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ABSTRACT
Medical software for computer-assisted surgery often solely
supports one phase of the surgical process, e.g., surgery
planning. This paper describes a concept for a system, which
can be seamlessly used in the preoperative planning phase,
in the intraoperative phase for viewing the planning data, as
well as for training and education. A combination of virtual
and augmented reality with a multi-user functionality will
support the three phases. 3D-printed organ models will be
used as interaction devices for more intuitive interaction
with the visual data and for educating future surgeons. We
present the three application scenarios for this concept in
detail and discuss the research opportunities.

CCS CONCEPTS
• Human-centered computing → Mixed / augmented
reality; Virtual reality; Haptic devices; • Applied com-
puting→Health care information systems; •Comput-
ing methodologies→ Reconstruction.
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1 INTRODUCTION
Medical imaging such as MRI (magnetic resonance imaging)
and CT (computed tomography) produces a vast amount of
2D and 3D data. These images contain very important infor-
mation for diagnosis and preoperative planning in modern
medicine and aid the surgeons in novel and more complex
treatments, e.g., more radical but safe tumor excisions. In ad-
dition, to be best prepared for the real case, the surgeons plan
their interventions based on MRI or CT data, which is also a
critical stage in decision making [14]. Research suggests, that
this activity depends on the level of expertise [14]. While
the resulting planning data is available for the local surgeon,
only few approaches are available to access the information
also in the operating room (OR) or to share themwith remote
experts for live interaction and discussion. Virtual reality
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(VR) and augmented reality (AR) might provide help in var-
ious ways in the context of surgery, such as preoperative
planning [8, 18, 20, 29]. Creating an immersive multiuser VR
(or AR) environment for preoperative planning, intraopera-
tive support, and training, comes with challenges, such as: (1)
transmitting big amounts of data with high update rates and
low latency, (2) creating a sufficient immersion and (3) an in-
tuitive interaction, as the user experience is always a crucial
factor. First examples for surgical applications using either
VR or AR have been proposed [13, 16], but in general those
systems are restricted to single parts of the process such as
the visualization of CT and MRI data [10], planning based on
this data [18], or supporting the surgical intervention using
this data [21, 26, 27].
In contrast, our research aims to create a system which

supports a broader spectrum of the surgeon’s activities in
the following three phases:
(1) preoperative: discussing (preprocessed) image data and

planning the operation steps together with (remote)
colleagues, and informing the patient about the proce-
dure

(2) intraoperative: performing the surgery while having
access to the planning data and if necessary being able
to call in a colleague (via telepresence) to assist

(3) training: using the case data for teaching, training, or
in demonstrations

To reach this goal, we will address the challenges regard-
ing data transfer, immersion, and (multiuser) interaction. We
aim to include 3D-printed organ models as tangible user in-
terfaces for natural interaction with the medical data. In com-
bination with advanced rendering methods for the virtual
models we want to provide an immersive tool that supports
surgeons. In order to bring in remote experts we rely on
point clouds recorded by depth cameras and will research
new compression and transmission formats to create a con-
sistent experience for multiple users in the same virtual
environment. In this work, we describe the concept for this
system and its application scenarios.

2 RELATEDWORK
Interacting with medical images, whether remotely or not,
happens mostly on a 2D screen with a mouse. In the case of
VR and AR environments or 3D displays, abstract gestures
or handles are used [10, 17, 18]. But surgeons and physi-
cians heavily rely on their tactile sensations and their visual
thinking. Hence, one of their essential abilities is to use their
anatomical knowledge to interpret the spatial relations of
the case at hand based on the available radiological image
data and on what they see and feel in the situs. Therefore,
an obvious requirement for a surgical VR/AR system is to
support this ability.

3D-printed organ models are already used for different
purposes in medicine [12], e.g. prints of liver (parts) for plan-
ning [30]. The use of 3D printing in medicine has been in-
creasing since 2000 [25] and there are efforts to make it more
cost effective and affordable as published by Witowski et
al. [28]. Nevertheless, a review by Martelli et al. [12] found
just 158 cases scientifically reported in a time span of 10
years (2005-2015). This leads to the conclusion, that the tech-
nique of creating a model from CT (or MRI) data [22] is not
common yet and requires further research.

As mentioned before, most existing approaches are limited
to displaying images and quantitative data on 2D screens.
Live discussions with remote experts based on the real organ
or an accurate patient model are not available, to the best of
our knowledge. In the field of telemedicine most research fo-
cused on remote controlled minimal-invasive operations [23]
while the literature regarding telemonitoring systems sup-
porting the actual procedure is sparse [15]. There are two
commercial telemonitoring systems available and both use
video streams to achieve a certain level of presence in the re-
motely working medical staff [2, 7]. However, even systems
with AR-support use tablets and video streams [4]. Research
on the effect of such systems shows, that there is no differ-
ence if there is a remote or a local mentor [19] and that using
the system leads to better results but takes longer [3]. The
reason might be the technology, as most proposed systems
rely on using depth cameras for skeleton tracking, which are
mapped onto avatars [5] in the application. The importance
of avatars is shown by Hasler et al. [9] and van der Land
et al. [24]. They proved that the quality of avatars has an
influence on the behaviour and the team-performance. How-
ever, the need for extensive pre-processing and the big data
volumes make the usage in real-time VR and AR applications
difficult [1, 6].
AR, VR and 3D-prints come with their unique benefits

and limitations: VR and AR miss the haptic sensation of
what the users see, but offer a variety of options to show
the important information from and in the image data. By
their very nature, 3D-prints offer a haptic sensation but only
show a selected view of the images and do not provide any
further displaying options. To get the “best of both worlds”,
we aim at combining the haptic perception of 3D-prints and
the rich visualization possibilities of AR and VR in order to
foster optimal communication of case specific information
to individual surgeons and between multiple individuals. Ad-
ditionally, depth cameras and the resulting point clouds will
help with creating reasonable avatars and representations
for telemonitoring respectively multiuser use cases.
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3 CONCEPT
In this section we will describe the concept of our system.
We will go into detail how we want to support the three ear-
lier mentioned scenarios: preoperative phase, intraoperative
phase, and education & training. To reach our goal of sup-
porting surgeons to work collaboratively and effectively on
the same set of data, sharing and visualizing information in
real time and over distant locations is crucial. Furthermore,
we want to reach a high level of immersion by representing
the anatomical structures of interest as realistically as possi-
ble. Depending on the use case, the visual appearance, and
in the case of 3D-printed models, the tactile experience of
the structures should be derived from the radiological data.
Additionally for training use cases for example, a transpar-
ent representation is needed. The creation of the data, that
forms the basis for the virtual environments and the 3D-
prints, involves medical image acquisition at the clinical site,
medical image data analysis (delineation of relevant struc-
tures, planning of resection planes) by medical-technical
radiology assistants, determination of the disease state and
tissue softness, polygonization of relevant structures and ap-
plication of disease specific textures, and finally 3D-printing
including color, softness and transparency.
These steps are carried out as a separate process before

the data is actually used and may take days including the
3D-printing. As a long term goal, this process should be
automatized as far as possible. Furthermore, high standards
in data security including anonymization and secure data
transfer need to be established.
Different hardware solutions will be employed for differ-

ent aspects. For example to integrate the 3D-printed organ
models, we will use reflective markers, as currently available
by OptiTrack1 or Brainlab2. To view the data in all three
phases mentioned in the introduction, recent VR and AR
devices like HTC VIVE3 and Microsoft HoloLens4 are of in-
terest. In the following, the three phases are discussed in
more detail.

Preoperative Phase
We identified two main use cases for VR, AR and 3D-printed
models during preparation of the surgery: the planning of
the surgery and the review of the plan. During planning
the surgeon studies the case and the anatomy of the patient
and creates and modifies various proposals for resection
planes. The planning may be carried out by an individual
surgeon, or with the help of remote experts. The review is a
simplified version of the same process in which data is not

1https://optitrack.com
2https://www.brainlab.com/de/
3https://www.vive.com
4https://www.microsoft.com/de-de/hololens

Figure 1: Exemplary virtual OR to complement live
streamed OR

modified. Hence, the finished plan or a case can be discussed
with remote experts or in the tumor board. Furthermore,
the planning data may be presented to and discussed with
the patient. Ideally, the system can support multiple users
at multiple locations. 3D-printed models can play various
roles in these use cases. In VR the 3D-printed model, either
a general or case-specific model, will aid as an interaction
device to control the virtual model. But also in AR the 3D-
printed model can be used for the same purpose and might
be overlayed with additional information. As our goal is to
create a multiuser application, the interaction using a 3D-
printed model at one location and the purely virtual model
at another location simultaneously will be a strong research
focus. Research on how to present several users adequately
and with low latency accompanies this research aspect. Also
the size of the organ model will be of research interest, to
ensure an interaction that is not fatigueing.

Intraoperative Support
During the surgery, we plan to enable two main features.
First, the system will allow the surgical staff in the OR to
review the planning data during surgery in an intuitive way
that does not interfere with the established workflows in the
OR. Second, the system will enable external users to immerse
themselves in the OR. The immersion of external users facili-
tates various use cases. First, remote experts can be invited to
give advice during the surgery. This opens the possibility to
consult specialists who can help with complicated or unusual
situations and give valuable guidance as they are aware of
the current state of the intervention. Second, local experts
such as the head of the department might use the system to
check the current status of the surgery without the need for
changing clothes and sterilization. Finally, observers such as
students, researchers or industry representatives might join
the surgery without crowding the OR. We will refer to all
these user groups as remote users. In the OR, AR technology
will be used to ensure the surgical staff has a clear view of

587

https://optitrack.com
https://www.brainlab.com/de/
https://www.vive.com
https://www.microsoft.com/de-de/hololens


MuC’19 Workshops, Hamburg, Deutschland Muender et al.

Figure 2: Exemplary 3D-print of a liver in transparent with
blood vessels and a tumor

the situs. At the same time the surgeon can view the plan-
ning data whenever needed and interact with it with hand
gestures. Remote users will use VR headsets as these allow a
higher degree of immersion in the rendered environment and
their current surroundings will not interfere with the immer-
sion. In order to be able to create a realistic impression of the
current situation in the OR in the VR environment, we plan
to capture the situs with several depth cameras and to recon-
struct a virtual representation of the situs and surroundings
of the OR for the remote users based on that data. Hence, an
important research challenge will be how to compress and
transfer point cloud data between different locations with
low latency. To construct the missing parts of the OR, we
will test different methods, for example matching a virtual,
completely modelled, OR to the scene. An example for a com-
plete virtual OR is depicted in Fig. 1. Furthermore, we will
investigate how to use the images captured by the camera
of the AR-headset to further augment the experience of the
remote users. Similar to surgical staff, the remote users will
also be able to interact with the planning data. Using either
VR-controllers or hand tracking, they will be able to point
onto certain features in the captured situs or the planning
data. These pointing actions will then be shown in the field
of view of the surgical staff. Interaction with the planning
data, especially with the virtual model will also be supported
by the 3D-printed model, if it is available for the remote user.
In combination with speech transmission, this will allow
remote users to support the surgeon during the surgery. Of
course, the functionality for pure observers will be reduced
in order to prohibit unwanted interference in the OR.

Education & Training
The third application area of our concept focuses on the
education of future physicians and the training of surgeons,
whichwe aim to improvewith the developedmethods. There-
fore, all technology developed for the scenarios preoperative
planning and intraoperative support can be used to train
on real cases. Furthermore, the 3D-prints can be used for a
variety of use cases: First, transparent models (e.g. see Fig. 2)
in real size can be used to teach and train the spatial relations
of internal structures of the organs as consulting surgeons
highlighted the importance of this ability. Second, opaque
haptically and visually realistic models with varying softness
can be used to train visual and tactile diagnostic skills. These
models can either be general examples or case-specific mod-
els, which will be reused from a real case. Printing haptically
realistic models matching a liver with cirrhosis or tumors
inside is challenging. Research has shown, that current 3D-
printing material is not soft enough to mimic human tissue
and just workarounds like air pokes and vents in the 3D-
print can get (nearly) satisfactorily results [11]. Biological
materials like collagen are not suitable, as our models are
supposed to be long lasting for repetitive used in lectures.
Therefore, creating a realistic and long lasting 3D-print will
be of research interest together with proper didactic integra-
tion.

4 CONCLUSION
Computer-assisted surgery becomesmore common and helps
surgeons to plan complex surgeries but currently is lacking
collaborative features as well as haptic feedback. In this work
we presented a concept idea of a system that can be used
to support planning and execution of the surgery as well as
training and education. We will combine a multiuser virtual
and augmented reality environment with 3D-printed organ
models as tangible user interfaces. The 3D-printed models
will be an important aspect for the planning phase as well
as for the training phase. In the intraoperative phase, depth
cameras will be used for a live reconstruction of the surgi-
cal intervention, so surgeons and remote personnel will be
able to collaboratively view and manipulate detailed 3D data
interactively in an immersive environment.
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