A Model for
Experience Base Schema Building Blocks

Ralf Carbon, Raimund L. Feldmann

Kaiserslautern University of Technology, AG Software Engineering, Postfach 3049,
D-67653 Kaiserslautern, Germany
{carbon, feldnmann}@ nfornatik. uni-kl.de

Abstract. Quality and process improvement programs usually require organi-
zations to run a repository such as an experience base. However, setting up the
schema of an experience base requires expert knowledge. But schema experts
are not aways available to support the setup of a new experience base. One
promising solution is to capture their knowledge in patterns or building blocks.
This paper describes a conceptual model for such experience base schema
building blocks. Schema experts can use the introduced model and the tool en-
vironment presented to create a set of schema building blocks representing their
knowledge.

1. Motivation

Organizational learning —often based on quality and process improvement programs—
usually requires the implementation of a repository. Such a repository is used for
storing knowledge and gained experience of an organization, and providing it to new
projects upon request. The often applied Experience Factory concept by Basili et. al.
[BCR94] suggests the implementation of a comprehensive organizational repository
denoted as Experience Base (EB). Publications on how to (technically) install an EB
do exist (e.g., [BR90],[TG99]), as do publications discussing the challenges and pit-
falls in designing and tailoring an EB for organizational needs (e.g., [KJL99],
[LF+01],[SS02]). This shows that setting up a suitable schema for a new EB requires
expert knowledge. But schema experts are not always available for a company to sup-
port the setup of anew EB with their experience.

Let us consider the following situation: A company, let's say ITS+M
(IT Solutions + More), wants to install an EB as part of their improvement program.
Our company primarily does consulting for small and middle-sized enterprises that
need to optimize their software processes. Therefore, the new EB should systemati-
cally store process patterns that are often employed by ITS+M to optimize their cus-
tomers' SW processes. ITS+M has never run an EB before, and does not employ an
expert who knows how to implement and run such an EB. For ITS+M it would be
helpful if they could access an archive with standardized EB schema elements —simi-
lar to their own process patterns—that represent schema expert knowledge on how to
store process models or process patternsin an EB.

Based on the idea of a modular EB structure [Fel00], we suggest the usage of so-
called schema building blocks (schema BBs) for documenting and consolidating such

83

schema knowledge. A conceptual model for these schema building blocks is detailed
in this paper. Schema experts can thereby record their knowledge and provide (i.e.,
transfer) it to organizations that are currently building up their own EB, without being
present in person.

The remainder of this paper is organized as follows: Section 2 describes the struc-
ture of EB schema BBs and distinguishes different types of them. Then, in Section 3,
we give an example of how the introduced schema BB types can be used for capturing
schema expert knowledge. A tool environment supporting the creation of sets of
schema BBs in accordance with our model is presented in Section 4. Findly, we
summarize our results and conclude with future directionsin Section 5.

2. A Conceptual Model for Schema Building Blocks

Different types of content are stored in an EB. According to [AN95] these are data
(e.g., measurement data), information (e.g., effort distribution models), and knowl-
edge (e.g., process patterns). For an EB we add experience (e.g., lessons learned
gained in a specific project) as a fourth type. The schema of an EB must support the
storage of all four types of content. Consequently, schema BBs must capture struc-
turesfor different EB entries.

Our conceptual model [Car02] describes
such schema BBs and classifies them in an P99 |
UML-like notation as illustrated in Fig. 1. ‘ Bl SRt i
Currently, we distinguish three types of e !
schema BBs. Root Building Block (RBB), b
Element Specific Root Building Block [wwtte | [Rotton | [consvain |
(ESRBB), and Add On Building Block (Add —

Stg’ %ngﬁgﬁzcgoﬁg%ig/pes are attrib Fig. 1. Conceptua Building Block Model

An RBB encapsulates common attributes and relations applicable to all entriesin
an EB, regardless of their content type. Examples for attributes of an RBB are:
"nane”, "creati on_date", or "short_descri ption"; a possible relation of an
RBB could be "al so_known_as". RBB attributes and relations can be regarded as a
basis for storing all kinds of data, information, knowledge, or experience in an EB.
Once defined, a RBB can be reused in all new EB schemas.

An ESRBB contains attributes and relations necessary to represent characteristics
of specific EB entries. ESRBBs can be compared to classes that help in structuring
and categorizing the EB schema. Aninitial set of ESRBBs can be defined by studying
the modular repository structure found in [Fel00]. This leads, for example, to
ESRBBs for process patterns (e.g., "ProcessPattern” in Fig.2) or lessons learned (e.g.,
"LessonLearned” in Fig.2). Attributes specific to a process pattern could be "appl i -
cation_domai n" and"li f ecycl e_nodel "; apossible relation is "see_al so" that
allows pointers to similar process patterns. The ESRBB for lessons learned could hold
the attributes "si t uat i on", "pr obl enf', and "sol uti on". These examples illustrate
that ESRBBs can contain attributes and relations to store context information. The
storage of such context information is required, in particular, regarding the content
types knowledge and experience. According to [BR91], such context attributes are es-

84

sential for identifying adequate reuse candidates in an EB. But an ESRBB can also be
used to store EB entries of the content type information. Such an ESRBB then only
contains attributes and relations to represent context independent information. An
ESRBB "Person", for instance, could capture information about employees (e.g., with
the attributes "enpl oyee_nane” and "phone#").

The third type of schema BBs in our conceptual model are Add Ons. They allow
flexible adaptation of EB schemas to specia requirements. Let us suppose a schema
expert wants to express that for some organizations it may be useful to store owner-
ship information for EB entries (e.g., process pattern) in the schema. This could be
modeled by an "owns/ owned_by " relation between the ESRBB "Person" and the
corresponding ESRBB "ProcessPattern". However, by simply adding an
"owns/ owned_by" relation to the ESRBBS, this relation would always be included in
al schemas that make use of these ESRBBs. To avoid such problems in our concep-
tual model, a schema expert would use an Add On "OwnedBy". This Add On would
capture the relation to the ESRBB "Person™ and would only be selected if ownership
needs to be documented in the EB schema. Note that an Add On cannot stand alone. It
aways depends on the definition of at least one ESRBB.

Such dependencies between schema BBs are specified in our conceptual model by
constraints. They guarantee the correct composition of BBs to create an EB schema.
The following grammar, in a BNF-like notation, defines our constraints for schema
BBs. The set of non-terminal symbols is declared as {C, B, B, s, Dgs}, Where "C" is
the start symbol. The set of terminal symbols is declared as {<bui | di ng bl ock>,
<ext ended by>, <requires>, <nutual excl usi ve>, <and>}, where dependen-
cies are highlighted in bold and <bui | di ng bl ock> stands for asingle BB from the
set of existing BBs. The set of productions reads as follows:

{ 1) C > BDgBis
2) Bist > B| B <and> B
3) Dgg > <extended by> | <requires> | <mutual exclusive>
4) B = <buil ding bl ock>
}.
Our Add On "OwnedBy", for instance, requires two ESRBBSs:. the "ProcessPattern”
ESRBB and the "Person" ESRBB. This dependency is specified in the form of a con-
straint as. "OwnedBy" <r equi r es> "ProcessPattern” <and> "Person". An additional
constraint "OwnedBy" <r equi r es> "LessonLearned" <and> "Person" indicates that the
same Add On could also be used to instantiate an ownership relation for lessons
learned in an EB schema. From this example it becomes obvious that a single Add On
can be easily combined with many ESRBBs. For a more detailed discussion of de-
pendencies between different types of BBs and their representation with the help of
constraints, the interested reader is referred to [Car02].

3. Capturing Schema Expert Knowledge Using our Model
Now we will have a closer look at our example set of BBs depicted in Fig. 2. Each

BB, especially the ESRBBs and Add Ons, can be independently defined by an expert
for the corresponding type of schema.

85

Owner |——etendedby | ProcessPattern —_—

Relation: see_also
requires iy

extended by

Attribute: application_domain| Element Specific ~ AddOn Combination
Attribute: lifecycle_model Root Building Block for ESRBB Constraint
Attribute: modeling_language

212 Attribute: precondition extended by

2| & Attribute: postcondition Usage

3| |2 Attribute: related_roles requires) Y

T:;“ % requires,

HiH

requires

requires
requires requires
extended b
extended b o
L extended by Y PrO]eCtDB

Y Leami Relation: ---
OwnedBy Feedback requres_} LearningCycle b

Attribute: application_domain|
ProcessPattern/nygrtended by Attribute: sfar:t date

Attribute: end_date
requires

‘extended by

extended by

extended by

extended by
salinbas

requires

requires extended by

Person LessonLearned |- requies "4 Origin
Relation: --- Relation: ---
Attribute: employee_name Attribute: situation extended by
Attribute: phone# Attribute: problem
Attribute: solution

Fig. 2. ESRBBs and Add Ons of our example with their constraints

Let us assume that in addition to the attributes already mentioned in Section 2, a proc-
ess pattern schema expert completed the "ProcessPattern” ESRBB by adding the at-
tributes "nodel i ng_| anguage”, "pr econdi tion", "postcondi tion", and "re-
| at ed_r ol es". Furthermore, the schema expert documents that it should be possible
to identify the owner of a stored process pattern, even if this person is not an em-
ployee. Consequently, s/he defines the Add On "Owner", which contains an attribute
"owner _nane" for storing the ownership information. The Add On needs the ESRBB
"ProcessPattern” to be applicable. Thisis expressed by another "requires' constraint in
Fig. 2. Now the ESRBB "ProcessPattern” requires either "Owner" or "OwnedBy" for
identification of the ownership of a process pattern. Since the application of both Add
Ons "Owner" and "OwnedBy" in the same EB schema would lead to redundancy
(which again may lead to inconsistencies later in the EB content) both Add Ons are
declared as "mutual exclusive" by using another constraint.

Let us further assume that we asked an expert for Learning Software Organizations
to help us in completing our set of schema BBs. According to this expert, it should be
possible to document learning cycles in an EB. Therefore, s/he enriches our example
set by the following BBs:

- The ESRBB "ProjectDB" allows the storage of project information as a basis for
organizational learning. This ESRBB holds attributes such as "appli ca-
ti on_domai n","start_dat e", and "end_dat e" of the project.

The Add On "Usage" defines a relation "used_i n/ uses" between the ESRBBs
"ProjectDB" and "ProcessPattern” to indicate that a process pattern of the EB has
been used in a certain project. Constraints indicate that the Add On requires both
ESRBBsto exist before it can be integrated into an EB schema.

The Add On "Origin" holds the definition for a relation "gai ned_i n/ gai ns"
between the ESRBBs "ProjectDB" and "LessonLearned". It allows to indicate from
which project of the EB a lesson learned was derived. Again, the "requires" and
"extended by" constraints are used to express the dependencies in combining the
Add On and ESRBBs.

86

The Add On "Feedback" allows a relation "has_part/is_about" between the
ESRBBs "ProcessPattern” and "LessonLearned” in the EB. Hence, one can store
feedback in the form of lessons learned for a concrete process pattern in the EB.
The Add On "LearningCycle_ProcessPattern” allows the definition of alearning cy-
cle for process patterns based on feedback gained in concrete projects. To instal
the learning cycle, this Add On simply requires the usage of the Add Ons "Feed-
back", "Usage", and "Origin". Thisis coded with the help of a set of "requires" con-
straints. Consequently, the Add On does not contain any specific attributes or re-
lations.
This should close the integration of expert knowledge into our example set of schema
BBs. The given set aready allows us to support the creation of EB schemas with up to
four different types of entries. All of these possible entries are basically described by
the four ESRBBs "ProcessPattern”, "LessonLearned", "ProjectDB", and "Person". Of
course, there could be further extensions of the BBs by additional (schema) experts,
but thisis beyond the scope of this paper.

Now let us see how our example set of schema BBs can help our company I TS+M
(see Section 1) with their problem in installing a new EB. Some possible EB schemas
based on combinations of our BBs are illustrated in Fig. 3. Since ITS+M wants to
store process patterns in the new EB, all schemas initially include the ESRBB "Proc-
essPattern”. Thereby, ITS+tM aready receives a schema that holds an initial set of at-
tributes used for storing process patterns. The schema includes context attributes (e.g.,
"appl i cati on_domai n" and "precondi tion") that will help ITM+S to identify
possible process pattern that can be used for optimizing the SW processes of a certain
customer. A complete EB schemafor ITS+M derived from the BB set might be:

Schema (a) in Fig. 3. This is the result of combining the ESRBBs "Person" and
"ProcessPattern” together with the Add On "OwnedBy". This simple schema would
alow ITS+M to store their process patterns and indicate which employee can be
contacted (e.g., via the phone number stored in the attribute "phone#") if ques-
tions arise. ITM+S likes the idea of documenting the owner of a process pattern.
However, this solution is not selected because ITM+S does not like the idea of
storing complete records with information on their employees in the new EB. In-
stead, I TS+M decidesto use the Add On "Owner" for their schema
Schema (b) in

Person ProjectDB ProjectDB Fi g. 3. Thisisthe
e?ploi‘ee,name application_domain ained_in b application_domain rest ||t Of em-
Lghone start_date start_date

A owned_by end date end date pl 0y| ng the
used 4| learning Yusedina ESRBBs "Proc-
owns ¥ W uses cycle v uses essPattern" and
ProcessPattern ProcessPattern ¥ gains ProcessPattern " ProjeCtDB" to-
application_domain application_domain _domain .
lifecycle_model lifecycle_model LessonLearned lifecycle_model gether W|th the
modeling_language modeling_language — is_about » | modeling_language " "
precondition precondition situation < has._part| Precondition Add OnS OWner
postcondition postcondition problem P postcondition " " .
related_roles related_roles [souon | related_roles and Usage . Thl S
owner name owner_name schemaiis the one
< see_also < see_also «see_also ITM +S fa\/OrS for
(a) (b) (c)

the initial imple-
Fig. 3. Example EB schema built from the set of building blocks mentation of their
(schema elements caused by Add On are indicated initalics) new EB. It allows

87

them not only to easily select process patterns for new projects but also to seein
which similar projects a process pattern has been successfully used before.
Schema (c) in Fig. 3. This schema could be built by combining the ESRBB
"ProcessPattern” with the Add Ons "Owner" and "LearningCycle_ProcessPattern”.
Viaits required constraints the latter includes the Add Ons "Feedback", "Usage",
and "Origin". These again require the usage of the ESRBBs "ProjectDB" and "Les-
sonLearned". As can be seen, this schema includes all elements of schema (b), and
therefore, can be seen as its (modular) extension. However, since ITM+S wants
to have an operable EB as soon as possible, they decide to first implement a
smaller version of their EB. After this first iteration is installed successfully, they
will then implement the complete schema (C) in a next step.

4. Tool Support

To support easy definition and management of schema BB sets according to our con-
ceptual model, we implemented a tool environment. The GUI is implemented in Java
and a relational database management system is used to store the BB sets. Severd
editors are available.

An Attribute Editor and a Relation Editor provide functions to create, modify, and
view attributes and relations. Attributes and relations are stored in so-called pools.
When defining BBs with the Building Block Editor (see Fig. 5), attributes and rela-
tions are taken out of these pools. This solution supports reuse of attributes and rela-
tions in more than one BB. Furthermore, the Building Block Editor allows to store
additional descriptive information with the BBs. Recommendation for selecting appli-
cable BBs from a set, for instance, can be given. Fig. 5 shows the Building Block

2% building Black Editor =ioix

File Building Block Attribute Relation Constraint

Attributes of the’

Existing Building Blocks
Components_CadeMadule_ESREB
Components_Framewark_ESRBE
Gomponents_Pattem_ESRBE
Feedhack AdtOn
LeamingCycle_Component_AddOn
LearningGycle_ProcessPattern_addon
LearningCycle_Technology_AddOn
LeseonL eamed_ESRBR
MeasurementProgram_ESRBE
Origin_AddOn

OwnedBy_Add0n

Owner_Addon

Person_ESRBB
PracessPattern_EGRED
ProjectDB_ESREB
RiskManagement_Addon
Significanse_AddOn
Technologies_Method_ESRBB
Technologies_Notation_ESREB
Technologies_Toal_ESREB
Usage_Addon

Versioning_addon

List of existing
building blocks

Building Block Editor

Name

ProcessPattern_ESRBB

Description
This building block captures
aftributes and relations needed to
store process patterns in an
experience hase

Creator

Carbon

Question

Doyou want to store pracess E
descriptions in form of process |2

pattems inyour sxperience base?

Select Question...

Identifies when the BB
should be selected.(i.e.,
when the question is
answered with "yes").

Clear

selected
building block

Attributes
application_domain
Iifecycle_model
modeling_language
posteondiions
preconditions
related_roles
team_size

Opens the
Attribute Editor to
insert a new
attribute from the
attribute pool

Add... Remove
Relations of the
Relations (selected
| tame | twet | twel } puilding block
9see_also Process | Proces;

pens the Relation
Editor to insert a new
relation from the relation
pool

Fig. 4. Screenshot of the Building Block Editor

88

Editor interface displaying the ESRBB “ProcessPattern” from our example.

The so-called Constraint Editor allows to specify dependencies between BBs of a
set. Possible constraints restricted according to the productions listed in section 2 can
be easily edited without direct application of the forma productions. A complete
documentation of our tool environment can be found in [Car02].

5. Conclusion and Future Directions

In conclusion we can state that the presented conceptual model for schema building
blocks seems to be a feasible way to document and consolidate schema knowledge.
First experience in using the described approach were gained while building the un-
derlying EB of the ViSEK portal [Vis03]. For that a set of schema building blocks
based on experience gained with the repository described in [Fel00] was used. The
approach supported fast setup of an initial schema. Furthermore, it allowed focusing
discussions of experts on selected parts of the schema (i.e., the schema building
blocks relevant to the expert's field of knowledge).

However, the selection of applicable schema building blocks from a given set
needs to be better supported. Meanwhile, a questionnaire-based tool for this purpose
is available [Tra02]. It creates a questionnaire based on the questions stored together
with each BB in our Building Block Editor (see Fig. 4 in Section 4). The question-
naire tool belongs to the tool suite that is currently being developed in Kaiserslautern
to implement a product line for EB schemas. The basic layout of this product line for
EB schemas isillustrated in Fig. 6. Our conceptual model for schema building blocks
(Section 2) together with the editors described in Section 4 form the displayed EB
Schema Building Block Repository. Here we are able to systematically collect exig-
ing schema expert knowledge in a comprehensive set of schema building blocks. This
collection is the core of the EB schema product line. Based on the user's answers to
the questions of the questionnaire, a precise characterization of the EB to be devel-
oped exists. With this characterization, applicable schema BBs will be automatically
selected from the EB Schema Building Block Repository. In a next step, they will be

. Schema Bundlng Block
Repository
Questionnaire

(for characterization)

Schema Integrator

ﬂ export functions

XML (e.g., for CBR based installations)

HTML (e.g., for web-based prototypes)
Generator /
Editor 4p

Fig. 5. A Product Line for EB Schemas

SQL-Script (e.g., for DBMS based installations)

89

integrated into an initial EB schema. This schema will be displayed in a graphical
editor to allow last changes by the user before the schema is generated in the form of
SQL-Scripts, XML descriptions, or HTML representations. Currently, the Schema
Integrator and the Generator/Editor tool are under development. After that, the tool
suite will be fully operable and will be able to semi-automatically construct EB sche-
mas. A complete evaluation of the approach will be conducted at that time.

Acknowledgements

Part of this work has been conducted in the context of the Sonderforschungsbereich
501 Development of Large Systems with Generic Methods (SFB 501) funded by the
Deutsche Forschungsgemeinschaft (DFG).

References

[AN95] A.Aamodt, M. Nygard: Different roles and mutual dependencies of data, information
and knowledge - An Al perspective on their integration. Data and Knowledge Engi-
neering, 16:191-222, 1995.

[BCR94] V.R. Basili, G. Caldiera, D. Rombach: Experience Factory. In JJ. Marciniak (ed.),
Encyclopedia of Software Engineering, vol 1, John Wiley & Sons, 1994, 469-476.

[BR91] V.R.Basili, H. D. Rombach: Support for comprehensive reuse. IEE Software Engi-
neering Journal, 6(5):303-316, September 1991.

[BROO] M. Broomé, P. Runeson: Technical Requirements for the Implementation of an Expe-
rience Base. In: G. Ruhe, F. Bomarius (eds.), Learning Software Organizations:
Methodology and Applications, LNCS #1756, Springer, 2000, 87-102.

[Car02] R. Carbon: A Repository for Experience Base Schema Building Blocks. Master's th e-
sis, Software Engineering Research Group, Dept. of Computer Science, Kaiserslau-
tern University of Technology, August 2002.

[FElO0] R.L. Feldmann: On Developing a Repository Structure Tailored for Reuse with Im-
provement. In: G. Ruhe, F. Bomarius (eds.), Learning Software Organizations: Meth-
odology and Applications, LNCS #1756, Springer, 2000, 51-71.

[KJL99] A.Koennecker, R. Jeffery, G. Low: Lessons Learned from the Failure of an Experi-
ence Base Initiative Using Bottom-up Development Paradigm. In Proc. of the 24th
Annua Software Engineering Workshop (SWE24), Greenbelt, Maryland, USA, De-
cember 1999. Online @ http://sel .gsfc.nasa.gov/website/sew/1999/program.html, last
visited January 2003.

[LF+01] M. Lindvall, M. Frey, P. Costa, R. Tesoriero: Lessons Learned about Structuring and
Describing Experience for Three Experience Bases. In: K.-D. Althoff, et. a. (eds.),
Advances in Learning Software Organizations, LNCS#2176, Springer, 2001, 106—
119.

[SS02] K. Schneider, T. Schwinn: Maturing Experience Base Concepts at DaimlerChrysler.
Software Process Improvement and Practice, vol 6(2): 85-96, 2001.

[TG99] C. Tautz, C. Gresse von Wangenheim: REFSENO: A Representation Formalism for
Software Engineering Ontologies. In Proc. of the 5th German Conference on Knowl-
edge-based Systems, 1999.

[Trad2] M. Trapp: A Flexible Approach for Coupling Experience Base Requirements and
Applicable Schema Building Blocks. Master’s thesis, SE Research Group, Dept. of
Computer Science, Kaiserslautern University of Technology, August 2002.

[Vis03] VISEK: Virtuelles Software Engineering Kompetenzzentrum. Online @
http://visek.de, last visited January 2003.

90

http://sel.gsfc.nasa.gov/website/sew/1999/program.html
http://visek.de

