
Compositional Verification of Timed Components using
PVS∗

Marcel Kyas
Christian-Albrechts-Universität zu Kiel, Germany

mky@informatik.uni-kiel.de

Jozef Hooman
Embedded Systems Institute & Radboud University Nijmegen, The Netherlands

hooman@cs.ru.nl

Abstract: We present a general framework to support the compositional verification
of timed systems using the interactive theorem prover PVS. The framework is based on
timed traces that are an abstraction of the timed semantics of flat UML state machines.
We define a compositional proof rule for parallel composition and prove its soundness
in PVS. After composition, a hiding rule can be applied to hide internal events. The
general theories have been applied to parts of the Medium Altitude Reconnaissance
System (MARS) as deployed in the F-16 aircraft of the Royal Netherlands Air-Force.

1 Introduction

In recent years, UML [Obj04] has been applied to the development of reactive safety-
critical systems, in which the quality of the developed software is a key factor. Within the
Omega project we have developed a method for the correct development of real-time em-
bedded systems using a subset of UML, which consists of state machines, class diagrams,
and object diagrams. In this paper we present a general framework supporting compo-
sitional verification of such designs using the interactive theorem prover PVS [ORS92,
ORSvH95]. The framework is based on timed traces, which are abstractions of the timed
semantics of UML state machines [vdZH06]. The focus is on the level of components and
their interface specifications, without knowing their implementation [dR85, HdR85].

Our specifications are logical formulae that express the desired properties of a system or its
components using predicates on timed traces. To formalise intermediate stages during the
top-down design of a system, we have devised a mixed formalism where specifications and
programming constructs can be mixed freely. In this paper, we restrict ourselves to parallel
composition and hiding. This is inspired by similar work on untimed systems [Old85,
Zwi89] and related to work on timed systems [Hoo98].

We apply our general theories to a part of the Medium Altitude Reconnaissance System
∗This work has been supported by EU-project IST-2001-33522 OMEGA “Correct Development of Real-Time

Embedded Systems.” For more information, see http://www-omega.imag.fr/.

143

(MARS) as deployed by the Royal Netherlands Air Force on the F-16 aircraft [Ome05].
The system employs two cameras to capture high-resolution images. It counteracts image
quality degradation caused by the aircraft’s forward motion using a compensating motion
of the film during its exposure. The control values for the forward motion compensation
of the film speed and the frame rate are being computed in real-time, based on the cur-
rent aircraft altitude, ground speed, and some additional parameters. The system is also
responsible for producing the frame annotation, containing time and the aircraft’s current
position, which must be synchronised with the film motion. Here, we focus on the data-
bus manager. It receives messages from sensors measuring the altitude and the position of
the aircraft and tries to identify whether the sensors have broken down and — if they have
— whether they have recovered.

In the OMEGA project, several formal techniques have been applied to the MARS case
study. Live Sequence Charts (LSCs) [DH01] have been used to capture the requirements.
Non-timed, functional properties of the MARS system have been verified using the model-
checking tool UVE [STMW04]. Timed model checking has been applied by means of
IFx, an extension of the IF toolbox [BGO+04]. The approaches based on model-checking
provide simulation and automated verification, but are limited to finite state systems.

To allow general verification of unbounded, infinite state systems, we have used the PVS
tool, a general purpose theorem prover which is freely available [PVS]. PVS has a pow-
erful specification language, based on higher-order typed logic. Specifications can be
organised as hierarchies of parameterised theories, which may contain, e.g., declarations,
definitions, axioms, and theorems. The PVS proof engine can be used to prove theorems
which have been stated in the theories. To prove a particular goal, the user invokes proof
commands which should simplify the goal until it can be proved automatically by PVS.

The first verification experiments with the original UML-model of the MARS system re-
vealed that global, non-compositional verification is difficult and limited to small systems.
To be able to apply compositional verification, the MARS system has been redesigned by
means of a few well-defined components. The focus of this paper is on the specifications
that have been used for the compositional verification of this redesign using PVS.

In the next section we describe the semantics of our formal framework. Section 3 intro-
duces compositional proof rules. Section 4 describes the overall behaviour of our case
study. Section 5 describes the decomposition of this overall specification into suitable
components. Section 6 contains concluding remarks.

2 Semantics

Specifications are based on assertions which are predicates on traces θ consisting of obser-
vations o. For each observation we observe the event that is occurring, written E(o), and
the time at which it occurs, written T (o). Time is defined to be a non-negative real and
delays are assumed to be positive. The special event ϵ represents either that time elapses
or that some hidden event is occurring. We use θi to denote the i-th observation of trace θ.
Traces have to satisfy the following properties in order to be well-formed:

144

1. Time is monotone: ∀i, j : i ≤ j → T (θi) ≤ T (θj)

2. Time progresses, i.e., is non-Zeno: ∀i, δ : ∃j : i ≤ j ∧ T (θi) + δ ≤ T (θj)

3. Proper events are instantaneous: ∀i : E(θi) ̸= ϵ → T (θi) = T (θi+1)

The projection of a trace θ on a set of events Eset is defined as:

θ ↓ Eset def
= λk :

{
θk, if E(θk) ∈ Eset
ϵ, otherwise

A component is specified by an assertion and a signature which is a set of events Eset
which can be observed by the component. Usually this concerns the receiving and the
sending of messages. The assertion specifies the behaviour of the component, a set of
traces, formalised by a predicate Θ on traces θ over its signature. Hence, a component
C is defined by the pair (Eset , Θ), where the behaviour respects the interface, i.e., ∀θ :
Θ(θ) → θ ↓ Eset = θ.

We define parallel composition of components C1 = (E1, Θ1) and C2 = (E2 , Θ2) as

C1 ∥ C2
def
= (E1 ∪ E2 , {θ | θ ↓ E1 ∈ Θ1 ∧ θ ↓ E2 ∈ Θ2 ∧ θ ↓ (E1 ∪ E2) = θ})

That is, the projection of any trace of the parallel composition on the signature of one
of the components yields a trace of this component. Observe that this implies that the
components synchronise on their common events. Moreover, a trace of the composition
should not include any new events outside the joint signature, as in [dRea01, Section 7.4].

For a component C = (E, Θ) and a set of events E′ the hiding operator C − E′ removes
the events in E′ from the signature of C. It is formally defined by

C − E′ def
= (E \ E′, {θ | ∃θ′ ∈ Θ : θ = θ′ ↓ (E \ E′)}).

We define a few suitable abbreviations.

• E(θi) = e states that the event e occurs at position i in the trace θ

• Never(e, i, j)(θ) def
= ∀k : i ≤ k ∧ k ≤ j → E(θk) ̸= e asserts that the event e does

not occur between positions i and j in the trace θ

• Never(e)(θ) def
= ∀k : E(θk) ̸= e asserts that e never occurs in trace θ

• AfterWithin(e, i, δ)(θ) def
= ∃j : j ≥ i ∧ E(θj) = e ∧ T (θj) − T (θi) ≤ δ states that

the event e occurs at some position j after i which is no later that δ time units from i

Because we aim at a mixed framework, in which specifications and programming con-
structs can be mixed freely, a specification is also considered to be a component. Hence
specification S = (E, Θ) is identified with the component (E, {θ | θ ↓ E = θ ∧ Θ(θ)}).
Component C1 = (E1, Θ1) refines component C2 = (E2 , Θ2), written C1 =⇒ C2 , if
E1 = E2 ∧∀θ : Θ1(θ) → Θ2 (θ). The refinement relation is a partial order on components
and specifications.

145

3 Compositional Proof Rules

Next we derive a number of compositional proof rules. Their correctness is checked in
PVS based on the semantic definitions and the definition of specifications.We start with a
consequence rule, which allows the weakening of assertions in specifications.

Let C1 = (E1, Θ1) and C2 = (E2 , Θ2) be two specifications. Then
(E1 = E2 ∧ (∀θ : Θ1(θ) → Θ2 (θ))) → (C1 =⇒ C2)

To define a sound rule for parallel composition, we first show that the validity of an asser-
tion Θ only depends on its signature. This is specified using the following predicate:

depends(Θ, E) def⇐⇒ ∀θ, θ′ : Θ(θ) ∧ θ ↓ E = θ′ ↓ E → Θ(θ′)
Then we can establish ∀E : depends(Θ, E) ↔ (∀θ : Θ(θ) ↔ Θ(θ ↓ E)). Using this
statement we can prove the soundness of the following parallel composition rule:

(depends(Θ1, E1) ∧ depends(Θ2 , E2)) →
((E1, Θ1) ∥ (E2 , Θ2) =⇒ (E1 ∪ E2 , Θ1 ∧ Θ2))

To be able to use refinement in a context, we derive a monotonicity rule:

((C1 =⇒ C2) ∧ (C3 =⇒ C4)) → ((C1 ∥ C3) =⇒ (C2 ∥ C4))

Similarly, we prove a compositional rule and a monotonicity rule for the hiding operator.

depends(Θ, E1 \ E2) → (((E1, Θ) − E2) =⇒ (E1 \ E2 , Θ))

(C1 =⇒ C2) → ((C1 − E) =⇒ (C2 − E))

4 The MARS Example

We consider only a small part of the MARS example, namely the data bus manager. This
part serves as an illustration on how to apply the presented techniques to a timed system.
Figure 1 shows the architecture of the data bus manager.

Message Receiver

ControllerMonitor

−curOk: Boolean
−prevOK: Boolean

DatabusController

NavigationDataSourceAltitudeDataSource

Figure 1: Architecture of data bus manager

146

The data sources altitude data source and navigation data source send data to a message
receiver. If the data sources function correctly, they send data with period P and jitter
J < P

2 , as depicted in Figure 2; data should be sent in the grey periods.

t

P

J

Figure 2: Data with period P and jitter J

First, we specify correct data sources, using S = {1, 2} as an abstract representation of
the two data sources. Let ds represent the data items sent by source s, where s ranges over
S, and D = {ds | s ∈ S} denotes the total set of data items sent by both sources.

For any data source s its behaviour is specified by the assertion DSs,1(θ) ∧ DSs,2 (θ) on
its traces of observations θ. Assertion DSs,1 specifies that each occurrence of an event ds

is within the period specified by the jitter. DSs,2 specifies that at most one such message
is sent during this period.

DSs,1(θ)
def⇐⇒ ∀i : E(θi) = ds → ∃n : nP − J ≤ T (θi) ∧ T (θi) ≤ nP + J

DSs,2 (θ)
def⇐⇒ ∀i, j : E(θi) = ds ∧ E(θj) = ds →

i = j ∨P − 2J ≤ |T (θi) − T (θj)|
Consequently, a data source will not send data outside of the assigned time frame and will
also not send more than one data sample during this time frame.

Next we formalise the global specification of the MARS system. If a data source fails
to send a data item for K consecutive times, then the system shall indicate this error by
sending signal err . The system is said to have recovered if N consecutive data messages
have been received from each source. In the original MARS system K = 3 and N = 2.

The occurrence of N consecutive events e between i and j is specified by the predicate
occ(e,N, i, j), which is defined as follows:

occ(e,N, i, j)(θ) def⇐⇒ N = 0 ∨
∃f : |dom(f)| = N ∧ f(0) = i ∧

f(|dom(f)|− 1) = j ∧ (∀k : k ≤ |dom(f)|− 1 → E(θf(k)) = e) ∧
(∀k : k < |dom(f)|− 1 → f(k) < f(k + 1) ∧
P − J < T (θf(k+1)) − T (θf(k)) ∧ T (θf(k+1)) − T (θf(k)) < P + J)

This implies that there exists a strictly monotonically increasing sequence f of length N
of indexes starting at i and ending at j such that at each position in this sequence the event
e occurs and that these events occur P ± J time-units apart.

To express that K data items have been missed we define:

TimeOut(e, t, i, j)(θ) def⇐⇒ Never(e, i, j) ∧ T (θj) − T (θi) ≥ t

147

which states that event e has not occurred for at least t time units between positions i and
j in trace θ.

Observe that a data source s is in an error state at position i in the trace θ if it has not sent
data for at least L

def
= KP + 2J time units at position j ≤ i and that it has not recovered

until position i. This is expressed by the following assertion:

Error(d, i)(θ) def⇐⇒ ∃k, j : j ≤ i ∧ TimeOut(d, L, k, j)(θ) ∧
(∀m : j < m ∧ m ≤ i → ¬∃l : occ(d, N, l, m)(θ))

The validity of an error signal is specified by assertion TDS1, where ∆err represents the
delay needed to react to the occurrence of an error.

TDS1(θ)
def⇐⇒ ∀i, j : i < j ∧ (∃s : TimeOut(ds, L, i, j)(θ)) ∧

(∀s : ¬Error(ds, j)(θ)) → AfterWithin(err , j,∆err)(θ)

The integrity of the error signal err is specified by:

TDS2 (θ)
def⇐⇒ ∀j : E(θj) = err →

∃i, k : i < k ∧ k < j ∧ (∃s : TimeOut(ds, L, i, k)(θ)) ∧
(∀s : ¬Error(ds, k)(θ)) ∧ Never(err , k, j − 1)(θ)

The system recovers from an error when all data sources have been sending N consecutive
messages. This recovery is indicated by sending a ok signal. The next predicate specifies
that all sources have indeed sent N consecutive data messages.

Recover(D, i, j) def⇐⇒ ∃f, g : i = mind∈D f(d) ∧ j = maxd∈D g(d) ∧
(∀d, d′ : |T (θf(d)) − T (θf(d′))| ≤ 2J) ∧
(∀d, d′ : |T (θg(d)) − T (θg(d′))| ≤ 2J) ∧
(∀d : occ(d, N, f(d), g(d)))

This predicate states that there exist two functions f and g from events to positions such
that i is the smallest value produced by f , j is the largest value produced by g, the values
in the range of f are at most 2J time units apart, as are the values in the range of g such
that we have N occurrences of d between f(d) and g(d). Using this predicate, we can
define the validity of the ok signal, using delay ∆ok to model the reaction time needed to
recover.

TDS3(θ)
def⇐⇒ ∀i, j : i < j ∧ Recover(D, i, j)(θ) ∧

(∃s : Error(ds, j)(θ)) → AfterWithin(ok , j,∆ok)(θ)

The integrity of the ok signal is specified by:

TDS4(θ)
def⇐⇒ ∀j : E(θj) = ok →

∃i, k : i < k ∧ k < j ∧ (∃s : Error(ds, i)(θ)) ∧
Recover(D, i, k)(θ) ∧ Never(ok , k, j − 1)(θ)

Finally, we specify the behaviour of the global system by TDS:

TDS(θ) def⇐⇒
∧

1≤i≤4 TDSi(θ)

148

5 Decomposition of the MARS example

In this section we decompose the MARS system in a few components, such that we can
show by compositional deductive verification that the composition of these components
satisfies the global specification TDS as presented in the previous section.

The main idea is that we specify a separate data receiver for each data source s and later
compose these receivers for different data sources with a component that specifies the
combinations of errors and recovery. This architecture is depicted in Figure 3.

Receiver
Message

Receiver
Message

Logic
Error

ok1
err1
miss

ok2
err2
miss

err

ok

d2

d1

Figure 3: Decomposed architecture for two data sources

The message receivers are identical processes; for a data source s it receives data items ds

and internal states are made visible by external signals errs, miss , and oks to represent
error and recovery. The role of miss signals will be explained later.

5.1 Message Receiver

The message receiver processes the data received from one data source. Processing data
takes time, which varies depending on the data received. We assume that this time is be-
tween l and u. The message receiver should enter an error state if K successive messages
are missing from its source. It should resume normal operation if it has received N succes-
sive messages from its source. Observe that this is very similar to the global specification
of the MARS system, now restricted to a single data source. Hence the assertions MRs,1

through MRs,4 which specify the errs and oks events are similar to TDS1 through TDS4.
Here we only present MRs,5 and MRs,6 which specify the miss event.

The error logic component, to be specified in the next subsection, has to be notified by a
message receiver that did not receive a data message in time. This is indicated by a miss
message, which has to be introduced because using only err and ok signals is not sufficient
for recovery according to the specification. The problem is that the err signal indicates the
absence of K data items, whereas recovery requires the presence of N consecutive data
signals from the data source. Observe that, when staying in the correct operational mode,

149

a few missing data items are allowed, but no missing data item is allowed when trying to
recover.

Observe that we can use a single miss event for all message receivers. We do not need a
separate event for each message receiver, because in order to recover, all message receivers
have to receive N consecutive data messages. The miss signal indicates that there exists
a component which missed a data message during this period. The error logic component
need not know which message receiver missed the data message.

A message receiver sends a miss message to the error logic whenever a time-out for a data
message occurs and it is not in an error state. If the message receiver is already in an error
state, it signals N consecutive data messages using an ok message. Therefore, it is not
necessary to send miss signals in this case. Sending a miss signal may be delayed by at
most ∆MR

miss time units.

MRs,5(θ)
def⇐⇒ ∀j : TimeOut(ds, P + 2J, i, j)(θ) ∧ ¬Error(ds, j)(θ) →

AfterWithin(miss, j,∆MR
miss)(θ)

Note that if the Kth data item is missed at j, the Error(ds, j)(θ) predicate is true and
signal miss is not emitted. Instead, by MRs,3, an errs signal is sent, i.e., not both a miss
signal and an errs signal are sent.

The integrity of a miss event is specified by MRs,6.

MRs,6(θ)
def⇐⇒ ∀j : E(θj) = miss →

∃i, k : i < k ∧ k < j∧ ¬Error(ds, i)(θ) ∧
TimeOut(ds, P + 2J, i, k)(θ) ∧ Never(miss, k, j − 1)(θ)

From N missing miss signals one can conclude that the data source s has received N
consecutive data messages:

Lemma 1. For any s, i, j, if TimeOut(miss, NP + 2J, i, j) then occ(ds, N, i, j)

More importantly, the timeout of the miss signal implies that all message receivers have
received N consecutive data messages.

Corollary 2. For all i, j, if TimeOut(miss, NP + 2J, i, j), then Recover(D, i, j)

Finally, we specify a message receiver for a source s as MRs(θ)
def⇐⇒

∧
1≤i≤6 MRs,i(θ).

5.2 Error Logic

The error logic component accepts errs and oks signals from each data source s, as well
as a signal miss indicating that there exists a data source s that has not received data from
its source during this cycle. The error logic will emit an err signal if it detects an error
in the system and an ok signal if the system recovers after an error. The behaviour of the
error logic is specified in the state machine of Figure 4.

State AllOk indicates that the system operates normally. When receiving an errs signal

150

Err2Err1

err1/
t:=0

err1/
t:=0

err2/
t:=0

err2/
t:=0

Miss1 Miss2

Errors

Miss

Wait

AllOk

[t >= N*P+2*J]

[t >= N*P+2*J]

miss/t := 0[t >= N*P+2*J]

miss/t := 0

err2/ err1/

err1/!err

err2/!err

miss/t:=0

miss/t:=0

miss/t:=0

miss/t:=0

miss/t:=0

ok1/

ok2/ ok1/

ok2/

ok1/!ok

ok2/!ok
[t >= N*P+2*J]
!ok

ok1/ok2/

Figure 4: State Machine of the error logic component

in this state, for some s ∈ {1, 2}, signal err is sent and state Errs is entered. Recovery
from this state occurs when an oks signal is received. But if an error signal is received for
the other source, state Errors is entered, indicating that the system has to recover from an
error in both data sources.

As long as the system is in the AllOk state it ignores all miss signals. If the system is in an
error state, i.e., one of err1, err 2 , or Errors, and it receives a miss signal, the error logic
has to wait for a new time-out of the miss signal and the required number of ok signals in
order to return to normal operation, which is represented by the states Miss1, Miss2 , Miss,
and Wait. The system measures the time elapsed since the latest reception of a miss signal
using the clock t. Consequently, it resets t whenever it receives a miss signal or a errs

signal.

State Wait is entered whenever one of the Misss states has been left after receiving the
corresponding oks signal, and the error logic itself has to emit an ok signal to confirm that
the system has recovered from the error condition. Observe that we have to wait until the
end of the current period in order to assert that during this time neither message receiver
sends an error signal. After a time-out of the miss signal, state Wait is left, AllOk is
entered, and an ok signal is emitted.

As an example, we give a scenario to show that state Wait is reachable. Suppose an err1

signal is received in state AllOk, leading to state Err1. During the next period a miss
signal is received from message receiver 2. This causes a state change to Miss1, indicating
that it has to receive an ok1 signal and, moreover, has to wait until message receiver 2
received N consecutive data messages. Observe that in this situation message receiver

151

1 only has to receive N − 1 data messages. Assuming that both message receivers will
receive their data messages, message receiver 1 sends its ok1 signal after N − 1 periods,
after which state Wait is entered. Next the error logic component has to wait another
period in order to make sure that message receiver 2 has received its N th data message,
after which it may signal recovery.

In order to specify the error logic component in a declarative way, we first formalise
whether an error of data source s has been detected and when the system is in state AllOk.

Error(i, s)(θ) def⇐⇒ ∃m : m ≤ i ∧ E(θm) = errs ∧ Never(oks,m + 1, i)(θ)

AllOk(i)(θ) def⇐⇒ ∀s : ¬Error(i, s)(θ)

The validity and integrity of an err signal indicating error is specified as follows, using a
maximal delay of ∆EL

err time units.

EL1(θ)
def⇐⇒ ∀i : AllOk(i)(θ) ∧ (∃s : E(θi+1) = errs) →

AfterWithin(err , i + 1, ∆EL
err)

EL2 (θ)
def⇐⇒ ∀j : E(θj) = err →

∃i : i < j ∧ AllOk(i)(θ) ∧ (∃s : E(θi+1) = errs)∧
Never(err , i + 2, j − 1)(θ)

The next predicate states that a data source s recovers from an error:

Recover(i, s)(θ) def⇐⇒ ∀i : Error(i − 1, s)(θ) ∧ E(θi) = oks

Next, using a maximal delay of ∆EL
ok , the validity and integrity of an ok signal is specified.

EL3(θ)
def⇐⇒ ∀i : (∃s : Recover(i, s)(θ)) ∧ (∀s : ¬Error(i, s))∧

(∃k : TimeOut(miss, NP+2J, k, i)(θ)) →AfterWithin(ok , i,∆EL
ok)

EL4(θ)
def⇐⇒ ∀j : E(θi) = ok →

∃i : i < j ∧ (∃s : Recover(i, s)(θ)) ∧ (∀s : ¬Error(i, s))∧
Never(ok , i+1, j−1)∧(∃k : TimeOut(miss, NP +2J, k, i)(θ))

The error logic is specified by the assertion: EL(θ) def⇐⇒
∧

1≤i≤4 ELi(θ)

6 Conclusions

We have presented a compositional framework for the compositional verification of high-
level real-time components which communicate by means of events. Compositional proof
rules for parallel composition and hiding have been proved sound in PVS. In this way,
we can use deductive verification in PVS to prove the correctness of a decomposition of a
system into a number of communicating components. Next, the components can be imple-
mented independently using UML, according to their specification, and the correctness of
the implementation with respect to the interface specification may be established by means
of other techniques, such as model checking.

152

The framework has been applied to the MARS case study, which has been supplied by
the Netherlands National Aerospace Laboratory in the form of UML models. The spec-
ifications presented here are the result of a long and arduous path leading to consistent
specifications of the parts and the full formal proof in PVS. In general, interactive verifi-
cation of UML models is very complex because we have to deal with many features si-
multaneously, such as timing, synchronous operation calls, asynchronous signals, threads
of control, and hierarchical state machines. Hence, compositionality and abstraction are
essential to improve scalability. Verifying the MARS case study indeed shows that deduc-
tive verification is more suitable for the correctness proofs of high-level decompositions,
to eventually obtain relatively small components that are suitable for model checking.

Since the original UML model of MARS was monolithic, a redesign of the original sys-
tem was necessary to enable the application of compositional techniques and increase our
understanding of the model. Interestingly, this led to a design that is more flexible, e.g.,
for changing the error logic, and more easily extensible, e.g., to more data sources, than
the original model.

Errors in the decomposition of the MARS system have been found using model checking
(by means of the IF validation environment [BFG+00] and UPPAAL [LPY95]) and by the
fact that no proof could be found for the original specification. One of these errors was
that we did not include a miss signal, which is required to correctly observe recovery in
the error logic component. Otherwise, the system recovered in circumstances where the
global specification did not allow this.

Observe that the compositional approach requires substantial additional effort to obtain
appropriate specifications for the components. Finding suitable specifications is difficult.
Hence, it is advisable to start with finite high-level components and to simulate and to
model-check these as much as possible. Apply interactive verification only when sufficient
confidence has been obtained. Finally, it is good to realise that interactive verification is
quite time consuming and requires detailed knowledge of the tool.

Acknowledgements We would like to thank all partners of the OMEGA project for many
fruitful discussions on the MARS case study.

References

[BFG+00] Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, Susanne Graf, Jean-Pierre
Krimm, and Laurent Mounier. IF: A Validation Environment for Timed Asynchronous
Systems. In E. Allen Emerson and A. Prasad Sistla, editors, Computer Aided Verifica-
tion ’00, volume 1855 of LNCS. Springer-Verlag, 2000.

[BGO+04] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis. The IF
toolset. In SFM-04:RT 4th Int. School on Formal Methods for the Design of Com-
puter, Communication and Software Systems: Real Time, pages 237–267. LNCS 3185,
Springer-Verlag, 2004.

[dBdRR85] Jaco W. de Bakker, Willem-Paul de Roever, and Grzegorz Rozenberg, editors. Current
Trends in Concurrency, volume 224 of LNCS. Springer-Verlag, 1985.

153

[DH01] Werner Damm and David Harel. LSCs: Breathing Life into Message Sequence Charts.
Formal Methods in System Design, 19(1):45–80, 2001.

[dR85] Willem-Paul de Roever. The Quest for Compositionality — a survey of assertion-
based proof systems for concurrent programs, Part 1: Concurrency based on shared
variables. In Proc. IFIP Working Conference 1985: The Role of Abstract Models in
Computer Science. North-Holland, 1985.

[dRea01] Willem-Paul de Roever et al. Concurrency Verification. Cambridge University Press,
2001.

[HdR85] Jozef Hooman and Willem-Paul de Roever. The Quest goes on: A survey of Proof
Systems for Partial Correctness of CSP. In de Bakker et al. [dBdRR85].

[Hoo98] Jozef Hooman. Compositional Verification of Real-Time Applications. In Willem-
Paul de Roever, Hans Langmaack, and Amir Pnueli, editors, Compositionality: The
Significant Difference, volume 1536 of LNCS. Springer-Verlag, 1998.

[LPY95] Kim Larsen, Paul Pettersson, and Wang Yi. Model-Checking for Real-Time Systems.
In Horst Reichel, editor, Proc. Fundamentals of Computation Theory, volume 965 of
LNCS. Springer-Verlag, 1995.

[Obj04] Object Management Group. UML 2.0 Superstructure Specification, October 2004.
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02.

[Old85] Ernst-Rüdiger Olderog. Process Theory: Semantics, specifications and verification. In
de Bakker et al. [dBdRR85].

[Ome05] Omega Consortium. Medium Altitude Reconnaissance System. Webpage at http:
//www-omega.imag.fr/cs/MARS/MARS.php, 2005.

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A Prototype Verification
System. In Deepak Kapur, editor, Automated Deduction – CADE-11, volume 607 of
LNAI. Springer-Verlag, 1992.

[ORSvH95] Sam Owre, John M. Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE
Transactions on Software, 21(2):107–125, 1995.

[PVS] PVS. http://pvs.csl.sri.com/.

[STMW04] Ingo Schinz, Tobe Toben, Christian Mrugalla, and Bernd Westphal. The Rhapsody
UML Verification Environment. In Proc. 2nd IEEE Int. Conf. on Software Engineering
and Formal Methods (SEFM2004), pages 174–183. IEEE Computer Society Press,
2004.

[vdZH06] Mark van der Zwaag and Jozef Hooman. A Semantics of Communicating Reactive
Objects with Timing. Journal on Software Tools for Technology Transfer, 2006.

[Zwi89] Job Zwiers. Compositionality, Concurrency and Partial Correctness, volume 321 of
LNCS. Springer-Verlag, 1989.

154

