time. We also show how
these temporal properties can be used within the operators for temporal graph analysis.
Furthermore, we sketch the use of these operators for a bibliographic use case to find certain
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temporal citation patterns. After a discussion of related work we introduce the temporal
extensions of GRADOOP’s property graphs (Sect. 3) and operators (Sect. 4). We then show
the use of the operators in building blocks for common tasks in temporal graph analytics
(Sect. 5) and outline the bibliographic use case in Section 6.

2 Related Work

Date et al. [DDLO02] define three classes of time aspects for temporal relational databases
that can be applied one-to-one to temporal graphs: transaction time, valid time, and their
combination bitemporal data. Transaction time is defined as the time interval in which a fact
is considered true in the database (graph). In most cases, the transaction time is maintained
by the processing system itself and can be used for versioning so that graph states can
be reconstructed for any point in the past. The valid time is defined as a time interval in
which a fact is valid as defined by the context of the data [DDL02]. Valid time intervals can
also be expressed by time-stamps if the duration can be neglected. Such graphs are also
known as transient [KD13] or contact sequences [HS12] since their time-stamps reflect a
chronological order of interactions (e.g., edge additions). Figure 1 shows an example of
a temporal graph with valid times: The temporal affiliations of authors to institutions is
represented as time intervals whereas the valid time of publications is the time-stamp when
the publication was published.

There are only few graph processing systems that natively support the storage, analysis and
querying of temporal graphs. Immortalgraph [Mil5] (earlier known as Chronos) provides a
storage and execution engine designed for temporal graphs. It includes locality optimizations
and an in-memory iterative graph computation based on series of graph snapshots. Snapshots
are divided into groups to provide temporal graph mining approaches. Kineograph [Ch12]
is a distributed platform for incoming stream data to construct a continuously changing
graph. It is also based on in-memory graph snapshots which are evaluated by conventional
mining approaches of static graphs (e.g., community detection). The snapshot approach is
used to distribute the graph on different systems. GraphStream [Pi08] is an open-source
Java library focusing on the dynamics aspects of a graph. It provides a flexible way to build
user-defined analyses upon a dynamic graph structure based on a stream of graph events.
None of these systems is based on a property graph model to hold detailed contextual
information of vertices and edges besides the structural information. Then et al. [Th17]
developed an automatic algorithm transformation to avoid multiple executions of graph
analytics algorithms on snapshots of a temporal graph to reduce their runtimes.

A fairly new temporal graph analytics library is Tink [Lil8] that focuses on several temporal
path problems and offers the calculation of measures like temporal betweenness and
closeness. Similar to GRapoop, Tink is build on Apache Flink and employs the Property
Graph Model. Temporal information is represented by time intervals at the edges. In contrast
to Tink, GRADOOP supports not only graphs but also logical graphs and graph collections.
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Fig. 1: TPGM example of a bibliographic graph (leff) and the resulting annotated graph of the
Difference operator of Sect. 4 (right). Vertices and edges are specified by label, valid-time (with
format [val-from,val-to]) and properties.

Furthermore, our extension of the property graph model allows the definition of both
time-stamps and intervals on both vertices and edges.

3 Temporal Property Graph Model in Gradoop

We introduce the Temporal Property Graph Model (TPGM) as a simple but powerful
extension of the Extended Property Graph Model (EPGM) [Jul6] to support combinable
analytical operators on directed graphs that evolve over time in GRapoopr. In the EPGM, a
single property graph is referred to as logical graph, which in turn can be part of a graph
collection. Vertices and edges refer to one or more logical graphs and are accordingly part
of them. Logical graphs, vertices, and edges consist of a unique identifier, a type label (e.g.,
User or worksAt), and a (possibly empty) set of properties represented as key-value pairs.

TPGM extends EPGM by adding four additional time attributes as obligatory to the schema
of vertices, edges, and logical graphs: tx-from, tx-to and val-from and val-to. The first two
represent the transaction time (prefix £x), the last two define the valid time (prefix val) by
holding the beginning and end of the elements validity. This approach offers a flexible
representation of temporal graphs with bitemporal time semantics where the valid time
can be empty, a time-stamp or a time interval by setting either none, only the val-from or
both val-from and val-to attributes. Since time attributes can be empty, also edge-centric
scenarios where a graph only has time information at its edges can be modeled. Empty
time attributes are interpreted as NULL values (e.g., in predicate functions) analogous
to SQL. Fig. 1 (left) shows a temporal graph from the bibliographic domain modeled in
TPGM. The graph represents the relationship between authors, affiliations and publications.



112 Christopher Rost, Andreas Thor, Erhard Rahm

There are vertices and edges without a temporal specification (e.g., Affiliation), with a
time-stamp (e.g., Publication) and a time interval (member) as valid-time. TPGM does not
specify the data type of the time attributes and leaves it up to the implementation (e.g., Unix
time-stamp or formatted date/time string). By holding a whole graph with both rollback and
historical information, this model offers a flexible retrieval of arbitrary graph snapshots and
dissociates itself from widespread snapshot approaches.

Valid times are typically embedded within the context of the data before they enter GRADOOP.
The respective timestamps can be extracted while loading the elements as graph or collection
into the system. The transaction times are maintained by the GRADoOOP system automatically.
Vertices and edges can be added to (or deleted from) a logical graph as well as a whole
logical graph can be added to (or deleted from) a graph collection. For newly added graph
elements the value of tx-from is set to the current system time (i.e., import time) and #x-fo to
infinity. If a graph element is deleted, the value of #x-fo is set to the current system time. The
deletion of a vertex automatically triggers the deletion of all corresponding edges, since
they are not valid without the vertex. At the moment, the model does not support subsequent
changes (updated) of an element’s label, valid times or properties.

Another advantage of TPGM is its backward compatibility to the original EPGM since
every EPGM operator can be applied to a TPGM graph by disregarding the temporal
information of the graph elements. However, we will define appropriate operator extension
for TPGM that allows the definition of temporal graph analytical workflows in the next
section. Although TPGM offers bitemporal support, we limit ourselves exclusively to the
valid-times for simplicity in the following sections.

4 Operators

The EPGM allows for combining multiple operators to graph analytical workflows using the
domain specific language GrALa (Graph Analytical Language). It already provides operator
implementations for graph pattern matching, subgraph extraction, graph transformation,
set operations on multiple graphs as well as property-based aggregation and selection.
Some operators can be applied on logical graphs and others on graph collections [Jul6].
For simplicity we use the terms graph and logical graph, collection and graph collection
interchangeably. In this work we will focus on the six graph operators that are listed in Tab. 1.
They support the access and modification of the available temporal information in different
ways. The following sections provide short definitions of these temporal operators with some
examples. Pre-defined predicate functions that can be used by these operators are defined
in Tab. 2. Furthermore, helper functions that return parts of a date or time information (e.g.,
year or day of week) are available. The implementation of the operators and their integration
into GRapoor is currently work in progress. Since we focus on valid-times in this section,
each notation of from and to refers to the attributes val-from and val-to defined in TPGM.
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Operator Signature Output
Transformation™® Graph. transform(graphFunction, vertexFunction, edgeFunction) Graph
Subgraph* Graph. subgraph(vertexPredicateFunction, edgePredicateFunction) Graph
Snapshot Graph. snapshot (temporalPredicateFunction) Graph
Difference Graph.diff(temporalPredicateFunction, temporalPredicateFunction) Graph
Grouping™® Graph.groupBy (vertexGroupingKeys, vertexAggregateFunction, Graph,
edgeGroupingKeys, edgeAggregateFunction) Collection
Pattern Matching* Graph.query(patternGraph [,constructionPattern]) Collection

Tab. 1: Overview of TPGM unary operators and their signature. Operators marked with * already
exist in EPGM and were extended by temporal support.

Transformation. The transform operator defines a structure-preserving modification of
graph, vertex and edge data. User-defined transformation functions can be applied to an
input graph G, which results in an output graph G’ [Jul6]. Within TPGM it is possible to
(1) modify the temporal attributes, (2) define the time attributes from information stored
in properties or (3) create properties resulting from the temporal information of the time
attributes. For example, if the temporal attributes are not yet set or calculated during a
workflow, this operator offers the possibility to define the valid times from and to at runtime.

Subgraph. The subgraph operator is used to extract a subgraph from a graph by applying
predefined or user-defined predicate functions [Jul6]. Often, such a function is used to filter
vertices and edges by label or the existence or value of a property (e.g., vertices with label
User and property age greater than 30). Within TPGM, the temporal information of graph
elements can be used inside the predicate functions. The operator is also suitable to declare
vertex-induced or edge-induced subgraphs by providing either a vertex or edge predicate
function. Considering the graph in Fig. 1 (left), a subgraph with all author-affiliation
memberships that last longer that 3 years can be extracted with the edge-induced operator
call graph.subgraph(null, e -> e.label = 'member' AND YEAR(e.to)-YEAR(e.from)
> 3).

Snapshot. The snapshot operator allows one to retrieve a valid snapshot of the whole
temporal graph either at a specific point in time or a subgraph that is valid during a
given time range by providing a temporal predicate function. Besides the operator itself,
several predefined predicate functions (see Tab. 2) are available. They are adopted from
SQL:2011 [KM12] that supports temporal databases. In the example of Fig. 1 (left),
graph.snapshot (as0f(2010)) would remove the author named Rost and the last three
publications together with their edges. Furthermore, three member edges (Rahm-Microsoft,
Thor-Uni Leipzig, and Thor-HfTL) are removed.

Difference. The evolution of graphs over time can be represented by the difference of
two graph snapshots, i.e., by a difference graph that is the union of both snapshots where
each graph element is annotated as an added, deleted, or persistent element. To this
end, GRADOOP’s structural diff operator consumes two graph snapshots defined by
temporal predicate functions and calculates the difference graph. For example, the usage
of graph.diff(as0£(2010),as0£(2018)) at the graph in Fig. 1 (left) would result in the
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Function Predicate
Time-Stamp (only from defined)  Time-Interval (from and to defined)
asOf(x) from < x from <xAto 2 x
fromTo(X, y) - from<yAto>x
between(x,y) - from <y Ato>x
precedes(c) from < c.from to <c.from
succeeds(c) from > c.from from > c.to
overlaps(c) - max(from, c.from) < min(to, c.to)

Tab. 2: Predefined TPGM predicate functions that can be used by the operators. Variables x and y
are timestamps, whereas c is a graph element. The predicates differ according to the definition of a
time-stamp or a time-interval.

annotated graph at Fig. 1 (right). The symbols +, - and = represent added, removed and
persisting elements, respectively.

Grouping. A structural grouping of vertices and edges is an important task in temporal
graph analytics. Since temporal graphs can become very large, a condensation can facilitate
deeper insights about structures and patterns hidden in the graph. In the current EPGM
implementation of the groupBy operator, a grouping is based on vertex and edge grouping
keys (e.g., the type label or property keys) as well as vertex and edge aggregation functions
[JPR17]. For temporal grouping, TPGM provides three additional features: First, time-
specific value transformation functions (e.g., year or day of week) can be applied to compute
time values on the desired granularity for grouping. Second, the groupBy operator supports
GROUP BY CUBE and GROUP BY ROLLUP similar to SQL. Third, aggregation on the temporal
properties from and fo of the vertices and edges can not only be specified by user-defined
functions but by one of the predefined time-specific aggregation functions (e.g., MinFrom
or MaxFrom). For example, the AvgDuration aggregate function can be used to determine
the average duration of all membership edges at the graph in Fig. 1 (left).

Pattern Matching. Retrieving subgraphs matching a user-defined pattern graph is an impor-
tant task within the graph analytics domain. In the EPGM a pattern matching operator query
is already implemented [Jul6] using basic concepts of Neo4j Cypher# to define patterns, e.g.,
(a)-[b]->(c). Predicate functions can be embedded in a pattern inside a WHERE clause by us-
ing variables defined in the pattern. The resulting embeddings can be modified by providing a
construction pattern. In TPGM, we extend this functionality by using the temporal attributes
Jfrom and to inside predicate definitions, i.e., by pre-defined (see Tab. 2) and user-defined
predicate functions. For example, the pattern (a:Author) - [m:member]->(f:Affiliation
country : USA) WHERE m.asO0f(2017) describes an author being a member of an affiliation
from the United States as of 2017.

4 https://neo4j.com/developer/cypher-query-language/
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Fig. 2: Part of a graph collection containing embeddings of a temporal pattern (left) and the result of a
time-specific grouping and aggregation (right) applied on these matches.

5 Temporal Graph Analytics Workflows

In this section we discuss exemplary workflows for temporal graph analytics. We illustrate
how they can be supported by GRapoor and its extension to TPGM.

Snapshot generation and graph evolution: Graph systems or algorithms might focus on
the analysis of static graphs representing the state (or snapshot) of a graph at a specific
point in time. GRADOOP therefore supports the retrieval of snapshots using the snapshot
operator in combination with time-based predicates. To identify the difference and thus the
changes between two graph snapshots, the diff operator can be used.

Temporal pattern matching: Searching for graph patterns using time-constraints is impor-
tant for temporal analysis. In the example of Fig. 1 (left), a query to obtain simultaneous collab-
orations between affiliations from different countries must take the valid times of the member
edges into account: (f1:Affiliation)<-[ml:member]-(al:Author)-[:write]->(p:Pub)
(p)<-[:write]-(a2:Author)-[m2:member]->(f2:Affiliation) WHERE al != a2 AND

ml.overlap(p) AND m2.overlap(p). By applying this query together with the construction
pattern (£1)-[c:collaborate{from=p.from}]->(£2) to GRADOOP’S query operator, a
collection of matching graph embeddings is generated which is exemplified in Fig. 2 (left).
A special case of such patterns are time-respecting paths, i.e., sequences of edges with
non-decreasing times that connect vertices. Time-respecting paths not only identify
all vertices that can be reached from others within some observation window [HS12]
(reachability) but might also define shortest paths in terms of the overall duration time of
the edges.

Time-specific grouping and aggregation: The time dimension automatically introduces a
hierarchy, i.e., graphs can be grouped (summarized) at multiple levels of time-granularity.
For example, the graph in the bottom-right corner of Fig. 2 summarizes the collaboration
between countries per decade based on co-authored publications, i.e., the Affiliation vertices
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Fig. 3: Example of a citation graph (/eff) and its graph summary (right) for three publications A, B,
and C that were all published in 2011. For simplicity, only citations to the three publications A, B, and
C are illustrated, i.e., citations between the citing publications are omitted. In the graph summary,
citing publications are grouped by publication year (indicated by color) and the number of citations
corresponds to the line widths of the super edges. The small charts illustrate the citation dynamics: A
follows a common life cycle, B is a constant performer, and C is a sleeping beauty.

are grouped by their country property and the collaborate edges are aggregated at the level
of decades to reflect the temporal changes in the collaboration over time. However, this
summarization can be rolled-up on the time hierarchy to have a global aggregation. To this
end, GRADOOP’s groupBy operator groups all collaborate edges by year with GROUP BY
ROLLUP so that the resulting graph collection contains both graphs of Fig. 2 (right).

Efficient maintenance and re-use of queries and analysis results: Repeated execution of
Grapoor workflows, e.g., at certain times (e.g., once a month) or at certain events (e.g.,
when adding a new publication into a bibliographic network) requires an efficient update of
graph transformations and graph summaries both in their structure and aggregated property
values. In the above mentioned GROUP BY ROLLUP example, newly added publication vertices
might only update the collaborate edges where the publication valid time falls into the valid
time of the collaborate edge.

6 Use Case: Citation Analysis

The influence of past literature on current research is manifested by references cited in
publications. Bibliographic networks therefore consist of publications (vertices) and their
citations (directed edges) between them. Edges are time-stamped with the publication date
of the citing publication to indicate when the citation happened. Fig. 3 shows an example
with three publications A, B, and C (all published in 2011) that have been cited by 63 other
publications. Besides the question of identifying exceptionally highly-cited publications
("top publications") it is also of interest to identify the citation dynamic of cited publications
that usually follow a common [ife cycle: starting with low citations in the first or two years
of publication, growing up to a maximum of citations a few years later, followed by a
continuous decrease of citations several years after publication. However, other dynamics
are also possible: a more or less long period of non-recognition with low citations is followed
by a period with high citations after a sudden peak. Such publications are often referred to
as sleeping beauties [VR04], i.e., they remained undetected over many years before their
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results, methods, ideas etc. become important for current research. In contrast, constant
performers are characterized by citation rates which are constantly at least on the average
level compared to the other publications.

In the example of Fig. 3 the citation dynamics becomes visible after grouping the citing
publications by the year of publication, i.e., the summary contains six super vertices
(2012-2017) where each super vertex represents all vertices (i.e., citing publications) of the
corresponding year. Super edges between the super vertices and the three original nodes
(A, B, and C) store the number of elements they represent, i.e., the number of citations.
For example, the super edge 2017 — C represents eight edges, i.e., C has been cited by
eight publications in 2017. In Fig. 3 (right) the number of citations corresponds to the line
widths of the super edges. The graph summary reveals the citation dynamics of the cited
publications. For example, publication C did not get any citations in 2012 and 2013, few
citations in 2014 and 2015 and many in 2016 and 2017. It can therefore be classified as a
sleeping beauty. The described use case can be expressed in GrALa as follows:

// subgraph including edges of last six years
sub = in.subgraph(TRUE, e => YEAR(CURRENT)-YEAR(e.from) BETWEEN 1 AND 6 )
// group citation edges by year; count number of citations
group = sub.groupBy(
['citingpub', (citingpub.from, t => YEAR(t))],
(superVertex, vertices => superVertex['year'] = vertices.min(YEAR(from)),
[:1abel, (from, t => YEAR(t))],
(superEdge, edges => superEdge['count'] = edges.count()))
// call external function 'classifier' (UDF) to specify citation dynamics
group. transform(
(gIn, gOut => gIn),
(vIn, vOut => IF (vIn.label=="citedpub') vOut['dynamic'] = classifier(vIn)),
(eIn, eOut => eIn))

7 Conclusion

We reported our work in progress on temporal graph analysis by integrating our flexible
temporal property graph model TPGM that supports bitemporal time semantics into the
distributed graph analytic system GrRapoopP. By extending the available operators, we show
how the evolving nature of temporal graphs can be used to answer time-respecting analytical
questions. We illustrated the use of these operators within common building blocks of
analysis workflow and provided a real-world use case from the bibliographic domain to find
temporal citation patterns.

Temporal graphs and their analysis is an important and promising field of research. In
future work we will further extend GRapoop by temporal features such as operators and
algorithms to make GrRapoor a powerful and flexible system for temporal graph analysis.
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