Precision Reuse in CPAchecker *

Dirk Beyer !, Stefan Léwe !, Evgeny Novikov 2, Andreas Stahlbauer !, and Philipp Wendler !

1 University of Passau, Innstr. 33, 94032 Passau, Germany
2ISPRAS, A. Solzhenitsyn St. 25, 109004 Moscow, Russia

Abstract: Continuous testing during development is a well-established technique for
software-quality assurance. Continuous model checking from revision to revision is
not yet established as a standard practice, because the enormous resource consumption
makes its application impractical. Model checkers compute a large number of veri-
fication facts that are necessary for verifying if a given specification holds. We have
identified a category of such intermediate results that are easy to store and efficient to
reuse: abstraction precisions. The precision of an abstract domain specifies the level of
abstraction that the analysis works on. Precisions are thus a precious result of the verifi-
cation effort and it is a waste of resources to throw them away after each verification
run. In particular, precisions are reasonably small and thus easy to store; they are easy
to process and have a large impact on resource consumption. We experimentally show
the impact of precision reuse on industrial verification problems created from 62 Linux
kernel device drivers with 1 119 revisions.

Overview

Verification tools spend much effort on computing intermediate results that are needed
to check if the specification holds. In most uses of model checking, these intermediate
results are erased after the verification process — wasting precious information (in failing
and succeeding runs). There are several directions to reuse (intermediate) results [BW13].
Conditional model checking [BHKW 12] outputs partial verification results for later re-
verification of the same program by other verification approaches. Regression verification
[HIMS03, SG08, HKM196] outputs intermediate results (or checks differences) for re-
verification of a changed program by the same verification approach.

In program analysis, e.g., predicate analysis, shape analysis, or interval analysis, the
respective abstract domain defines the kind of abstraction that is used to automatically
construct the abstract model. The precision for an abstract domain defines the level of
abstraction in the abstract model, for example, which predicates to track in predicate
analysis [BHTOS], or which pointers to track in shape analysis [BHT06]. Such precisions
can be obtained automatically; interpolation is an example for a technique that extracts
precisions for predicate analysis from infeasible error paths.

We propose to reuse precisions as intermediate verification results. Precisions are costly to
compute and represent precious intermediate verification results. We treat these abstraction
precisions as reusable verification facts, because precisions are easy to extract from model
checkers that automatically construct an abstract model of the program (e.g., CEGAR),
have a small memory footprint, are tool-independent, and are easy to use for regression
verification because they are rather insensitive to changes in the program source code
(compared to previous approaches).

*This is a summary of a full article on this topic that appeared in Proc. ESEC/FSE 2013 [BLNt+13].

41



The technical insight of our work is that reusing precisions drastically reduces the number
of refinements. The effort spent on analyzing spurious counterexamples and re-exploring
the abstract state space in search for a suitable abstract model is significantly reduced.
We implemented precision reuse in the open-source verification framework
cPAcuecker! [BK11] (a supplementary web page is also available ?) and confirmed the
effectiveness and efficiency (significant impact in terms of performance gains and increased
number of solvable verification tasks) of our approach with an extensive experimental study
on industrial code. The benchmark verification tasks were extracted from the Linux kernel,
which is an important application domain [BP12], and prepared for verification using the
LDV toolkit [MMN*12]. Our study consisted of a total of 16772 verification runs for
4 193 verification tasks that are available online 3, composed from a total of 1 119 revisions
(spanning more than 5 years) of 62 Linux drivers from the Linux-kernel repository.
Precision reuse is applicable to all verification approaches that are based on abstraction and
automatically computing the precision of the abstract model (including CEGAR). Both the
efficiency and effectiveness of such approaches can be increased by reusing precisions.
As aresult of our experiments, a previously unknown bug in the Linux kernel was discovered

by the LDV team, and a fix was submitted to and accepted by the maintainers *.

References
[BHKW12] D. Beyer, T. A. Henzinger, M. E. Keremoglu, P. Wendler. Conditional Model Checking:
A Technique to Pass Information between Verifiers. In Proc. FSE. ACM, 2012.

[BHTO6] D. Beyer, T. A. Henzinger, and G. Théoduloz. Lazy Shape Analysis. In Proc. CAV,
LNCS 4144, pages 532-546. Springer, 2006.

[BHTO8] D. Beyer, T. A. Henzinger, and G. Théoduloz. Program Analysis with Dynamic
Precision Adjustment. In Proc. ASE, pages 29-38. IEEE, 2008.

[BK11] D. Beyer and M. E. Keremoglu. CPACHECKER: A Tool for Configurable Software
Verification. In Proc. CAV, LNCS 6806, pages 184-190. Springer, 2011.

[BLNT13] D. Beyer, S. Lowe, E. Novikov, A. Stahlbauer, and P. Wendler. Precision reuse for
efficient regression verification. In Proc. ESEC/FSE, pages 389-399. ACM, 2013.

[BP12] D. Beyer and A. K. Petrenko. Linux Driver Verification. In Proc. ISoLA, LNCS 7610,
pages 1-6. Springer, 2012.

[BW13] D. Beyer and P. Wendler. Reuse of Verification Results - Conditional Model Checking,
Precision Reuse, and Verification Witnesses. In Proc. SPIN, pages 1-17, 2013.

[HIMSO03] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. A. Sanvido. Extreme model
checking. In Proc. Verification: Theory and Practice, pages 332-358. Springer, 2003.

[HKM196] R.H. Hardin, R. P. Kurshan, K. L. McMillan, J. A. Reeds, and N. J. A. Sloane. Efficient
Regression Verification. In Proc. WODES, pages 147-150, 1996.

[MMNT12] M. U. Mandrykin, V. S. Mutilin, E. M. Novikov, A. V. Khoroshilov, and P. E. Shved.

Using Linux device drivers for static verification tools benchmarking. Programming
and Computer Software, 38(5):245-256, 2012.

[SGO08] O. Strichman and B. Godlin. Regression Verification — A Practical Way to Verity
Programs. In Proc. Verified Software: Theories, Tools, Experiments, pages 496-501.
Springer, 2008.

'http://cpachecker.sosy-lab.org
’http://www.sosy-1lab.org/~dbeyer/cpa-reuse/
3nttp://www.sosy-lab.org/~dbeyer/cpa-reuse/regression-benchmarks/
‘https://patchwork.kernel.org/patch/2204681/

42



