

MITTEILUNGEN Nr. 35, Januar 2020 (Workshop 2019)

 ISSN 0177-0454

GESELLSCHAFT FÜR INFORMATIK E.V.
PARALLEL-ALGORITHMEN, -RECHNERSTRUKTUREN

UND -SYSTEMSOFTWARE

INFORMATIONSTECHNISCHE GESELLSCHAFT IM VDE

PARS

Computergraphik von: Georg Nees, Generative Computergraphik

I n h a l t

28. PARS-Workshop 2019 (Full Papers) 5

PARS (Berichte, Aktivitäten, Satzung) 133

14. PASA-Workshop 2020
(Aachen, 25. – 26. Mai 2020) 141

ARCS 2020 (Aachen, 25. – 28. Mai 2020) 143

Aktuelle PARS-Aktivitäten unter

http://fg-pars.gi.de

PARS-Mitteilungen

Gesellschaft für Informatik e.V.,
Parallel-Algorithmen, -Rechnerstrukturen

und -Systemsoftware

Offizielle bibliographische Bezeichnung bei Zitaten:
Mitteilungen - Gesellschaft für Informatik e. V.,
Parallel-Algorithmen und Rechnerstrukturen, ISSN 0177 - 0454

PARS-Leitungsgremium:

Dr. Steffen Christgau, ZIB, Berlin
Dr. Andreas Döring, IBM Zürich
Prof. Dr. Norbert Eicker, FZ Jülich
Prof. Dr. Thomas Fahringer, Univ. Innsbruck
Prof. Dr. Dietmar Fey, Univ. Erlangen
Prof. Dr. Vincent Heuveline, Univ. Heidelberg
Prof. Dr. Ben Juurlink, TU Berlin
Prof. Dr. Wolfgang Karl, Sprecher, KIT
Prof. Dr. Jörg Keller, stellv. Sprecher, FernUniversität in Hagen
Dr. Stefan Lankes, RWTH Aachen
Prof. Dr. Christian Lengauer, Univ. Passau
Prof. Dr.-Ing. Erik Maehle, Universität zu Lübeck
Prof. Dr. Ulrich Margull, TH Ingolstadt
Prof. Dr. Ernst W. Mayr, TU München
Prof. Dr. Jürgen Mottok, OTH Regensburg
Prof. Dr. Wolfgang E. Nagel, TU Dresden
Dr. Karl Dieter Reinartz, Ehrenvorsitzender, Univ. Erlangen-Nürnberg
Prof. Dr. Bettina Schnor, Univ. Potsdam
Prof. Dr. Martin Schulz, TU München
Prof. Dr. Peter Sobe, HTW Dresden
Dr. Carsten Trinitis, TU München
Prof. Dr. Theo Ungerer, Univ. Augsburg
Prof. Dr. Rolf Wanka, Univ. Erlangen-Nürnberg

Die PARS-Mitteilungen erscheinen in der Regel einmal pro Jahr. Sie befassen sich mit allen Aspekten
paralleler Algorithmen und deren Implementierung auf Rechenanlagen in Hard- und Software.

Die Beiträge werden nicht redigiert, sie stellen die Meinung des Autors dar. Ihr Erscheinen in diesen
Mitteilungen bedeutet keine Einschränkung anderweitiger Publikation.

Die Homepage

http://fg-pars.gi.de/

vermittelt aktuelle Informationen über PARS.

2

CALL FOR PAPERS
28. PARS - Workshop am 21.-22. März 2019

Technische Universität Berlin
http://fg-pars.gi.de/workshops/pars-workshop-2019/

Ziel des PARS-Workshops ist die Vorstellung wesentlicher Aktivitäten im Arbeitsbereich von PARS und ein damit verbundener
Gedankenaustausch. Mögliche Themenbereiche sind:

• Parallele Algorithmen (Beschreibung, Komplexität, Anwendungen)
• Parallele Rechenmodelle und parallele Architekturen
• Parallele Programmiersprachen und Bibliotheken
• Werkzeuge der Parallelisierung (Compiler, Leistungsanalyse, Auto-Tuner)
• Parallele eingebettete Systeme / Cyber-Physical Systems
• Software Engineering für parallele und verteilte Systeme
• Multicore-, Manycore-, GPGPU-Computing und Heterogene Architekturen
• Cluster Computing, Grid Computing, Cloud Computing
• Verbindungsstrukturen und Hardwareaspekte (z. B. rekonfigurierbare Systeme)
• Zukünftige Technologien und neue Berechnungsparadigma für Architekturen (SoC, PIM, STM,

Memristor, DNA-Computing, Quantencomputing)
• Parallelverarbeitung im Unterricht (Erfahrungen, E-Learning)
• Methoden des parallelen und verteilten Rechnens in den Life Sciences (z.B.Bio-, Medizininformatik)

Die Sprache des Workshops ist Deutsch und Englisch. Für jeden Beitrag sind maximal 10 Seiten vorgesehen. Die Workshop-Beiträge
werden als PARS-Mitteilungen (ISSN 0177-0454) publiziert. Es ist eine Workshopgebühr von ca. 100 € geplant.

Termine: Einreichungsfrist für Beiträge: 23. Januar 2019

Beiträge im Umfang von 10 Seiten (Format: GI Lecture Notes in Informatics:
https://gi.de/service/publikationen/lni/, nicht vor-veröffentlicht) sind in elektronischer Form unter folgendem
Link einzureichen: https://easychair.org/conferences/?conf=pars2019

 Benachrichtigung der Autoren bis 15. Februar 2019
Druckfertige Ausarbeitungen bis 31. August 2019 (nach dem Workshop)

Programmkomitee: A. Döring, Zürich • N. Eicker, Jülich • T. Fahringer, Innsbruck • D. Fey, Erlangen • V. Heuveline, Heidelberg
• R. Hoffmann, Darmstadt • B. Juurlink, Berlin • W. Karl, Karlsruhe • J. Keller, Hagen • E. Maehle, Lübeck •
U. Margull, Ingolstadt • E. W. Mayr, München • J. Mottok, Regensburg • W. E. Nagel, Dresden • M. Philippsen,
Erlangen • K. D. Reinartz, Höchstadt • B. Schnor, Potsdam • M. Schulz, München • P. Sobe, Dresden • C.
Trinitis, München • T. Ungerer, Augsburg • R. Wanka, Erlangen

Nachwuchspreis: Der beste Beitrag, der auf einer Diplom-/Masterarbeit oder Dissertation basiert, und von dem Autor/der Autorin
selbst vorgetragen wird, wird auf dem Workshop von der Fachgruppe PARS mit einem Preis (dotiert mit 500
€) ausgezeichnet. Co-Autoren sind erlaubt, der Doktorgrad sollte zum Zeitpunkt der Einreichung noch nicht
verliehen sein. Die Bewerbung um den Preis erfolgt durch E-Mail an die Organisatoren bei Einreichung des
Beitrages.

Veranstalter: GI/ITG-Fachgruppe PARS, http://fg-pars.gi.de

Organisation: Prof. Dr. Ben Juurlink, Technische Universität Berlin, Architektur eingebetteter Systeme, 10587 Berlin,
Germany, Tel.: +49-30-314-73130, E-Mail: b.juurlink@tu-berlin.de

Daniel Maier, Technische Universität Berlin, Architektur eingebetteter Systeme, 10587 Berlin, Germany, Tel.:
+49-30-314-22286, E-Mail: daniel.maier@tu-berlin.de

Prof. Dr. Wolfgang Karl (PARS-Sprecher), Karlsruher Institut für Technologie, Rechnerarchitektur und
Parallelverarbeitung, 76131 Karlsruhe, Germany, Tel.: +49-721-608-43771, E-Mail: karl@kit.edu

GESELLSCHAFT FÜR INFORMATIK E.V.
PARALLEL-ALGORITHMEN, -RECHNERSTRUKTUREN

UND -SYSTEMSOFTWARE

INFORMATIONSTECHNISCHE GESELLSCHAFT IM VDE

PARS

3

http://fg-pars.gi.de/workshops/pars-workshop-2019/
http://www.gi.de/service/publikationen/lni/
https://easychair.org/conferences/?conf=pars2019
http://fg-pars.gi.de/
mailto:b.juurlink@tu-berlin.de
mailto:karl@kit.edu

28. PARS-Workshop
 Seite

The Evolution of Secure Hash Algorithms. ... 5
Frederik Pfautsch, Nils Schubert, Conrad Orglmeister, Maximilian Gebhart,
Philipp Habermann, Ben Juurlink

Evaluating the Usability of Asynchronous Runge-Kutta Methods for Solving ODEs. 17
Christopher Greene, Markus Hoffmann

Reducing DRAM Accesses through Pseudo-Channel Mode. ... 27
Farzaneh Salehiminapour, Jan Lucas, Matthias Goebel, Ben Juurlink

Symptom-based Fault Detection in Modern Computer Systems .. 39
Thomas Becker, Nico Rudolf, KIT, Dai Yang, Wolfgang Karl

Memory-aware Weight Pruning for Deep Neural Networks. .. 51
Thomas Hartenstein, Daniel Maier, Biagio Cosenza, Ben Juurlink

GPU-beschleunigte Time Warping-Distanzen. ... 63
Jörg P. Bachmann, Kevin M. Trogant, Johann-Christoph Freytag

Generating Optimized FPGA Based MPSoCs to Parallelize Legacy Embedded Software with
Customizable Throughput. ... 73
Kris Heid, Christian Hochberger

A Quantitative Analysis of Processor Memory Bandwidth of an FPGA-MPSoC. 85
Robert Drehmel, Matthias Göbel, Ben Juurlink

Influence of Discretization of Frequencies and Processor Allocation on Static Scheduling of
Parallelizable Tasks with Deadlines. .. 95
Sebastian Litzinger, Jörg Keller

Enabling Malleability for Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics using LAIK. .. 109
Amir Raoofy, Dai Yang, Josef Weidendorfer, Carsten Trinitis Martin Schulz

Comparing MPI Passive Target Synchronization Schemes on a Non-Cache-Coherent Shared-
Memory Processor. .. 121
Steffen Christgau, Bettina Schnor

4

(Hrsg.): W. Karl, B. Juurlink
Proceedings 28th PARS Workshop

The Evolution of Secure Hash Algorithms

F. Pfautsch, N. Schubert, C. Orglmeister, M. Gebhart, P. Habermann, B. Juurlink
Technische Universität Berlin, Embedded Systems Architecture, Berlin, Germany
{f.pfautsch, n.schubert, c.orglmeister, gebhart, p.habermann, b.juurlink}@tu-berlin.de

Abstract: Hashing algorithms are a popular tool for saving passwords securely or file verification.
Storing plain-text passwords is problematic if the database gets exposed. However it is also a
problem if the used hashing algorithm is outdated. Short passwords can be attacked with brute-force
search, hence recommendations of a minimal password length are common. Given that computer
performance increased significantly during the last decades, outdated hashes, especially generated
by short passwords, are vulnerable today. We evaluate the resilience of SHA-1 and SHA-3 hashing
against brute-force attacks on a 24-core dual-processor system, as well as on a modern UltraScale+

FPGA. Reaching a peak performance of 4.45 Ghashes/s, we are able to find SHA-1 hashed passwords
with a length of up to six characters within three minutes. This time increases by a factor of 5.5× for
the more secure SHA-3 algorithm due to its higher complexity. We furthermore present a study how
the average cracking times grows with increasing password length. To be resilient against brute force
attacks, we therefore recommend a minimum password size of at least 8 characters, which increases
the needed computing time to several days (SHA-1) or weeks (SHA-3) on average.

Keywords: Hashing; SHA-1; SHA-3; Keccak; FPGA; vectorization

1 Introduction

In the past, numerous databases with hashed passwords got exposed. Additionally, history

has shown that weaknesses of algorithms will be found. Hence the increasing security of
hashing algorithms and their standardizations is very important to protect passwords. It
is also important to use strong hashing algorithms and passwords of sufficient length. If
someone tries to find the matching password to a given hash, a lot of work is required in

terms of computing power. As hardware has been getting more performant in recent years,
hashing algorithms need to keep up to continue being strong against collision attacks, i. e.
generating the same hash with different input data, or brute-force attempts to find matching

results for passwords. A secure hashing algorithm is therefore characterized by the time,
memory utilization and cost in terms of hardware and energy usage it takes to crack a hash.

We compare two different generations of the Secure Hash Algorithm, namely SHA-1 and

SHA-3 (with a hash length of 256 bit), in hardware and software to find out how secure

passwords of a certain length are. SHA algorithms are standardized by the US National
Institute of Standards and Technology (NIST). SHA-2 and SHA-1 are similar, which is the

5

F. Pfautsch, N. Schubert, C. Orglmeister, M. Gebhart, P. Habermann, B. Juurlink

reason why we chose not to look into SHA-2 further. The formula h(x) = y represents a
general hash equation, where h stands for the hash function and the y for the computed hash.
We are interested in finding the input value x which represents the password.

The main component of our comparisons is the performance, i. e. how fast hashes can be
cracked. In our work we use plain brute-force for cracking passwords hashed with SHA-1
and SHA-3. The hashes are computed on-the-fly meaning we didn’t use precalculated
rainbow tables and thus also support salted and peppered hashes. Furthermore, we analyze
the performance and the cost factor.

The paper is organized as follows: Section 2 provides a brief historical background and
the basic operating principle of the Secure Hash Algorithms family. Subsequently our
experimental setup is described in Section 3. In Section 4 we present our findings and
evaluate the differences between SHA-1 and SHA-3 in hardware and software. Afterwards,
Section 5 draws conclusions of the results.

2 Secure Hash Algorithms

The concept of hashing data is used for different occasions, such as comparing hashes of
passwords for logins, verifying error-free data transmission or transaction identification
in blockchains. Cryptographic hash functions are characterized by collision-avoiding
properties, reasonable speed while still providing security and being able to process input of
different lengths. Secure hashing algorithms are becoming more important with the growing
performance of hardware.

2.1 SHA-1 and SHA-2

The earlier released SHA-0 was quickly superseded by SHA-1 because of serious vulnera-
bilities [na95]. SHA-1, first published by the US National Security Agency (NSA) in 1995,
produces a message digest (“hash”) for a given input of 160 bits. It also improved the already
existing message digest algorithms of the MD-family e. g. MD5 and MD4 by Ronald L.
Rivest [Ri92] by using a similar construction but generating a larger hash value.

First published in 2001, SHA-2 was meant to be used alongside SHA-1 providing higher
security by generating longer hash values and being more complex by calculating two
intermediary functions instead of just one. Both, SHA-1 and SHA-2, are based on the
same principle of hash generation, the Merkle-Damgård-Construction: First the message is
padded to create an input of a certain fixed number of bits. Then this padded message is
split into blocks of a fixed size and finally a compression function is applied to each block,
using the output of the previous function and the next input block as input [ME79]. Both
algorithms work with a round-based compression function with a fixed number of rounds.

6

The Evolution of Secure Hash Algorithms

B

A

D

C

E

f

+

+ + +

rol(30)

rol(5)

B

A

D

C

E

W
t K

t

Fig. 1: SHA-1 round

SHA-1 works as follows (Fig. 1): The five 32 bit registers A–E get updated each round:
Register A–D are copied to B–E with B being rotated by 30 bit. The round dependent
f-function based on rotated values of the registers’ old values, an earlier prepared array
depending solely on the message (Wt) and a round-dependent constant (Kt) make up the new
value of A. The concatenation of all registers form the hash after 80 rounds. SHA-1 utilizes
the operations AND, XOR, OR, ROL (rotate left) and ADD. The algorithm uses the big-endian
format.

In 2015 and 2017 two major attacks on SHA-1 got released (titled SHAppening and
SHAttered), proving that it is possible to find collisions in a reasonable time when spending
enough resources [St17][SKP15]. From that point on, SHA-1 was considered outdated and
NIST recommended to stop using it in favor of SHA-2. However, due to the similar nature
in construction it was feared that finding a fundamental weakness in the Merkle-Damgård-
Construction would render SHA-2 unusable as well. This lead to the NIST hash function
competition from 2007 to 2012 to find a suitable replacement for SHA-2.

2.2 SHA-3

In 2012 the competition ended with NIST announcing Keccak as SHA-3 [Dw15]. Developed
by Bertoni et al., Keccak uses the sponge construction – in contrast to earlier SHA-algorithms.
Keccak is also round-based. The sponge principle works by “absorbing” the message block
by block with 1152 bit called rate and the remaining 448 bit serving as capacity. The rate part
is determining the speed of hashing and the capacity part is serving as security parameter.
The combination of both is called a Keccak-state, consisting out of 1600 bit for the most
complex design of Keccak. The state is a 3D-array of 64-bit lanes in a 5x5x64 cuboid [Be]
represented using the little-endian format. Each round, the state is run through the Keccak-f
called function. Each Keccak-f function consists of the five steps called Theta, Rho, Pi, Chi

7

F. Pfautsch, N. Schubert, C. Orglmeister, M. Gebhart, P. Habermann, B. Juurlink

and Iota. These steps “mix up” the state by rotating, parity calculations, non-linear pattern
calculations and symmetry-breaking actions (Fig. 2). After the whole message has been
absorbed, a variable-length hash can be “squeezed” out (Fig. 3). Keccak uses basic and fast
operations such as OR, AND and XOR.
1600b

Theta Rho Pi Iota
1600b

Chi

Fig. 2: SHA-3 round

0

0

message[0] message[1] message[n] digest[0] digest[n]

c

r

c

r

c

r

c

r

Absorption Squeezing

Fig. 3: SHA-3 architecture

Along with Keccak, other up-to-date hashing algorithms get used nowadays: bcrypt is one
of the oldest examples still in use, using the expensive key setup from the cryptographic
encryption algorithm blowfish [PM99]. Others include the already mentioned SHA-2-
family or scrypt which is sequential memory-hard [PJ15] – exploiting the lack of resources
in special hardware – and many other current algorithms along with the participants in the
SHA-3 competition.

So far Keccak as SHA-3 has been shown to be resilient against collisions. However with
collision finding techniques and a significant reduction of the number of rounds it is possible
to compromise hashes [DDS12].

3 Experimental Setup

The most common computer architectures are GPUs, FPGAs, ASIC and General Purpose
Processors (GPPs). Each of those architectures has different advantages. We wanted to
have sufficient performance while being energy efficient. For our comparison, we chose to
implement SHA-1 and SHA-3 on a GPP and an FPGA.

3.1 FPGA Design

To be able to brute-force strings, e. g. a password for a given hash, the design is separated
into the following components (Fig. 4).

8

The Evolution of Secure Hash Algorithms

• The top component, called engine-master, responsible for dividing the workload and
passing the found password to the CPU over the AXI interface

• The search engines, each responsible for a subpart of the search space

• The actual implementation of the algorithm, which can be exchanged for different
algorithms

• A padder, which is dependent on the algorithm. It provides an incrementing password
each clock cycle and pads according to the specification of the chosen algorithm.

Engine master

Engine #1

SHA1

Padder

SHA1

Padder

SHA1

Padder

AXI Interface

ARM

Processor

<-- Input hash

found pw -->

...

Engine #2 Engine #n

<-- start value found password -->

Fig. 4: Enginemaster with parallel engines

Depending on the available space and the desired performance, the number of search engines
can be increased to crack more passwords in parallel.

3.1.1 Engine Design

The engines can optimized for either low area usage or high throughput. Trying to use
the least resources possible per engine guarantees that many engines can be placed on the
FPGA, each engine calculating one round of SHA-1 per clock cycle. Filling the board with
these search engines while still maintaining a high clock frequency would split the search
space in many small subparts which can quickly be searched.

However we noticed that because of the overhead of each engine resulting in high resource
utilization, performance was very low and synchronization of the padder and engines was
difficult and costly in terms of hardware resources. Also a large number of registers was
needed for that approach. This lead us to abandon that approach and focus on pipelining a
single engine. Such an approach leads to a high usage of resources such as LUTs but also
results in very high throughput, generating at least one full hash per clock cycle.

Using multiple pipelined engines results in multiple hashes per clock cycle after the pipeline
initialization. Each of those search engines contains its own padder, responsible for padding

9

F. Pfautsch, N. Schubert, C. Orglmeister, M. Gebhart, P. Habermann, B. Juurlink

a given password, according to the algorithm. The engine master divides the search space
among the engines. We chose a simple approach of using one engine for all passwords of
the length 1 to n − 1 and the remaining engines for the password length of n characters. For
example, with a maximum password length of five and an engine count of four the division
is described in Tab. 1.

Engine start value end value

0 ␣ (ASCII 32) ~~~~ (ASCII 126)
1 ␣␣␣␣␣ (ASCII 32) >???? (ASCII 62, 63)
2 ????? (ASCII 63)]^^^^ (ASCII 93, 94)
3 ^^^^^ (ASCII 94) ~~~~~ (ASCII 126)

Tab. 1: Example of workload division to engines

3.1.2 SHA-1 Engine

In the SHA-1 engine the message gets padded to a multiple of 64 B first, with the length of
the original message in bit in the last 1 B in our implementation. Generally, SHA-1 is able
to hash blocks larger than 512 bit. However, due to an average password needing less than
one block, we limit our design to process only one block. Each engine contains a pipeline
with 80 stages, each calculating one round of SHA-1.

3.2 SHA-3 Engine

Our goal was to design the architecture to be as modular as possible, to simplify swapping
algorithms. However SHA-3 uses a different padder, which adds the value 0x06 after the
message and the 0x80 at the end (depending on the message size these two values might
be merged into one byte 0x86). SHA3-256 implements the most complex design of the
original Keccak algorithm, which uses a block size of 1600 bit, and the earlier explained
padding scheme. We pipelined the SHA-3-algorithm published by the Keccak team[Be11]
to increase performance and alternated it to fit into our architecture. However the sheer
number of status bits in SHA-3 make the whole algorithm very resource-intensive leading
to a high resource utilization for each engine.

3.3 Software implementation

Using the C-language and Intel intrinsics to target the Advanced Vector Extensions2

(avx2) and multithreading, we wanted to achieve the highest possible performance. The
code was compiled with gcc 7.3.0 -O3 -mavx2. Every 256 bit vector was split into eight

10

The Evolution of Secure Hash Algorithms

32 bit (SHA-1) or four 64 bit (SHA-3) lanes. Each lane is responsible for one hash, meaning
that eight SHA-1 or four SHA-3 hashes are computed simultaneously. This concept is
similar to the FPGA multiparallel engine approach with the threads being the engines. As
our experimental setup, we had a dual-CPU server driven by two Intel® Xeon® E5-2680

v3 Processors with a clock frequency of 2.5 GHz. Each CPU has 12 cores. With 24 cores
and hyperthreading, 48 threads are executed at the same time.

4 Experimental Results

We evaluated both design in terms of performance, hardware cost and energy efficiency.
Additionally, a comparison was done with other state-of-the-art hardware.

4.1 Software solution

Tab. 2 shows that SHA-1 is approximately 28x faster than SHA-3. With a factor of 2x
coming from twice as many hashes in each vector register. The remaining factor of 14 stems
from the high number of status bits required for SHA-3 besides the higher complexity of
the algorithm itself. SHA-3 works on 64 · 25 = 1600 status bits for each processing step.
This results in 25 vectors required for storing the status bits only. With AVX2 supporting up
to 16 vectors, data between cache and vector registers has to be swapped, which is time
consuming. Consequently, if we increase the number of threads, we also increase the hash
rate. Increasing the thread count works well until we hit a peak at 48 threads, hashing at a
rate of 1057.5 Mhashes/s (SHA-1) and 37.1 Mhashes/s (SHA-3), respectively.

SHA-1 SHA-3
Threads Hashrate Power Efficiency Hashrate Power Efficiency

[Mhashes/s] [W] [Mhashes/J] [Mhashes/s] [W] [Mhashes/J]

1 21.8 177 0.12 20.4 180 0.11
2 43.7 199 0.21 20.5 201 0.10
24 643.2 299 2.15 28.8 329 0.08
48 1057.5 313 3.38 37.1 339 0.11

Tab. 2: Software Implementation Results SHA-1/SHA-3

11

F. Pfautsch, N. Schubert, C. Orglmeister, M. Gebhart, P. Habermann, B. Juurlink

4.2 FPGA-based solution

We used a Xilinx Ultrascale+ MPSoC Device with Quad-Core Arm Cortex-A53 FPGA.
The 2017.3 Vivado version was used to synthesize and implement our VHDL design.

4.2.1 Performance

We implemented the design with varying engine numbers and tried several clock speeds to
generate the highest possible hash rate. Tab. 3 depicts these results for each engine with its
corresponding frequency. In our multiparallel pipelined architecture, one hash is generated
per clock cycle. This translates directly to the hash rate being a multiplication of the number
of engines multiplied by the clock frequency. Generally, the more hardware resources are
used, the smaller the clock frequency will be. Increasing the number of SHA-1 engines first
gave us a higher hash rate until we reached the sweet spot at 12 engines where the clock
frequency was at 370.4 MHz, giving us a total hash rate of 4444.8 Mhashes/s.

Due to the search space division, the SHA-3 hash rate was still rising with four engines but
five engines could not be implemented on the board. So the best performance for SHA-3
was accomplished with four engines and a corresponding clock frequency of 204.0 MHz,
contributing to a hash rate of 816.0 Mhashes/s. As shown in Tab. 2 and Tab. 3, SHA-1 not

Eng. Freq. LUTs Flip-Flops Hashrate Power1 Efficiency
[MHz] [usage] [usage] [Mhashes/s] [W] [Mhashes/J]

SHA-1 1 543.5 14.6 k 5.3 % 26.5 k 4.8 % 543.5 4.2 129.4
8 384.6 114.0 k 41.6 % 210.0 k 38.3 % 3076.8 19.5 157.8
9 384.6 128.9 k 47.0 % 236.2 k 43.1 % 3461.4 21.5 161.0

12 370.4 170.1 k 62.0 % 314.9 k 57.4 % 4444.8 27.3 162.8
16 259.7 224.9 k 82.1 % 419.7 k 76.6 % 4155.2 28.6 145.3
17 256.4 238.9 k 87.2 % 445.9 k 81.4 % 4358.8 31.2 139.7

SHA-3 1 277.7 49.0 k 17.9 % 36.3 k 6.6 % 277.7 12.6 22.0
2 222.2 97.0 k 35.4 % 72.4 k 13.2 % 444.4 18.7 23.8
3 208.3 145.5 k 53.1 % 108.5 k 19.8 % 624.9 25.6 24.4
4 204.0 193.9 k 70.8 % 144.6 k 26.4 % 816.0 34.2 23.9

Tab. 3: Hardware Implementation Results SHA-1/SHA-3

only has a higher hash rate than SHA-3 in software, but also in the hardware implementation,
the difference being an additionally speedup of 5.5×. This observation is explained by
the higher complexity of the SHA-3 algorithm. SHA-1 is a straight-forward algorithm to
implement with only 160 status bits. SHA-3 on the other hand has ten times that many
status bits while also having more complex computations during every round.

1 According to Vivado Implementation report

12

The Evolution of Secure Hash Algorithms

4.2.2 Hardware Cost

Having a look at the hardware costs for our implementations, we see that the Look-Up-Table
and Flip-flops usage increases linearly with the number of engines. This means the more
LUTs and FFs we have, the more engines we can implement on the FPGA. SHA-3 has three
times the LUT usage as SHA-1 with 49k compared to 14.6k, respectively. Higher hardware
usage lets the frequency drop while also decreasing the number of search engines. Hence
decreasing the overall hash rate. At the fastest hash rate, SHA-1 uses 62.0 % of all LUTs
and 57.4 % of all FFs. Meaning that more engines could have been implemented, but the
overall hash rate was dropping due to the frequency loss. Also SHA-1 balances the usage of
FFs and LUTs, ensuring to not have a bottleneck with either. SHA-3 uses a lot more LUTs
(70.8 %) than FFs (26.4 %). This behavior is also linked to the more complex round design
of SHA-3.

4.2.3 Energy Efficiency

We measured the energy efficiency by dividing the maximum hash rate by the power
consumption. As shown in Tab. 3, the FPGA uses 27.3 W (SHA-1) and 34.2 W (SHA-3)
at the highest hash rate. This results in hashes per joule of 162.8 Mhashes/J (SHA-1)
and 23.9 Mhashes/J (SHA-3). This illustrates that SHA-3 is 6.8× less energy efficient.
Comparing the energy efficiency of both algorithms on the CPU fortifies the suspicion
of SHA-1 being the more energy efficient algorithm (Tab. 2). SHA-1 and SHA-3 process
3.38 Mhashes/J and 0.11 Mhashes/J respectively, which corresponds to a 30.7× difference
in energy efficiency.

4.3 Comparison with state-of-the-art Hardware

A GTX 1080 Ti calculates SHA-1 hashes at an approximate rate of 11.6 Ghashes/s [Ic17].
Our maximum hash rate of 4.448 Ghashes/s is about 2.5 times slower. Adding the power
usage of a GTX 1080 Ti with 250 W and the power usage for the FPGA of 27.3 W, this
means that our FPGA solution is 3× more energy efficient. Dat et. al. achieved a throughput
of around 20 GB/s for SHA-3 ([DIK17]). They used a GTX 1080 and CUDA to obtain
their numbers. Our design has a maximum data throughput of about 40.8 GB/s. This means
that our designs on an FPGA are about twice as fast. Comparing our software and FPGA
solution shows that the FPGA has a 4.2× better performance than the GPP for SHA-1. With
SHA-3 the FPGA is even 21.9× faster compared with the software implementation.

13

F. Pfautsch, N. Schubert, C. Orglmeister, M. Gebhart, P. Habermann, B. Juurlink

4.4 Password Cracking Time

Hashing is also used to store passwords. Tab. 4 depicts the longest possible times of our
designs needed to crack a password of a certain length. The two most important criteria

SHA-1 SHA-3
PW length FPGA CPU FPGA CPU

≤ 3 <0.1 s <0.1 s <0.1 s <0.1 s
4 <0.1 s <0.1 s 0.1 s 2.10 s
5 1.65 s 6.94 s 8.99 s 3.29 min
6 2.59 min 10.87 min 14.09 min 5.15 h
7 4.05 h 17.03 h 22.08 h 20.18 d
8 15.87 d 66.72 d 86.46 d 1896.56 d

Tab. 4: Time to crack password with SHA-1/SHA-3 (Worst Case)

of password security are the password length and the value range of password characters.
While passwords with six or less characters can be cracked in minutes, password of eight or
more characters can take days to crack. Reducing the amount of characters from 94 to 62,
by ignoring all special characters, results in a 27.9× loss of cracking time.

Furthermore, finding a password on a CPU takes a lot more time than on an FPGA. SHA-3
has an even higher performance loss comparing hardware with software than SHA-1.

SHA-1 SHA-3 Speedup

Software 1057.5 Mhashes/s 37.2 Mhashes/s 28.4×
Hardware 4444.8 Mhashes/s 816.0 Mhashes/s 5.5×

Tab. 5: Results SHA-1/SHA-3

5 Conclusions

We evaluated the resilience of SHA-1 and SHA-3 hashing algorithms against brute-force
attacks. The performance on a Zynq Ultrascale+ MPSoC is 4.2× higher than with a 24-core
processor (Xeon E5-2680 v3) for SHA-1 and 21.9× higher for SHA-3 due to the modified
construction algorithm. Higher algorithmic complexity brute-force attacks result in 5.5×
longer runtime with SHA-3 than with SHA-1. Additionally, while passwords with a length
of six characters can be found in minutes, days are required for passwords with at least
eight characters. This underlines the need for passwords of sufficient length and the usage
of recent hash algorithms.

14

The Evolution of Secure Hash Algorithms

References

[Be] Bertoni, G.; Daemen, J.; Hoffert, S.; Peeters, M.; Assche, G. V.; Keer, R. V.:
Keccak specifications summary, url: https://keccak.team/keccak_specs_
summary.html.

[Be11] Bertoni, G.; Daemen, J.; Hoffert, S.; Peeters, M.; Assche, G. V.; Keer, R. V.:
Hardware implementation in VHDL, Jan. 31, 2011, url: https://keccak.
team/obsolete/KeccakVHDL-3.0.zip.

[DDS12] Dinur, I.; Dunkelman, O.; Shamir, A.: New Attacks on Keccak-224 and Keccak-
256. In: Fast Software Encryption. Springer Berlin Heidelberg, pp. 442–461,
2012.

[DIK17] Dat, T. N.; Iwai, K.; Kurokawa, T.: Implementation of High Speed Hash Function
Keccak Using CUDA on GTX 1080. In: 2017 Fifth International Symposium
on Computing and Networking (CANDAR). IEEE, Nov. 2017.

[Dw15] Dworkin, M. J.: SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions, tech. rep., July 2015.

[Ic17] Ickler, K. R.: Hashcat Benchmarks for Nvidia GTX 1080TI & GTX 1070
Hashcat Benchmarks, June 20, 2017, url: https://www.blackhillsinfosec.
com / hashcat - benchmarks - nvidia - gtx - 1080ti - gtx - 1070 - hashcat -

benchmarks/.
[ME79] MERKLE, R.: Secrecy, Authentication, and Public Key Systems. Ph. D. Thesis,

Stanford University/, 1979, url: https://ci.nii.ac.jp/naid/10020925339/
en/.

[na95] national: FIPS PUB 180-1: Secure Hash Standard. Gaithersburg, MD, USA,
1995.

[PJ15] Percival, C.; Josefsson, S.: The Scrypt Password-Based Key Derivation Function
(2012). URL http://tools. ietf. org/html/josefsson-scrypt-kdf-00. txt 2/10, 2015.

[PM99] Provos, N.; Mazieres, D.: Bcrypt algorithm. In. USENIX, 1999.
[Ri92] Rivest, R.: The MD5 Message-Digest Algorithm, tech. rep., Apr. 1992.
[SKP15] Stevens, M.; Karpman, P.; Peyrin, T.: Freestart collision for full SHA-1, Cryp-

tology ePrint Archive, Report 2015/967, https://eprint.iacr.org/2015/967,
2015.

[St17] Stevens, M.; Bursztein, E.; Karpman, P.; Albertini, A.; Markov, Y.: The first
collision for full SHA-1. In: Annual International Cryptology Conference.
Springer, pp. 570–596, 2017.

15

https://keccak.team/keccak_specs_summary.html
https://keccak.team/keccak_specs_summary.html
https://keccak.team/obsolete/KeccakVHDL-3.0.zip
https://keccak.team/obsolete/KeccakVHDL-3.0.zip
https://www.blackhillsinfosec.com/hashcat-benchmarks-nvidia-gtx-1080ti-gtx-1070-hashcat-benchmarks/
https://www.blackhillsinfosec.com/hashcat-benchmarks-nvidia-gtx-1080ti-gtx-1070-hashcat-benchmarks/
https://www.blackhillsinfosec.com/hashcat-benchmarks-nvidia-gtx-1080ti-gtx-1070-hashcat-benchmarks/
https://ci.nii.ac.jp/naid/10020925339/en/
https://ci.nii.ac.jp/naid/10020925339/en/
https://eprint.iacr.org/2015/967

16

B. Juurlink, W. Karl (Hrsg.)orkshop,
Proceedings 28th PARS Workshop

Evaluating the Usability of Asynchronous Runge-Kutta
Methods for Solving ODEs

Christopher Greene1, Markus Hoffmann1

Abstract: Combining asynchronous methods with scientific computing is a great challenge. In this
paper we make the attempt to combine such methods with a ODE solver. Although the results are
not on point for giving us a fully usable asynchronous method, this paper shows the direction of the
needed development to get such an asynchronous method.

Keywords: Differential Equations; Asynchronous Computations; Runge-Kutta Methods

1 Introduction

Scientific computing poses a difficult challenge for people from different domains, especially
in order to find a suitable trade-off between desired solution quality and computational
effort. Even the high parallel capabilities of todays hardware do not lead to a significant
reduction of these challenges because of the increasing dimensions of current problems
and low parallelization potentials of the algorithms, especially when it comes to solving
ordinary differential equations (ODEs). Additionally, high accuracy is often inevitable for
scientific computing.

Hence, at first glance, it seems counterproductive to marry approximation strategies li-
ke computations with expected data races with scientific computing. However, there is
already some successful work that introduces such strategies into scientific computing
[ADQ15],[Zh14]. Asynchronous parallelization methods in particular, which can be compa-
red with relaxed synchronization, are well-known in numerics and show a high efficiency on
GPUs [ACD15].Therefore, this paper evaluates the application of these methods on solvers
for ODEs and widenings the understanding of the potential and limits of these methods.
It also gives an insight on the requirements a numerical method has to meet to be a good
candidate for applying asynchronous parallelization methods.
1 Karlsruhe Institute of Technology, Chair of Computer Architecture and Parallel Processing, Kaiserstr. 12 / 76131

Karlsruhe, Germany markus.hoffmann@kit.edu

17

markus.hoffmann@kit.edu

C. Greene, M. Hoffmann

1.1 Current Status

Small et al. [Sm13] describe a method for solving sparsely linked ODEs, given they can
be arranged in a directed tree structure. The nodes of this tree are distributed on a system
with distributed memory for parallel calculation, solving the tree structure starting with the
outmost leaves and spreading the solutions to connected nodes, which then calculate their
solutions.

Barros [Ba15] work implements an individual step size control for all equations on an
asynchronous implementation, utilizing error estimation. Threads are only notified of
change, if an error exceeds a given maximum.

Another approach in solving ODEs is the QSS-method by Kofman [KJ01], which divides
the value-axis into quanta instead of the time-axis. The slope of an equation is calculated
and then assumed as constant, until a quantum is reached, where the slope is recalculated.
This method arose from event-driven architectures, where state changes are more important
than the exact value to any given time.

1.2 Methodology of the Evaluation

We analyze the usage of asynchronous methods by targeting different systems of ODEs with
a widely used method, the classical Runge–Kutta method. Firstly, we take a look into the
used solving methods and systems (see Section 2). Then, we introduce the used strategies
for asynchronous computing and the basic ideas behind the implementation in Section 3.
To note, we analyze the applicability of asynchronous approaches, but we do not provide
a run-time approach that controls the quality. With Section 4 we compare our different
approaches regarding their execution times and the relative error. This evaluation aims to
answer the following questions: Is it possible to create a fast asynchronous ODE solver that
keeps accuracy on an acceptable level? How can such a solver be improved to increase the
performance of these methods?

1.3 Main Findings

Based on the outcome of our experiments, the following conclusions can be drawn:

• Conclusion 1: Yes, it is possible to create an asynchronous solver with acceptable
accuracy and speed-up.

• Conclusion 2: The methods shown in this paper will not be used in practice, because
they can be substituted by equivalent and well-known synchronous solvers.

• Conclusion 3: There might be a way to create more useful asynchronous methods,
and we have a good idea of the direction of development.

18

Asynchronous ODE Solver

2 Mathematical Background

2.1 Soving Systems of Coupled ODEs

A nearly universally applicable and widely used class of methods for solving ordinary
differential equations (ODEs), as shown in equation (1), is the class of Runge-Kutta methods.
The simplest method of this class is the Euler method [Ha01], referenced as RK1 in this
paper. For a given ODE

Ûu(t) = f (t, u(t)) (1)

and a problem dependent chosen starting value u0, RK1 is specified as

u(tn+1) = u(tn) + h f (tn, u(tn)), u(t0) = u0, (2)

where h is a discretization parameter for the time axis, which means tn+1 = tn + h for
equidistant discretization. Based on this specification, the class of Runge-Kutta methods
can be completed by adding additional supporting points within (tn, tn+1) and combining
the evaluation of (1) on these points with the help of weighting factors. One of the most
famous representatives of the class constructed in this way is the RK4 method (also known
as the method of Runge and Kutta) [Ha01] as given in (3):

u(tn+1) = u(tn) + h
(
1
6

k1 +
1
3

k2 +
1
3

k3 +
1
6

k4

)
, u(t0) = u0, (3)

k1 = f (tn, u), k2 = f
(
tn +

h
2
, u +

h
2

k1

)
, k3 = f

(
tn +

h
2
, u +

h
2

k2

)
, k4 = f (tn+h, u+hk3)

From the mathematical point of view, the usage RK4 goes along with lower error rates (which
basically allows greater time steps) compared to RK1, whereas the computer scientists
perspective shows the need of more computing effort within RK4, leading to a higher
computation time per step. However, the most important aspect for us is the parallelization
potential.

We address this aspect by solving a system of ODEs instead of a single one. Moreover, to
show the influence of synchronization issues, we require a system of coupled ODEs [Ha01]
as shown in (4):

Ûu1(t) = f1(t, u1(t), u2(t), . . . , un−1(t), un(t))
... (4)

Ûun(t) = fn(t, u1(t), u2(t), . . . , un−1(t), un(t)).

The most intuitive way, and also the way with the lowest amount of needed system
characteristics, for parallelization of the Runge-Kutta methods is to distribute the equations
of (4) to the available threads. This results in synchronization requirements after each

19

C. Greene, M. Hoffmann

step for RK1 and additionally after each ki for RK4, which means a factor of 5 for the
synchronization effort compared to RK1. In conclusion, without any specific knowledge
about the system of coupled ODEs, RK4 allows greater time steps on the cost of computing
time for a single step in each equation and synchronization effort per step over the whole
system compared to an equivalent RK1.

2.2 Coupled ODEs used for testing

For testing the potential of asynchronous Runge-Kutta methods we use two systems of
ODEs. The first one is the Lotka-Volterra model (predator-prey equations) [Ol94], given as

Ûui = ui
©«bi +

m∑
j=1

ai ju j
ª®¬ , i = 1, 2, . . . ,m, (5)

where m represents the number of species, bi defines the birth rate of species i, and ai j
addresses the way of interaction between species i and species j.

For more advanced testing we used a single track model [Ge05] for simulating the behavior
of a car while moving. This model is given by the following equations:

Ûx(t) = v(t) cos(ψ(t) − α(t)), Ûy(t) = v(t) sin(ψ(t) − α(t))

Ûv(t) =
1
m
[(Flr − FAx) cos(α(t)) + Fl f cos(δ(t) + α(t))

− (Fsr − FAy) sin(α(t)) − Fs f sin(δ(t) + α(t))]
Ûψ(t) = wz(t), Ûδ(t) = is Ûwδ(t) (6)

Ûα(t) = wz(t) −
1

mv(t)
[(Flr − FAx) sin(α(t)) + Fl f sin(δ(t) + α(t))

+ (Fsr − FAy) cos(α(t)) + Fs f cos(δ(t) + α(t))]

Ûwz(t) =
1

Izz
[Fs f lf cos(δ(t)) + Fl f lf sin(δ(t)) − Fsr lr − FAyesp] ,

where x and y are representing the global position of the car, v gives the moving speed,
ψ/wz and α are showing the (global and local) angles of the moving direction, and δ the
the general direction of the (steerable) front wheels. This model can be parametrized by
wδ(t) (position of the steering wheel), FB(t) (used braking force), φ(t) (acceleration), and
µ(t) (used gear).

We used the first (easy scalable) model to show, that basic assumptions about the numerical
characteristics and estimations from a computer scientists perspective are correct for our
methods. Because of its complexity, level of coupling, and computational effort the second
model can be used to test the practical relevance of our methods.

20

Asynchronous ODE Solver

3 Strategies for Asynchronous ODE Solvers

Avoiding synchronization within any numerical method comes down to two basic approaches.
The most intuitive option is to avoid every single synchronization. But this may result
in uncontrollable errors or convergence problems which leads to the idea of selective
synchronization cancelling. For RK4 we decided to evaluate both approaches to find the
most suitable implementation.

3.1 Semi-Asynchronous Runge-Kutta Method

As seen before, a synchronized Runge-Kutta implementation needs to calculate 4 ki for each
of n differential equations. These ki are showing dependencies to the previously computed ki
of the same step and, with reference to the coupling between the equations, synchronization is
needed to provide all needed data for each ki . Additionally, synchronization is needed at the
end of each step to compute the next solution. The basic idea behind the semi-asynchronous
RK4 implementation is the cancelling of synchronization while computing the ki , but not
at the end of an iteration step. We implemented this by setting up an array for all needed
ki of a single step (resulting in an array size of n ∗ 4) and reusing this array for each step
without resetting. This means faster (with repect to computation time) equations will use
old ki-data from slower equations. However, with the help of the synchronization at the end
of each step, a faster equation will get these ki-data from the previous step that hopefully
do not differ too much from the ki of the correct step. Together with a suitable chosen
discretization parameter h this hopefully will result in small approximation errors. On the
other hand, 4

5 of synchronization is avoided.

3.2 Full Asynchronous Runge-Kutta Method

The idea of the Full Asynchronous Runge-Kutta Method is to remove even the last
synchronizing structure. The main issue here is to avoid exploding approximation errors.
For that, we implemented a scheduler that holds all equations in a queue. This scheduler is
equipped with distance parameter d to restrict the iteration step difference of the slowest
equation (tmin) and the fastest equation (tmax) by the condition tmax− tmin ≤ d. Additionally,
we need to set up a policy to find suitable ki-data. For the asynchronous implementation it
is done by saving all ki data from all equations and all steps. Thus it is possible to find the
most suitable ki-data for each equation: the newest available one for the fast equations and
for the slow equations we can use the computed ki from the actual step of the slow equation.
Obviously, the approximation error rises with badly chosen ki-data. That is why we want to
mention, that we tried to make sure to give an equation the “closest-to-its-own-step” ki-data
from each other equation resulting in an implementation with a registry system for all
computed ki . However, missing synchronization also reduces the efficiency of such a system
but it was the most efficient implementation we found with respect to the approximation
error.

21

C. Greene, M. Hoffmann

4 Experiments

We run all the experiments on two Intel Xeon CPU E5-2650 v4 processors (2.2GHz, 24
cores each) providing 64 GB of main memory. A synchronous and parallel version of the
RK4 solver executed using n threads for n equations is our base line. The basic discretization
parameter h is set to 0.05 for all RK4 and RK1 measurements, if not mentioned otherwise.
We set the iteration count to 30000 which provides enough iterations to take a look into the
long therm effects of our approaches.

4.1 Evaluation Metrics

For accuracy, we thought of calculating the standard relative error. Unfortunately, a not
negligible amount of the exact solutions are very close to 0. To avoid dividing by 0, we
changed the error calculations to a normalized L1-based measurement, given as

Êrel = 2 ∗
xexact − xapprox
|xexact | + |xapprox |

, Erel =
1
2
|Êrel |.

In order to improve the visualization, we decided to plot the average error of all equations at
a certain time:

E =
n∑
i=1

Ereli

n
, for n equations.

At this point it is important to mention that this error measurement comes with a great
problem. A small absolute error that occurs close to zero might have a much bigger relative
error than an error of the same size that occurs not in a near range around zero. This leads
to peaks in the relative error and pointing out the maximum relative error would lead to
biased results. Therefore, we decided to show the average error in every figure, because
these peaks do not have a great impact on the average error and although the maximum
error would be more interesting, our conclusions can also derived from the average error.

4.2 Analysis of (Semi-)Asynchronous Runge-Kutta Method

First of all we want to show the basic behaviour of our methods. For the Lotka-Volterra
model (LVM) we evaluated systems of 2 species up to systems of 10 species. We set the
parameters in a way that each system can be classified as one out of two classes. The
first class are asymptotic systems in the meaning that all equations are running against a
single value with only some oscillations at the beginning. The second class are periodic
oscillating systems with different frequencies and amplitudes. Figure 1 shows the error of a
representitve2 of each class: LVM10 for the oscillating systems, LVM9 for the asymptotic
ones. Additionally, the error for the single track model (STM) is visualized. This specific

2 We are focusing on these systems because of equivalent results for all other class members.

22

Asynchronous ODE Solver

Abb. 1: Accuracy of representitives of system classes over time.

model describes a car running in a circle with some acceleration at the beginning. Such
a parameter set leads to a mixture of different equations within the system: x and y are
oscillating, v has an asymptotic behaviour, ψ increases constantly, and so on. For the full
asynchronous method the distance parameter d is initially set to 1 for all models.

Obviously, the error for the asymptotic LVM9 vanishes immediately, while the error for the
oscillating LVM10 shows increasing errors over the time. The error for the STM oscillates
very fast within a rang between LV9 and LV10. Additionally, the semi-asynchronous method
shows smaller error rates compared to the full asynchronous method for almost all models
and points in time.

We do not have a special picture of the run times here because they are very unsurprising:
for the LVM the speed-up is around 1.5 for the semi-asynchronous method and around
1.3 for the asynchronous method. For the STM the semi-asynchronous speed-up is 1.3
and the asynchronous speed-up 1.1. The most interesting thing about the run times is the
unexpected slow asynchronous method. The reason for this is the combination of using
enough threads for all equations and a scheduler based implementation which limits the
runtime by the slowest equation and puts additional administrative effort on top. Therefore,
we added some experiments with variable thread numbers, variable distance parameter, and
variating discretization parameter, especially for the STM. Figure 2 shows the results of the
last mentioned. The most important part of this figure is the POI-line that shows the fixed
discretization of all synchronous methods. We leave out the figures for the other experiments
as they are exactly like expected: For a falling number of computing threads, all methods
are loosing speed. Because of the low number of needed threads for full parallelization,

23

C. Greene, M. Hoffmann

Abb. 2: STM for variating discretizations. The POI (point of interest) marks the fixed discretization
for the synchronous methods.

the runtime increases for all methods to the same extent, which made this experiment not
evaluable. Changing the distance parameter gives a slow speed up for all models while
increasing the error enormously, especially (but not only) in case of the STM. Therefore,
for discussing these results we are focusing on the error over time measurements and the
method comparison for the STM.

4.3 Discussion

For result discussion the LVM gives us the most basic insight view. Looking at figure 1
a basic expectation can be confirmed: Models with high frequency oscillating equations
are more error-prone to asynchronous methods than models with low frequency equations.
Another expectation can be confirmed by looking at LVM with different numbers of
equations. A model with more equations is more robust to errors induced by asynchronous
methods. To give the most impressive example: The error for the asynchronous LVM2 can’t
be computed because the result values are exploding to infinity, while an asynchronous
LVM10 creates a great but not exploding error. This behaviour of increasing error resistance
for increasing number of equations can be seen for all asynchronous methods and oscillating
systems.

For further discussion we now have to change the model to the STM because the LVM is
too simple to compute to get robust results. Looking at the POI-line of figure 2, we can
see, that both asynchronous methods are faster than both asynchronous methods. Focusing
on the semi-asynchronous method we can also see very suitable error that is only slightly

24

Asynchronous ODE Solver

higher than the error of the equivalent RK4. This leads us to our first conclusion: Yes, it
is possible to create a usable asynchronous method. Unfortunately, the speed-up at this
point is very low. That is why we think one can use RK4 with a specific h > 0.05 to get the
same results. This gives us the second conclusion: This method seems not to be useful in
practice. We made this figure also with the intention to see if a slightly decreased h for the
semi-asynchronous method can help to get better error rates by providing a speed-up to the
synchronous method for h = 0.05. Unfortunately, the runtime rises much faster than the
error rate drops. And again, the to low initial speed-up shows that there is no potential for
improvement in this direction for this model.

Looking at the asynchronous method for this model gives an impression how difficult it
is to get the error under control. Although we have chosen the lowest d, which results in
nearly (but not exactly) equivalent method to the semi-asynchronous method, the error is
even higher than the error of the equivalent RK1 while the runtime is only slightly better
than the runtime of RK4. As for the semi-asynchronous method, we hoped for a higher
speed-up which would allow a decreasing h to stabilize the error, especially because the
error is decreasing much faster than the error for the semi-asynchronous method.

To put it in a nut shell, we can see that basic expectations from the numerical point of view
and from a computer scientists point of view are met by the asynchronous methods, which
helps to predict the behaviour of such methods. Additionally, we could see, that it is possible
to create an asynchronous method that gives speed-up on the cost of a controllable increase
of the approximation error. Unfortunately, this speed-up has to be increased a lot to get a
useful method for practical application.

5 Conclusion and Future Directions

In this paper we evaluated the possibilities of applying asynchronous methods to an ODE
solver. For that, we applied a semi-asynchronous and a full asynchronous method to
a Runge-Kutta solver and compared the run times and error rates with the equivalent
synchronous method as well as the Euler method. We showed that a speed-up is gainable
for both asynchronous methods, but we could also see that this speed-up needs to be much
higher to get practically useful methods. Also, decreasing the resulting approximation error
is a good option for getting useful methods, especially in case of the full asynchronous
method.

We also get an impression of the numerical characteristics of these methods, which leads
us to two ideas for future development. The first idea is based on the speed-up. In a future
work we should test our actual methods on systems with a huge amount of equations. Based
on the implementation of our methods, they will increase their speed-up drastically when
the equation-prozessor-ratio is getting worse. This speed-up would give us the possibility
to adjust the discretization for the asynchronous methods which hopefully leads to much
better results.

25

C. Greene, M. Hoffmann

The second idea is based on the error rate. Our implementation, especially the full
asynchronous one, only uses old and therefore bad values if the actually needed values are
not available. But if we take a view beyond the horizon there are, for example, the implicit
methods using also future values to lower their error rates and become more stable. Maybe
it is possible to use this idea for faster equations (because there might be enough time to
compensate the additional computing effort) and also for slower equations (because we
will get future values with no additional effort) of a system to lower the error rates. Also
multi-step methods or even the QSS-methods might be something to think about in this
context.

In conclusion, we do have to do a lot of more work to get really useful asynchronous
methods for solving ODEs.

Literatur

[ACD15] Anzt, H.; Chow, E.; Dongarra, J.: Iterative Sparse Triangular Solves for Pre-
conditioning. In (Träff, J. L.; Hunold, S.; Versaci, F., Hrsg.): Euro-Par 2015:
Parallel Processing. Bd. 9233, Lecture Notes in Computer Science, Springer
Berlin Heidelberg, S. 650–661, 2015, isbn: 978-3-662-48095-3.

[ADQ15] Anzt, H.; Dongarra, J.; Quintana-Ortı, E. S.: Adaptive precision solvers for
sparse linear systems. In: Proceedings of the 3rd International Workshop on
Energy Efficient Supercomputing. ACM, S. 2, 2015.

[Ba15] Barros, F.: Asynchronous, Polynomial ODE Solvers Based on Error Estimation.
In: Proceedings of the Symposium on Theory of Modeling & Simulation:
DEVS Integrative M&S Symposium. DEVS ’15, Society for Computer
Simulation International, Alexandria, Virginia, S. 115–121, 2015.

[Ge05] Gerdts, M.: Solving mixed-integer optimal control problems by branch & bound:
a case study from automobile test-driving with gear shift. Optimal Control
Applications and Methods 26/1, S. 1–18, 2005.

[Ha01] Hazewinkel, M.: Encyclopedia of Mathematics. Springer Science+Business
Media B.V. / Kluwer Academic Publishers, 2001.

[KJ01] Kofman, E.; Junco, S.: Quantized State Systems. A DEVS Approach for
Continuous System Simulation. Transactions of SCS 18/3, S. 123–132, 2001.

[Ol94] Olek, S.: An Accurate Solution to the Multispecies Lotka–Volterra Equations.
SIAM Review 36/3, S. 480–488, 1994.

[Sm13] Small, S. J.; Jay, L. O.; Mantilla, R.; Curtu, R.; Cunha, L. K.; Fonley, M.;
Krajewski, W. F.: An asynchronous solver for systems of ODEs linked by a
directed tree structure. Advances in Water Resources 53/, S. 23–32, 2013.

[Zh14] Zhang, Q.; Yuan, F.; Ye, R.; Xu, Q.: Approxit: An approximate computing
framework for iterative methods. In: Proceedings of the 51st Annual Design
Automation Conference. ACM, S. 1–6, 2014.

26

 B. Juurlink, W. Karl (Hrsg.)
Proceedings 28th PARS Workshp

Reducing DRAM Accesses through Pseudo-Channel Mode

Farzaneh Salehiminapour, Jan Lucas, Matthias Goebel, Ben Juurlink1

Abstract:

Applications once exclusive to high-performance computing are now common in systems ranging
from mobile devices to clusters. They typically require large amounts of memory bandwidth. The
graphic DRAM interface standards GDDR5X and GDDR6 are new DRAM technologies that promise
to almost doubled data rates compared to GDDR5. However, these higher data rates require a longer
burst length of 16 words. This would typically increase the memory access granularity. However,
GDDR5X and GDDR6 support a feature called pseudo-channel mode. In pseudo-channel mode, the
memory is split into two 16-bit pseudo channels. This split keeps the memory access granularity
constant compared to GDDR5. However, the pseudo channels are not fully independent channels.
Two accesses can be performed at the same time but access type, bank, and page must match, while
column address can be selected separately for each pseudo channel. With this restriction, we argue
that GDDR5X can best be seen as a GDDR5 memory that allows performing an additional request
to the same page without extra cost. Therefore, we propose a DRAM buffer scheduling algorithm
to make effective use of the pseudo-channel mode and the additional memory bandwidth offered by
GDDR5X. Compared to the GDDR5X regular mode, our proposed algorithm achieves 12.5% to 18%
memory access reduction on average in pseudo-channel mode.

Keywords: Memory Management; Memory Bandwidth; GDDR5X; GDDR6

1 Introduction

Over the last decade, due to the increasing number of memory-intensive applications, DRAM
bandwidth is known as one of the major performance bottlenecks in modern multi-core
systems. On one hand, new generations of DRAM technologies have been designed to
improve memory performance. For example, the Double Data Rate (DDR) standard was
introduced to increase memory bandwidth by transferring two data words per clock cycle.
Besides, to achieve further bandwidth, new I/O features have been added to modern DRAM
standards such as Graphic Double Data Rate 5 (GDDR5) and its modified version GDDR5X.
In comparison to GDDR5, GDDR5X employs a new I/O feature which can increase the
maximum data rate per pin by up to 14Gb/s/pin [Br18] compared to 7Gb/s/pin [JE16a] for
GDDR5. However, as the speed of the internal memory array is not increased the memory
burst size is increased to 16 words. With this burst size, 64 bytes are transferred in each
1 Technische Universität Berlin, Architektur eingebetteter Systeme(AES), Einsteinufer 17, 10587 Berlin, Germany

salehiminapour,j.lucas,m.goebel,b.juurlink@tu-berlin.de

27

salehiminapour,j.lucas,m.goebel,b.juurlink@tu-berlin.de

Farzaneh Salehiminapour, Jan Lucas, Matthias Goebel, Ben Juurlink

read or write transaction, if using a regular 32-bit wide interface. To reduce the issue of
this large memory access granularity, GDDR5X features a pseudo-channel mode which
enables the memory controller to fetch two simultaneous memory access with 32-bytes
access granularity from the two different pseudo-channels, provided these accesses have
the same access type, rank, bank and page [JE16b]. Pseudo-Channel Mode is not limited
to GDDR5X, GDDR6 [JE17] is also equipped with the same feature and also uses the
pseudo-channel mode to improve the access granularity without the extra signaling lines
required for a true dual channel mode.

On the other hand, memory scheduling algorithms play a significant role in modern
memory controllers to improve system performance. Prior works [BI12; Ki10; Su14]
proposed different memory scheduling algorithms that comply with various applications
and characteristics of specific systems. However, most existing memory controllers employ
the commonly used First Ready First Come First Served scheduler (FR-FCFS) [Ri00] to
shorten the overall latency of DRAM accesses. FR-FCFS was developed to prioritize page
hits and address the shortcomings of the First Come First Served (FCFS) algorithm [Ri00].

We observe that the GDDR5X pseudo-channel mode provides additional bandwidth that can
be utilized to design an effective memory scheduler for improving the system performance.
Moreover, GPU DRAM, such as the GDDR family, always can be a good predictor for
features that will appear in CPU DRAM in the future. This study, therefore, aims to
introduce a novel memory scheduling algorithm to maximize the benefit of using GDDR5X
pseudo-channel mode. To this end, we modified gem5 [Bi11] to support GDDR5X as a
CPU DRAM and evaluated the performance of our proposed scheduling algorithm using
trace-driven simulation.

To the best of our knowledge, this is the first work that investigates the GDDR5X pseudo-
channel feature to gain further bandwidth improvement.

The contributions of this paper are as follows:

1. We propose a new buffer scheduling policy called pseudo-channel-aware scheduling
algorithm to exploit further bandwidth of GDDR5X

2. We evaluate the pseudo-channel-aware scheduling algorithm on a wide variety
of workloads and compare its performance to a baseline system. On average, the
pseudo-channel-aware scheduling algorithm improves the performance by 38% for
an eight-core system across different workloads[SP06].

This paper is organized as follows. Related work is discussed in Section 2. In Section 3 the
details of our proposed method is presented. Section 4 discusses the experimental setup.
Following that, experimental results are given in Sections 5. Finally, Section 6 presents
conclusions and future work.

28

wolfg
Durchstreichen

wolfg
Durchstreichen

Reducing DRAM Accesses through Pseudo-Channel Mode

2 Related Work

DRAM buffer scheduling algorithms have been discussed in several prior works ranging
from application-aware to QoS-aware memory schedulers. Rixner et al. [Ri00] proposed the
First Ready First Come First Service (FR-FCFS) algorithm. This scheduler picks the first
ready access, which is an access from an already open page for the case of the open-page
policy. Next, if no access is found, the oldest access from the DRAM read/write buffer
is picked. Kim et al. [Ki10] proposed a QoS-aware memory scheduler called ATLAS to
control the number of services allocated for each application at the memory controllers and
to prioritize the requests of applications with respect to the minimum received memory
service. Subramanian et al. [Su14] developed an application-aware memory scheduler called
Blacklisting Memory Scheduler. This scheduler categorizes application requests into two
vulnerable-to-interface and interface-causing sets, to improve the performance and fairness
with a lower cost.

Although a considerable number of works [BI12; Ki10; Su14] have proposed advanced
DRAM scheduling algorithms, many memory controllers utilize the FR-FCFS scheduling
algorithm since it presents a good performance [Ha14] compared to other more complex
algorithms.

Our literature review revealed none of the existing memory schedulers investigated the
GDDR5X pseudo-channel mode to design a pseudo-channel-aware DRAM scheduling
algorithm with the goal of improving performance. This study presents the design of such a
scheduler to exploit further bandwidth from the pseudo-channel mode.

3 Problem Analysis

In this section, first, we present the GDDR5X standard and explain its most important
features. Second, we describe our proposed DRAM scheduling algorithm.

3.1 GDDR5X

GDDR5X SGRAM (Synchronous Graphics Random Access Memory), which is an extension
of the well-established GDDR5 standard, employs a new I/O feature to achieve a higher
bandwidth compared to GDDR5.

In addition to the regular GDDR5 Dual Data Rate (DDR) mode, a Quad Data Rate (QDR) is
also supported and transfers four data words per clock cycle and can be enabled via a mode
register bit. The DDR mode operates similar to a GDDR5-SGRAM, and provides a burst
size of 8 words. In contrast, the QDR mode transfers a longer burst size of 16 words, which
increases the memory access granularity from 32 bytes (in DDR) to 64 bytes. Therefore,
GDDR5X-QDR doubles the burst size and memory access granularity respectively.

29

Farzaneh Salehiminapour, Jan Lucas, Matthias Goebel, Ben Juurlink

Using QDR GDDR5X is able to provide additional bandwidth compared to GDDR5. The
standard enables 10-14Gb/s/pin [JE16b] data rate which is approximately a 2x increase over
its predecessor.

The increase in the access granularity from 32 bytes to 64 bytes in GDDR5X may fetch
unnecessary data to the main memory, which can reduce effective memory bandwidth.
Therefore, GDDR5X supports a feature called pseudo-channel mode in which the memory is
split into two 16-bit pseudo channels. Considering the burst length of 16, in pseudo-channel
mode, GDDR5X has the same access granularity as GDDR5. However, these two pseudo
channels are not fully independent, which means that while this feature allows issuing
two simultaneous memory requests with 32-bytes access granularity, access type, bank,
and page needs to match. However, different columns can be selected for each of the two
pseudo channels. According to [JE16b], GDDR5X utilizes six column address bits per
pseudo channel. Therefore, in pseudo-channel mode, 64 different addresses can potentially
be paired for each request. Issuing two simultaneous memory requests in Pseudo-channel
mode has no performance penalty. We can thus also think of GDDR5X in pseudo channel
mode as a GDDR5, which can issue one additional request for free, if the requirements
mentioned above, are met.

3.2 Proposed Memory Scheduler

DRAM buffer scheduling algorithms reorder memory requests to improve memory perfor-
mance. For example, commonly used FR-FCFS prioritizes (1) the page-hit requests and (2)
older requests over the younger ones to boost memory throughput. Given the pseudo-channel
feature, it is beneficial to make the memory scheduler aware of this feature in order to
maximize DRAM performance.

As remarked in Subsection 3.1, in the case of GDDR5X pseudo-channel mode, the memory
controller can fetch an additional request simultaneously without any extra cost if two
requests have the same type, bank, page, but different pseudo channels; any two requests
which meet these criteria will be referred to as pairable requests in this work.

Tab. 1: Request prioritization in our proposed algorithm

1. Pairable Requests (open page): Pairable requests from an already open page are
prioritized over all other requests
2. Pairable Requests (non-yet-open page): Pairable requests from a non-yet-open
page are prioritized
3. Non-pairable Request (open page): One open-page-hit request is prioritized
4. FCFS: Older request is prioritized over younger ones

Hence, utilizing GDDR5X as a CPU DRAM, we propose an extended FR-FCFS algorithm
called pseudo-channel-aware scheduling, to exploit additional bandwidth provided by

30

Reducing DRAM Accesses through Pseudo-Channel Mode

the GDDR5X pseudo-channel mode. Table 1 summarizes the four steps of the proposed
algorithm.

When enabling pseudo-channel-aware scheduling algorithm, first, the memory scheduler
proceeds to select all pairable requests either from the read or write buffer queue. Since
opening and closing a DRAM page takes a significant amount of time and energy [Ha14]
the memory scheduler first picks all available pairable requests from currently open DRAM
pages. In the second step, the pseudo-channel-aware scheduler targets all available pairable
requests from DRAM non-yet-open pages. Next, if no more pairable requests have been
found, the memory scheduler picks the first available unpaired request from an open DRAM
page (step 3). Finally, if no page-hit request is available, the pseudo-channel-aware scheduler
operates the same as the FCFS algorithm [Ri00] and targets the oldest request in the queue.

4 Experimental Setup

In this study, in order to quickly assess different policies, we choose a trace-driven approach
to evaluate our algorithm. Figure 1 illustrates a modern DRAM controller architecture,
with split read and write queues, a memory scheduler, and a response queue. The memory
scheduler is responsible for executing memory scheduling policies. We generated memory
traces using gem5 and implemented the functionality of a DRAM controller in a custom
trace-based simulator, written in C++. This simulator was used to evaluated the effectiveness
of our proposed memory scheduling algorithm.

G
D

D
R

5X

Bank
states

Response queue

Write queue

Read queue

`

`

`

Mem ctrlXbar
cache

cache

Xbar

CPU

M
em

or
y

sc
he

du
le

r

DRAM controller

Fig. 1: Overview of DRAM controller architecture

The memory traces were generated with the gem5 simulator using a simulated multi-core
system with eight out-of-order cores and a 512 KB shared last level L2 cache. Furthermore,
the gem5 simulator was extended in terms of clocking, data rate, and timing parameters
[JE16b] to support GDDR5X and its requirements and features. To support the pseudo-
channel mode, the address mapping unit in the memory controller was modified to assign a
bit to the pseudo channel. For address mapping, we used RoRaBaChPcbCo with Ro, Ra,
Ba, Ch, Pcb and Co representing row, rank, bank, channel, pseudo-channel bit and column,
respectively, going from MSB to LSB. Table 2 lists the details of all system parameters used
in the gem5 simulation.

31

Farzaneh Salehiminapour, Jan Lucas, Matthias Goebel, Ben Juurlink

Tab. 2: Parameters of the gem5 simulation

Processor Eight-core, 4.0 GHz, Out-of-Order
L1 D/I Cache 32 KB, 2-way set associative
LLC 512 KB, 8-way set associative
Cache Line Size 32 B
Prefetcher at LLC Stride prefetcher with degree=4
DRAM Controller On-chip, Open row policy
Address Mapping RoRaBaChPcbCo
Number of Instructions One billion instructions
(sampling)

In our custom simulator, we utilized the presented pseudo-channel-aware scheduling
algorithm to efficiently pick requests from either the read or write queue. As this is a
trace-based study, we do not consider read and write dependencies. Therefore, the queues
are assumed to be always filled with requests. The simulation was performed with four
different queue sizes of 256, 512, 1024, and 2048 entries in both pseudo channel and regular
mode. We used workloads from SPEC2006 CPU [SP06]. In particular, we have chosen 14
benchmarks from different categories to evaluate the effectiveness of our proposed memory
scheduler. Each benchmark was compiled using GCC and GNU Fortran. All benchmarks
are run using the SPEC reference input set.

In order to keep simulation time and trace file size manageable, we used custom gem5 scripts
with sampling. As shown in Figure 2, the trace collection function applies sampling to
capture all the behavior of the benchmarks and accurately collect DRAM memory accesses.

GDDR5X

Trace Collection Interface
(Aggressive sampling)

 ... CoreNCore1 Core2

COREs

Memory bus

I$ I$ ID D$ D$

Last Level Cache
DRAM Scheduler

Custom Simulation

Memory Trace

Trace Analysis

Trace-driven Simulation

Fig. 2: Overview of our framework

32

Reducing DRAM Accesses through Pseudo-Channel Mode

The idea behind sampling is to stay longer in the gem5 functional simulation than in
performance simulation and gain significant speedup. Therefore, for each workload, the
gem5 CPU was switched back and forth between a O3CPU which is a model of a real
out-of-order CPU and a AtomicSimpleCPU [Bi11] which is a model of a purely functional
in-order CPU. All simulations were executed using the first one billion instructions.

gcc
_sm

all
lib

qu
ant

um ast
ar

sph
nix

go
bm

k
nam

d
gcc

_1
66 hre

f
sop

lex mc
f

his
to

bzi
p2

xal
an

hm
me

r
Av

era
ge

0
2 x 1 0 7

4 x 1 0 7

6 x 1 0 7

8 x 1 0 7

1 x 1 0 8

Nu
mb

er
of

me
mo

ry
ins

tru
cti

on
s

W r i t e
R e a d

Av
era

ge
Fig. 3: Memory read/write accesses

5 Experimental Results

As explained in Section 3.1 GDDR5X can operate in two modes: regular and pseudo-channel.
Each mode has a different memory access granularity. In the regular mode, GDDR5X uses
a large burst size of 64 bytes while in pseudo-channel mode the granularity remains the
same as GDDR5 with 32 bytes. Regular mode is the simplest way to use all the bandwidth
offered by GDDR5X and was thus chosen as a baseline. However, due to the large access
granularity, regular mode will often perform unnecessary reads or writes. As discussed in
Section 3.1, pseudo channel mode is more flexible. While both regular and pseudo-channel
mode fetch 64 bytes from the same memory page, regular mode basically glues together
two 32 byte halves, while in pseudo channel mode, each channel can fetch any 32 byte burst
from its half of the memory page. This means each burst on one side of the page can be
paired with 64 different bursts from the other half of the page. This additional flexibility of
the pseudo-channel mode should increase the effective bandwidth of the DRAM interface
and allow us to avoid unnecessary reads or writes.

Figure 3 shows the total number of read/write operations in all benchmarks we studied.
The results are extracted from gem5 while running one billion instructions using sampling.
As illustrated in Figure 3, the average number of memory accesses in our simulations is
approximately five percent of the total number of instructions.

33

Farzaneh Salehiminapour, Jan Lucas, Matthias Goebel, Ben Juurlink

The ratio of total paired requests are presented in Figure 4 and Figure 5 for pseudo-channel
and regular modes with limited queue sizes of 256, 512, 1024, and 2048 entries. Moreover,
we executed the algorithm with an unlimited queue size for read/write queues to an
upper bound for the ratio of paired requests, and thus estimate the maximum achievable
improvement in our proposed algorithm. According to Figure 4 and Figure 5, our proposed
algorithm yields average upper bounds of 96 percent and 87 percent for the ratio of paired
requests in pseudo-channel and regular modes, respectively. Given the limited queue sizes
of 256 to 2048, our proposed algorithm on average yields 43 percent (pseudo-channel mode)
and 34 percent (regular mode) increase in the number of paired requests. The results show
that the proposed algorithm is able to achieve more paired requests in the pseudo-channel
mode due its flexibility in selecting paired requests (recall Section 3.1).

gcc
_sm

all
lib

qu
ant

um ast
ar

sph
nix

go
bm

k
nam

d
gcc

_1
66 hre

f
sop

lex mc
f

his
to

bzi
p2

xal
an

hm
me

r
Av

era
ge

0

2 0

4 0

6 0

8 0

1 0 0

Ra
tio

of
pai

red
ins

tru
cti

on
s(%

)

2 5 6 5 1 2 1 0 2 4 2 0 4 8 U n l i m i t e d

Av
era

ge

Fig. 4: Number of paired requests over the total number of memory requests in regular mode (baseline)

In order to have a better comparison, the ratio of paired requests is normalized to that of the
regular mode of GDDR5X with the smallest queue size of 256 entries. Figure 6 indicates
the normalized ratio of total paired requests in pseudo-channel and regular modes across
all workloads with different queue sizes. As shown in Figure 6, our algorithm for all four
queue sizes in pseudo channel mode can achieve a higher ratio compared to regular mode.
In the pseudo-channel mode, the average value of the normalized ratio across different
workloads ranges between 1.41 (for the smallest queue size) to 1.64 (for the largest queue
size), whereas its average value is limited to less than 1.2 (for the largest queue size) in the
regular mode.

Figure 7 shows the percent reduction in total memory accesses obtained in pseudo-channel
and regular modes. Similar to Figure 6, the results are normalized to the regular mode of
GDDR5X with 256 entries (the smallest queue size). In pseudo-channel mode, Figure 7

34

Reducing DRAM Accesses through Pseudo-Channel Mode
gcc

_sm
all

lib
qu

ant
um ast
ar

sph
nix

go
bm

k
nam

d
gcc

_1
66 hre

f
sop

lex mc
f

his
to

bzi
p2

xal
an

hm
me

r
Av

era
ge

0

2 0

4 0

6 0

8 0

1 0 0

Ra
tio

of
pai

red
ins

tru
cti

on
s(%

)

2 5 6 5 1 2 1 0 2 4 2 0 4 8 U n l i m i t e d

Av
era

ge

Fig. 5: Number of paired requests over the total number of memory requests in pseudo-channel mode

indicates that pseudo-channel-aware scheduling algorithm on average gives 12.5 percent
and 18 percent reductions in number of memory requests for the smallest and largest queue
sizes, respectively, for pseudo-channel mode. In contrast, the average reduction in regular
mode is bounded to 7.2 percent (in the largest queue size).

As a result, we find that even with the smallest queue size, the proposed algorithm in
pseudo-channel mode outperforms the largest queue size in regular mode. This means that
our algorithm can achieve higher memory access reduction compared to the baseline across
all workloads we studied.

6 Conclusions and Future Work

In this paper, we have presented a novel memory scheduling algorithm called pseudo-
channel-aware scheduling to exploit the GDDR5X pseudo-channel mode and thus improve
memory system performance. The proposed algorithm prioritizes memory requests in
read/write queues to select pairable requests with the same accesses type from the same
bank and page but different pseudo channels. We have evaluated the proposed scheduling
algorithm using 14 various benchmarks from SPEC2006. Furthermore, we performed all
simulations with four different read/write queue sizes of 256, 512, 1024, and 2048 entries,
with the results been compared to GDDR5X regular mode as a baseline. The results reveal
that the proposed algorithm is able to achieve a reduction of 12.5% and 18% on average
for the smallest and largest queue sizes of 256 and 2048 entries, respectively. Furthermore,

35

Farzaneh Salehiminapour, Jan Lucas, Matthias Goebel, Ben Juurlink

Re
gul

ar
Pse

udo
Re

gul
ar

Pse
udo

Re
gul

ar
Pse

udo
Re

gul
ar

Pse
udo

Re
gul

ar
Pse

udo
Re

gul
ar

Pse
udo

Re
gul

ar
Pse

udo
Re

gul
ar

Pse
udo

Re
gul

ar
Pse

udo
Re

gul
ar

Pse
udo

Re
gul

ar
Pse

udo
Re

gul
ar

Pse
udo

Re
gul

ar
Pse

udo
Re

gul
ar

Pse
udo

Re
gul

ar
Pse

udo

gcc
_sm

all

libq
uan

tum

ast
ar

sph
nix

gob
mk

nam
d

gcc
_16

6

hre
f

sop
lex mc
f

his
to

bzi
p2

xal
an

hm
me

r

Av
era

ge

0

1

2

3

4

Ra
tio

2 5 6 2 0 4 81 0 2 45 1 2

Av
era

ge

Fig. 6: Ratio of total paired requests normalized to the baseline with a queue size of 256 entries

Re
gul

ar
Pse

udo
Re

gul
ar

Pse
udo

Re
gul

ar
Pse

udo
Re

gul
ar

Pse
udo

Re
gul

ar
Pse

udo
Re

gul
ar

Pse
udo

Re
gul

ar
Pse

udo
Re

gul
ar

Pse
udo

Re
gul

ar
Pse

udo
Re

gul
ar

Pse
udo

Re
gul

ar
Pse

udo
Re

gul
ar

Pse
udo

Re
gul

ar
Pse

udo
Re

gul
ar

Pse
udo

Re
gul

ar
Pse

udo

gcc
_sm

all

libq
uan

tum

ast
ar

sph
nix

gob
mk

nam
d

gcc
_16

6

hre
f

sop
lex mc
f

his
to

bzi
p2

xal
an

hm
me

r

Av
era

ge

0 %

1 0 %

2 0 %

3 0 %

Re
duc

tion
of

tota
lm

em
ory

acc
ess

es

2 0 4 81 0 2 45 1 2

Av
era

ge

2 5 6

Fig. 7: Percentage of total memory access reduction compared to the baseline with a queue size of
256 entries

36

Reducing DRAM Accesses through Pseudo-Channel Mode

our algorithm can achieve an upper bounds of 96% for the ratio of paired requests in
pseudo-channel mode, thus demonstrating its potential.

In the future, we aim to continue this study in several directions. As noted in Section
4, this is a trace-based study and read/write dependencies are not reflected in the traces.
Therefore, we plan to implement our proposed scheduling policy on gem5 to measure the
performance on a real system. In addition, we intend to investigate this study in terms of
energy consumption; hence, the effect of the proposed algorithm on energy consumption
will be analyzed later. Future work also includes further evaluation with other benchmark
suites than SPEC2006 and real-world applications.

References

[Bi11] Binkert, N.; Beckmann, B.; Black, G.; Reinhardt, S. K.; Saidi, A.; Basu, A.;
Hestness, J.; Hower, D. R.; Krishna, T.; Sardashti, S., et al.: The Gem5 Simulator.
ACM SIGARCH Computer Architecture News 39/02, pp. 1–7, 2011.

[BI12] Bojnordi, M. N.; Ipek, E.: PARDIS: A Programmable Memory Controller for
the DDRx Interfacing Standards. ACM SIGARCH Computer Architecture News
40/03, pp. 13–24, 2012.

[Br18] Brox, M.; Balakrishnan, M.; Broschwitz, M.; Chetreanu, C.; Dietrich, S.; Fun-
frock, F.; Gonzalez, M. A.; Hein, T.; Huber, E.; Lauber, D., et al.: An 8-Gb
12-Gb/s/pin GDDR5X DRAM for Cost-effective High-performance Applications.
IEEE Journal of Solid-State Circuits 53/1, pp. 134–143, 2018.

[Ha14] Hansson, A.; Agarwal, N.; Kolli, A.; Wenisch, T.; Udipi, A. N.: Simulating DRAM
Controllers for Future System Architecture Exploration. In: IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).,
pp. 201–210, 2014.

[JE16a] JEDEC Standard: Graphics Double Data Rate (GDDR5) SGRAM Standard.
JESD212C 3/08, 2016.

[JE16b] JEDEC Standard: Graphics Double Data Rate (GDDR5X) SGRAM Standard.
JESD232A 5/15, 2016.

[JE17] JEDEC Standard: Graphics Double Data Rate (GDDR6) SGRAM Standard.
JESD250 11/17, 2017.

[Ki10] Kim, Y.; Han, D.; Mutlu, O.; Harchol-Balter, M.: ATLAS: A Scalable and High-
performance Scheduling Algorithm for Multiple Memory Controllers. In: IEEE
16th International Symposium on High Performance Computer Architecture
(HPCA)., pp. 1–12, 2010.

[Ri00] Rixner, S.; Dally, W. J.; Kapasi, U. J.; Mattson, P.; Owens, J. D.: Memory Access
Scheduling. In: ACM SIGARCH Computer Architecture News. Vol. 28. 2,
pp. 128–138, 2000.

37

Farzaneh Salehiminapour, Jan Lucas, Matthias Goebel, Ben Juurlink

[SP06] SPEC[Online], 2006, url: https://www.spec.org/.
[Su14] Subramanian, L.; Lee, D.; Seshadri, V.; Rastogi, H.; Mutlu, O.: The Blacklisting

Memory Scheduler: Achieving high Performance and Fairness at Low Cost. In:
IEEE International Conference on Computer Design (ICCD)., pp. 8–15, 2014.

38

https://www.spec.org/

B. Juurlink, W.Karl (Hrsg.)
Proceedings 28th PARS Workshop

Symptom-based Fault Detection in Modern Computer
Systems

Thomas Becker ,1 Nico Rudolf,2 Dai Yang,3 Wolfgang Karl 4

Abstract: Miniaturization and the increasing number of components, which get steadily more
complex, lead to a rising failure rate in modern computer systems. Especially soft hardware errors
are a major problem because they are usually temporary and therefore hard to detect. As classical
fault-tolerance methods are very costly and reduce system efficiency, light-weight methods are needed
to increase system reliability. A method that copes with this requirement is symptom-based fault
detection. In this work, we evaluate the ability to detect different faults with symptom-based fault
detection by using hardware performance counters. As the knowledge of a fault occurrence is usually
not enough, we also evaluate the possibility to make conclusions about which fault occurred. For the
evaluation, we used the fault-injection library FINJ and manually manipulated loops. The results show
that symptom-based fault detection enables the system to detect faulty application behavior, however
fine-grained conclusions about the causing fault are hardly possible.

Keywords: System Reliability; Fault Detection; Fault Analysis

1 Motivation

To satisfy the demand of higher computing power, increasing miniaturization of components
with increasing complexity and a growing number of components is deployed. This leads to

the constant rising of the failure rate of today’s computing systems. Especially soft errors in
hardware that are random and of temporary nature occur more often, as they are caused by

lowering the system voltage in the creation of energy-efficient products [SS02]. These faults
are particularly hard to detect as they do not always lead to wrong results and may not be
reproducible.

Lightweight methods that increase system reliability are needed as classical methods,
like redundancy and checkpoints, increase the cost and significantly reduce the system
efficiency [Be08]. One example of a lightweight method is symptom-based fault detection.
Symptom-based fault detection identifies faults in the system by comparing values of
runtime metrics called symptoms with a database of correct behavior and assuming differing
behavior is caused by a fault.
1 Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe, Germany thomas.becker@kit.edu
2 Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe, Germany nico.rudolf@student.kit.edu
3 Technische Universität München, Boltzmanstraße 3, 85748 Garching, Germany d.yang@tum.de
4 Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe, Germany wolfgang.karl@kit.edu

39

thomas.becker@kit.edu
nico.rudolf@student.kit.edu
d.yang@tum.de
wolfgang.karl@kit.edu

Becker, Rudolf, Yang, Karl

In this work, we evaluate the ability to detect different faults caused by hardware and system
interferences. As the sole knowledge of the occurrence of a fault is not enough to choose
an adequate recovery method, we also want to examine if the resulting symptoms allow to
make conclusions about the root cause. In summary, we make the following contributions:

• We evaluate the concept of symptom-based fault detection with different faults
and system interferences, e.g. created by the fault-injection library FINJ, on a
state-of-the-art computing system.

• We analyze if the resulting symptoms make conclusions about the causing fault
possible.

The remainder of this paper is structured as follows: Section 2 explains the necessary
fundamentals for this work. We describe our method of symptom-based fault detection and
how to evaluate it in Section 3. The following Section 4 presents our experimental setup
including the fault-injection methods used and our results. We then describe related work in
Section 5 and wrap up with conclusions and future work in Section 6.

2 Fundamentals

To define faults, errors and failures, we use the work of Salfner et al. [SLM10]:

• A failure refers to misbehavior that can be observed by the user. This means there may
be something wrong inside the system, but as long this does not result in incorrect
output there is no failure.

• An error is defined as the deviation of the system state from the correct state. Hence,
an error may lead to the service failure of an system, but also can stay unnoticed.

• Faults are then the hypothesized cause of an error. This means that errors are
manifestations of faults.

Symptom-based fault detection is based on the following hypothesis: Systems exhibit
steady-state performance behavior with few variations in the non-faulty case. However, a
fault manifests itself as increasingly unstable performance-related behavior before escalating
into a failure [WPN07]. This means that a symptom for occurring faults manifests itsel
as a variation of performance-related behavior, which can be monitored by performance
counters. To sum up, the basic concept is to monitor performance counters and assume the
occurrence of faults if they vary significantly compared to a baseline.

Performance Application Programming Interface (PAPI), developed by the University
of Tennessee [Te10], is a user-level library that grants easy access to performance counters.
PAPI provides two interfaces for application developers. The high level interface is simple

40

Symptom-based Fault Detection

to use and allows fast access to standard events that are present in most architectures. In
contrast, the low level interface allows a more detailed control and the access to so-called
native events that are specific to the underlying architecture. In this work, we use the PAPI
low level interface.

Fault injection is the deliberate triggering of faults with the objective to observe the
resulting behavior and to test error handling code. Fault injection can be done directly in
hardware or by using specific software tools. In this work, we focus on software implemented
fault injection. As fault injection is an important technique in proving the correctness and
robustness of a system or software, many tools and libraries exist. For this work, we chose
FINJ [Ne18], a fault injection tool for HPC systems. FINJ is implemented in Python and
based upon tasks. Thereby, a task can represent a benchmark or a fault-triggering program.
The execution of a workload of tasks is controlled by a specific controller that schedules
and starts the tasks on an engine.

3 Method

To evaluate symptom-based fault detection, the first step is to create a database, which
stores the performance behavior of correct executions. As a wide range of performance-
related metrics are available, relevant metrics have to be filtered out. We define a metric
as relevant, if their values do not vary significantly during repeated runs without faults
and show significant variance in the presence of faults. Relevant metrics can be found via
profiling runs. If the profiling runs only include executions without faults, the set of possibly
relevant metrics can be at least reduced to metrics that are stable during repeated executions.
Additionally, a lower and an upper threshold for the values of the selected metrics have to
be chosen. These thresholds are used to detect anomalies later. If a monitored value lies
outside of these thresholds, the occurrence of a fault is suspected.

For a selected number of benchmarks, we execute runs with injected faults. For each run,
only one specific fault is used. If there are monitored metrics whose values lie outside of
the chosen thresholds, the injected fault is assumed to be detected.

After all experiments are conducted, an analysis step follows. The injected faults are
classified. Then, the monitored results are checked if faults belonging to the same class
show similar changes in the runtime metrics. We also check if we can differentiate faults
belonging to different calsses by observing the monitored runtime behavior. In the current
state, this is done by hand, but the process should be automated in the future by using
machine learning algorithms.

4 Evaluation

This section presents our fault injection methods, the experimental setup and the conducted
experiments. We used three different benchmarks, i.e. matrix multiplications with 300× 300

41

Becker, Rudolf, Yang, Karl

and 500 × 500 floating-point matrices, as well as Hotspot3D and SRAD of the Rodinia
Benchmark Suite. We added PAPI instrumentation code to each benchmark in order to
monitor selected performance counters. All experiments are executed ten times with and
without fault injection. The results show the average ∅ and the standard variation s of the
ten executions with and without the injected fault. Additionally, we computed an occurrence
ratio, that shows how often the value of the performance counter varied significantly from
the non-faulty case. This means if a value increases significantly in 8 out of 10 executions,
the occurrence ratio would be 80 %.

The experiments are conducted on a server with two Intel Xeon E5-2650 v4 CPUs a 12
cores each and 128 GB with 2400MHz DDR4 SDRAM DIMM (PC4-19200). The software
environment includes Ubuntu 18.04.1, the Linux 4.15.0-43-generic kernel and glibc 2.27.

4.1 Fault Injection

In this work, we analyse three types of faults: the alteration of loop index variables to create
random memory accesses, the reduction of loop iterations, and interferences created by
the FINJ library. The intereferences are used to mimic anomalies in real-life systems by
stressing single components, emulating interference or malfunction in that component.

The alteration of loop index variables is done by overwriting the current value of the index
variable in the pages of the process in main memory via opening /proc/$procid/mem/ and
then jumping to the address of the variable. An example can be seen in Listing 1.

FILE *mem = fopen("/proc/$procid/mem/", "w");

fseek(mem, (uintptr_t) &i, SEEK_CUR);

fwrite(&manipulation, sizeof(i), 1, mem);

fclose(mem);

List. 1: Altering an index variable

The process id and and the variable adress can be obtained by calling popen("pid of
$processname", "r") and writing out the adress to a file that can be read by the alteration
process, respectively. As we only want to create random accesses, we made sure that
the altered index value always lies within the given range and that the correct number of
iterations is executed. In the same way, the number of iterations can be altered by overwriting
the current iteration bound.

From the FINJ library we used five interference applications: copy, ddot, dial, leak ,and
memeater that are inspired by Tuncer et al. [Tu17].

42

Symptom-based Fault Detection

4.2 Benchmarks

As a first benchmark, we implemented a floating-point matrix multiplication (mmult) with
300 × 300 and 500 × 500 matrices initialized with random floating-point numbers. Other
benchmarks we used are:

Hotspot3D iteratively computes the heat distribution of a 3d chip represented by a grid. In
every iteration, a new temperature value depending on the last value, the surrounding values,
and a power value is computed for each element. For the evaluation, we used a 512× 512× 8
grid with the start values for temperature and power included in the benchmark suite, and a
total of 1000 iterations.

SRAD is a diffusion method for ultrasonic and radar imaging applications based on partial
differential equations used to remove noise without destroying important image features.
The benchmark consists of image extraction, continuous iterations over the image, and
image compression. As input, we used the 502 × 458 image provided by the benchmark
suite with 100 iterations and λ = 0.5.

4.2.1 Experiments

The Alteration of the Loop Index Variable creates random accesses into the used data
structure. This changes the data cache behavior of the benchmark increasing misses as the
random accesses violate the locality principle. The results of the mMult benchmark (s.
Table 1) show these changes. Misses in the data translation lookaside buffer (TLB DM)

Symptom mMult w/o faults mMult w faults

∅ s ∅ s occurrence ratio

PAPI TLB DM 27.8 13.8 1882 258.7 100 %
PAPI PRF DM 88898.7 290.1 503561.3 794 100 %
PAPI L2 DCM 15733227 1125.2 16188659.3 4214.8 100 %
PAPI L3 DCA 15733439.3 312.3 16185326.6 1193.8 100 %

Tab. 1: Results of the combination of mmult and the manipulation of the loop index

and in the L2 data cache (L2 DCM), data prefetch misses (PRF DM), and L3 data caches
accesses (L3 DCA) increase significantly.

The Reduction of the Number of Iterations effectively leads to a reduction of issued and
executed instructions. In general, the instruction performance counters are very precise, e.g.
the counters for the executed floating-point operations always match the actually executed
operations with a deviation of 0. Therefore, a reduction of the executed instructions is
easily recognizable using the provided instruction counters as can be seen exemplary in the
results of the mMult benchmark in Table 2. Here, the total floating-point operations, the
floating-point additions and floating-point multiplications scale according to the number of

43

Becker, Rudolf, Yang, Karl

executed loops. As these results are pretty straightforward, we omitted the results of the
other two benchmarks.

Symptom mMult w/o faults mMult w faults

N = 300 N = 200 N = 100 N = 50

PAPI FP OPS 54 ·106 36 ·106 18 ·106 9 ·106

PAPI FML OPS 27 ·106 18 ·106 9 ·106 4.5 ·106

PAPI FADD OPS 27 ·106 18 ·106 9 ·106 4.5 ·106

Tab. 2: Results of the iteration number reduction for the matrix multiplication benchmark

Copy constantly executes file in- and output executions, thereby creating hard drive
interferences (I/O overhead). Expected results are variations in the low-level cache structure
and the TLB. These expectations are confirmed by the results of the SRAD benchmark
shown in Table 3. In 9 out of 10 runs, large variations can be noted for the L3 total cache
misses (L3 TCM) and TLB DM counters. Additionally, the total number of stalls increases
on average about 3 % and the number of L2 instruction cache misses (ICM) by about 150 %
on average. However, these two symptoms occurre less often and in the case of the L2 ICMs
vary significantly between runs, which aggravates a detection. The results for mMult are

Symptom SRAD w/o faults SRAD w faults
∅ s ∅ s occurrence ratio

PAPI L3 TCM 1.8 1.87 44.44 54.81 90 %
PAPI TLB DM 11899.7 1080.84 19816.7 3421.12 90 %
STALLS TOTAL 79803752.8 155218.56 82099161.3 1197866.62 80 %
PAPI L2 ICM 2088 154.6 3188.3 1366.39 60 %

Tab. 3: Results of the combination of SRAD and copy

presented in Table 4. There is a similarity to the results of SRAD where the PRF DMs and
total stalls increase, but the biggest variations are seen in the instruction caches. Hotspot3D
has similar results with an increase in L2 and L3 cache accesses as well as symptoms such
as an increase in L3 data cache writes (DCW) and in cycles stalled waiting for memory
writes (PAPI MEM WCY).

Symptom mMult w/o faults mMult w faults
∅ s ∅ s occurrence ratio

PAPI L2 ICA 92.7 8.06 751.3 29.04 100 %
PAPI L3 ICA 110.1 26.76 227 20.33 100 %
PAPI PRF DM 258091.5 2350.31 270598.5 1349.06 100 %
STALLS TOTAL 33806710.3 448643.96 35368628.1 1226479.31 80 %

Tab. 4: Results of the combination of the mMult and copy

Leak creates a controlled memory leak by constantly allocating new arrays and copying
data into them using memcpy(). This leads to additional data cache and TLB misses. The
results of SRAD in Table 5 show that the number of L3 TCMs and the number of total

44

Symptom-based Fault Detection

cycles increase significantly throughout all test runs. Additional symptoms are TLB DMs
and L3 instruction caches accesses (L3 ICA), which are visible in 80 % of the conducted
executions. Similar to the copy benchmark, variations for Hotspot3D are mostly visible in

Symptom SRAD w/o faults SRAD w faults

∅ s ∅ s occ. rat.

PAPI L3 TCM 1.8 1.87 11061.6 17445.73 100 %
PAPI REF CYC 911683861 4293565.15 1042523457.8 18936885.44 100 %
PAPI TLB DM 11899.7 1080.84 16347.5 4986.21 80 %
PAPI L3 ICA 1950.6 101.63 2439.8 262.8 80 %

Tab. 5: Results of the combination of SRAD and leak

the instruction caches (s. Table 6). In this case however, there is no single symptom that is
present in all 10 executions. mMult also shows only two symptoms in combination with
leak, increases in total stalls and TLB IMs, which are visible in 80 % of the test runs.

Symptom Hotspot3D w/o faults Hotspot3D w faults
∅ s ∅ s occurrence ratio

PAPI L2 ICM 1360 269.32 1870.1 252.18 80 %
PAPI L1 ICM 1641.3 251.18 2079.1 358.2 70 %

Tab. 6: Results of the combination of Hotspot3D and leak

Memeater, like leak, creates a controlled memory leak. Additionally, memeater also
executes additions, which in total create misses in the instructions caches additional to the
symptoms visible for leak. Mirroring the results of leak, the number of total cache misses
and the total cycle number increase significantly in all of the test runs for SRAD. TLB data
misses are also significantly augmented again and observable in 8 out of the 10 executions.
Furthermore, the additional instructions executed then lead to an increase in L2 ICMs. The
results for the combination of Hotspot3D and memeater are identical to the combination
of Hotspot3D and leak with increases in L1 and L2 ICMs and MEM WCYs. Even the
occurrence ratio is identical for all three symptoms. For mMult, the results resemble the
results of the copy benchmark instead of leak, as the visible symptoms are increases in L1
and L2 ICMs, total stalls, PRF DMs, and additionally an increase in cycles with maximum
instruction issue (FUL ICY).

Dial uses several floating-point math instructions, like pow() and sqrt, to create interferences
in the ALU. As not much additional data is used while performing these operations, mostly
variations in the instruction caches are expected. For SRAD, the results are displayed in
Table 7. As expected, significant increases in the L2 ICMs are measured. These correlate
with the decrease in instructions cache hits (ICH) and an increase in L3 instruction cache
accesses (ICA) (and reads (ICR)). All those symptoms are observable in 100 % of the
execution runs. The additional data used for the computations lead to an increase in TLB
DMs and a decrease in L2 DCAs. Symptoms for mMult are also manifested in the increase
in ICMs and correlating increases in L2 and L3 ICAs. Furthermore, the number of prefetch

45

Becker, Rudolf, Yang, Karl

Symptom SRAD w/o faults SRAD w faults
∅ s ∅ s occurr. ratio

PAPI L2 ICM 2088 154.6 2915.9 162.82 100 %
PAPI L2 ICH 20175.3 512.32 18633 169.35 100 %
PAPI L3 ICA 1950.6 101.63 2956.6 92.42 100 %
PAPI TLB DM 11899.7 1080.84 15885.1 2255.44 100 %
PAPI L2 DCA 19876232.64 2957162.47 10991900.1 14624.57 90 %

Tab. 7: Results of the combination of SRAD and dial

data misses decreases in every run. Hotspot3D also showed significant increases (up to

Symptom mMult w/o faults mMult w faults

∅ s ∅ s occurrence ratio

PAPI PRF DM 258091.5 2350.3 236171 15761.98 100 %
PAPI L1 ICM 109.8 16.7 170.5 25.02 90 %
PAPI L2 ICM 130.5 19.34 155.9 14.92 70 %
PAPI L3 ICA 93.4 6.6 130.4 21.98 70 %

Tab. 8: Results of the combination of mMult and dial

400 %) in instruction cache misses. Surprisingly, we measured a decrease in TLB DMs and
MEM WCYs.

Ddot is also used to create ALU interferences executing float-point operations. The
benchmark allocates and initializes matrices and then executes a floating-point matrix
multiplication. Compared to dial, this means that more additional data is used. The results
for SRAD (s. Table 9) show the effects of the additional instructions executed on the
instruction caches. Again, the ICMs on the L2 level increase, which correlates with the
increase of L3 ICAs (and ICRs) and decrease of L2 ICHs. The data usage is not really
visible in the monitored values, as the only visible variation was a decrease in L2 data
cache accesses, as also seen for SRAD with dial. Similar to the results for dial, we observe

Symptom SRAD w/o faults SRAD w faults
∅ s ∅ s occurrence ratio

PAPI L2 ICM 2088 154.6 2784.3 114.36 100 %
PAPI L3 ICA 1950.6 101.63 2830.9 67.07 100 %
PAPI L2 DCA 19517962.78 3226987.33 11026045.4 66239.26 90 %
PAPI L2 ICH 20175.3 512.32 18740.4 445.68 90 %

Tab. 9: Results of the combination of SRAD and ddot

a significant increase in L1 and L2 ICMs for Hotspot3D and also noticed an increase in
misses in the instruction TLB (ITLB). Again, the number of TLB data misses decrease
compared to the execution without interferences. The mMult benchmark also shows similar
results to dial. Increases in ICMs, TLB DMs and a decrease in PRF DMs are again detected.
Additionally, we measured increases in ITLB misses and total stalls.

46

Symptom-based Fault Detection

Symptom Hotspot3D w/o faults Hotspot3D w faults
∅ s ∅ s occurrence ratio

PAPI L1 ICM 1277.4 208.14 5060.8 286.99 100 %
PAPI L2 ICM 1416.9 249.7 5228.9 268.77 100 %
PAPI TLB DM 513562.6 137417.52 213266.5 4514.72 90 %
ITLB MISS 587.4 257.26 958.2 312.8 70 %

Tab. 10: Results of the combination of Hotspot3D and ddot

4.2.2 Statistical Analysis

To test the statistical significance of our results, we compute the Welch’s t-test [WE47],
a statistical test that is used to test the hypothesis that two means belong to the same
population. If that is the case, the occurring symptom originates from correct behavior
and not a fault. Exemplary, the results of three tests are shown here. Tables 11, 12 and 13
show the results for the combination of SRAD and dial, Hotspot3D and leak, and mMult
and copy. For all symptoms monitored in these benchmarks, the deviation that occured in

Symptom d f t α tcr it p

PAPI L2 ICM 17.95 -11.66 0.001 -3.922 8.26 ·10−10

PAPI L2 ICH 10.94 9.04 0.001 4.437 2.09 ·10−6

PAPI L3 ICA 17.84 -23.16 0.001 -3.922 1 ·10−14

PAPI TLB DM 12.93 -5.04 0.001 -4.221 2.31 ·10−4

PAPI L2 DCA 9.00 9.50 0.001 4.781 5.47 ·10−6

Tab. 11: Welch’s t-test results for the combination of SRAD and dial

the fault-injection runs has a probabilty to occur in normal runs of less than 1 % and in
most cases even less than 0.1 %. This means that it is almost definite that the monitored
symptoms are not from the distribution observed in the fault-free runs. Therefore, it is
reasonable to say that the injected faults changed the application behavior. For all conducted

Symptom d f t α tcr it p

PAPI L2 ICM 17.92 -4.37 0.001 -3.922 3.71 ·10−4

PAPI L2 ICM 16.13 -3.16 0.01 -2.898 0.006

Tab. 12: Welch’s t-test results for the combination of Hotspot3D and leak

benchmarks, the maximum probability for a symptom occuring in a fault-free run is 3.6 %.
For 18 of 30 symptoms examined, the test resulted in a probability of less than 0.1 %. So in
summary, the Welch’s t-tests show the statistical significance of the monitored symptoms
for all benchmarks in our experiments.

47

1Becker, Rudolf, Yang, Karl

Symptom d f t α tcr it p

PAPI L2 ICA 10.38 -69.1 0.001 -4.437 0
PAPI L3 ICA 16.79 -11 0.001 -3.965 4.3 ·10−9

PAPI PRF DM 14.35 -14.59.16 0.001 -4.073 5.24 ·10−10

STALLS TOTAL 11.37 -3.78 0.01 -3.012 0.0029

Tab. 13: Welch’s t-test results for the combination of mMult and copy

5 Related Work

Symptom-based fault detection has be done before in the literature. Arulaj et al. [Ar13] use
performance counters as symptoms to detect concurrency bugs in production-run systems.
They access the performance counters via Linux perf.

Williams et al. [WPN07] also use different performance counters to detect anomalous
behavior that should form patterns leading up to failures. With an anomaly detector they
create a time series that serves as input for a failure predictor. The predictor checks if there
is a pattern that indicates escalating instability which then signals an impending failure.

Instead of considering all performance metrics, Narayanasamy et al. [NCC07] focus on the
branch predictor, the store set predictor and L2 cache accesses. They assume that a faulty
execution leads to an increase in undesirable outcomes, e.g. a misprediction by a branch
predictor.

The ReStore architecture by Wang et al. [WP05] uses symptom-based fault detection
combined with a checkpointing mechanism. If the fault detection signals the occurrence
of a fault, the architectural state of an earlier checkpoint is restored. Exceptions, branch
mispredictions coupled with a confidence predictor for the branch and event logs that store
events, like control instruction outcomes, are used as symptoms.

mSWAT [Ha09] is a fault detection and fault diagnosis framework for multicore architectures.
The framework uses a fatal-traps detector, a hang detector checking branch frequencies, a
high-OS detector that monitors OS invocations, and a kernel panic detector as symptoms. If
a symptom occurs, a diagnosis mechanism is invoked that decides whether the fault is just a
software bug or a hardware fault, whether it is a transient or permanent fault and which core
is faulty. This is done by tracing and replaying execution.

6 Conclusion

In this work, we evaluated the concept of symptom-based fault detection with three different
benchmarks: a matrix multiplication, Hotspot3D and SRAD of the Rodinia Benchmark
Suite, combined with seven ways to generate faults and interferences. We generated faults
and interferences that affect different parts of a computing system, thereby creating a

48

Symptom-based Fault Detection

classification for the injected faults. We then analyzed the results, if the monitored symptoms
allow to conclude which fault originally occurred.

In general, we have found minimally two symptoms for every benchmark fault combination.
In the worst case there was at least one symptom with an occurrence ratio of 80 % and for
most cases at least one symptom with a ratio of 100 %. We have also shown the statistical
significance of the monitored symptoms by computing Welch’s t-test. Therefore, it is fair
to say that we are able to detect all faults in every benchmark using symptom-based fault
detection.

Faults that alter the instruction number are easily detectable as these counters are very
precise. A distinction from the other fault classes is also easy, as they do not alter the number
of instructions.

Considering each benchmark on their own, the different instances of the interference classes
(memory-bound and ALU-bound interferences) have very similar behavior. E.g. SRAD
showed significant variations in total L3 cache misses, the number of cycles needed and
TLB DMs for all three memory bound benchmarks. However, there is no single set of
symptoms that is relevant for every instance of a class over all benchmarks. Only significant
variations of instruction cache accesses and misses were visible for each instance of the
interference classes over all benchmarks. A possible distinction could be the degree to
which the values increase. ALU-bound interferences create larger increases compared to
memory-bound ones. Additionally, the memory-bound interferences create more variations
in data related counters in most cases. Differentiating between the interferences and the
loop index manipulation is possible as the loop index manipulation does not affect the
instruction caches. However, to be able to make a differentiation the complete set of
symptoms has to occur simultaneously. For five symptoms with an occurence ratio of 80 %
each, the probabilty that all symptoms occur together is only around 33 %. Without the
whole set of symptoms however, a useful differentiation is not possible. As a summary,
we conclude that symptom-based fault detection is very useful to detect faulty application
behavior. Coarse-grained conclusions about the causing fault are generally possible, but
finer distinctions need additional tool support.

In the future, we plan to extend the evaluation to GPUs. Additionally, to make our approach
practically usable, we will integrate it into a library-based runtime system designed for user
support of heterogeneous architectures, thereby automating the instrumentation process, the
search for relevant performance metrics and the analysis of the results.

References

[Ar13] Arulraj, J.; Chang, P.-C.; Jin, G.; Lu, S.: Production-run Software Failure
Diagnosis via Hardware Performance Counters. SIGARCH Comput. Archit.
News 41/1, pp. 101–112, Mar. 2013, issn: 0163-5964, url: http://doi.acm.
org/10.1145/2490301.2451128.

49

http://doi.acm.org/10.1145/2490301.2451128
http://doi.acm.org/10.1145/2490301.2451128

Becker, Rudolf, Yang, Karl

[Be08] Bergman, K.; Borkar, S.; Campbell, D.; Carlson, W.; Dally, W.; Denneau, M.;
Franzon, P.; Harrod, W.; Hiller, J.; Karp, S.; Keckler S. an d Klein, D.; Lucas, R.;
Richards, M.; Scarpelli, A.; Scott, S.; Snavely, A.; Sterling, T.; Williams, R. S.;
Yelick, K.; Kogge, P.: ExaScale Computing Study: Technology Challenges in
Achieving Exascale Systems Peter Kogge, Editor & Study Lead, 2008.

[Ha09] Hari, S. K. S.; Li, M.; Ramachandran, P.; Choi, B.; Adve, S. V.: mSWAT: Low-
cost hardware fault detection and diagnosis for multicore systems. In: 2009 42nd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
Pp. 122–132, Dec. 2009.

[NCC07] Narayanasamy, S.; Coskun, A. K.; Calder, B.: Transient Fault Prediction Based
on Anomalies in Processor Events. In: 2007 Design, Automation Test in Europe
Conference Exhibition. Pp. 1–6, Apr. 2007.

[Ne18] Netti, A.; Kiziltan, Z.; Babaoglu, Ö.; Sîrbu, A.; Bartolini, A.; Borghesi, A.:
FINJ: A Fault Injection Tool for HPC Systems. CoRR abs/1807.10056/, 2018,
arXiv: 1807.10056, url: http://arxiv.org/abs/1807.10056.

[SLM10] Salfner, F.; Lenk, M.; Malek, M.: A Survey of Online Failure Prediction
Methods. ACM Comput. Surv. 42/3, 10:1–10:42, Mar. 2010, issn: 0360-0300,
url: http://doi.acm.org/10.1145/1670679.1670680.

[SS02] Schiffmann, W.; Schmitz, R.: Technische Informatik 2. Springer Berlin Heidel-
berg, 2002.

[Te10] Terpstra, D.; Jagode, H.; You, H.; Dongarra, J.: Collecting Performance Data
with PAPI-C. In (Müller, M. S.; Resch, M. M.; Schulz, A.; Nagel, W. E., eds.):
Tools for High Performance Computing 2009. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 157–173, 2010, isbn: 978-3-642-11261-4.

[Tu17] Tuncer, O.; Ates, E.; Zhang, Y.; Turk, A.; Brandt, J.; Leung, V. J.; Egele, M.;
Coskun, A. K.: Diagnosing Performance Variations in HPC Applications
Using Machine Learning. In (Kunkel, J. M.; Yokota, R.; Balaji, P.; Keyes, D.,
eds.): High Performance Computing. Springer International Publishing, Cham,
pp. 355–373, 2017, isbn: 978-3-319-58667-0.

[WE47] WELCH, B. L.: THE GENERALIZATION OF ‘STUDENT’S’ PROBLEM
WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE IN-
VOLVED. Biometrika 34/1-2, pp. 28–35, Jan. 1947, issn: 0006-3444, eprint:
http://oup.prod.sis.lan/biomet/article-pdf/34/1-2/28/553093/34-1-

2-28.pdf, url: https://doi.org/10.1093/biomet/34.1-2.28.
[WP05] Wang, N. J.; Patel, S. J.: ReStore: symptom based soft error detection in

microprocessors. In: 2005 International Conference on Dependable Systems
and Networks (DSN’05). Pp. 30–39, June 2005.

[WPN07] Williams, A. W.; Pertet, S. M.; Narasimhan, P.: Tiresias: Black-Box Failure
Prediction in Distributed Systems. In: 2007 IEEE International Parallel and
Distributed Processing Symposium. Pp. 1–8, Mar. 2007.

50

http://arxiv.org/abs/1807.10056
http://arxiv.org/abs/1807.10056
http://doi.acm.org/10.1145/1670679.1670680
http://oup.prod.sis.lan/biomet/article-pdf/34/1-2/28/553093/34-1-2-28.pdf
http://oup.prod.sis.lan/biomet/article-pdf/34/1-2/28/553093/34-1-2-28.pdf
https://doi.org/10.1093/biomet/34.1-2.28

B. Juurlink, W.Karl (Hrsg.)
Proceedings 28th PARS Workshop

Weight Pruning for Deep Neural Networks on GPUs

Thomas Hartenstein, Daniel Maier, Biagio Cosenza, Ben Juurlink
Embedded Systems Architecture, Technische Universität Berlin, Germany
thomas.hartenstein@campus.tu-berlin.de, {daniel.maier,cosenza,b.juurlink}@tu-berlin.de

Abstract: Neural networks are getting more complex than ever before, leading to resource-demanding
training processes that have been the target of optimization. With embedded real-time applications
such as traffic identification in self-driving cars relying on neural networks, the inference latency
is becoming more important. The size of the model has been identified as an important target of
optimization, as smaller networks also require less computations for inference. A way to shrink a
network in size is to remove small weights: weight pruning. This technique has been exploited in
a number of ways and has shown to be able to significantly lower the number of weights, while
maintaining a very close accuracy compared to the original network. However, current pruning
techniques require the removal of up to 90% of the weights, requiring high amount of redundancy in
the original network, to be able to speedup the inference as sparse data structures induce overhead. We
propose a novel technique for the selection of the weights to be pruned. Our technique is specifically
designed to take the architecture of GPUs into account. By selecting the weights to be removed in
adjacent groups that are aligned to the memory architecture, we are able to fully exploit the memory
bandwidth. Our results show that with the same amount of weights removed, our technique is able to

speedup a neural network by a factor of 1.57× given a pruning rate of 90% while maintaining the
same accuracy when compared to state-of-the-art pruning techniques.

Keywords: deep neural network; pruning; GPUs; optimization

1 Introduction

Contemporary AI applications are often build using deep neural networks (DNNs). DNNs
have improved over the last years becoming state-of-the-art not only for the majority

computer vision algorithms but also they have been shown to give superior results in
numerous other applications like speech recognition, natural language processing or the

discovery of new drugs. In many of these applications, hard real-time deadlines have to
be met in order to ensure user satisfaction or even prevent disastrous outcomes, e.g., for
self-driving cars. However, to achieve better accuracy, the networks have become also more
complex and the network sizes have grown significantly: While the AlexNet Caffemodel
is over 200 MB in size, the improved VGG-16 Caffeemodel has already grown to more
than 500 MB [HMD15]. More complex networks are composed of more layers and layers
have become bigger, leading to resource-demanding training processes that have been the

target of optimization in the past. However, for embedded real-time applications (e.g., traffic
identification and object detection in self-driving cars) relying on neural networks, the

51

thomas.hartenstein@campus.tu-berlin.de
{daniel.maier,cosenza,b.juurlink}@tu-berlin.de

Thomas Hartenstein, Daniel Maier, Biagio Cosenza, Ben Juurlink

inference latency is more important. The size of a model has been identified as an important
target of optimization as the size is directly related to the number of operations necessary
for inference.

Research has shown that models contain a considerable amount of redundancy [De13].
Many connections in the neural network that represent the weights have no or only a minor
role when deriving the result. These weights can be removed without affecting the accuracy
of network significantly [HMD15; LDS90].

The optimization process of removing weights from a neural network is called weight
pruning. The general concept of weight pruning is shown in Figure 1. All weights below a
certain threshold, in this example 0.3, are removed from the network. Using this approach
we can learn the important connections in the network. The result is a new network that
contains only the relevant connections of the original network while connections with a
negligible influence have been removed. Weight pruning is able to improve the memory
usage, as less weights need to be stored in memory. Furthermore, the number of operations
needed to compute the result of the network is reduced. The number of weights directly
translates to the memory usage and is also closely related to the number of operations
needed.

Fig. 1: Weight pruning removes weights below a certain threshold from a neural network.

We propose to use a new technique for weight pruning that overcomes limitations of
the state-of-the-art pruning for GPUs [Yu17]. Memory-aware weight pruning is able to
accelerate the inference time of deep neural networks by removing weights in continuous
groups of multiple weights. These groups are optimized to match the memory architecture
of GPUs.

In particular, we make the following contributions: 1. a novel weight pruning technique for
neural networks on GPUs; and 2.an evaluation of our technique in terms of inference time
and accuracy of the network.

52

Weight Pruning for Deep Neural Networks on GPUs

This paper is organized as follows: In Section 2 the related work is introduced and we relate
our work to the state-of-the-art. Section 3 introduces our technique for pruning of weights.
We describe the experimental setup in Section 4 and show the results in Section 5. Finally,
we conclude our work in Section 6.

2 Related Work

Neural networks contain a significant amount of redundant information. Therefore, the
computational and memory requirements can both be optimized without a loss in accu-
racy [De13].

Redundancy in neural networks can be reduced using different techniques. One approach
is quantization. By using less bits to store the weights of the network, the overall storage
requirements are lowered. Gupta et al. use 16 bit fixed-point number representation for for
the calculations of their neural network. [Gu15]. Gong et al. [Go18] show that a pre-trained
neural network can be quantized to 8-bit without the necessity of having to retrain the
network.

Another popular technique is pruning. Pruning is the removal of filters, weights or whole
neurons from a network. The conceptual idea of removing weights is quite old [LDS90].
Pruning can be implemented in a variety of ways: One method is to remove complete
filters from Convolutional Neural Networks [Hu18; Li17; Mo17]. Learning the important
connections by first removing weights and then retraining the network was first shown
by [Ha15]. Yu et al. [Yu17] show that by exploiting the Compressed Sparse Row format
on single-instruction-multiple-data (SIMD) units of a microcontroller, pruning can be
implemented by removing connections between two neurons. However, the authors learned
that weight pruning on GPUs actually slows down the inference time. This deceleration
is attributed to the overhead due to sparse data structures which can only be overcome
by a pruning rate of 97%. However, pruning rates of more than 90% have shown to lead
to a strong decrease in accuracy [Ha15; Yu17] and, therefore, weight pruning was not
implemented on GPUs.

3 Weight Pruning for Deep Neural Networks on GPUs

In this work, we optimize weight pruning for the use on GPUs. GPUs have a very distinctive
memory architecture, where accesses to the global memory have a high latency and the
memory width is wide (e.g., 128 byte). The latency can be hidden by the massively parallel
architecture of GPUs. The wide memory architecture connects the density of the information
in global memory with the efficiency of memory bandwidth utilisation: In a sparse data
layout where 1 out of 16 bytes is requested from memory, the bandwidth utilisation is the
same as for a request of 16 bytes. Additionally, the memory architecture requires threads to
access the memory in a coalesced manner.

53

Thomas Hartenstein, Daniel Maier, Biagio Cosenza, Ben Juurlink

Our approach for memory-aware weight pruning takes the distinct memory architecture of
GPUs into account. Instead of pruning individual weights without considering the memory
architecture, we propose to treat the weights in groups: First, the weights are organized
in groups of adjacent weights with a configurable size. Then, all weights in a group are
aggregated and then evaluated. All groups with an aggregated value below a defined
threshold are removed from the network. The threshold is determined by the aggregated
values of the groups in order to achieve a target pruning rate. Afterwards, the remaining
groups are transferred to the compressed sparse row format (CSR). We use this format to
be able to use sparse matrix computations in order to accelerate the computations. Sparse
matrix-matrix multiplications are optimized to exploit matrices where only a small number
of values is different from zero. However, the sparse formats come with some overhead.

Fig. 2: The subsequent steps of our Memory-aware Weight Pruning technique.

An overview of our technique is depicted in Figure 2. First, we arrange all weights in groups
according to the selected group size g in step (A). Then we evaluate the aggregated weight
of each group in step (B). In step (C) we perform the actual removal of weights. First, we
calculate the threshold t necessary to achieve a given pruning rate and then we remove all
weights of all groups with a smaller aggregated weight. Finally, the network is retrained in
step (D).

The advantage of using adjacent groups of weights is that they can be loaded at the same
time in memory. This ensures that the available memory bandwidth to global memory is
used efficiently. In order to be able to evaluate the significance of a group of weights we
need to aggregate the weights in the group. We use the RMS (root mean square) function to
calculate the aggregated weight of a group, in the same way as related work (e.g., [Yu17]).
The motivation is that a high value of a weight has a strong influence on the activation
of the neuron in the next layer and that high values will be further amplified by the RMS
aggregation of weights.

However, we evaluated different weight aggregation functions (root mean square, arithmetic
mean, median, random) and we were not able to observe significant differences in in terms
of their influence on the final accuracy of the retrained network. Therefore, we assume that
the selection of the groups is not as critical as it might look but the pruning rate and the
retraining dictate the accuracy.

The weight matrix stored in CSR format is multiplied with a dense matrix or vector. The
weight groups are selected consecutivly within a row of the matrix and with an offset that is
a multiple of the group size. We show an example of the grouping step A in Equation 1.
Weight matrix M is a 4 × 4 matrix. The round brackets indicate the weight groups with a

54

Weight Pruning for Deep Neural Networks on GPUs

group size g = 2. The matrix contains the weights w which form the groups G. The group
dimension of the matrix M is 4x2. G1,1 is the group consisting of the of weights w1,1 and
w1,2.

M =

(
w1,1 w1,2

) (
w1,3 w1,4

)(
w2,1 w2,2

) (
w2,3 w2,4

)(
w3,1 w3,2

) (
w3,3 w3,4

)(
w4,1 w4,2

) (
w4,3 w4,4

)

=

G1,1 G1,2
G2,1 G2,2
G3,1 G3,2
G4,1 G4,2

 (1)

In step B the aggregated weight of each group is calculated.

RMS =

√√
1
n

n∑
i=1

x2
i and MRMS =

RMS(G1,1) RMS(G1,2)

RMS(G2,1) RMS(G2,2)

RMS(G3,1) RMS(G3,2)

RMS(G4,1) RMS(G4,2)

 (2)

Next, a threshold is defined. The aggregated weights of the groups are sorted by value
to select groups with the smallest influence (smallest absolute value). Depending on the
pruning rate the threshold is selected. The groups which are below this threshold value are
set to 0. In our example, after the groups have been set to 0, the matrix has the following
form:

Mprun =

(
0 0

) (
0 0

)(
w2,1 w2,2

) (
w2,3 w2,4

)(
0 0

) (
0 0

)(
0 0

) (
w4,3 w4,4

)

(3)

In step D the matrix Mprun is converted to the CSR format. The matrix takes the following
form:

A =
[
w2,1 w2,2 w2,3 w2,4 w4,3 w4,4

]
JA =

[
0 1 2 3 2 3

]
IA =

[
0 0 4 4 6

]
The new representation of the matrix consists of A, JA and IA. It is CSR format and contains
only the weights of the neural network that are greater than zero. These are the weights that
were selected in step B and C and will be used later.

55

Thomas Hartenstein, Daniel Maier, Biagio Cosenza, Ben Juurlink

Tab. 1: Details of our system used to conduct the results

Hardware Model

CPU Intel Core i5-7200U
GPU NVIDIA Geforce GTX 950M
GPU main memory 2 GB

Software Version

Ubuntu 16.04.5 LTS
CUDA 9.0.176
Python 3.5.2
Keras 2.2.4
TensorFlow 1.10.1

4 Experimental Evaluation

In this section we briefly introduce our experimental evaluation. First, we examine how to
measure the execution time, then we explain how we measure the accuracy of the neural
network.

4.1 Performance

As our pruning technique is optimized for fully connected layers and the inference of fully
connected layers is based on matrix-matrix multiplications we conduct our performance
evaluation using a matrix-matrix multiplications benchmark. All our experiments are
performed using an NVIDIA Geforce GTX 950M GPU. We execute the matrix-matrix
multiplication calculations in CSR format on the graphics card. The conventional calculation
of matrix-matrix multiplications is called dense matrix-matrix multiplication below, and we
use NVIDIA’s implementation for these multiplications [Nv12].

To calculate the matrix-matrix multiplication on the GPU and to measure the execution time
we use CUDA 9[Nv18]. The sparse matrix-matrix multiplications are performed with the
NVIDIA’s cuSPARSE library. The dense matrix-matrix multiplications are performed with
the library cuBLAS.

In our benchmark two matrices of dimensions 4096 × 4096 and 4096 × 50 are multiplied
with each other. The matrix sizes are chosen to achieve comparability with the work of
Yu et al.[Yu17] The pruned weights are merged into the summarized format described in
Section 3. For each of our performance experiments we measure the kernel execution time
only, as this share of the overall execution time is the predominant part.

56

Weight Pruning for Deep Neural Networks on GPUs

cuSparse offers the CSR and HYB sparse formats for calculations. For the CSR format, the
library offers a matrix-matrix multiplication where the first matrix is a sparse matrix and the
second matrix is a dense matrix. The HYB format is a mix of ELL format and COO format.
Unfortunately, for HYB format, cuSparse offers no support for matrix-matrix multiplication
but only a function for a matrix vector multiplication. For this reason, the CSR format was
chosen. In the calculation of the inference of a fully connected neural network, above all, the
matrix-matrix multiplication is the predominant part of work load. The addition of bias has,
according to our investigations, only a minor role. We do not evaluate our pruning technique
in terms of training time. The total training time of the network is increased, because the
retraining time of the pruned network is added to the training time of the network.

4.2 Accuracy

In this section we describe how the accuracy of the network was determined. We use the
MNIST dataset [LC19] that consists of 60,000 images of handwritten digits. Each image has
a size of 28x28 pixels and can belong to 1 of 10 categories spanning the numbers between 0
and 9. The data set is randomly separated into two distinct subsets: 1) training data (54 000
images) and 2) test data for validation (6 000 images) in order to avoid over-fitting.

Tab. 2: Structure of our neural network

Layer part Layer type Activation function Size

input fully connected ReLU 784
hidden fully connected ReLU 128
hidden fully connected ReLU 128
hidden fully connected ReLU 256
hidden fully connected ReLU 256
hidden fully connected ReLU 512
hidden fully connected ReLU 512
output fully connected Softmax 10

To evaluate our technique we use a neural network that consists of eight fully connected
layers. This network serves the purpose to allow us to assess our technique. The structure of
our network is shown in Table 2. Each of the 784 (= 28 × 28) pixels represents an input of
the input layer. We use the stochastic gradient descent (SGD) as optimization function.

First, we have to train the network and therefore we train the model for 3000 epochs using
the training data set before we start the pruning process. In order to study the effects of the
group size the weight matrices were subdivided into different group sizes during the pruning
process and then the root-mean-square (RMS) is determined for each group. We implement
our technique using the Keras API with the TensorFlow backend. When the aggregated
weight of the groups is determined the groups are sorted by the aggregated weight. Then we
set the threshold in a way such that the given pruning rate is reached. Finally, the aggregated

57

Thomas Hartenstein, Daniel Maier, Biagio Cosenza, Ben Juurlink

weights with an RMS smaller than the threshold are removed. After pruning, we retrain the
neural network over 6000 epochs. The number of training epochs before and after training
are chosen to match the related work [Yu17].

4.3 Performance

Fig. 3: Speedup of sparse matrix-matrix multiplication compared to dense matrix-matrix multiplication.
The matrices have the sizes of 4096x4096 and 4096x50.

5 Results

In this section, we discuss the results of our experiments. Figure 3 shows how the performance
is affected when using different pruning rates. Figure 4 shows the accuracy of different
group sizes when setting the pruning rate to 90%. In Figure 5 the first two results are related
to each other.

58

Weight Pruning for Deep Neural Networks on GPUs

Figure 3 shows the speedup of a sparse matrix-matrix multiplication of size 4096 × 4096
by 4096 × 50 for different pruning rates between 80% and 98% and group sizes of 1, 2,
4, 8, 16, 32 and 64. The speedup is calculated by normalizing the execution time of the
pruned network to the execution time of the dense network. We reproduce the work of Yu
et al. and show in their results labeled sparse, group size 1. In our benchmark the sparse
matrix-matrix multiplication at a pruning rate of 94% without grouping was as fast as the
dense matrix-matrix multiplication. A similar pruning rate without grouping was reported
by Yu et al. considered too large, because the accuracy would drop too much. We show that
for a sparse matrix-matrix multiplication with a group size of 32, the speedup is greater
than 1 at a pruning rate of 84% compared to a pruning rate of 94% for the state-of-the-art of
Yu et al. In their work, the lowest reported pruning rate of 90% required more than twice
the time when compared to conventional dense matrix-matrix multiplication. When we
apply our grouped pruning technique, we reach a speedup of 57% achieved given the same
pruning rate.

Fig. 4: Achieved accuracy per group size of the pruning technique. The pruning rate set to 90%.

In Figure 3 we show that a higher pruning rate leads to a higher speedup in the sparse
matrix-matrix multiplications. The highest speedup is achieved with a group size of 32. We
can attribute the speedup at least partially to the amount of coalesced memory accesses.
Coalesced memory accesses are important on GPUs in order to exploit the memory
bandwidth. The Global Load Efficiency (as reported by NVProf) increases from 67 % to

59

Thomas Hartenstein, Daniel Maier, Biagio Cosenza, Ben Juurlink

Fig. 5: Achieved accuracy in relation to the achieved speedup for different group sizes when setting
the pruning rate to 90%.

82 % for a group size of 1 if the pruning rate is increased from 80 % to 98 %. From a group
size of 8 the Global Load Efficiency rises to over 99 %.

5.1 Accuracy

In this section we discuss the accuracy achieved with different group sizes at 90% pruning
rate. Figure 4 shows the accuracy of the network shown in Table 2. The horizontal line
shows the accuracy of accuracy comparable to trained network that was not pruned. The
blue dots show the accuracy of the networks, which were pruned with a pruning rate of
90%. The figure shows that although the pruning rate was set to 90% for all networks, the
accuracy decreases the larger the group size. A sharp decline in accuracy can be observed
as the group size increases. With smaller group sizes, the accuracy of the network could be
maintained or even slightly improved. We assume that the improvement is the consequence
of an increased training time of the network. The accuracy is higher for a small group size
and many groups than for a large group size and fewer groups, as it is more likely to prune
the weights that do not contribute to the activation of the neuron.

60

Weight Pruning for Deep Neural Networks on GPUs

Figure 5 shows the accuracy values of the Figure 4 in relation to the GPU execution times
of sparse matrix-matrix multiplications at 90% pruning rate in Figure 3. The black cross
in the figure denotes the neural network without pruning. The red crosses mark speedup
and accuracy of the neural network when we apply our technique and set the pruning rate
to 90%. The group sizes 1, 2, 4, 8, 16, 32 and 64 of the pruning networks are written
next to the respective cross of the result. It can be seen that a group size of 32, as already
shown in Figure 5, offers the highest speed gain, but severely limits the accuracy of the
network. Group sizes 1 and 2 even cause the neural network to perform the inference slower
because the overhead generated by the CSR format is greater than the speed gain produced
by exploiting Global Load Efficiency of the GPU. When aiming for an accuracy comparable
to the original dense network, a group size of 8 is superior, because at this size the accuracy
of the neural network is 95.30% while the speedup of 49.08% over the dense network. Sizes
1, 2 and 4 have a significantly lower speedup at a pruning rate of 90 %, as shown in the
Figure 3, since the locality of the weights in the memory can not be used here.

6 Conclusion

In this paper, we propose to use memory-aware weight pruning for accelerating the inference
time of deep neural networks on GPUs. Our techniques remove weights in a fully-connected
layer in continuous groups of multiple weights. By aligning the weight groups to match the
size of the memory architecture of current GPUs, we are able to accelerate the inference time
by a factor of 1.5× for a given pruning rate of 90%. Furthermore, by using our technique
we are able to lower the required pruning rate necessary to be profitable on a GPU to 84%,
while state-of-the-art pruning requires a pruning rate as high as 94%. We explore how the
group size affects the accuracy and what group size is optimal when given a target accuracy.
In future work we will investigate different ways of determining the ranking of the weight
groups, as our observation that even randomly selected weight groups result in an equal
accurate network is very interesting. We will explore the design space given by different
matrix sizes in the matrix-matrix multiplications. Additionally, we will be researching
domain-specific sparse matrix representations in order to exploit the distinct properties of
sparse neural networks. We plan to study the effects of our approach on different networks,
new GPU generations and more complex applications.

References

[De13] Denil, M.; Shakibi, B.; Dinh, L.; De Freitas, N., et al.: Predicting parameters
in deep learning. In: Advances in neural information processing systems.
Pp. 2148–2156, 2013.

61

Thomas Hartenstein, Daniel Maier, Biagio Cosenza, Ben Juurlink

[Go18] Gong, J.; Shen, H.; Zhang, G.; Liu, X.; Li, S.; Jin, G.; Maheshwari, N.;
Fomenko, E.; Segal, E.: Highly Efficient 8-bit Low Precision Inference of
Convolutional Neural Networks with IntelCaffe. eprint arXiv:1805.08691v1/,
2018.

[Gu15] Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P.: Deep learning with
limited numerical precision. In: International Conference on Machine Learning.
Pp. 1737–1746, 2015.

[Ha15] Han, S.; Pool, J.; Tran, J.; Dally, W.: Learning both weights and connections
for efficient neural network. In: Advances in neural information processing
systems. Pp. 1135–1143, 2015.

[HMD15] Han, S.; Mao, H.; Dally, W. J.: Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149/, 2015.

[Hu18] Huang, Q.; Zhou, K.; You, S.; Neumann, U.: Learning to Prune Filters in
Convolutional Neural Networks. eprint arXiv:1801.07365v1/, 2018.

[LC19] LeCun, Y.; Cortes, C.: MNIST handwritten digit database./, 2019, url: http:
//yann.lecun.com/exdb/mnist/.

[LDS90] LeCun, Y.; Denker, J. S.; Solla, S. A.: Optimal brain damage. In: Advances in
neural information processing systems. Pp. 598–605, 1990.

[Li17] Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H. P.: Pruning Filters for
efficient ConvNets. ICLR/, 2017.

[Mo17] Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J.: Pruning Convolutional
Neural Networks for resource efficient inference. ICLR/, 2017.

[Nv12] Nvidia: CUDA Toolkit 4.2 CUSPARSE Library. PG05329041v01/, 2012.
[Nv18] Nvidia: Parallele Berechnungen mit CUDA, (WWW), 2018, url: https:

//www.nvidia.de/object/cuda-parallel-computing-de.html.
[Yu17] Yu, J.; Lukefahr, A.; Palframan, D.; Dasika, G.; Das, R.; Mahlke, S.: Scalpel:

Customizing DNN Pruning to the Underlying Hardware Parallelism. ISCA/,
2017.

62

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.nvidia.de/object/cuda-parallel-computing-de.html
https://www.nvidia.de/object/cuda-parallel-computing-de.html

B. Juurlink, W. Karl (Hrsg.)
Proceedings 28th PARS Workshop

GPU-beschleunigte Time Warping-Distanzen

Jörg P. Bachmann,1 Kevin M. Trogant,2 Johann-C. Freytag3

Abstract: Immer mehr Algorithmen konnten durch Implementierung auf GPUs um mehrere
Größenordnungen beschleunigt werden. Insbesondere existieren hochparallele Implementierungen
des im Bereich der Zeitreihenanalyse weit verbreiteten Algorithmus’ Dynamic Time Warping (DTW).
Dieser Algorithmus berechnet einen Ähnlichkeitswert zweier Zeitreihen (z. B. Temperaturverläufe)
unter Berücksichtigung zeitlicher Variationen wie z. B. zeitliche Verschiebungen. Leider können die
existierenden GPU-Implementierungen von DTW nicht beliebige zeitliche Variationen berücksichtigen.

In dieser Arbeit stellen wir Implementierungen für GPUs vor, die dieser Einschränkung nicht
unterliegen. In unserer Evaluierung zeigen wir, dass sie einen Geschwindigkeitsvorteil von ca. zwei
Größenordnungen gegenüber einer CPU-Implementierung erreichen.

Keywords: Dynamic Time Warping; GPU; Algorithmen

1 Einleitung
Viele Algorithmen konnten durch Parallelisierung auf moderner Hardware (z. B. GPUs)
erfolgreich beschleunigt werden. Dazu gehören u. a. Sortieralgorithmen [Ar17], Algorithmen

aus der linearen Algebra und dem Machine Learning [Ch14; TDB10] und selbstverständlich

unzählige Algorithmen aus der Computergrafik.

Zahlreiche Beispiele von Adaptionen der Algorithmen auf die GPU kommen aus der
Ähnlichkeitssuche, in der aus einer großen Menge von Objekten (der Kandidatenmenge)
diejenigen gesucht werden, die einem Anfrageobjekt ähnlich sind: Bereits mit älterer
Hardware aus 2009 konnte der für Sequenzalignment häufig verwendete Smith-Waterman

Algorithmus um etwa eine Größenordnung beschleunigt werden [SA09]; Das im Bereich

der Ähnlichkeitssuche häufig verwendete Dynamic Time Warping (DTW) [SC90] konnte

durch GPUs um ein bis zwei Größenordnungen beschleunigt werden [HSS14; Sa10]; Durch

Implementierung des R-Baumes [Be90] auf die GPU konnten die Ausführungszeiten von

Ähnlichkeitssuchen um ca. eine Größenordnung beschleunigt werden [YZG13].

DTW berechnet ein Maß für die Ähnlichkeit (bzw. Distanz) zweier Zeitreihen, das robust gegen

zeitliche Verzerrungen ist. Existierende Implementierungen des Algorithmus’ beschränken

die möglichen zeitlichen Verzerrungen, um die Berechnung zu beschleunigen [HSS14] oder
1 Joerg.Bachmann@informatik.hu-berlin.de
2 Kevin.Trogant@informatik.hu-berlin.de
3 Freytag@informatik.hu-berlin.de

63

Jörg P. Bachmann, Kevin M. Trogant, Johann-C. Freytag

spezialisieren sich auf die Suche von Subsequenzen ausschließlich fester Länge innerhalb
einer langen Zeitreihe [Sa10].

In dieser Arbeit stellen wir neue Implementierungen von DTW für GPUs vor, die von
keiner der eben genannten Einschränkungen betroffen sind. Beginnend mit einer Vari-
ante für Zeitreihen beschränkter Länge führen wir anschließend Varianten für Sub- und
Supersequenzsuche sowie die Möglichkeit, beliebig lange Zeitreihen zu verarbeiten, ein.
Abschließend evaluieren wir die Implementierungen ausführlich und zeigen, dass mit Hilfe
der GPU Geschwindigkeitsvorteile gegenüber einer CPU-Implementierung von ca. zwei
Größenordnungen erreicht werden können. Um den Vergleich nachvollziehbar und mög-
lichst unabhängig von der konkreten CPU zu gestalten, haben wir uns für eine sequentielle
Implementierung auf der CPU entschieden. Zwar lassen sich Zeitreihen nicht unter DTW
mittels metrischer Indexstrukturen [BKL06; CPZ97; NB09] indizieren, doch wir haben mit
dieser Arbeit eine Grundlage geschaffen, Zeitreihen unter DK4 [Fr06] mittels metrischer
Indexstrukturen GPU-beschleunigt zu indizieren.

In Kapitel 2 stellen wir die DTW- und DK-Distanzfunktion ausführlich vor. Die Implementie-
rungen werden in Kapitel 3 beschrieben und in Kapitel 4 evaluiert. Wir schließen mit einem
kurzen Fazit in Kapitel 5 ab.

2 Time Warping Distanzfunkionen
Dynamic time warping (DTW) ist eine Funktion, die zwei Zeitreihen einen Abstandswert
zuordnet [SC90]. Sie wurde ursprünglich im Bereich der Spracherkennung eingeführt und
findet noch heute weite Verbreitung in der Analyse von Zeitreihen. Die Fréchet-Distanz (DK)
ist eine Alternative zu DTW, welche die Dreiecksungleichung erfüllt5.

Einfach formuliert versucht DTW (bzw. DK), den Abstand der Trajektorien (also die Menge
der besuchten Punkte im Raum) zweier Kurven zu messen. Betrachtet man zum Beispiel
den Weg zweier Personen durch eine Stadt entlang der selben Route (Trajektorie), so
gibt es möglicherweise zeitliche Unterschiede durch unterschiedliches Lauftempo und
unterschiedlicher Ampelschaltungen. Während sich die Kurven also stark unterscheiden
können (wenn man die Punkte der Wege zu jeweils gleichen Zeiten vergleicht), können die
Trajektorien identisch sein.

DTW ist für zwei Zeitreihen S = (s1, · · · , sm) und T = (t1, · · · , tn) wie folgt rekursiv definiert:

DTW(S, ()) =∞

DTW((),T) =∞

DTW((s), (t)) = d(s, t)2
DTW(S,T) = d(s1, t1)2 +min

DTW(Tail(S), Tail(T))
DTW(S, Tail(T))
DTW(Tail(S),T)

4 DK ist eine Alternative zu DTW, welche die Dreiecksungleichung erfüllt, vollständig invariant unter zeitlichen
Verzerrungen ist und sehr ähnlich zu DTW implementiert wird [BF17].

5 Dadurch eignet sich die DK-Distanz zur Indizierung von Zeitreihen mittels metrischer Indexstrukturen [BKL06;
CPZ97; NB09]

64

Time Warping auf GPUs

wobei Tail(T) B (t2, · · · , tn). Die Abstandsfunktion d(s, t) wird vom Nutzer
definiert und entspricht im einfachsten Fall dem Betrag der Differenz zwei-
er Zahlen. Die DK-Distanz ändert sich nur in der Art der Kombination des
rekursiven Ergebnisses mit dem aktuellen Abstand beider Zeitreihenelemente:

DK(S, ()) =∞

DK((),T) =∞

DK((s), (t)) = d(s, t)2
DK(S,T) = max

©«d(s1, t1)2,min

DK(Tail(S), Tail(T))
DK(S, Tail(T))
DK(Tail(S),T)

ª®®¬

Da beide Funktionen so ähnlich in der Berechnung sind, erläutern wir im Rest dieses
Kapitels nur DTW. Alle Aussagen gelten analog für die DK-Distanz.

Algorithmen, die DTW berechnen, werden üblicherweise mittels dynamischer Program-
mierung implementiert [SC90]. Abbildung 1 zeigt eine Beispielrechnung. Es wird das
Kreuzprodukt beider Zeitreihen S und T gebildet, sodass eine Matrix entsteht, welche die
paarweisen Abstände ‖si − tj ‖ der einzelnen Elemente der Zeitreihen enthält. Die Matrix
wird so angeordnet, dass sich die Zelle mit dem Abstand ‖s1 − t1‖ links unten befindet.

2

1

1 9 2 1

8
3
0
1
0

2 1 9 2 1

1 0 8 1 0

7 1 6 7

1

2

1

2

6

1

0

9

12

2 1

0

1

8

2

2

9

1

1

6

1

7

8

10

11

13

1

8

10

9

9

10

9

2

8

17

17

18

10

8

3

5

6

8

10

15

5

4

4

5

Abb. 1: Beispielmatrizen während der Berechnung von DTW (links das Kreuzprodukt der am Rand
stehenden Zeitreihen und rechts die DTW-Matrix mit einem fett markierten optimalen Pfad). Die Pfeile
repräsentieren exemplarisch die Abhängigkeiten der Berechnung der Zellen.

Anschließend wird ein Pfad von links unten nach rechts oben gesucht, der die Summe im
Fall der besuchten Einträge minimiert. Dabei muss der Pfad zusammenhängend sein und
darf niemals nach links oder unten gehen, d. h. innerhalb des Pfades muss der Nachfolger der
Zelle mit den Indizes (i, j) entweder (i + 1, j), (i, j + 1) oder (i + 1, j + 1) sein. Die Summe
der Zellen entlang eines solchen minimalen Pfades ergibt das Ergebnis der DTW-Funktion.

Zur Berechnung eines minimalen Pfades wird jede Zelle durch die Summe ihres Inhalts und
der kleinsten Vorgängerzelle ersetzt. Um eine Zelle zu ersetzen, müssen die Vorgängerzellen
bereits nach diesem Schema angepasst worden sein, sodass eine Abhängigkeit von links
unten nach rechts oben entsteht. Es ist leicht zu sehen, dass dieser Algorithmus eine
quadratische Komplexität hat (genauer m × n, wenn m und n die Längen der Zeitreihen
sind). Mehr noch wurde gezeigt, dass es keine Algorithmen geben kann, die eine bessere
Komplexität haben [BK15; Br14]. Algorithmus 1 stellt den Pseudo-Code für eine auf

65

Jörg P. Bachmann, Kevin M. Trogant, Johann-C. Freytag

dynamischer Programmierung basierende Implementierung zur Verfügung. Im folgenden
Kapitel 3 implementieren wir den Algorithmus auf der GPU.

Algorithmus 1 CPU-Implementierung von DTW

1 Eingabe: Zeitreihen A und B; Ausgabe: Distanz DTW(A, B)
2 M B m × n Matrix
3 for x = 1 to n
4 for y = 1 to m
5 if x = 1 and y = 1 then M1,1 = |A1 − B1 |

6 else if x = 1 and 1 < y then My,1 = My−1,1 + |Ay − B1 |

7 else if x ≤ n and y = 1 then M1,x = M1,x−1 + |A1 − Bx |

8 else if x ≤ n and 1 < y then
9 My,x = min{My−1,x,My,x−1,My−1,x−1} + |Ay − Bx |

10 return Mm,n

3 Implementierung
In diesem Kapitel stellen wir verschiedene Implementierungen für die Berechnung von DTW
bzw. DK vor. Da sich die Funktionen nur in einer Operation unterscheiden (DK wählt das
Maximum zweier Werte, die von DTW addiert werden), erläutern wir nur die Implementierung
von DTW.

Die in Kapitel 3.1 vorgestellte Implementierung liefert die Basis für die weiteren Imple-
mentierungen. Sie unterstützt nur die Eingabe kleiner Zeitreihen, da diese vollständig
in den lokalen Speicher der GPU kopiert werden. In Kapitel 3.2 zeigen wir, wie die
Implementierung so abgeändert werden kann, dass sie die Sub- und Supersequenzsuche
unterstützt. In Kapitel 3.3 erweitern wir die Basis-Implementierung, sodass eine der beiden
Eingabezeitreihen beliebig lang sein kann. Diese Implementierung ist orthogonal mit
der Sub- bzw. Supersequenz-Implementierung kombinierbar, sodass ein Algorithmus für
GPU-beschleunigte Sub- bzw. Supersequenzsuche mit DTW bzw. DK zur Verfügung gestellt
wird. Aus Platzgründen gehen wir darauf nicht weiter ein.

3.1 Basis-Implementierung

Aus Abbildung 1 ist zu erkennen, dass die Berechnung der Zellen innnerhalb einer
Diagonalen unabhängig voneinander sind. Zerlegt man die DTW-Matrix in solche Diagonalen
von links unten nach rechts oben beginnend (vgl. Abb. 2), so ist die Berechnung einer
Diagonalen nur von den Werten der beiden Vorgängerdiagonalen abhängig. Basierend auf
dieser Erkenntnis berechnen alle hier vorgestellten GPU-Implementierungen die DTW-Matrix
sukzessive von links unten nach rechts oben, halten stets nur die letzten drei Diagonalen
im lokalen Speicher und parallelisieren innerhalb der aktuell zu berechnenden Diagonalen.

66

Time Warping auf GPUs

Algorithmus 2 enthält den relevanten Ausschnitt des CUDA C Codes für die Berechnung
von DTW6.
Algorithmus 2 Basis Implementierung

1 // t: Kandidat; q: Anfrage; jeweils vom globalen in den lokalen Speicher kopiert
2 // c: Aktuelle−, p; Letzte−, p2: Vorletzte Diagonale; jeweils im lokalen Speicher
3 // R: Rückgabewert im globalen Speicher
4 // TL: Kandidatenlänge, QL: Anfragelänge,
5 if (threadIdx.x == 0) p2[0] = 0.0f;
6 for (int i = 0; i < QL + TL - 1; ++i) {
7 const int x = threadIdx.x, y = i - x;
8 if (y>=0 && y<TL) c[x+1] = abs(t[y]-q[x])+min(p[x+1],p[x],p2[x]);
9 if (threadIdx.x == 0) p2[0] = INFINITY;

10 __syncthreads();

11 volatile float *_t = p2; p2 = p; p = c; c = _t;
12 }

13 if (threadIdx.x == 0) R[blockIdx.x] = p[QL];

Da die Zugriffszeiten auf den lokalen Speicher um Größenordnungen geringer sind als
auf den globalen Speicher, kopiert unsere Implementierung beide Zeitreihen zunächst in
den schnellen lokalen Speicher (Variablen t und q) und berechnet die Diagonalen der
DTW-Matrix ebenfalls im lokalen Speicher (Variablen c, p und p2). Ferner werden Diagonalen
in Arrays abgelegt, sodass die Threads jegliche Speicherzugriffe ohne Verzögerung durch
Bankkonflikte durchführen.

A
nf

ra
ge

-
ze

itr
ei
he

Kandidatenzeitreihe

A
nf

ra
ge

ze
itr

ei
he

Kandidatenzeitreihe

Abb. 2: Skizze zur Basis-Implementierung von DTW: Diagonale Linien repräsentieren Threads, die auf
den Zellen der DTW-Matrix arbeiten.

Die maximale Länge der Diagonalen wird durch die Länge der kürzeren Zeitreihe bestimmt.
Um jedoch den Programmcode innerhalb der Schleife (Zeile 6 bis 12) möglichst einfach,
instruktionsarm und damit schnell zu gestalten, setzen wir die Länge einer Diagonalen
mit der Länge der Anfragezeitreihe gleich (vgl. Abbildung 2). Diese Herangehensweise
ist effizient, falls die Anfragezeitreihe kürzer ist, als der zu vergleichende Kandidat. Falls
die Anfragezeitreihe länger ist, so reserviert die Implementierung für jede Diagonale mehr

6 Eine vollständige Implementierung ist hier zu finden: http://www.dbis.informatik.hu-berlin.de/fileadmin/
projects/GPUAlgorithms/dtw_on_gpus.tar.gz

67

http://www.dbis.informatik.hu-berlin.de/fileadmin/projects/GPUAlgorithms/dtw_on_gpus.tar.gz
http://www.dbis.informatik.hu-berlin.de/fileadmin/projects/GPUAlgorithms/dtw_on_gpus.tar.gz

Jörg P. Bachmann, Kevin M. Trogant, Johann-C. Freytag

Speicher, als notwendig ist. Da DTW jedoch symmetrisch bzgl. der Eingabeparameter ist,
können im zweiten Fall die Parameter einfach vertauscht werden, um wiederum auf den
ersten effizienten Fall zurückzugreifen.

Wie bereits erwähnt, sind die Zellen innerhalb einer Diagonalen unabhängig voneinander,
sodass die Länge der Diagonalen gleichzeitig den Grad der Parallelität innerhalb eines
Blocks angeben. Darüber hinaus kann durch die Anzahl der zu berechnenden DTW-Instanzen
(also die Anzahl der CUDA-Blöcke) parallelisiert werden. Die hohe Geschwindigkeit unserer
Implementierung resultiert also aus dem Arbeiten im lokalen Speicher sowie der maximal
möglichen Parallelisierung bei minimaler und bankkonfliktfreier Speicherverwaltung.

3.2 Sub- und Supersequenzanfragen

Um auch Sub- und Supersequenzanfragen beantworten zu können, verfolgen wir den
Ansatz von S-DTW [AF13; Mü07], wobei im Gegensatz zu DTW der minimale Pfad in
einer beliebigen Zelle am linken Rand der DTW-Matrix startet und (rechts davon) in einer
beliebigen Zelle des oberen Randes der DTW-Matrix endet (siehe Abbildung 3).

A
nf

ra
ge

-
ze

itr
ei
he

Kandidatenzeitreihe

A
nf

ra
ge

ze
itr

ei
he

Kandidatenzeitreihe

Abb. 3: Skizze der DTW-Matrix zur Berechnung von S-DTW (links: Sub-, rechts: Supersequenzsuche).

Die Implementierung ändert sich dazu nur geringfügig: Jede Zelle der untersten Zeile der
DTW-Matrix wird behandelt, als wäre sie die Zelle der linken unteren Ecke in der Basis-
Implementierung, d. h. ihre Berechnung ist nicht mehr abhängig von ihrem linken Nachbarn.
Das Ergebnis der Berechnung entspricht dem kleinsten Wert der obersten Zeile statt des
Wertes der Zelle der rechten oberen Ecke. Analog dazu wird in der Supersequenzsuche ein
minimaler Pfad von linken Spalte zur rechten Spalte berechnet.

3.3 Implementierung für lange Zeitreihen

Die Größe des lokalen Speichers bestimmt die maximale Länge der verarbeiteten Zeitrei-
hen bei der Basis-Implementierung. Wir ändern die Implementierung derart, dass kurze
Anfragezeitreihen gegen beliebig lange Kandidatenzeitreihen verglichen werden können.

A
nf

ra
ge

-
ze

itr
ei
he

Kandidatenzeitreihe
(1)

(2)

(2)

Abb. 4: Skizze der DTW-Matrix bei langen Kandidatenzeitreihen (oben); der überlappenden Fenster
(unten); und der berechnenden Threads (Diagonalen oben).

68

Time Warping auf GPUs

Abbildung 4 skizziert den Ablauf: Wir laden stets nur ein Fenster der langen Kandidaten-
zeitreihe in den lokalen Speicher (1). Sobald die zu berechnende Diagonale Daten benötigt,
die nicht im aktuellen Fenster liegen, wird das nächste Fenster geladen (2). Auf diese Weise
laden wir die Zeitreihe sukzessiv in sich überlappende Fenster in den lokalen Speicher.

Um die Daten des überlappenden Bereichs nicht mehrfach aus dem globalen Speicher zu
kopieren, verschieben wir sie innerhalb des Puffers im lokalen Speicher. Beim Verschieben
der Daten können Race Conditions beim Lesen bzw. Schreiben verschiedener Threads auf die
selbe Speicherstelle auftreten. Diese Konflikte treten nicht auf, sobald das Fenster mindestens
doppelt so lang wie der überlappende Bereich (d. h. der Länge der Anfragezeitreihe)
ist. Wir verlangen im Folgenden solche Fenstergrößen, um die Kosten entsprechender
Synchronisierungsbefehle einzusparen.

4 Evaluierung
In diesem Kapitel evaluieren wir die in Kapitel 3 vorgestellten Implementierungen von DTW
auf der GPU und zeigen, dass unsere GPU-Implementierungen bis zu zwei Größenordnungen
schneller sind, als ihr CPU-Pendant. Da sich die Laufzeiten der Sub- und Supersequenzvari-
anten kaum messbar von der Basisimplementierung unterschieden, verzichten wir hier auf
eine Präsentation der Ergebnisse.

In unseren Experimenten haben wir alle GPU-Algorithmen auf einer NVIDIA GeForce
GTX 980 Ti ausgeführt. Der CPU-Algorithmus wurde auf einem AMD Ryzen 7 1700X
Prozessor ausgeführt. Vereinzelte Experimente wurden auf einer NVIDIA GeForce GTX
780 Ti ausgeführt.

Datensatzeigenschaften Da die Anzahl der Rechenoperationen in den Algorithmen offen-
sichtlich unabhängig von den konkreten Inhalten der Zeitreihen ist, haben wir ausschließlich
synthetische Daten benutzt. Die einzigen Größen, von denen die Laufzeit abhängig ist,
sind die Länge der Zeitreihen, die Fenstergröße bei der GPU-Implementierung für lange
Zeitreihen sowie die Größe des Datensatzes. Da die GPU-Implementierungen von DTW kein
symmetrisches Verhalten bezüglich der Längen beider Eingabezeitreihen haben, untersuchen
wir den Einfluss beider Parameter getrennt voneinander.

Beschreibung der Experimente Innerhalb eines Experiments berechnen wir N verschie-
dene Abstände mittels DTW auf jeweils zufällig erzeugte Zeitreihen A und B vorgegebener
Längen #A und #B. Wir berechnen die Werte von DTW mit jeder vorgestellten Implemen-
tierung und messen jeweils die kumulierten Laufzeiten. Abbildung 5 zeigt repräsentative
Beispielmessungen für die Laufzeiten der Implementierungen bei variierender Länge der
Anfragezeitreihe (links), Kandidatenzeitreihe (mitte) sowie bei steigender Anzahl der zu
berechnenden DTW-Instanzen (rechts).

Analyse der Messwerte Abbildung 5 zeigt, dass die GPU-Implementierungen in fast
allen Fällen ca. zwei Größenordnungen schneller sind, als ihr CPU-Pendant. Dagegen zeigt
das Diagramm rechts in der Abbildung, dass die CPU bei der Berechnung von nur einer

69

Jörg P. Bachmann, Kevin M. Trogant, Johann-C. Freytag

 0.1

 1

 10

 100

 1000

 10000

 3000 6000 9000 12000 15000

Z
ei

t i
n

m
s

Länge der Kandidatenzeitreihe

CPU
Basis

Gefenstert
 1

 10

 100

 1000

 10000

 200 400 600 800 1000
Z

ei
t i

n
m

s
Länge der Anfragezeitreihe

CPU
Basis

Gefenstert

 0.01

 0.1

 1

 10

 100

 200 400 600 800 1000

Z
ei

t i
n

m
s

Anzahl der DTW Instanzen

CPU
Basis

Gefenstert

Abb. 5: Laufzeit von DTW. bei variierender Länge der Kandidatenzeitreihe (links); Länge der Anfra-
gezeitreihe (mitte); Anzahl der DTW-Instanzen (rechts). Konstante Paramter: Anzahl DTW-Instanzen:
1000; Länge der gepufferten Zeitreihen: 1024; Länge der ungepufferten Zeitreihen: 64; Pufferlänge:
doppelte Länge der Anfragezeitreihe

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 200 400 600 800 1000

Z
ei

t i
n

m
s

Länge der Anfragezeitreihe

CPU
Gefenstert

Abb. 6: Laufzeit von DTW. bei variierender Länge der Anfragezeitreihe. Anzahl DTW-Instanzen: 1;
Länge der Kandidatenzeitreihe: 1024000;Pufferlänge: doppelte Länge der Anfragezeitreihe

DTW-Instanz schneller ist, als die GPU. Steigt die Anzahl der zu berechnenden DTW-Instanzen
jedoch, so profitiert die GPU-Implementierung von der Parallelisierung der Berechnungen.

Abbildung 6 zeigt, dass das gleiche Phänomen bei höherer Parallelisierung einzelner
DTW-Instanzen zu beobachten ist: Der Grad der Parallelisierung ist durch die Länge der
Diagonalen, d. h. laut Algorithmus 2 durch die Länge der Anfragezeitreihe bestimmt.
Ferner beobachten wir, dass die Laufzeit der GPU-Implementierung bei wachsender
Länge der Anfragezeitreihe sprunghaft ansteigt. Wir vermuten, dass dieser Effekt auf
Schedulingentscheidungen innerhalb der GPU zurückzuführen ist.

Abbildung 5 (links) zeigt, dass die gepufferte Implementierung wider Erwarten schneller
als die Basis-Implementierung ist. Wir vermuten den Grund dafür in der Konkurrenz
verschiedener DTW-Instanzen um den lokalen Speicher: Durch den wachsenden lokalen
Speicherverbrauch der Basis-Implementierung (bei wachsender Länge der Anfragezeitreihe)
können weniger DTW-Instanzen parallel ausgeführt werden, während die gepufferte Imple-
mentierung gegen diesen Effekt immun ist. Weitere Experimente haben diese Vermutung
bestätigt: Abbildung 7 zeigt, dass die gefensterte Implementierung langsamer wird, je größer
wir die Fensterlänge wählen. Darüber hinaus beobachten wir, dass die modernere Hardware
(NVIDIA GeForce GTX 980 Ti) gegen diesen Effekt robuster als ihr Vorgängermodell
(NVIDIA GeForce GTX 780 Ti) ist.

70

Time Warping auf GPUs

 1

 10

 100

 1000

 2000 3000 4000 5000

Z
ei

t i
n

m
s

Fensterlänge

CPU
Basis

Gefenstert

 1

 10

 100

 2000 3000 4000 5000

Z
ei

t i
n

m
s

Fensterlänge

CPU
Basis

Gefenstert

Abb. 7: Laufzeit von DTW. bei variierender Pufferlänge. Anzahl DTW-Instanzen: 500; Länge der
Kandidatenzeitreihe: 256; Länge der Anfragezeitreihe: 512; Berechnung mit einer NVIDIA GeForce
GTX 780 Ti (links) und einer 980 Ti (rechts)

5 Fazit
In dieser Arbeit haben wir speichereffiziente GPU-Implementierungen von DTW bzw. DK
inklusive Versionen für Sub- und Supersequenzsuche vorgestellt. Wir haben die Implemen-
tierungen um die Möglichkeit erweitert, beliebig lange Kandidatenzeitreihen verabeiten zu
können. Unsere Evaluierung ergab einen stabilen Geschwindigkeitsvorteil von ein bis zwei
Größenordnungen gegenüber einer CPU-Implementierung. Beobachtungen zufolge wird
der Geschwindigkeitsgewinn nicht durch Speicherzugriffe beschränkt, sondern durch den
Parallelitätsgrad, den wir durch Optimierung des lokalen Speicherverbrauchs maximieren
konnten. Der Flaschenhals wird folglich durch die Größe des lokalen Speichers bestimmt.

Damit wurde eine Grundlage geschaffen, metrische Indexstrukturen mittels GPU-
beschleunigter Abstandsmaße zu verbessern. Eine mögliche Anwendung ist, die in dieser
Arbeit vorgestellten Implementierungen für andere auf dynamischer Programmierung
basierende Algorithmen zu adaptieren (z. B. Levenshtein-Distanz, Hidden-Markov-Chains).

Literatur

[AF13] Anguera, X.; Ferrarons, M.: Memory efficient subsequence DTW for Query-by-
Example Spoken Term Detection. In: 2013 IEEE ICME. S. 1–6, Juli 2013.

[Ar17] Arkhipov, D. I.; Wu, D.; Li, K.; Regan, A. C.: Sorting with GPUs: A Survey.
CoRR abs/1709.02520/, 2017, arXiv: 1709.02520.

[Be90] Beckmann, N.; Kriegel, H.-P.; Schneider, R.; Seeger, B.: The R*-tree: An
Efficient and Robust Access Method for Points and Rectangles. SIGMOD Rec.
19/2, S. 322–331, Mai 1990, issn: 0163-5808.

[BF17] Bachmann, J. P.; Freytag, J.-C.: Dynamic Time Warping and the (Windowed)
Dog-Keeper Distance. In (Beecks, C.; Borutta, F.; Kröger, P.; Seidl, T., Hrsg.):
Similarity Search and Applications. Springer International Publishing, Cham,
S. 127–140, 2017, isbn: 978-3-319-68474-1.

[BK15] Bringmann, K.; Künnemann, M.: Quadratic Conditional Lower Bounds for
String Problems and Dynamic Time Warping. CoRR abs/1502.01063/, 2015.

71

http://arxiv.org/abs/1709.02520

Jörg P. Bachmann, Kevin M. Trogant, Johann-C. Freytag

[BKL06] Beygelzimer, A.; Kakade, S.; Langford, J.: Cover trees for nearest neighbor.
In: Proceedings of the 23rd ICML. ICML ’06, ACM, Pittsburgh, Pennsylvania,
S. 97–104, 2006, isbn: 1-59593-383-2.

[Br14] Bringmann, K.: Why walking the dog takes time: Frechet distance has no
strongly subquadratic algorithms unless SETH fails. CoRR abs/1404.1448/,
2014.

[Ch14] Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.;
Shelhamer, E.: cuDNN: Efficient Primitives for Deep Learning. CoRR ab-
s/1410.0759/, 2014, arXiv: 1410.0759.

[CPZ97] Ciaccia, P.; Patella, M.; Zezula, P.: M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In: Proceedings of the 23rd International
Conference on Very Large Databases. VLDB ’97, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, S. 426–435, 1997, isbn: 1-55860-470-7.

[Fr06] Fréchet, M. R.: Sur quelques points du calcul fonctionnel. Rendiconti del Circolo
Mathematico di Palermo, 1906.

[HSS14] Hundt, C.; Schmidt, B.; Schömer, E.: CUDA-Accelerated Alignment of Sub-
sequences in Streamed Time Series Data. In: 2014 43rd ICPP. S. 10–19, Sep.
2014.

[Mü07] Müller, M.: Information Retrieval for Music and Motion. Springer-Verlag, Berlin,
Heidelberg, 2007.

[NB09] Novak, D.; Batko, M.: Metric Index: An Efficient and Scalable Solution for
Similarity Search. In: 2009 Second SISAP. S. 65–73, Aug. 2009.

[SA09] Striemer, G. M.; Akoglu, A.: Sequence alignment with GPU: Performance and
design challenges. In: 2009 IEEE SPDP. S. 1–10, Mai 2009.

[Sa10] Sart, D.; Mueen, A.; Najjar, W.; Keogh, E.; Niennattrakul, V.: Accelerating
Dynamic Time Warping Subsequence Search with GPUs and FPGAs. In: 2010
IEEE ICDM. S. 1001–1006, Dez. 2010.

[SC90] Sakoe, H.; Chiba, S.: Readings in Speech Recognition. In (Waibel, A.; Lee, K.-F.,
Hrsg.): Readings in Speech Recognition. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, Kap. Dynamic Programming Algorithm Optimization
for Spoken Word Recognition, S. 159–165, 1990, isbn: 1-55860-124-4.

[TDB10] Tomov, S.; Dongarra, J.; Baboulin, M.: Towards Dense Linear Algebra for
Hybrid GPU Accelerated Manycore Systems. Parallel Comput. 36/5-6, S. 232–
240, Juni 2010, issn: 0167-8191.

[YZG13] You, S.; Zhang, J.; Gruenwald, L.: Parallel Spatial Query Processing on GPUs
Using R-trees. In: Proceedings of the 2Nd ACM SIGSPATIAL International
Workshop on Analytics for Big Geospatial Data. BigSpatial ’13, ACM, Orlando,
Florida, S. 23–31, 2013, isbn: 978-1-4503-2534-9.

72

http://arxiv.org/abs/1410.0759

B. Juurlink, W.Karl (Hrsg.)
Proceedings 28th PARS Workshop

Generating Optimized FPGA Based MPSoCs to Parallelize
Legacy Embedded Software with Customizable Throughput

Kris Heid1, Christian Hochberger1

Abstract: Executing legacy software on newly developed systems can lead to problems regarding the
required throughput of the software. Automatic software parallelization can help to achieve a desired
exection time even if a single core version would be to slow. In this contribution, we present a toolset
that automatically parallelizes a given legacy software and distributes it to multiple soft-cores forming
a processing pipeline. As a goal for the parallelization, the user can provide a minimum throughput
that has to be achieved. Although this concept is limited to repetitive tasks, it can be well applied to
most embedded system applications. The results show that the tool achieves remarkable speedups
without any manual intervention or code restructuring for a sprectrum of benchmarks.

Keywords: automatic parallelization; embedded; soft-core; MPSoC; µStreams

1 Introduction

Reusing existing software is often proposed as a good way to reduce the cost of newly
developed embedded systems. Such existing code might implement an application that must
obey (soft) real time conditions. To meet these conditions, the performance of a single
processing core might not be sufficient and distributing the code over multiple cores could
present a solution to this problem.

Automatic parallelization of software is a research topic for many years now. Yet, most of
the resulting tools cannot be used for embedded systems, as they either demand a particular
infrastructure or programming interface (like CUDA or MPI) or require special OS support.

In this work, we focus on a particular software structure that in turn can be parallelized fully
automatically. We expect that the software executes a repetitive task that can be broken
down into smaller execution units (thus forming kind of a processing pipeline). Such a
structure is often found in embedded software.

To fully exploit this structure, the number of pipeline stages and the communication between
different stages must be adapted to the needs of individual applications. Thus, the shown
1 Technische Universität Darmstadt, Fachgebiet Rechnersysteme, Merckstr. 25, 64283 Darmstadt, Germany

heid@rs-tu-darmstadt.de, hochberger@rs.tu-darmstadt.de

73

heid@rs-tu-darmstadt.de
hochberger@rs.tu-darmstadt.de

Kris Heid, Christian Hochberger

approach is best suited for application specific System-On-Chip (SoC) solutions. These
SoCs can either be implemented as a custom chip, which would demand very high quantities,
or it could be implemented on a Field Programmable Gate Array (FPGA) which can easily
be used even for small quantities. Leveraging FPGAs also allows easy future extensibility
with more peripherals or cores.

On an FPGA, the processing cores should be realized as so called soft-cores, making it
possible to select an arbitrary number of cores and a custom communication infrastructure
depending on the application requirements.

In this contribution, we present our fully automatic tool flow that enables the user to generate
a SoC architecture with multiple cores and distribute the legacy software to these cores,
such that a user specified throughput is achieved.

The remainder of this paper is structured as follows: The next section discusses the related
work, particularly other approaches to parallelize software. Section 3 explains our used
target architectures. Section 4 then presents our tools and how they work together. An
evaluation using multiple benchmarks from different domains is given in Section 5. Finally,
a conclusion and an outlook follow.

2 Related Work

Parallelization approaches have already been studied for the past 30 years. For parallelization,
different concepts have been proposed: Domain specific languages (DSLs), language exten-
sions, application programming interfaces (APIs), libraries, annotation based parallelization
and automatic parallelization. In the order of appearance, the concepts usually make the
initial effort for parallelization smaller and smaller, since it is hard to learn new programming
languages or explore possibilities of a new API. Nowadays, annotation based parallelizers
are relatively popular due to small user effort and good results. OpenMP[CJvdP07] is the
de facto standard in this domain and it is adapted to many platforms. This is mainly since
OpenMP managed to integrate step by step many features proposed by former competi-
tors like StarSs[La12] with heterogeneous platforms or the system presented by Yang et
al.[YL09] with the focus on distributed-memory architectures.

However, automatic parallelization is still the holy grail since it requires no user effort. Many
automatic compilers like SUIF[Ha96], Intel C Compiler, Pluto[Bo08] or Daedalus[Th07]
only focus on parallelizing (affine nested) loops, which only meets the characteristics for
some applications. Other tools like PIPS[KJA15], Eldorado[CMM10] and AutoPar[Li10]
extend their parallelization capabilities to the whole program. AutoPar not only focuses
on loop parallelization, but also on creating tasks from functions through annotating the
source-code with OpenMP loop and task pragmas. PIPS creates a data dependency graph
from the source-code. The runtime of the source-code parts is estimated through assembler
code analysis and parts of the source-code are mapped to the hardware with a resource aware

74

Automatic MPSoC Parallelization

list scheduling. PIPS extends the source-code with OpenMP pragmas or generates message
passing interface (MPI) code. Eldorado generates a hierarchical control flow graph (CFG)
and applies integer linear programming to find an optimal solution with respect to available
processor threads, task creation overhead and communication overhead. Compared to PIPS,
Eldorado uses a, presumable more inaccurate, average execution time per C source-code
statement.

All aforementioned parallelization tools have the following flaws that we want to address in
this work:

• Most tools try to extract as much parallelism as possible. Specifying a desired
speedup and creating appropriate parallelizations in terms of hard- and software is
not considered.

• Data and task parallelism is mainly used. Pipeline parallelism is rarely used even
though it is very beneficial for regularly repetitive tasks (like in many embedded
systems).

• Even parallelizers targeting embedded systems do not focus on conflicts through
simultaneous peripheral access by multiple cores.

3 Target Platforms

As target platform we have used two soft-core multi-processor system-on-chips (MP-SoCs)
kits:

SpartanMC is our own 18-Bit architecture where we have full control over the environment.
The uncommon 18-Bits optimally leverage todays FPGAs, whose internal structures
ideally fit 18 bits. The SoC kit contains a system-builder, simulator, GCC, Binutils,
GDB, and synthesis toolchain support for Xilinx, Altera(Intel) and Lattice FPGAs.

MicroBlaze is Xilinx’ 32-Bit soft-core. In contrast to other vendor soft-cores like Altera’s
Nios and LatticeMicro32, it is widely used and in our experience the support for
MP-SoCs is better. The available tool environment has similar extend as SpartanMC.

A MP-SoC in both architectures is a distributed-memory system with communication
through custom point-to-point as well as point-to-multipoint communication peripherals.
Xilinx provides the Mailbox for bidirectional FIFO based communication. The Mailbox can
either be configured with an AXI4-Lite interface, implementing memory-mapped IO or
an AXI-Stream interface, requiring special processor instructions to access it. The Stream
interface should be used for throughput demanding applications, since it has a significantly
higher throughput and lower latency. For point-to-multipoint connections we use multiple
Mailboxes in parallel.

75

Kris Heid, Christian Hochberger

SpartanMC has a 1-1 core-connector, 1-N dispatcher, N-1 concentrator and an optional
shared memory region as communication peripherals. The core-connector is very similar to
the Mailbox, except being unidirectional. The concentrator and dispatcher have a round-
robin arbiter or software based arbitration to distribute or receive data in a fair manner.
All SpartanMC interconnect peripherals are either memory-mapped FIFO buffers or
implemented as DMA peripheral memory regions. DMA core-interconnects in SpartanMC
require at least two dual-ported RAM primitives (BRAMs), one output of each RAM is
connected to core 1, the other to core 2, integrating seamlessly into the core’s address space.
Only one RAM port to each core is active at a time and a data transfer simply changes the
active port on both sides. Thus, the duration of a data transfer of arbitrary size takes 1 cycle,
while the non DMA variant requires about 2 cycles per 18bit word. However, BRAM is
often a very limited resource and the RAM size must be chosen big enough to contain the
maximum message size, while message size is irrelevant for the FIFO based transmission.

4 Tool Flow

We proceeded in different steps with a dedicated tool for each step to realize a parallelized
hard- and software design. This decision makes the approach easily adaptable to other
Soft-Core MP-SoCs. Additionally, human readable and modifiable files are generated after
each intermediate step. This allows the user to step in and modify the design to his wishes or
requirements. The overall approach is shown in Fig. 1 and explained in the following.

4.1 AutoPerf: Application Profiling

The legacy sequential source-code is firstly profiled with AutoPerf[HWH18a]. The code
is instrumented with calls to the SoCs performance-counter or timer. Each statement is
embraced by a call to start the performance-counter and afterwards read and reset it. By
default, the main function is profiled, but the user can decide to profile other functions
through pragma annotations as-well. The instrumented source-code and an abstract hardware
configuration is provided as output. The single-core design can be synthesized and run
on the FPGA after automatically importing and building a design in the system-builder
(jConfig). The user has to take care to provide an average or worst case environment for the
peripheral interaction during measurement. A performance-profile is printed via UART or
similar after the application finished.

4.2 AutoStreams: Automatic Annotations

The produced performance profile and the original source-code is feed to Auto-
Streams[HH18]. The user then specifies the desired throughput of the application. Au-
toStreams will parse the source-code into an Abstract Syntax Tree (AST). A CFG of the

76

Automatic MPSoC Parallelization

AutoPerf run on HW

.csv.c legacy
source-code

performance
profile

AutoStreams

.c annotated
source-code

LoopOptimizer

µStreams .xml

abstract HW
description

.c.c

parallelized
source-code

jConfig

.v
multi-core

HDL
descriptionrun on HW

refine
timing

.csv parallelization
profile

provide
design

internal
call

Fig. 1: Automatic parallelization toolflow

profiled source-code parts is created. A CFG node then represents a statement of the profiled
function. Often, loops consume vast parts of the overall application runtime. Loops are
automatically partitioned into multiple smaller loops with the LoopOptimizer (see Section
4.2.1) if required. This decreases the time granularity and increases amount of CFG nodes.

Afterwards, AutoStreams tries to partition the application to use as few hardware as possible
to achieve the user defined throughput. To prefer the smallest possible hardware configuration,
an analytical model for each core and core-interconnect has been previously evaluated and
added to a AutoStreams hardware usage table. Additionally, the required communication
time per communicated data size has been evaluated and is reflected in an approximation
function for each core-interconnect. Through these analytical models, an approximation can
be done whether it is better to use more cores with slow communication or less cores with
fast, but hardware (BRAM) costlier communication peripherals for example.

Now, design space exploration can start. Evaluation of all possible solution takes to long,
due to the vast amount of possible solutions. Thus, a branch-and-bound method was chosen.
Firstly, a non optimal search heuristic is applied, delivering a solution limiting the search
space in the second phase for an optimal solution (detailed description in [HH18]).

To select the best of all solutions fulfilling the timing requirements, firstly pipelines with
unique peripherals per pipeline stage are selected, since access to the same peripheral

77

Kris Heid, Christian Hochberger

from different cores is not safely possible [HWH16b]. This behavior can be ignored via
command line flags. Secondly, configurations with smallest hardware (LUT) overhead are
preferred. Thirdly, amongst minimal hardware designs, the ones with the highest throughput
are chosen. Thus, the most economic solution fulfilling user requirements is selected.

The used partitioning is reflected in injected source-code annotations which can be reviewed
and if desired manipulated by the user.

4.2.1 LoopOptimizer: Loop Optimizations

Creating balanced pipelines doesn’t work well when single statements or CFG nodes (often
loops) dominate execution time. Placing pragmas inside loops will create pipeline backward
dependencies, prohibiting the benefits of the pipeline. The LoopOptimizer[HWH18b]
implements loop splitting and loop fission to provide AutoStreams with loop restructuring
and more possibilities of split points.

Loop fission finds independent statements in a loop. All independent statements are
partitioned into a separate loop while the loop condition remains identical for all loops.

Loop splitting is a method to distribute the iterations of the original loop to several loops
handling a fraction of the original iterations. Thus, the iterations are partitioned while the
body stays the same.

4.3 µStreams: Annotated Source-Code Transformation

The target of µStreams[HWH16a] is to split up the original source-code at the pragma
annotations into several chunks, forming a processing pipeline. Each pipeline stage will
do a fraction of the work of the original application and pass results to the next pipeline
stage proceeding in the same way. Thus, the first core is able to handle new data inputs
in shorter intervals, increasing the applications throughput. Currently, µStreams has only
one pragma: #pragma microstreams task with the option to specify replicate *number
of replicas* to make non dividable pipeline stages superscalar. Pragmas can be placed
before any statement, function and inside called functions, but not inside loops or recursive
functions. Dependencies between the partitioned source-code chunks are automatically
identified and communication infrastructure in software and hardware is automatically
created. µStreams is also able to detect used peripherals at the different source code parts
based on used APIs and variable types [HWH16b]. One firmware file per core is written as
C source-code at the end of modification. Additionally, an abstract hardware description
(XML) is created, specifying processor cores, core-interconnects and peripherals. The
user also has the option to add evaluation peripherals, which automatically measure the
performance of the parallelized design. The abstract hardware description and the firmware
sources can be imported into the system-builder (jConfig), automatically connecting and

78

Automatic MPSoC Parallelization

building the components. The system can then be synthesized and compiled to be run on an
FPGA.

4.4 Refine Timing Constraints

The user can review the optionally, but automatically generated parallel performance profile
after execution on the FPGA and match it against the requirements. We identified two
causes for not fulfilled throughput requirements: Different GCC compiler optimizations and
different complex loop iterations of partitioned loops. Varying GCC compiler optimizations
can be applied when compiling the parallelized and partitioned code separately, compared
to the profiled initial single core compilation, resulting in slower or faster program execution.
Partitioned loops in AutoStreams are treated as if each iteration has the same runtime share
of the overall loop runtime. This is of course not always the case but a valid approximation
for most loops. In both cases, restricting throughput requirements will create a valid design
after a few refinement iterations.

4.5 Contributions of this Work

Compared to previous publications of the presented tool-chain, we have made advancements
in the following sections:

• We have extended all tools from SpartanMC support to Xilinx MicroBlaze, another
soft-core MPSoC. This should show the wider applicability of the approach.

• For the SpartanMC, DMA like core-interconnect peripherals have been created to
further decrease critical inter-core communication overhead. The peripherals have
been integrated in Verilog and the peripheral characteristics have been added in the
analytical model of AutoStreams.

• The pipeline replication mechanism has been integrated in µStreams and AutoStreams
to enable superscalar pipeline stages. For replicated pipeline stages the 1-to-N and
N-to-1 peripherals are used to distribute and collect application state. We want to
analyze the benefits and drawbacks of these constructs and how well the superscalar
pipeline improves throughput compared to the previously used pipeline.

5 Evaluation

5.1 Used Benchmarks

To determine the usefulness of the proposed toolchain, we evaluate four benchmark programs:
ADPCM, MJPEG2000, IIR filter and a firewall.

79

Kris Heid, Christian Hochberger

Adaptive differential pulse-code modulation (ADPCM) is a digital signal compression
algorithm widely used in mobile low-power wireless sensing applications. Infinite impulse
response (IIR) Butterworth Filter represents a 5th order high-pass filter. IIR filters are typically
used instead of FIR filters for filtering time continuous signals in embedded environments
since they require significantly less processing power at an equivalent accuracy. Motion
JPEG 2000 Encoder (MJPEG2000) is a video compression algorithm. Compared to other
video compression algorithms MJPEG2000 has no inter frame dependencies making it well
suitable for parallelization. The firewall implementation contains static as well as dynamic
filter rules (managing open TCP connections). We used our research group’s (~20 people)
firewall as sample for the number of static rules and open TCP connections, since the
performance of a firewall mainly depends on the number of rules.

5.2 Results

Tab. 1: Results of automatic parallelization and according hardware cost
SpartanMC MicroBlaze

Benchmark req.1 act.2 LUTs DMA Cores act.2 LUTs Cores

ADPCM

2 2.2 3.1 x 3 2.7 3.0 3
4 3.4 5.2 x 5 4.4 5.0 5
8 7.2 10.3 x 10 8.0 9.1 10

12 10.8 15.6 - 17 15.7 20.3 20

IIR Filter

2 2.1 2.7 - 3 2.0 2.3 3
4 3.9 5.2 x 5 3.8 9.3 12
8 6.0 12.5 x 12 exceeds FPGA res.

12 8.1 25.2 x 24 exceeds FPGA res.

MJPEG

2 2.6 3.0 - 3 2.2 3.0 3
4 4.4 6.3 - 6 3.5 5.0 5
8 exceeds FPGA resources

Firewall

2 3.1 2.6 - 4 1.8 2.3 4
4 4.5 3.0 - 5 3.5 3.2 6
8 7.4 3.5 - 7 5.1 5.1 10

12 7.4 3.5 - 7 5.2 6.0 12
1 user requested speedup | 2 actual speedup after parallelization

For the benchmarks, we set a user performance requirement to AutoStreams that should
be achieved. The timing requirement reflects a 2x, 4x and if possible 8x and 12x higher
throughput compared to the single core performance throughput of SpartanMC or MicroB-
laze respectively. We allowed AutoStreams to use DMA and non DMA core-interconnects
and superscalar core replication. After parallelization, we’ve synthesized the generated
design for a Xilinx Artix-7 XC7A200T FPGA and finally ran the design while evaluating
hardware overhead and achieved speedup.

80

Automatic MPSoC Parallelization

As seen in Tab. 1, the performance demands of the 2x speedup requirements has almost
always been fulfilled. To achieve a 2x speedup, at least three processing cores are leveraged.
In the ideal case, two cores should be sufficient to achieve this speedup if we neglect
communication overhead. Thus, a quite high overprovisioning was chosen. As speedup
requirements increase, a smaller overprovisioning is chosen, since AutoStreams takes the
smallest possible hardware just fulfilling the throughput requirements. However, due to
the applied single core compiler optimizations which might not be applicable anymore
on the partitioned parallelized code, AutoStreams thinks the requirements are met while
the measured throughput is below the requirement. Surprisingly, the SpartanMC observed
throughput was often 20% to 30% below the the expected throughput, while for MicroBlaze
systems the observed throughput was only around 10% below the expected. Most likely
the cause lies in the different compiler optimizations for both systems, since deactivating
compiler optimizations on one benchmark revealed no discrepancy between the estimated and
the actual throughput. Thus, for all benchmarks the user could make a second parallelization
run with accordingly tightened timing restrictions.

Considering the hardware cost of parallelized design, one can see that for a higher
parallelization unproportionally more cores are required. Firstly, it is often impossible to
generate a balanced pipeline where each core has the same workload due to the finite
granularity of the working packages to distribute. Secondly, the application state has to be
passed through the pipeline which is the communication overhead. The longer the processing
pipeline gets, the smaller are the workloads per core and thus communication overhead
grows relatively. Comparing the IIR benchmark (much application state information) and
the ADPCM benchmark (few application state information) one can see that for a 8x and
12x speedup, IIR needs a longer processing pipeline to fulfill the requirements. However,
looking at the increase of actual used hardware (LUTs) on the FPGA, one can see that this
number does not always grow proportionally with the amount of cores. For example the
SpartanMC 17-core ADPCM example only uses 15x more LUTs compared to the single
core variant, since the synthesis is able to reuse some hardware. In this evaluation we’ve just
focused on the used LUTs but the other FPGA components (BRAMs, registers and DSPs)
grow at similar rates.

We have restricted the available FPGA’s resources for the ADPCM benchmark’s SpartanMC
builds to 200 BRAMs (since BRAMs are often the limiting resource), simulating a smaller
FPGA and intentionally triggering AutoStreams to use BRAM preserving non DMA core-
interconnects on resource shortage. This resulted in the 12x speedup case to use non DMA
core-interconnects and thus still be synthesizable on a smaller FPGA.

The IIR example reveals a different aspect. The 2x speedup requirement is realized though
non DMA core-interconnects for the SpartanMC. However, for tighter user requirements
(4x,8x,12x), DMA variants are chosen. Compared to the workload size, the communication
overhead grows, favoring the faster DMA core-interconnects. To achieve the same speedup
with non DMA core interconnects an additional processing core would be required costing
more hardware than the DMA-core interconnects. Also, a 12x speedup parallelization

81

Kris Heid, Christian Hochberger

without DMA interconnects is not possible since the communication overhead is bigger than
the pipeline stages duration requirement. For the MicroBlaze variant, even a 8x speedup is
not possible anymore since this would result in a 50 core design vastly busting the bounds
of our used FPGA.

The MJPEG2000 benchmark requires a lot of hardware resources (BRAMs) since the full
frame is transferred through the pipeline and stored in each core. Also, the communication
overhead is quite big through the transferal of the whole frames. DMA core-interconnects
for the SpartanMC system can not be used since the available address space would be
exceeded. Through the large communication overhead, the necessary core number quickly
increases and through the required memory per core, the FPGA’s available BRAM is
exceeded, preventing further parallelization. Even though not shown, AutoStreams suggests
the usage of replicas/superscalar pipeline stages for a 8x speedup since inseparable code
parts would exceed the timing requirements. Comparing the hardware cost of a regular
pipeline with a superscalar pipeline revealed that a regular pipeline uses fewer hardware at
the same throughput. This fact is also reflected in AutoStreams observed behavior to only
use replication if no further sequential pipeline stages are possible.

The firewall benchmark’s generated hardware consists of a packet receiving core, multiple
filter cores connected through a 1-N dispatcher and a packet sending core. Thus, all filter
cores form a superscalar pipeline stage through the replicate pragma. The filter rules are
stored in a common memory module connected to all cores. The core receiving and the one
sending Ethernet packets become the bottleneck, visible through a saturation effect for a 8x
and 12x speedup requirement. The sending and receiving cores can’t be parallelized since
they are directly interfacing the Ethernet hardware modules and AutoStreams even throws a
warning that the desired speedup is unreachable. But the saturation effect also comes from
the common filter table memory where all filter cores compare the packet header against.

6 Conclusion

In this contribution we have presented a toolset for the fully automatic parallelization of
legacy software. The user only has to specify a required throughput and the tool then
finds a suitable HW setup of a multi-core system with minimal area requirement and the
corresponding distribution of the legacy software. Even if the expected software structure is
limited, the tool is applicable to most embedded systems applications.

In the future, we want to improve the communication primitives that are used together with
the MicroBlaze core. The Mailbox provided by Xilinx exhibits quite a large latency. Also,
we think that the handling of global variables in the legacy code can be improved.

82

Automatic MPSoC Parallelization

References
[Bo08] Bondhugula, Uday; Baskaran, Muthu; Krishnamoorthy, Sriram; Ramanujam, J.; Roun-

tev, A.; Sadayappan, P.: Automatic Transformations for Communication-Minimized
Parallelization and Locality Optimization in the Polyhedral Model. In: ETAPS CC. 2008.

[CJvdP07] Chapman, Barbara; Jost, Gabriele; van der Pas, Ruud: Using OpenMP. Mit University
Press Group Ltd, 2007.

[CMM10] Cordes, D.; Marwedel, P.; Mallik, A.: Automatic parallelization of embedded software us-
ing hierarchical task graphs and integer linear programming. In: International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS). 2010.

[Ha96] Hall, M. W.; Anderson, J. M.; Amarasinghe, S. P.; Murphy, B. R.; Liao, Shih-Wei;
Bugnion, E.; Lam, M. S.: Maximizing multiprocessor performance with the SUIF
compiler. Computer, 29(12):84–89, Dec 1996.

[HH18] Heid, Kris; Hochberger, Christian: AutoStreams: Fully Automatic parallelization of
Legacy Embedded Applications with Soft-Core MPSoCs. In: ReConFig 2018; Interna-
tional Conference on Reconfigurable Computing and FPGAs. Dec 2018.

[HWH16a] Heid, Kris; Weber, Jan; Hochberger, Christian: µStreams: A Tool for Automated Streaming
Pipeline Generation on Soft-core Processors. In: 2016 International Conference on FPGA
Reconfiguration for General-Purpose Computing (FPGA4GPC). pp. 25–30, May 2016.

[HWH16b] Heid, Kris; Wirsch, Ramon; Hochberger, Christian: Automated Inference of SoC Con-
figuration through Firmware Source Code Analysis. In: FSP 2016; Third International
Workshop on FPGAs for Software Programmers. pp. 1–9, Aug 2016.

[HWH18a] Heid, Kris; Wenzel, Jakob; Hochberger, Christian: Fast DSE for Automated Parallelization
of Embedded Legacy Applications. In: Applied Reconfigurable Computing. Architectures,
Tools, and Applications. pp. 471–484, 2018.

[HWH18b] Heid, Kris; Wenzel, Jakob; Hochberger, Christian: Improved Parallelization of Legacy
Embedded Software on Soft-Core MPSoCs through Automatic Loop Transformations. In:
FSP Workshop 2018; Fifth International Workshop on FPGAs for Software Programmers.
Aug 2018.

[KJA15] Khaldi, Dounia; Jouvelot, Pierre; Ancourt, Corinne: Parallelizing with BDSC, a resource-
constrained scheduling algorithm for shared and distributed memory systems. Parallel
Computing, 41:66 – 89, 2015.

[La12] Labarta, Jesús; Marjanovic, Vladimir; Ayguadé, Eduard; Badia, Rosa M; Valero, Mateo:
Hybrid Parallel Programming with MPI/StarSs. IOS Press, May 2012.

[Li10] Liao, Chunhua; Quinlan, Daniel J.; Willcock, Jeremiah J.; Panas, Thomas: Semantic-
Aware Automatic Parallelization of Modern Applications Using High-Level Abstractions.
International Journal of Parallel Programming, 2010.

[Th07] Thompson, M.; Nikolov, H.; Stefanov, T.; Pimentel, A. D.; Erbas, C.; Polstra, S.;
Deprettere, E. F.: A framework for rapid system-level exploration, synthesis, and
programming of multimedia MP-SoCs. In: CODES+ISSS. 2007.

[YL09] Yang, Chao-Tung; Lai, Kuan-Chou: A Directive-based MPI Code Generator for Linux
PC Clusters. J. Supercomput., 50(2):177–207, November 2009.

83

84

B. Juurlink, W. Karl (Hrsg.)
Proceedings 28th PARS Workshop

A Quantitative Analysis of Processor Memory Bandwidth of
an FPGA-MPSoC

Robert Drehmel1, Matthias Göbel2, Ben Juurlink3

Abstract: System designers have to choose between a variety of different memories available on
modern FPGA-MPSoCs. Our intention is to shed light on the achievable bandwidth when accessing
them under diverse circumstances and to hint at their suitability for general-purpose applications. We
conducted a systematic quantitative analysis of the memory bandwidth of two processing units using
a sophisticated standalone bandwidth measurement tool. The results show a maximum cacheable
memory bandwidth of 7.11 GiB/s for reads and 11.78 GiB/s for writes for the general-purpose
processing unit, and 2.56 GiB/s for reads and 1.83 GiB/s writes for the special-purpose (real-time)
processing unit. In contrast, the achieved non-cacheable read bandwidth lies between 60 MiB/s and
207 MiB/s, with an outlier of 2.67 GiB/s. We conclude that for most applications, relying on DRAM
and hardware cache coherency management is the best choice in terms of benefit-cost ratio.

Keywords: Memory Bandwidth; MPSoC; Interconnects

1 Introduction

As MPSoCs evolve into more complex devices containing increasingly heterogeneous
processing units, a growing variety of specialized memories becomes available to developers.
Although logically connected to a single system bus, the processors and memories in modern
MPSoCs are physically connected using an intricate net of interconnects with distinctive
performance characteristics. As interconnects are often seen as the limiting factor of SoC
performance[1], being aware of their influence on bandwidth can play an important role
in the process of designing a system. The achievable bandwidth when accessing different
memories depends on various factors, e.g. the processor’s performance, the pathway of
interconnects between the processor and the memory, and the cacheability associated with
the memory region. To make informed decisions about which memory to use for a given
task, developers need to understand their capabilities and limitations and need to be able to
compare their performance systematically.
1 Technische Universität Berlin, Embedded Systems Architecture, Einsteinufer 17 (6. OG), 10587 Berlin, Germany

drehmel@campus.tu-berlin.de
2 Technische Universität Berlin, Embedded Systems Architecture, Einsteinufer 17 (6. OG), 10587 Berlin, Germany

m.goebel@tu-berlin.de
3 Technische Universität Berlin, Embedded Systems Architecture, Einsteinufer 17 (6. OG), 10587 Berlin, Germany

b.juurlink@tu-berlin.de

85

drehmel@campus.tu-berlin.de
m.goebel@tu-berlin.de
b.juurlink@tu-berlin.de

Robert Drehmel, Matthias Göbel, Ben Juurlink

The main contribution of this paper is a systematic and comprehensive evaluation of the
processor memory bandwidth achievable using the different processing units of the Xilinx
Zynq Ultrascale+ MPSoC line.

This paper is organized as follows. Section 2 discusses related work, section 3 gives a brief
overview of the platform used, section 4 outlines the design and implementation of the
bandwidth measurement tool, section 5 details the experimental setup and presents the
results of the evaluation. Finally, section 6 draws conclusions based on the results.

Note that in the following, when using the term memory bandwidth, we mean the observed
bandwidth (or throughput) when accessing a certain memory, including and emphasizing the
multiplicity of components involved in the process, like caches, store buffers, interconnects,
memory controllers, and the memory itself.

2 Related Work

Göbel et al.[2] conducted thorough system bus bandwidth analyses of chips from the
previous generation of FPGA-MPSoCs: the Intel Cyclone-V, the Xilinx Zynq-7020, and
the Zynq-7045. Choi et al.[3] evaluated specialized systems with an FPGA and processor
combination, i.e. Intel Xeon E5-2680v2/Stratix V on an Intel HARP board and Intel Xeon
E5-2620v3/Xilinx Virtex 7 on an Alpha Data board.

Closely related to our work, Bansal et al.[4] recently evaluated the memory subsystem
of the Zynq Ultrascale+, but with a focus on giving advice for the design of real-time
applications. They measured bandwidth only for a single processing unit running Linux to
three different memories for a specific amount of time (5 seconds) and using unspecified
instructions generated by the compiler. In contrast, we measured sequential accesses for
varying transfer sizes to four different memories using a sophisticated standalone application,
for two processing units, and for two types of instructions.

3 Xilinx Zynq Ultrascale+

A chip of the Zynq Ultrascale+ series provides an Application Processing Unit (APU)
and a Real-Time Processing Unit (RPU)[5]. The APU consists of an ARM Cortex-A53
processor[6] with four cores, each with 64 KiB L1 cache (separate 32 KiB for instructions
and data) and a shared 1 MiB L2 cache. The RPU consists of two single-core ARM
Cortex-R5 processors[7], each with 32 KiB L1 cache (combined for instruction and data).
One of the two main regions of the chip, the Processing System (PS), contains common
MPSoC components; the other one, the Programmable Logic (PL), holds the integrated
FPGA fabric. We used the Zynq Ultrascale+ ZU9EG chip for our tests. It supplies the system
designer with memories of four main categories, namely

• external Dynamic RAM (DRAM) through an memory controller integrated in the PS,

86

 Quantitative Analysis of Processor Memory Bandwidth of an FPGA-MPSoC

• 256 KiB On-Chip Memory (OCM),
• 256 KiB Tightly-Coupled Memory (TCM), 128 KiB coupled to each Cortex-R5 of

the RPU, again divided into two separate 64 KiB blocks (ATCM and BTCM),
• 32.1 MiB Block RAM (BRAM) in 912 blocks in the PL.

Some chips of the series include so-called UltraRAM on-chip memory in the PL. Unfortu-
nately, this is not the case with the ZU9EG, therefore we were not able to include this kind
of memory in our tests.

4 Benchmark Tool
The core functionality of our benchmark tool is to measure the time it takes the processor to
complete the execution of a bandwidth test function in a specific execution context. The
context of the execution of the test function – and the arguments passed to it – are highly
parameterizable.

The tool allows the user to set parameters to

• select various forms of cacheability for inner and outer domains (ARM-specific),
• select the ISA to use for the memory access (base or Adv. SIMD)[8][9],
• select the access type (read or write),
• select the width of the memory transfer (in powers of two),
• enable or disable the data cache,
• specify the number of rounds of reading and writing before the measurements (to fill

the cache with read-allocate and write-allocate, respectively),
• select the shareability domain (ARM-specific), and
• enable or disable APU coherency (Zynq Ultrascale+-specific).

The user can define a stack of functions to automatically gather results for a set of parameters.
Each function included in the stack iterates through all possible values of a single parameter
and calls the next function in the stack after setting a new value. The last function in the
stack is the test run function that evaluates all the currently set parameters, sets up the
context (e.g., hardware configuration and memory attributes) accordingly and runs the test.
The results for each test run are saved along with the parameters used for the test. After all
tests completed, the user can query the result database for further processing, for example
to perform advanced analyses to find statistical anomalies or to generate plots in LATEX
documents.

To retain full control of the hardware configuration, we developed our benchmark tool
as a bare-metal application using Xilinx’s standalone library. The tool currently supports
Cortex-A53 and Cortex-R5 processors through a hardware abstraction layer that provides
functionality like management of hardware cycle counters, caches, Memory Protection
Units (MPUs), and Memory Management Units (MMUs).

The hardware abstraction layer also provides a set of hand-optimized read and write
benchmark test functions. For a given processor, if 2Wbus bytes is the width of the master

87

Robert Drehmel, Matthias Göbel, Ben Juurlink

Processor Mnemonic Access width (bytes) ISA Type

APU LDP 2 · 8 = 16 ARMv8-A load
APU STP 2 · 8 = 16 ARMv8-A store
APU LD1 8 · 8 = 64 ARMv8-A Adv. SIMD load
APU ST1 8 · 8 = 64 ARMv8-A Adv. SIMD store
RPU LDM 8 · 4 = 32 ARMv7-R load
RPU STM 8 · 4 = 32 ARMv7-R store
RPU VLDM 8 · 8 = 64 ARMv7-R Adv. SIMD load
RPU VSTM 8 · 8 = 64 ARMv7-R Adv. SIMD store

Tab. 1: Instructions used in the bandwidth test functions

interface to the system bus, and 2Winsn bytes is the largest number of bytes transferable with
a single instruction, for each n in [Wbus : Winsn] an optimized function is provided that
transfers 2n bytes in one loop iteration. Assuming Wbus ≤ Winsn, for a test width of Wtest
bytes, the function that is optimized to transfer Wf bytes is selected, where

Wf =

Wbus : Wtest ≤ Wbus
Wtest : Wbus < Wtest < Winsn
Winsn : Wtest ≥ Winsn

Each function is provided in all four possible combinations for read/write access types and
base ISA/Adv. SIMD instructions. Table 1 shows the instructions used in the bandwidth test
functions and their corresponding access widths.

To configure the caching behavior for the Cortex-A53, the tool sets the memory attributes
in the page table entries corresponding to the tested memory region to normal memory,
inner/outer non-cacheable and normal memory, inner/outer write-back to test non-cacheable
and cacheable accesses, respectively. We found that disabling the data cache (by clearing
the C bit in the SCTRLR_ELx register) can have a different effect (i.e. reduced bandwidth) than
marking a region non-cacheable in its page table entries. We attribute this to the fact that
clearing the abovementioned bit disables the data cache and the unified caches, and has
non-intuitive effects such as preventing the caching of page table memory.

The boot code of the standalone library for the Cortex-R5 installs a default MPU configuration
that includes a region that spans the first 2 GiB of the address space. On the Zynq Ultrascale+,
the ATCM is mapped to 0x0 for each Cortex-R5. The code and data segments, the heap, and
the stack of the bandwidth tool are held in a region starting at 0x10000000. We use a region
starting at 0x20000000 to test the DRAM. So instead of a single memory region that spans
the first 2 GiB of the address space, beginning at the start of the address space, the tool
configures three consecutive memory regions that each span 256 MiB. This is necessary to
change the cacheability attributes for the TCM and the DRAM without interfering with the
cacheabilty of the region the bandwidth tool runs in.

88

A Quantitative Analysis of Processor Memory Bandwidth of an FPGA-MPSoC

5 Evaluation

In the following, we first detail the experimental setup and subsequently present the
quantitative results gathered.

5.1 Experimental setup

The benchmark tests use the following fixed parameters: enabled data cache, four rounds
of prefilling the data cache with reads (read-allocate), zero rounds of prefilling the data
cache with writes (write-allocate), outer shareability domain, and enabled APU coherency.
We are basing our decision to leave the APU coherency enabled on the premise that most
system designers will keep it enabled – it is the default setting and is useful for all except a
minority of special applications.

We ran tests for every combination of the parameters processor (APU/RPU), caching
(write-back/non-cacheable), memory (DRAM/OCM/ATCM/BRAM), instruction type/ISA
(base ISA/Adv. SIMD), and access type (read/write), and transfer size (N + 1 different
transfer sizes, 20 to 2N bytes, where 2N bytes is the size of the memory region tested).
Every test was run 1000 times and averaged accordingly.

We tested memory accesses to 16 MiB DRAM, 256 KiB OCM, 64 KiB ATCM, and 1 MiB
BRAM. The ZCU102 board used for the evaluation has 4 GiB of DDR4 memory (2133
MHz) installed. Although the four 64 KiB TCMs available on the chip can be mapped into
a consecutive 256 KiB region, this is only possible when both Cortex-R5 processors are
running in lock-step mode (coupled execution of both processors). A more common mode
of operation is the antithetic split mode (separate execution of both processors), in which
each processor can only access its own (non-consecutively-mapped) ATCM and BTCM.
These and other particularities of the TCM as implemented in the Zynq Ultrascale+ are
described in detail in [5]. We decided to choose a single 64 KiB ATCM as the TCM test
region to cover a broader range of potential applications. The 1 MiB of BRAM (128 bit
data width and 64 KiB depth) consist of 256 RAMB36 BRAM blocks (a utilization of
roughly 28%) generated by a Xilinx Block Memory Generator [10], connected to a Xilinx
AXI BRAM Controller [11] that is in turn connected to the PS using the HPM0 port.

5.2 Results

Non-cacheable APU memory access. First, we discuss the bandwidth results for non-
cacheable APU memory accesses as displayed in figure 1. Results for reads and writes
both show the maximum sustainable bandwidth. Non-cacheable read bandwidth only
increases with the size of memory transferred (a slope similar to figure 5b). This is a trivial
consequence of a decreasing percentage of time spent processing the prologue and epilogue
instructions of the test function. Reading using the base ISA provides roughly twice as much

89

Robert Drehmel, Matthias Göbel, Ben Juurlink

cba

5.49 5.49
5.11 5.18

8.41
8.03

7.95 7.95

DRAM OCM ATCM BRAM
0
1
2
3
4
5
6
7
8
9

10

0.14 0.17
0.12 0.15

5.49 5.49

1.89
3.2

0.07 0.09
0.06 0.08

7.78

6.63

1.89
3.2

Ba
nd

w
id

th
(G

iB
/s)

Read (base ISA) Write (base ISA) Read (Adv. SIMD) Write (Adv. SIMD)

Fig. 1: Bandwidths of non-cacheable APU memory accesses (for the largest tested transfer size).

cba

denotes unsustainable or short-term write bandwidth.

cba

20 24 28 212 216 220 224
0
1
2
3
4
5
6
7
8
9

10

Transfer size (bytes)

Ba
nd

w
id

th
(G

iB
/s)

20 24 28 212 216 220 224
0
1
2
3
4
5
6
7
8
9
10

Transfer size (bytes)

(a) Base ISA (b) Adv. SIMD

DRAM OCM ATCM BRAM

Fig. 2: Bandwidths of non-cacheable APU write memory accesses

bandwidth as using the Advanced SIMD instructions. Still, none of the non-cacheable APU
read bandwidths exceeds 172 MiB/s. Results for write accesses also show the maximum
short-term bandwidths. While read instructions need to move data back to the processor core
and therefore need to wait for the read request to finish, write requests are simply handed off
to another stage. This stage then processes the queued write requests autonomously. If that
stage does not have the capacity to store more outstanding write requests, the hand-off from
the processor is stalled. This might happen because one or more components in the path to
the memory are too slow to keep up or congestion occurs. These throttling effects are visible
in figure 2. Using the base ISA write instructions (figure 2a), the throttling effect appears
at transfer sizes of 211 bytes and 212 bytes for writes to ATCM and BRAM, respectively,
while for DRAM and OCM the limiting factor is the processor core. On the other hand, the
Adv. SIMD write instructions (figure 2b) show a throttling effect for all memories: starting

90

A Quantitative Analysis of Processor Memory Bandwidth of an FPGA-MPSoC

cba

20 24 28 212 216 220 224
0
1
2
3
4
5
6
7
8
9

10
11
12
13

D$-only D$+memory

Transfer size (bytes)

Ba
nd

w
id

th
(G

iB
/s)

Read (base ISA)
Write (base ISA)

Read (Adv. SIMD)
Write (Adv. SIMD)

Fig. 3: Bandwidths of cacheable APU memory accesses to DRAM

cba

DRAM OCM ATCM BRAM
0

1

2

3

0.18 0.2

2.1

0.190.23
0.17

2.1

0.170.18 0.2

2.67

0.190.23
0.17

2.67

0.17Ba
nd

w
id

th
(G

iB
/s)

Read (base ISA) Write (base ISA) Read (Adv. SIMD) Write (Adv. SIMD)

Fig. 4: Bandwidths of non-cacheable RPU memory accesses (for the largest tested transfer size)

at transfer sizes of 211 bytes for ATCM and BRAM, 212 bytes for OCM and 213 bytes for
DRAM.

Cacheable APU memory access. Figure 3 shows the cacheable APU memory bandwidths
for the DRAM. As the bandwidths of cacheable APU memory accesses up to the transfer
size of 215 bytes are practically the same for all memories due to little to no cache misses,
we show only the DRAM plot. There is a first significant drop at a transfer size of 216 bytes,
where the L1 data cache with its size of 32 KiB can only hold part of the data. Another drop
is found at 221 bytes, where the L2 cache size of 1 MiB is exhausted. The read bandwidth
peaks at 7.11 GiB/s and the write bandwidth peaks at 11.78 GiB/s, both using Adv. SIMD
instructions. It is notable that the Advanced SIMD instructions for writing outperform the
base ISA instructions almost by a factor of two at transfer sizes around 214 bytes.

Non-cacheable RPU memory access. Figure 4 shows the maximum bandwidths achiev-
able with non-cacheable RPU memory accesses. The throttling effects exposed by the results

91

Robert Drehmel, Matthias Göbel, Ben Juurlink

cba

20 24 28 212 216 220 224
0

1

2

3
D$-only D$+memory

Transfer size (bytes)

Ba
nd

w
id

th
(G

iB
/s)

20 24 28 212 216
0

1

2

3

Transfer size (bytes)

(a) DRAM (b) ATCM

Read (base ISA) Write (base ISA) Read (Adv. SIMD) Write (Adv. SIMD)

Fig. 5: Bandwidths of cacheable RPU memory accesses

for the non-cacheable APU write memory accesses do not appear with non-cacheable RPU
write memory accesses. The reason is not because the Cortex-R5 is not fast enough to force
congestion. In fact, it congests an internal component; when the processor encounters a write
instruction destined to access a non-cacheable memory region, it submits a write request
to its store buffer which directly generates an AXI write request [12] on the AXI master
interface [7]. The processor then has to wait for the AXI request to complete before it can
submit the next write request to the store buffer. Hovering between 181 MiB/s (DRAM) and
207 MiB/s (OCM), read bandwidth to all memories except the ATCM is roughly comparable
to non-cacheable APU read bandwidth, apart from the non-existence of a performance
gap between base ISA and Adv. SIMD instructions that is present in the non-cacheable
APU memory access results. The ATCM unveils its strength in this benchmark with read
and write bandwidths of 2.1 GiB/s for ISA instructions and 2.67 GiB/s for Adv. SIMD
instructions.

Cacheable RPU memory access. Figure 5a shows the bandwidths of cacheable RPU
memory accesses with different transfer sizes to DRAM. Like for the APU, up to a certain
transfer size, the bandwidth of cacheable memory accesses is determined by the L1 cache.
For the RPU, the transfer size where cache misses and ensuing cache line fills start to
noticeably impact the bandwidth is 215 bytes: a minor drop occurs from 214 to 215 bytes,
because the 32 KiB L1 cache of the Cortex-R5 is a combined instruction and data cache
and therefore instructions use up some of the cache capacity. Starting at transfer sizes of
216 bytes, frequent L1 cache misses drag the bandwidth down immensely as there is no L2
cache. Figure 5b shows a dissimilar behavior for the ATCM as the Cortex-R5 processor
always treats accesses to its TCMs as non-cacheable accesses. Accordingly, the bandwidths
for transfer sizes of 216 bytes shown in figure 5b match those of the ATCM in figure 4. The

92

A Quantitative Analysis of Processor Memory Bandwidth of an FPGA-MPSoC

peak cacheable read bandwidth is 2.56 GiB/s (96% of the ATCM read bandwidth) and the
peak cacheable write bandwidth is 1.83 GiB/s (69% of the ATCM write bandwidth).

6 Conclusions

We used our benchmark tool to systematically measure the memory bandwidth of the
different processing units of an FPGA-MPSoC.

Our results show surprisingly underwhelming non-cachable read memory bandwidths,
generally ranging from 60 MiB/s to 207 MiB/s, across the board for both processing units
and all non-TCM memories. This extends to non-cachable write memory bandwidths on
the RPU, ranging from 174 MiB/s to 237 MiB/s for non-TCM memories. Exceptions are
the read and write ATCM bandwidths of up to 2.67 GiB/s, but only when accessing the
ATCM from the RPU. Write memory bandwidths can, in theory, be much higher – and
are in practice for the APU – but depend heavily on processor-internal request queueing.
The APU achieves maximum non-cachable short-term write bandwidths ranging from 5.11
GiB/s to 8.41 GiB/s and is able to sustain a maximum bandwidth of 7.78 GiB/s to DRAM
using Advanced SIMD instructions. Cacheable memory accesses from the APU show high
maximum bandwidths, reaching 7.11 GiB/s for reads (Adv. SIMD) and 11.78 GiB/s for
writes (Adv. SIMD). In comparison, the RPU reaches a maximum cacheable memory
bandwidth of 2.56 GiB/s (Adv. SIMD) for reads and 1.83 GiB/s (Adv. SIMD) for writes.

We conclude that the use of dedicated on-chip memory, except tightly-coupled memory,
has no additional benefits in terms of bandwidth over external DRAM memory. To achieve
high memory bandwidth and therefore high computational performance on the Zynq
Ultrascale+ platform, leveraging the use of system-wide hardware cache coherency is
therefore recommended. As hardware cache coherency management has the potential –
depending on the application – to reduce software complexity, we see a dependence solely
on DRAM and hardware cache coherency as the best choice for most applications. On the
other hand, using our findings on unsustainable non-cacheable write memory bandwidths,
an application could optimize parallelism by writing chunks of memory in specific sizes to
fill the write request queue and doing other processing while the write requests are being
completed. The caches behave as expected, so the usual recommendations naturally apply,
such as exploiting data locality by taking knowledge of specific cache implementation
parameters like cache line size into account for the implementation of an application.
Advanced SIMD instructions provide at least the same – in some cases vastly superior –
bandwidth compared to the base ISA instructions – non-cacheable APU reads being the
exception.

To gain a better understanding of interconnect behavior, further work could include
methodical stress testing that focusses on inducing interconnect congestion using multiple
bus masters, i.e. multiple processor cores or multiple processing units that simultaneous
issue memory access requests. Evaluation of UltraRAM memory could also prove to produce
interesting results.

93

Robert Drehmel, Matthias Göbel, Ben Juurlink

Acknowledgements

This research was partially funded by the German Academic Scholarship Foundation
(Studienstiftung des deutschen Volkes).

References

[1] Luca Benini and Giovanni De Micheli. “Networks on chips: A new SoC paradigm”.
In: Computer 35 (1 Jan. 2002), pp. 70–78. doi: 10.1109/2.976921.

[2] Matthias Göbel et al. “A Quantitative Analysis of the Memory Architecture of
FPGA-SoCs”. In: Applied Reconfigurable Computing. 13th International Symposium,
ARC 2017. Lecture Notes in Computer Science 10216. Springer, 2017, pp. 241–252.
doi: 10.1007/978-3-319-56258-2_21.

[3] Young-kyu Choi et al. “A Quantitative Analysis on Microarchitectures of Mod-
ern CPU-FPGA Platforms”. In: 2016 53rd ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 2016. doi: 10.1145/2897937.2897972.

[4] Ayoosh Bansal et al. “Evaluating the Memory Subsystem of a Configurable Hetero-
geneous MPSoC”. In: Proceedings of OSPERT 2018. the 14th Annual Workshop on
Operating Systems Platforms for Embedded Real-Time Applications. 2018, pp. 55–60.

[5] Zynq UltraScale+ Device. Technical Reference Manual. Version v1.9. UG1085.
Xilinx. Jan. 17, 2019.

[6] ARM Cortex-A53 MPCore Processor. Technical Reference Manual. Version Issue J
(r0p4). ARM DDI 0500J (ID071918). ARM. June 13, 2018.

[7] Cortex-R5. Technical Reference Manual. Version Issue D (r1p2). ARM DDI 0460D
(ID092411). ARM. Sept. 15, 2011.

[8] ARM Architecture Reference Manual. ARMv7-A and ARMv7-R edition. Version Issue
C.c. ARM DDI 0406C.c (ID051414). ARM. May 20, 2014.

[9] ARM Architecture Reference Manual. ARMv8, for ARMv8-A architecture profile.
Version Issue D.a. ARM DDI 048D.a (ID103018). ARM. Oct. 31, 2018.

[10] Block Memory Generator v8.4. LogiCORE IP Product Guide. PG058. Xilinx. Oct. 4,
2017.

[11] AXI Block RAM (BRAM) Controller v4.1. LogiCORE IP Product Guide. PG078.
Xilinx. Dec. 5, 2018.

[12] AMBA AXI and ACE Protocol Specification. AXI3, AXI4, AXI5, ACE and ACE5.
Version Issue F.b. ARM IHI 0022F.b (ID122117). ARM. Dec. 21, 2017.

94

https://doi.org/10.1109/2.976921
https://doi.org/10.1007/978-3-319-56258-2_21
https://doi.org/10.1145/2897937.2897972

B. Juurlink, W. Karl (Hrsg.)
Proceedings 28th PARS Workshop

Influence of Discretization of Frequencies and Processor
Allocation on Static Scheduling of Parallelizable Tasks with
Deadlines

Sebastian Litzinger, Jörg Keller1

Abstract: Models for energy-efficient static scheduling of parallelizable tasks with deadlines on
frequency-scalable parallel machines comprise moldable vs. malleable tasks and continuous vs.
discrete frequency levels. We investigate the tradeoff between scheduling time and energy efficiency
when going from continuous to discrete processor allocation and frequency levels. To this end, we
present a tool to convert a schedule computed for malleable tasks on machines with continuous
frequency scaling (P. Sanders, J. Speck, Euro-Par 2012) into one for moldable tasks on a machine with
discrete frequency levels. We compare the energy efficiency of the converted schedule to the energy
consumed by a schedule produced by the integrated crown scheduler (N. Melot et al., ACM TACO
2015) for moldable tasks and a machine with discrete frequency levels. Our experiments indicate that
the converted Sanders Speck schedules, while computed faster, consume more energy on average than
crown schedules. Surprisingly, it is not the step from malleable to moldable tasks that is responsible,
but the step from continuous to discrete frequency levels.

Keywords: Static Scheduling; Frequency Scaling; Energy-efficient Schedules

1 Introduction

Repetitive tasks with deadlines often occur in embedded multicore systems, for example
in streaming applications where each task is activated in a scheduling round [Me15]. The
length of the round determines the throughput, such as the number of images that can be fed
to an image processing application per second, and at the same time poses a deadline until
which all the tasks must or should be executed, depending on the hardness of the deadline.
While each task feeds output to its follow-up tasks according to the streaming task graph,
this input can be considered to be transferred from one scheduling round to the next, so that
the task invocations in one round are independent of each other.

If the application has a longer runtime or is frequently executed, it pays off to find a static
schedule to execute the tasks within a round with minimum frequencies in order to lower
the energy consumption for the given throughput. A static schedule typically has lower
runtime overhead and at the same time better quality than a dynamic schedule, given that
1 FernUniversität in Hagen, Faculty of Mathematics and Computer Science, 58084 Hagen, Germany first.last@

fernuni-hagen.de

95

https://creativecommons.org/licenses/by-sa/4.0/
first.last@fernuni-hagen.de
first.last@fernuni-hagen.de

Sebastian Litzinger, Jörg Keller

the task executions are predictable, which is the case in the above scenario. Minimizing
energy consumption is of tremendous importance in embedded systems, as lower energy
might mean a housing without a fan and thus lower production and maintenance cost. At
least it means a lower bill from reduced energy supply and reduced cooling.

An interesting sub-case of this static scheduling scenario are parallelizable tasks, i. e. tasks
that are parallel programs themselves. This is advantageous e. g. when the number of cores
is larger than the number of tasks. Several approaches have proposed solutions to this
problem, however starting from different assumptions. On the one hand, Sanders and Speck
[SS12] have proposed an algorithm that computes a schedule under the assumption that the
frequency can assume an arbitrary value, and not only a finite number of discrete levels, and
under the assumption that the degree of parallelism of a task can vary during its execution
(so-called malleable tasks), i. e. a task allocated to 5.3 cores runs on 6 cores for 30% of
the time till the deadline, and on 5 cores for the remaining time. Finally, they assume that
a (sequential) task can be interrupted and continued later on. On the other hand, crown
scheduling [Me15] assumes that only a finite number of discrete frequency levels is available,
that a task can only be allocated to an integral number of cores2 (so-called moldable tasks)
and that a task is not interrupted by another task once its execution has started. There are
other differences as well (the Sanders Speck scheduler poses some restrictions on the power
and speedup functions, while the crown scheduler allows arbitrary power and speedup
profiles) which we will ignore here.

In the current work, we are interested in the trade-off between these two extremes. In
particular, we investigate the hypothesis that to schedule a set of moldable tasks, we might
first use the Sanders Speck scheduler as if the tasks were malleable, and convert the schedule
into one for moldable tasks, remove preemption of sequential tasks, and step over to discrete
frequencies. For all these steps, we observe how much the energy consumption of the
resulting schedule increases, and compare the final result with the energy consumption
of a crown schedule. The Sanders Speck scheduler (even including the converter) has a
shorter runtime than crown scheduling, which solves a mixed-integer linear program. Our
hypothesis, which we will test by experiments, is that a converted Sanders Speck schedule
has a higher energy consumption than a crown schedule, so the user can trade scheduling
time for energy consumption. In addition, by doing a sequence of conversion steps we can
see which of the model differences has most influence, so that one may perform research on
that difference in the future.

Surprisingly, the main difference does not seem to lie in the contrast between malleable and
moldable tasks, but in the step from continuous to discrete frequencies. This might call for
a reconsideration of the requirement that the discrete frequency level of a task need not be
changed during task execution. [EK15] demonstrate that for tasks with sufficient runtime, a
non-existing frequency might be simulated by using each of the two existing surrounding

2 Crown Scheduling further assumes that a task can only be allocated to p processors where p is a power of 2, but
it turned out [Me19] that this restriction only leads to slightly higher energy compared to requiring an integral
number of cores.

96

Static Scheduling of Parallelizable Tasks

discrete frequency levels for part of the execution time, with only a small increase in energy
consumption.

The remainder of this article is structured as follows. In Section 2, we briefly review
background information on energy-efficient scheduling and related work. In Section 3, we
describe both schedulers used, present the routine to convert a Sanders Speck schedule
for malleable tasks into a schedule for moldable tasks, and indicate how we discretize the
frequency levels. In Section 4, we report on the experiments with which we test the above
hypothesis, and in Section 5, we summarize and give an outlook to our future work.

2 Background

We consider the problem of scheduling a set of parallelizable tasks T = {t1, . . . , tn} to a set
of homogeneous processors P = {P1, . . . , Pp}, where we can scale the frequency for each
core independently. A task tj is characterized by its workload τj , which might represent the
number of processor cycles necessary to execute the task on one core, and its maximum
width Wj , determining the maximum number of cores tj can be executed on concurrently. A
task-specific parallel efficiency function ej(q), 1 ≤ q ≤ p, is defined as the speedup when
running the task on q processors, divided by q, thus depending on the number of cores to
which the task is allocated.3

If a task tj is allocated to a noninteger number of processors – as is done by the Sanders
Speck scheduler, which assumes tasks to be malleable – the expression wj + γj gives the
total number of processors for tj , wj being an integer value and γj ∈ [0, 1).

We compute a static schedule, i. e. we schedule prior to the actual execution. The schedule
allocates each task to a set of processor cores and assigns an execution frequency and a start
date. The schedule must be feasible, i. e. no core is ever allocated to more than one task
at the same time. Furthermore, execution of the task set shall terminate before reaching a
deadline M .

When a processor core is running at a frequency f , it draws electrical power P(f). In the
most general sense, P is non-decreasing in f . Next to the frequency, P depends on a number
of other factors, such as the supply voltage, the instruction mix of the currently executed code
and the temperature. We assume that voltage is always set to the minimum level possible for
each frequency (and nowadays a single voltage level often serves many frequency levels),
so the influence of voltage on power consumption is covered by the frequency parameter.
The instruction mix is considered to be uniform for all tasks (but might be extended, cf.
[HK17, LKK19]), and the temperature is assumed to be controlled to remain constant.

A task with workload τ that runs on q cores has a workload of τ
q ·e(q) on each core. Normally,

it is assumed to run at one frequency f for its whole execution on q cores, so that the power
3 The concept of maximum width is therefore introduced solely for convenience, as one could simply set
e j (q) = 0 for q >Wj .

97

Sebastian Litzinger, Jörg Keller

consumption remains constant during the execution. The runtime t(q) can be obtained by
dividing core workload (number of cycles) by frequency (number of cycles per time unit).
The energy consumption can be obtained by multiplying runtime and power consumption.
The energy consumption of a schedule is the sum of the tasks’ energy consumptions.

We employ a simple energy model, assuming dynamic power to be (proportional to)
f α [SS12]. Here, f denotes the processor’s current operating frequency, and α is a
constant depending on the actual hardware. To facilitate comparability between the different
scheduling approaches, we assume that frequency scaling does not produce any time or
energy overhead, and static power consumption as well as idle power are ignored here. The
energy consumed by a processor executing a task on frequency f over a period M is thus
f α · M .

While literature on task scheduling is vast, two approaches are of particular interest for our
current purposes. In [SS12], a static scheduler for malleable tasks is presented, which allows
continuous frequency scaling and seeks to minimize energy consumption while meeting a
set deadline. The Crown scheduler introduced in [Me15] is a static scheduler for moldable
tasks. It also aims for minimization of energy consumption under deadline constraints,
which is achieved via integer linear programming (ILP). Processor allocation, mapping,
and frequency scaling are either performed separately or in a combined manner, promising
further energy savings. Due to restrictions regarding allocation, mapping, and execution
sequence, Crown scheduling allows for solving medium-sized problems by means of linear
programming. The Crown scheduling technique is expanded in [MKK16] when static and
idle power are taken into consideration and the concept of core consolidation is explored.
In [XKD12], parallel tasks with deadlines and discrete frequencies are treated. Scheduling
is performed via a level-packing approach, and for minimization of energy consumption,
a 0-1 ILP is contrasted with a three-step heuristic consisting of the specification of each
task’s width, task scheduling, and frequency assignment.

3 Scheduling Approaches for Parallelizable Tasks

In this section, Sanders Speck scheduling is outlined in 3.1. Subsection 3.2 shows how to
convert a Sanders Speck schedule, and 3.3 offers a recap of the crown scheduling technique.

3.1 Sanders Speck Scheduling

Sanders and Speck [SS12] assume that the tasks are malleable, i. e. that the scheduler can
vary the number of cores used during execution of a task. For example, a task might be
run on 4 cores in the time interval [0; 0.3 · M] and run on 5 cores in the time interval
[0.3 · M; M]. The number of allocated cores (also called the width) for task j is therefore4

4 They prove that in their setting, other variations than using q and q + 1 cores for a task do not occur.

98

Static Scheduling of Parallelizable Tasks

given as wj + γj , where wj = 4 and γj = 0.3 for this example. There are restrictions on
the efficiency function, which according to their analysis seem to be met by many parallel
algorithms.

The cores can be scaled to an arbitrary, continuous frequency f ≥ 0, and the power
consumption of a core is f α, where typically 2 ≤ α ≤ 3. Adding a constant amount of
static power is ignored, as it does not change the allocations that achieve minimum energy,
as long as the cores are not switched off. Thus, transformations can be used to morph
realistic frequency ranges into the dimensionless space used here and morph back to power
consumption values for real processor architectures.

The algorithm given by Sanders and Speck computes a processor allocation wj + γj for each
task j, such that

∑
j(wj + γj) = p, the total energy spent in the computation is minimum,

and the task set is executed until the deadline. From the allocation and the given parallel
efficiency function, they are able to derive the operating frequency for each task. The
mapping is as follows: a task with wj ≥ 1 gets wj cores for the complete time till the
deadline. All the γj parts, i. e. the times where a task gets an extra core, and the sequential
tasks (where wj = 0) are mapped to the remaining p −

∑
j wj cores by a wrap-around rule:

A core is filled with these tasks. When it is allocated for a fraction δ till the deadline, and
δ + γj > 1, then this task gets 1 − δ of the time on this core, and γj + δ − 1 on the next core.
This leads to another requirement: it must be possible to stop a task and continue it later on
a different core.

To illustrate the mapping procedure, Figure 1 provides an example mapping of 3 tasks to
6 cores, with processor allocations of 3.2 (t1, orange), 0.9 (t2, green), and 1.9 (t3, pink).
Since wj > 1 for the orange and pink tasks, these receive 3 and 1 cores, respectively, for the
whole execution time. The sequentially executed green task is not considered at this point.
As there are 6 cores in total, the γj are distributed across the remaining 2 cores in the next
step. The orange task receives core 5 for 20% of the execution time. The green task, which
is allocated 0.9 cores overall, is mapped to core 5 for the remaining 80% of total execution
time and – by wrap-around – to core 6 for 10%. As one can gather from Figure 1, we now
require preemption. The pink task is run on core 6 after t2 to reach its total allocation of
1.9 cores. For the orange and pink tasks, we assume malleability since their width changes
from 4 to 3 (orange) and 1 to 2 (pink) during the course of their execution.

1 2 3 4 5 6
processor

Fig. 1: Example mapping of 3 tasks to 6 cores

99

Sebastian Litzinger, Jörg Keller

3.2 Converting a Sanders Speck Schedule

Converting a Sanders Speck schedule starts with moving from malleable to moldable tasks.
Under this restriction, a task can either be executed in parallel on a fixed integer number of
processors (i. e. wj > 1, γj = 0.0), or sequentially on a single core (i. e. wj = 1, γj = 0.0 or
wj = 0, 0 < γj < 1).

In order to achieve this, one first splits the task set T into TP = {tj ∈ T : wj + γj > 1}
and TS = T \ TP . In the first step, only tasks in TP are considered. To begin with, we
determine the sum of the parallel tasks’ processor allocations under the Sanders Speck
schedule, πtotal =

∑
tj ∈TP

wj + γj , as well as the number of processors solely dedicated
to a single parallel task, πsingle =

∑
tj ∈TP

wj . Computing u = nint(πtotal) − πsingle gives
you the number of cases in which processor allocation shall be rounded up, where nint()
signifies the nearest integer function.5 One now proceeds as follows: The tasks in TP are
sorted by descending γj . Then, for the first u tasks in that order, set wj = wj + 1, γj = 0.0.
For the remaining |TP | − u parallel tasks, set γj = 0.0. The processor allocations for parallel
tasks now are integer values, and the total amount of cores utilized is nint(πtotal). On a side
note, it may be the case that a task which would be executed in parallel under the Sanders
Speck schedule runs sequentially under the converted schedule.

Going back to the example from Section 3.1, we have TP = {t1, t3} and TS = {t2}
since only the green task is executed sequentially. We get πtotal = w1 + γ1 + w3 +
γ3 = 3 + 0.2 + 1 + 0.9 = 5.1 and πsingle = w1 + w3 = 3 + 1 = 4, which yields
u = nint(πtotal)−πsingle = nint(5.1)−4 = 5−4 = 1. Sorting the tasks in TP by descending
γj gives us t3, t1. We now set wj = wj + 1 and γj = 0.0 for the first u tasks in that order,
i. e., for t3 we assign w3 = 2, γ3 = 0.0. For the remaining |TP | − u parallel tasks, we set
γj = 0.0, i. e., for t1 we now have γ1 = 0.0 (and w1 stays at 3).

The next step is to compute the sequential tasks’ processor allocations. The number of
cores available for the execution of sequential tasks is p − nint(πtotal). The tasks in TS are
now mapped to the remaining processors via a binpacking approach. To this end, they are
sorted by descending τj and subsequently are assigned to the (at the respective time) least
occupied bin, i. e. core.6 Note that bin size can easily be computed as fmax · M, which
represents the maximum workload a processor can handle up to the deadline M running
on its maximum operating frequency fmax . After the binning step, one can immediately
compute the processor allocation for each task tj ∈ TS: If a task tj is the only one running
on a given processor, set wj = 1, γj = 0.0. Otherwise, a task is allocated a fraction of a

5 Naturally, u could be computed differently, e. g. one could set u = dπtot al e − πsingle or u = bπtot al c −
πsingle , or try both ways and see which resulting schedule yields lower energy consumption. In any case, as
long as there are sequential tasks, it has to be ensured that there is at least one core left for the execution of
sequential tasks, i. e. if dπtot al e = p, one must set u = bπtot al c − πsingle .

6 As the processor’s operating frequency for each task is not carried over from the Sanders Speck schedule but is
computed anew after processor allocation has been performed, it cannot serve as a sorting criterion. Consequently,
a task’s workload is used to best represent its size. We expect mapping the sequential tasks to processors in order
of descending workload to lead to a reasonable load balancing.

100

Static Scheduling of Parallelizable Tasks

processor corresponding to its share of the processor’s total workload, γj =
τj∑

tk ∈Ti
τk

, where
Ti denotes the set of tasks to be executed on processor Pi , and tj ∈ Ti . For these tasks, set
wj = 0.

In our example from Section 3.1, there is just one sequential task and we have p −
nint(πtotal) = 6−5 = 1. Thus, t2 is allocated an entire core, which gives us w2 = 1, γ2 = 0.0
under the conversion. Figure 2 shows the resulting mapping after conversion. As all parallel
tasks’ allocations are now integer values, malleability is not required anymore. Beyond that,
the mapping of any sequential task to a single core, where it is executed in one go, renders
preemption expendable.

1 2 3 4 5 6
processor

Fig. 2: Mapping after applying the conversion procedure to the example depicted in Figure 1

As processor allocation is now completed for all tj ∈ T , one can compute the frequency for
each task as

Fj =

{ τj
γj ·M

if wj = 0,
τj

e j (wj)·wj ·M
if wj ≥ 1.

This allows calculation of the energy consumption for each tj ∈ T (note that wj = 0 ⇔
γj , 0):

Ej = Fαj · (wj + γj) · M .

Now that processor allocation has been carried out, frequency discretization can be employed
in order to obtain energy consumption values under the further restriction that cores feature
a set of discrete frequency levels F = { f1, . . . , fs} they can run on. We further assume that a
core’s operating frequency can be changed only between task executions. As before, we first
consider TP: Here, frequency discretization is fairly easy to perform: Since each tj ∈ TP

is the only task allocated to its respective processor(s), one has no choice but to increase
frequency to the closest frequency level: Fj = min{ f ∈ F : f > Fj}. Lowering Fj to the
closest frequency level f < Fj instead would incur a deadline violation.

For TS , frequency discretization does not necessarily imply increasing the operating
frequency for each tj ∈ TS to the next possible value. On the contrary, one should aim for
reducing the frequency for as many tasks as possible so as to improve energy consumption.
To facilitate this, in a first step all tj ∈ TS are treated as described above for parallel tasks:
Fj is increased to min{ f ∈ F : f > Fj}. Afterwards, for each processor Pi executing tasks

101

Sebastian Litzinger, Jörg Keller

from TS , the operating frequency is decreased by one level, task by task, until the deadline
cannot be met, starting with the last task mapped to Pi (which is the least bulky one due to
the binpacking performed beforehand). The last assignment of frequencies to tasks adhering
to the deadline is then adopted.

If one allows frequency scaling during task execution, energy consumption can be reduced
since a given frequency Fj can be simulated by running on flj = max{ f ∈ F : f < Fj} for
c · M and on fh j = min{ f ∈ F : f > Fj} for (1 − c) · M , c ∈ [0, 1]. This procedure forms a
generalization of the above approach, where frequency scaling is performed this way for all
t ∈ TP with c = 0. Choosing c individually for all t ∈ T on the other hand will most likely
have a positive impact on energy consumption. This is done as follows:

cj = −
Fj − fh j

fh j − flj
.

The calculation of a task’s energy consumption in this scenario is then pretty straightforward:

Ej = (f αlj · cj + f αh j
· (1 − cj)) · (wj + γj) · M .

3.3 Crown Scheduling

A different static scheduling approach for moldable tasks with discrete frequencies is
the crown scheduler [Ke13, MKK16]. Here, we consider the integrated version, where
processor allocation, mapping, and frequency scaling is performed in a combined fashion
by solving an integer linear program (ILP). In order to ease computation, the Pi are assigned
to a hierarchy of processor groups as in Figure 3: The largest group, P1, comprises all
processors, which is then divided into two equally sized subgroups. These subgroups each
are divided into two equally sized subgroups, and so on, with the smallest groups containing
one processor only. This group structure can be applied for core counts which are powers of
2, and the resulting number of groups is 2p − 1. Tasks are then mapped to processor groups,
which run at a specified frequency for the duration of a task’s execution.

Fig. 3: Processor groups for p = 8, taken from [Ke13]

102

Static Scheduling of Parallelizable Tasks

The optimization problem therefore yields n · (2p − 1) · s binary decision variables xj,i,k ,
xj,i,k = 1 signifying that task tj shall be executed on processor group Pi operating at
frequency fk . The target function to be minimized computes the total energy consumption

E =
∑
j,i,k

xj,i,k ·
τj · f α−1

k

ej(pi)
.

The term pi denotes the number of cores in processor group Pi . Several constraints apply in
order to guarantee a valid schedule. First, every task shall be scheduled only once:

∀ j :
∑
i,k

xj,i,k = 1.

Furthermore, to ensure the deadline is met, the total runtime of all tasks mapped to a core
Pl must not exceed the deadline:

∀l :
∑
j

∑
i∈Gl

∑
k

xj,i,k ·
τj

pi · fk · ej(pi)
≤ M,

where Gl denotes the set of all groups core Pl belongs to. Finally, the maximum number of
cores allocated to a task tj shall be its maximum width Wj :

∀ j :
∑

i,pi>Wj

∑
k

xj,i,k = 0.

Applying an ILP solver to the optimization problem then yields a mapping of tasks to
processor groups as well as the respective processors’ operating frequencies.

4 Experiments

In this section, we compare the resulting energy consumption when scheduling task sets
via the various approaches presented in Section 3. Our experiments are based on synthetic
task sets of varying cardinality and tasks’ maximum widths as in [Ke13, MKK16]: A task
set comprises 10, 20, 40, or 80 tasks and displays a low (Wj ∈ {1, . . . , p/2}), average
(Wj ∈ {p/4, . . . , 3p/4}), high (Wj ∈ {p/2, . . . , p}), or maximum (∀ jWj = p) degree of
parallelism7, or it contains sequential tasks only (∀ jWj = 1). For each combination of
cardinality and degree of parallelism, 10 different task sets are considered, thus yielding a
total of 200 different task sets for the evaluation of the previously introduced scheduling
techniques.

7 AllWj for low, average, and high degrees of parallelism are determined randomly based on a uniform distribution.

103

Sebastian Litzinger, Jörg Keller

The number of cores is set to 32, and the set of discrete frequencies is {1.0, 2.0, 3.0, 4.0, 5.0}.
Furthermore, α = 3.0 and the parallel efficiency of task tj is defined as in [Ke13]:

ej(q) =

1 for q = 1,
1 − 0.3 q2

(Wj)
2 for 1 < q ≤ Wj,

0.000001 for q > Wj .

The parameter q is the number of cores tj is executed on. The deadline M is determined as
in [Ke13]:

M =

∑
j

τj
p · fmax

+ 2
∑

j
τj

p · fmin

2
,

where fmin and fmax are the processors’ minimum and maximum operating frequencies.

Energy consumption values are computed for (cf. Figure 4 for the visualization of results):

• the Sanders Speck schedule (reference),

• the Sanders Speck schedule converted to moldable tasks without preemption (blue
bar),

• the converted schedule with discrete frequencies (purple bar),

• the converted schedule with discrete frequencies and one-time frequency scaling
during task execution (pink bar),

• the crown schedule (yellow bar).

We deployed a C implementation of the Sanders Speck scheduler, a Python implementation
of the converter tool, and for crown scheduling, the Gurobi 8.1.0 solver was adopted in
conjunction with the gurobipy module for Python. The Sanders Speck scheduler as well
as the converter tool were executed sequentially on an AMD Ryzen 7 2700X, while the
Gurobi solver ran in 16 threads on 8 cores with a 5 minute timeout for each ILP. It took the
Sanders Speck scheduler ≈ 0.3 s to compute schedules for the 200 synthetic task sets, and
the conversion process lasted another ≈ 56 s, while the crown scheduler required ≈ 366 min
to deliver the results.8 It should be noted though that the time to solve the ILPs varied
heavily among the task sets: Roughly half the schedules could be computed in < 1 s, ≈ 87%
in < 10 s, ≈ 92% in < 1 min, and 4 ILPs could not be solved to optimality until the 5 minute
timeout occurred.

From Figure 4 it becomes clear that moving from malleable to moldable tasks has a minor
impact on energy consumption over all task set types and cardinalities. Subsequent frequency

8 The execution times given are the sums of user and system times, while the timeout refers to real (wall clock)
time.

104

Static Scheduling of Parallelizable Tasks

se
qu
en
tia
l n
10

se
qu
en
tia
l n
20

se
qu
en
tia
l n
40

se
qu
en
tia
l n
80

lo
w
n1
0

lo
w
n2
0

lo
w
n4
0

lo
w
n8
0

av
er
ag
e
n1
0

av
er
ag
e
n2
0

av
er
ag
e
n4
0

av
er
ag
e
n8
0

hi
gh

n1
0

hi
gh

n2
0

hi
gh

n4
0

hi
gh

n8
0

m
ax
im
um

n1
0

m
ax
im
um

n2
0

m
ax
im
um

n4
0

m
ax
im
um

n8
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

task set

en
er
gy

SaSp converted
SaSp conv. discr. freq.
SaSp conv. freq. scale
Crown

Fig. 4: Energy consumption for different scheduling techniques and synthetic task sets relative to
energy consumption for the Sanders Speck scheduler

discretization on the other hand leads to a considerable increase in energy consumption, up
to 2.5x compared to the energy consumption of a corresponding Sanders Speck schedule.
The effect of frequency discretization is particularly severe for high degrees of parallelism.
This is due to the discretization strategy, which permits scaling to lower frequencies for
sequentially executed tasks but enforces moving to a higher frequency for tasks running in
parallel. The significantly lower relative energy consumption values for high cardinality task
sets over all degrees of parallelism support this explanation, since despite their potential for
parallel execution, many tasks will have to be run sequentially due to the large number of
tasks.

It can also be observed that in many cases the converted Sanders Speck schedule with
discretized frequencies leads to a substantial growth in energy consumption over a crown
schedule – the exceptions being high cardinality and low maximum width task sets. This is

105

Sebastian Litzinger, Jörg Keller

unfortunate, as both the converter and the crown scheduler essentially operate based on the
same constraints. In some scenarios, the former might be preferable though, as producing a
converted Sanders Speck schedule is less computationally intensive than creating a crown
schedule.

A good deal of the negative effect of frequency discretization can be mitigated when
frequency scaling during task execution is permitted. In many cases, the resulting schedule
performs better or as good as a crown schedule. It must be pointed out though that the
additional overhead of frequency scaling is not reflected in the current findings.

As a final observation, which is not afforded by Figure 4, the absolute energy consumption
values hardly differ when the degree of parallelism exceeds the average category. This
applies to all scheduling techniques. Here, a preliminary conjecture would be that deadline
constraints prevent exploitation of the higher potential for parallelism.

5 Conclusions

We have presented a tool that converts a schedule for malleable tasks on a machine with
continuous frequency scaling into one for moldable tasks on a machine with discrete
frequency levels. By applying this converter to schedules computed by the Sanders Speck
scheduler, we could demonstrate the tradeoff between scheduling time (lower for converted
Sanders Speck schedules) and energy-efficiency (better for crown schedules). The average
scheduling times are 0.28 s vs. 110 s, while the average energy consumption is ≈ 28%
higher for converted Sanders Speck schedules. By doing the conversion in two steps, we see
that the crucial point is not the switch from malleable to moldable tasks, but the change
from continuous to discrete frequency levels. Hence it might be worthwhile to investigate in
future research the influence of frequency switch during task execution, which would allow
to “simulate” a continuous frequency f by running a task partly on surrounding discrete
frequency levels f1 and f2 with f1 < f < f2.

Acknowledgments

We are very grateful to Christoph Kessler for inspiring our line of research and providing
helpful comments.

References
[EK15] Eitschberger, Patrick; Keller, Jörg: Energy-Efficient Task Scheduling in Manycore Pro-

cessors with Frequency Scaling Overhead. In: Proc. 23rd Euromicro Int. Conf. Parallel,
Distributed, and Network-Based Processing (PDP 2015). pp. 541–548, 2015.

106

Static Scheduling of Parallelizable Tasks

[HK17] Holmbacka, Simon; Keller, Jörg: Workload Type-Aware Scheduling on big.LITTLE
Platforms. In (Ibrahim, Shadi; Choo, Kim-Kwang Raymond; Yan, Zheng; Pedrycz,
Witold, eds): Algorithms and Architectures for Parallel Processing. Springer International
Publishing, Cham, pp. 3–17, 2017.

[Ke13] Kessler, Christoph W.; Melot, Nicolas; Eitschberger, Patrick; Keller, Jörg: Crown schedul-
ing: Energy-efficient resource allocation, mapping and discrete frequency scaling for
collections of malleable streaming tasks. In: 23rd International Workshop on Power and
Timing Modeling, Optimization and Simulation. pp. 215–222, 2013.

[LKK19] Litzinger, S.; Keller, J.; Kessler, C.: Scheduling Moldable Parallel Streaming Tasks
on Heterogeneous Platforms with Frequency Scaling. In: Proc. 27th European Signal
Processing Conference (EUSIPCO 2019). To appear September 2019.

[Me15] Melot, Nicolas; Kessler, Christoph; Keller, Jörg; Eitschberger, Patrick: Fast Crown
Scheduling Heuristics for Energy-Efficient Mapping and Scaling of Moldable Streaming
Tasks on Manycore Systems. ACM Trans. Archit. Code Optim., 11(4):62:1–62:24, 2015.

[Me19] Melot, Nicolas; Kessler, Christoph; Eitschberger, Patrick; Keller, Jörg: Co-optimizing Core
Allocation, Mapping and DVFS in Streaming Programs with Moldable Tasks for Energy
Efficient Execution on Manycore Architectures. In: Proc. 19th International Conference
on Application of Concurrency to System Design (ACSD 2019). To appear 2019.

[MKK16] Melot, Nicolas; Kessler, Christoph W.; Keller, Jörg: Improving Energy-Efficiency of
Static Schedules by Core Consolidation and Switching Off Unused Cores. In: Parallel
Computing: On the Road to Exascale (Proc. ParCo 2015). pp. 285–294, 2016.

[SS12] Sanders, Peter; Speck, Jochen: Energy Efficient Frequency Scaling and Scheduling for
Malleable Tasks. In (Kaklamanis, Christos; Papatheodorou, Theodore; Spirakis, Paul G.,
eds): Euro-Par 2012 Parallel Processing. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 167–178, 2012.

[XKD12] Xu, H.; Kong, F.; Deng, Q.: Energy Minimizing for Parallel Real-Time Tasks Based on
Level-Packing. In: 2012 IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications. pp. 98–103, 2012.

107

108

B. Juurlink, W. Karl (Hrsg.)
Proceedings 28th PARS Workshop

Enabling Malleability for Livermore Unstructured
Lagrangian Explicit Shock Hydrodynamics using LAIK

Amir Raoofy,1 Dai Yang,1 Josef Weidendorfer,2 Carsten Trinitis,1 Martin Schulz1

Abstract: Malleability, i.e., the ability for an application to release or acquire resources at runtime,
has many benefits for current and future HPC systems. Implementing such functionality, however,
is already difficult in newly written code and an even more daunting challenge when considering
the enhancement of existing legacy code to support malleability. LAIK is a recent proposal for
a dynamic and flexible parallel programming model that separates data and execution into two
orthogonal concerns. These properties promise easier malleability as the runtime can partition
resources dynamically as needed, as well as easier incremental porting of existing MPI code. In this
paper, we explore the malleability of LAIK with the help of laik-lulesh, a LAIK-based port of
LULESH, a proxy application from the CORAL benchmark suite. We show the steps required for
porting the application to LAIK, and we present detailed scaling experiments that show promising
results.

Keywords: LAIK, LULESH, MPI, Malleable Application, SPMD

1 Introduction

With the Sierra and Summit systems at LLNL and ORNL, respectively, High Performance
Computing (HPC) has reached its last milestone before exascale computing. On this road,
the environment of HPC systems has become more and more dynamic; most existing HPC

applications, however, are rigid and lack support for malleability. In order to cope with
the needed goals in efficiency, energy consumption, and fault tolerance [Ke11], we must
overcome such rigidness and enhance HPC applications with more flexibility.

Much effort has been put into enabling malleability in HPC using a wide range of approaches.
Some of them target application transparency. An example is MPI Sessions [Ho16], a
proposed extension to the MPI standard that allows the instantiation of MPI multiple

times at runtime. Other studies focus on the enhancement of HPC system software: Flux
[Ah18] is a next-generation job scheduler that allows users to allocate and deallocate

resources dynamically in a fine-grained way. Some of the existing work also focuses on
the combination of minimal application modification and system software: Invasive MPI
1 Technical University of Munich, Chair of Computer Architecture and Parallel Systems, Boltzmannstr. 3, 85748

Garching, Germany, {raoofy, yang, trinitis, schulzm}@in.tum.de
2 Leibniz-Rechenzentrum, Boltzmannstr. 1, 85748 Garching, Germany, josef.weidendorfer@lrz.de

109

Amir Raoofy, Dai Yang, Josef Weidendorfer, Carsten Trinitis, Martin Schulz

and Invasive Resource Manager [Ur12] provide a modified MPI and a modified SLURM
resource manager, which allows for different phases in applications demanding different
types and amounts of resources.

A pure application-oriented approach is LAIK [WYT17], a library assisting in dynamically
scheduling the execution of HPC applications by separating the concerns for data location and
computation. Initially designed for fault tolerance purposes, LAIK also enables elasticity that
can be controlled from the outside. It supports incremental porting of an existing application,
allowing the user to reuse most of the existing codebases. In this paper, we demonstrate the
malleability properties of LAIK on a well-known proxy application - LULESH; an iterative
solver for the Sedov Blast Problem, which is highly relevant in real life. LULESH is part of
the CORAL benchmarks3. It was ported to different parallel programming models [Ka13]
for investigation, which allows us to make interesting comparisons with our results.

The main contributions of this paper are: (1) we provide a fully functional port (laik-lulesh)
of LULESH to LAIK with enhanced malleability features and; (2) we identify the limitations
of LAIK with an in-depth performance analysis of our laik-lulesh application.

2 Related Work

2.1 LULESH Ports LULESH - as one of the Coral benchmarks - has been ported to a number
of programming models and languages, including OpenMP, CUDA, AMP, OpenACC, Loci,
Liszt, Chapel, and Charm++. A summary of all versions of LULESH is presented by Karlin
et at. [Ka12]. An in-depth study of some ports of LULESH and their performance evaluation
is presented by Karlin et at. [Ka13]. According to the authors, Loci [LG05] and Charm++
provide comparable performance to the reference code using MPI.

2.2 Programming Models Many programming models support writing malleable applica-
tions. Charm++[KK93] is a machine independent parallel programming system. Its dynamic
load balancing distributes workloads between different machines at runtime. Adaptive MPI
(AMPI) [HLK04] is a flexible MPI implementation based on Charm++, with MPI ranks
running on virtual Processing Units (PU). The mapping between physical and virtual PUs is
done by the Charm Runtime System (RTS), which benefits from the flexibility of Charm++.
Legion [Ba12] is a data-centric programming model that provides automatic mechanisms for
data handling and processing. Based on user-specified workflow mechanisms, the runtime
takes care of all data movements during execution. The main difference between Legion and
LAIK is that LAIK works with index spaces and partitionings abstracting data distribution,
and it informs the user when changes need to be applied. The physical distribution and
processing of the data still rely on the user’s specification. Other task-based programming
models such as OmpSs[Ma15] and StarPU [Au11] also provide fine granular control
of resource and data mapping and processing. With a task-based programming model,

3 https://asc.llnl.gov/CORAL-benchmarks/

110

https://asc.llnl.gov/CORAL-benchmarks/

Porting LULESH to LAIK

malleability is ensured as both workload and data can be easily migrated over hardware
resources across task boundaries.

2.3 Benchmarks Many benchmarks are used for performance evaluation of HPC libraries and
programming models, e.g., the NAS Parallel Benchmarks[Ba91], the CORAL Benchmarks,
and the Rodinia Benchmarks [Ch09].

3 LAIK - Library for Automatic Data Migration

LAIK[WYT17] is a lightweight library for automatic data migration in parallel applications
featuring an SPMD approach similar to the one used in many MPI codes. The application
programmer is required to transfer the responsibility of partitioning his or her application
data to LAIK. However, the actual partitioning algorithm, called a Partitioner, which assigns
portions of an abstract index space to processes, remains under application programmer
control. The application programmer can specify a customized Partitioner using callbacks.

Examples provided as presets are the “all” partitioning (the whole index space is replicated
to all processes, i.e., requesting complete local copies) or “disjunctive block distribution”
(every participating process holds a portion of the index space).

The communication for data structures is implicitly specified as a set of transitions between
different partitionings. A transition allows users to specify complex combinations of copy
operations, broadcasts and reductions. Transitions can be declared in advance and result in
a sequence of abstract communication actions on the index space, to be executed later by
the user or by LAIK. The latter is done when asking LAIK to manage the data that is bound
to an index space. Executing a transition for such data results in direct communication
as required. We can use this approach in LAIK to react to internal and external requests
to change the current partitioning by calculating a new partitioning, even on a modified
process group, allowing the application to become malleable.

LAIK features several different API-levels, which provide different levels of abstraction,
allowing programmers to port their application incrementally. The basic “index space” API
only transfers the responsibility of index space partitioning to LAIK. The corresponding
transitions and action sequences are calculated by LAIK, while the actual communication is
carried out by the user application. The more sophisticated “data” API allows developers to
hand over complete control of data structures to LAIK, allowing automatic communication.
This way, all communication is hidden from the user, resulting in lean, purly data-oriented
code. In addition, LAIK does internal optimization for different communication patterns,
which reduces development costs.

Previous studies with LAIK [WYT17; Ya18] have already shown the effectiveness and
efficiency of LAIK in both performance and basic malleability, but are limited to simple
data structures with simple communication patterns. In this paper, we evaluate LAIK’s

111

Amir Raoofy, Dai Yang, Josef Weidendorfer, Carsten Trinitis, Martin Schulz

capability by porting the rather complex program LULESH to LAIK. For our experiments,
we use the published open-source LAIK-Version on Github4.

4 Porting The Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics (LULESH) to LAIK

Livermore Unstructured Lagrange Explicit Shock Hydrodynamics (LULESH) is a benchmark
that solves the Sedov blast problem using Lagrangian hydrodynamics [HKG].

In each time step of the simulation, a number of hydrodynamic fields are updated by
the computational kernels. Data is stored either related to the initially cube-shaped finite
elements covering a 3d domain (’elemental’ data) or related to the vertices of the finite
elements (’nodal’ data). After the initialization of the fields, coordinates and boundary
conditions the timestep loop executes until convergence.

For our work, we use the MPI/OpenMP hybrid implementation of LULESH 2.05, where MPI
communication is explicitly coded. This is typical for many HPC applications: developers
do not want to start from scratch for an existing application to add new functionality such as
malleability.

The selected implementation of LULESH is based on domain decomposition for data
partitioning and uses non-blocking communication (Isend/Irecv) at various points in each
time step. Two main kernels that require communication are executed in each iteration:
(1) stencil-wise updates of data structures such as velocity gradients which require halo
exchange at borders of domains. (2) aggregation of contributions from element quantities
to the surrounding nodes, e.g., in the calculation of force fields, which also requires a
halo exchange followed by an aggregation. Our goal in porting LULESH to LAIK is to
keep the number of changes as small as possible: code accessing data structures as well
as computational kernels should remain unchanged. LAIK is used for two tasks: a) it is
responsible for regular value updates in iterations (e.g., for halo exchanges), replacing MPI
in the original code; b) it has to migrate data for re-distribution to support malleability.
Correspondingly, porting can be done in two steps: first, we replicate original communication
by letting LAIK maintain the data structures that get updated in each iteration. Second, for
malleability, also data structures used purely locally have to be maintained by LAIK, as it
also needs to be migrated on re-distribution. Furthermore, small modifications are required
in the main iteration loop to check for re-partitioning requests and trigger data repartitioning
in LAIK. It is important to mention that LULESH 2.0 only supports a cubic number of
MPI processes. This limitation still holds for our LAIK implementation as we are neither
changing the partitioning algorithm nor the compute kernel. In the following, we present
the steps for porting LULESH to LAIK. The major changes made to the LULESH program
execution flow are illustrated in Pseudocode 1 vs. Pseudocode 2.
4 https://github.com/envelope-project/laik, commit e504385
5 The base version for our port is https://github.com/LLNL/LULESH, commit a328f79.

112

https://github.com/envelope-project/laik
https://github.com/LLNL/LULESH

Porting LULESH to LAIK

Pseudocode 1: Simplified Pseudocode for MPI Implementation of LULESH [HKG]
MPI_Init();
Domain locDom← InitMeshDecomposition(rank, size, sz);
while (!endOfSimulation) do
CalcTimeIncrement();
LagrangeLeapFrog();

end
MPI_Finalize();

Pseudocode 2: Simplified Pseudocode for laik-lulesh [HKG]
Laik_init_mpi();
Domain locDom← InitMeshDecomposition(rank, size, sz);
while (!endOfSimulation) do

if (needRepart) then
Domain newDom← InitMeshDecomposition(newRank, newSize, sz);
Laik_repartitioning_and_migrate(locDom, newDom);
locDom← newDom;

end
CalcTimeIncrement();
LagrangeLeapFrog();

end
Laik_finalize();

Step 1: Adaptation of data structures requiring MPI communication. LULESH uses
asynchronous communication for force fields, namely fx, fy, fz and nodalMass followed by
aggregation. LAIK provides such communication patterns through so-called “transitions”
between different partitionings, which are trigged by calling the API call laik_switch. For
that, we create halo regions by introducing overlapping partitions on a global nodal index
space, so that the neighboring tasks share one layer of nodes. As LAIK does not provide
such partitioning out of the box, we implement the partitioner algorithm ourselves as a core
part of our laik-lulesh port. While this partitioner is similar to the one in the reference
code, it uses a different layout: the reference code uses std::vector with a compact xyz
(Figure 1 right) layout, while our implementation of laik-lulesh relies on a non-compact
xyz (Figure 1 left) layout. It divides a local domain into “slices”. The reason for this layout is
that, although LULESH works on a 3D domain, it is mapped into a 1D data structure during
execution. As we stick to the original kernels, we also need to provide 1D data storage.

From the perspective of LAIK this data is shared between the two neighboring tasks and
updated by each task independently. After each iteration, we call laik_switch, which
triggers the reduction operations on shared data, replacing any explicit communication code.
LULESH uses an asynchronous halo exchange for velocity gradient fields, i.e., delv_xi,
delv_eta and delv_zeta, and these data structures needed to be ported to LAIK as well. For

113

Amir Raoofy, Dai Yang, Josef Weidendorfer, Carsten Trinitis, Martin Schulz

Fig. 1: Illustration of laik_slices for a problem with local domains of size 4 × 4 × 4 elements. Each
color represents one laik_slice in the partitioning. Current implementation of laik_lulesh relies
on many slices (left) and the reference code relies on a compact allocation of data (right).

Fig. 2: Element partitionings: exclusive partitioning (left) and halo (right) partitioning. This figure is
an illustration for a problem with 8 × 8 × 8 elements using 8 tasks (8 sub-domains, e.g., cubes to be
processes by each task). Each sub-domain (indicated in red) contains 4 × 4 × 4 elements in exclusive
partitioning and halo partitioning extends it with one layer.

this, we create two partitionings — exclusive and halo — again using custom partitioners.
A switch between them triggers the communications for the halo exchange (see Figure 2).

Internally, LULESH uses std::vector as its data container and implements an accessor
interface layer on top. This allows modifications of the underlying data structure by
only replacing std::vector. For that, we introduce laik_vector encapsulating LAIK
structures and implement the required accessor interfaces. In the end, all data structures
with communication requirements are ported to LAIK and all MPI calls are eliminated.

Step 2: Enabling Malleability. LAIK can support malleability by having control over the
underlying data structures. As LULESH uses a number of data structures in addition to
those mentioned above, those need to be handed over to LAIK as well. For that, we provide
additional partitions according to the needed data distribution before and after repartitioning.
As above, calling laik_switch triggers the required MPI communication under the hood
and re-distributes data according to the target partitioning. In addition, we modify the main
loop to handle repartitioning requests. If a process is no longer part of an active calculation
after repartitioning, this process is discarded by calling laik_finalize.

Additional Optimizations. We consider multiple optimizations to improve the performance
of laik-lulesh. First, the transitions are executed in every iteration. Therefore, we use
LAIK’s advanced APIs in order to pre-calculate and cache of the transitions and

114

Porting LULESH to LAIK

corresponding action_sequences between the above-mentioned partitionings. Moreover,
our implementation creates many 1D slices and, as referencing data between laik_switches
normally invalidates the pointers for all the slices, we use LAIK’s reservation API, which
guarantees the validity of addresses of data across “switch”es.

5 Evaluation

To show the performance of our ported LULESH code, we carried out strong and weak
scaling tests on SuperMUC Phase II (SuperMUC) which consists of 3072 nodes, each
equipped with 2 Intel Haswell Xeon Processor E5-2697v3 and 64 GB of main memory.

5.1 Weak Scaling We execute both the reference code lulesh2.0 and our ported laik-lulesh
five times with problem size 163 corresponding to s = 16 (parameter -s). We report the
average runtime per iteration without initialization and finalization. The upper bound of
the number of iteration is 10,000. The normalized runtime per iteration is represented in
Figure 3 by the box plots and noted on the y-axis. On the x-axis, the number of MPI Tasks
used in experiments is given. We can see an increase in iteration runtime with an increasing
number of MPI tasks from our code. However, the reference code scales almost perfectly
with only a slight increase. The blue line in Figure 3 represents overhead, which scales up
with the number of processes. Our hypothesis for the source of this increasing overhead is
the lack of support for asynchronous communication in LAIK and we, therefore, continue
with strong scaling experiments to pinpoint the source of this overhead.

The overhead in our laik-lulesh is in an acceptable range for a mid-sized run (e.g., 10%
at 512 processes), which is a realistic use case scenario for a malleable application. For
extreme scaling, however, LAIK must be further adapted and tuned.

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

1 8 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375
Number of MPI Tasks

N
or

m
al

iz
ed

 R
un

tim
e

pe
r

Ite
ra

tio
n

(s
)

T
im

e D
ifference

program
laik−lulesh
reference
t_diff

Fig. 3: Weak scaling comparison of laik-lulesh with reference LULESH

5.2 Strong Scaling Due to the limited support for an only cubic number of processes, the
following limitation applies: let C = s3 ∗ p be the global 3-dimensional problem size to be

115

Amir Raoofy, Dai Yang, Josef Weidendorfer, Carsten Trinitis, Martin Schulz

0.010

0.015
0.020

0.030
0.040
0.050
0.060
0.080
0.100

0.150
0.200

0.300
0.400
0.500
0.600
0.800
1.000

1.500
2.000

3.000
4.000
5.000
6.000

0.010

0.015
0.020

0.030
0.040
0.050
0.060
0.080
0.100

0.150
0.200

0.300
0.400
0.500
0.600
0.800
1.000

1.500
2.000

3.000
4.000
5.000
6.000

8 64 512 4096
Number of MPI Tasks

N
or

m
al

iz
ed

 R
un

tim
e

pe
r

Ite
ra

tio
n

(s
)

T
im

e D
ifference (s)

program

laik−lulesh

reference

t_diff

Fig. 4: Strong Scaling Comparison of laik-lulesh with reference LULESH

held constant for all strong scaling experiments, with s being the local one-dimensional
problem size (parameter -s i); furthermore, let p be the number of MPI processes and
S = C

1
3 ; the following implication applies: (C = s3 ∗ p) => (S = s ∗ p

1
3). As p

1
3 and s

must be natural numbers we set up our strong scaling experiments with p
1
3 being powers of

2 and S = 256. The resulting corresponding tuples of (p, s) used in this paper for strong
scaling are (13 = 1, 256), (23 = 8, 128), (43 = 64, 64), (83 = 512, 32) and (163 = 4096, 16).
The results from these experiments are illustrated in Figure 4. Note that the y-axis is
log(2)-scaled. As expected, similar scaling behavior can be observed for both the LAIK
version and the reference version with up to 512 processes. With 4096 processes, our port
shows significant overhead (factor 2x slower than the reference code). In addition, the
overhead curve first decreases then increases with a large number of processes. Figure 4
shows a relatively constant overhead for experiments with 8, 64, and 512 processes. This is
most likely due to a constant overhead of using 1D slices in the LAIK implementation. In
addition, Figure 4 shows a problem similar to weak scaling for laik-lulesh with a large
number of processes. This is very likely the result of lack of support for asynchronous
communication in LAIK, which scales with the number of point-to-point communication
(and the number of processes).

5.3 Repartitioning Using LAIK, we can now shrink the number of MPI processes during the
execution of laik-lulesh. To test how this shrinking affects the scaling behavior before and
after repartitioning, we conduct a series of scaling experiments. We set up the repartitioning
experiments with p

1
3 being powers of 2 and S = 64 and enforce a repartitioning to the

smaller, next supported number of MPI processes in the strong scaling tests. This results in
the following repartitioning experiments: from 8 to 1, from 64 to 8 and from 512 to 64. We
fix the number of iterations (parameter -i) to 2000 iterations for all experiments and execute
the kernel for 250 iterations with the initial number of MPI processes and then perform the

116

Porting LULESH to LAIK

0.0078125

0.0312500

0.1250000

512to64 8to164to8

N
or

m
al

iz
ed

 T
im

e
P

er
 It

er
at

io
n

(s
)

Repartitioning

after
before

Type of
Migration

Fig. 5: Strong scaling result for laik-lulesh with enforced repartitioning

repartitioning. Finally, the kernel is executed another 1750 iterations until completion. We
execute a total of five runs per configuration on SuperMUC.

The results are provided in Figure 5. On the x-axis, we list the type of migration, and on
the y-axis the normalized time per iteration in log scale, respectively. Both curves show
the same trend. In addition, the runtime for a given scale (e.g., p=64) is almost the same,
regardless of whether it is the initial number of processes or the state after repartitioning.
The required time for repartitioning is presented in Table 1.

As for the effectiveness of the repartitioning function, our test shows little to no overhead on
the normalized kernel execution time of laik-lulesh and also a migration has little impact.

Tab. 1: Required Time for laik-lulesh with Enforced Repartitioning

Configuration Time for Repartitioning
512to64 ∼1.5678s
64to8 ∼0.8803s
8to1 ∼1.6979s

6 Conclusions and Future Work

We presented laik-lulesh, a port of the Livermore Unstructured Lagrangian Explicit
Shock Hydrodynamics (LULESH) to LAIK. The ported code gains enhanced malleability
at runtime. Moreover, it is capable of repartitioning its data as needed. All data structures,
as well as all MPI communication, are transferred to LAIK’s responsibility, while the actual
kernel did not have to be modified. Results from weak and strong scaling experiments show
a low constant overhead and an increasing overhead when scaling the number of processes.
The constant part of the overhead stems from the additional abstraction introduced by
LAIK. The overall overhead stays acceptable for up to 1000 MPI processes, which is a

117

Amir Raoofy, Dai Yang, Josef Weidendorfer, Carsten Trinitis, Martin Schulz

typical configuration for malleable applications. Further, the repartitioning experiments
show promising performance result, as no additional overhead from repartitioning can
be observed. This shows that LAIK is a useful approach to assist programmers to enable
malleability for existing HPC applications.

As next steps, we will enhance LAIK’s asynchronous communication behavior. In addition,
we will work on the reduction of the constant overhead by using a proposed layout interface
from LAIK. Finally, we plan to work with the original LULESH team to overcome the
limitation of only allowing a cubic number of processes.

Acknowledgment This work is partially funded by the German Federal Ministry for
Education and Research under grant title 01|H16010D (Project ENVELOPE). Compute
resources on SuperMUC are sponsored by Leibniz Supercomputer Centre under grant title
pr27ne.

References

[Ah18] Ahn, D. H.; Bass, N.; Chu, A.; Garlick, J.; Grondona, M.; Herbein, S.; Koning, J.;
Patki, T.; Scogland, T. R. W.; Springmeyer, B.; Taufer, M.: Flux: Overcoming
Scheduling Challenges for Exascale Workflows. In: 2018 IEEE/ACM Workflows
in Support of Large-Scale Science (WORKS). Pp. 10–19, Nov. 2018.

[Au11] Augonnet, C.; Thibault, S.; Namyst, R.; Wacrenier, P.-A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience 23/2, pp. 187–198, 2011.

[Ba12] Bauer, M.; Treichler, S.; Slaughter, E.; Aiken, A.: Legion: Expressing locality
and independence with logical regions. In: High Performance Computing,
Networking, Storage and Analysis (SC), 2012 International Conference for.
IEEE, pp. 1–11, 2012.

[Ba91] Bailey, D. H.; Barszcz, E.; Barton, J. T.; Browning, D. S.; Carter, R. L.;
Dagum, L.; Fatoohi, R. A.; Frederickson, P. O.; Lasinski, T. A.; Schreiber, R. S.,
et al.: The NAS parallel benchmarks. The International Journal of Supercom-
puting Applications 5/3, pp. 63–73, 1991.

[Ch09] Che, S.; Boyer, M.; Meng, J.; Tarjan, D.; Sheaffer, J. W.; Lee, S.-H.; Skadron, K.:
Rodinia: A benchmark suite for heterogeneous computing. In: Workload
Characterization, 2009. IISWC 2009. IEEE International Symposium on. IEEE,
pp. 44–54, 2009.

[HKG] Hornung, R. D.; Keasler, J. A.; Gokhale, M. B.: Hydrodynamics Challenge
Problem, Lawrence Livermore National Laboratory, tech. rep. LLNL-TR-
490254, Livermore, CA, USA, pp. 1–17.

118

Porting LULESH to LAIK

[HLK04] Huang, C.; Lawlor, O.; Kalé, L. V.: Adaptive MPI. In (Rauchwerger, L., ed.):
Languages and Compilers for Parallel Computing. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 306–322, 2004.

[Ho16] Holmes, D.; Mohror, K.; Grant, R. E.; Skjellum, A.; Schulz, M.; Bland, W.;
Squyres, J. M.: MPI Sessions: Leveraging Runtime Infrastructure to Increase
Scalability of Applications at Exascale. In: Proceedings of the 23rd European
MPI Users’ Group Meeting. ACM, pp. 121–129, 2016.

[Ka12] Karlin, I.; Bhatele, A.; Chamberlain, B. L.; Cohen, J.; Devito, Z.; Gokhale, M.;
Haque, R.; Hornung, R.; Keasler, J.; Laney, D.; Luke, E.; Lloyd, S.; McGraw, J.;
Neely, R.; Richards, D.; Schulz, M.; Still, C. H.; Wang, F.; Wong, D.: LULESH
Programming Model and Performance Ports Overview, tech. rep. LLNL-TR-
608824, Livermore, CA, USA, Dec. 2012, pp. 1–17.

[Ka13] Karlin, I.; Bhatele, A.; Keasler, J.; Chamberlain, B. L.; Cohen, J.; Devito, Z.;
Haque, R.; Laney, D.; Luke, E.; Wang, F., et al.: Exploring traditional and
emerging parallel programming models using a proxy application. In: 2013
IEEE 27th International Symposium on Parallel and Distributed Processing.
IEEE, pp. 919–932, 2013.

[Ke11] Kerbyson, D.; Vishnu, A.; Barker, K.; Hoisie, A.: Codesign Challenges for
Exascale Systems: Performance, Power, and Reliability. Computer 44/11,
pp. 37–43, Nov. 2011.

[KK93] Kale, L. V.; Krishnan, S.: CHARM++: A Portable Concurrent Object Oriented
System Based on C++. In: Proceedings of the Eighth Annual Conference on
Object-oriented Programming Systems, Languages, and Applications. OOPSLA
’93, ACM, Washington, D.C., USA, pp. 91–108, 1993.

[LG05] Luke, E. A.; George, T.: Loci: A rule-based framework for parallel multi-
disciplinary simulation synthesis. Journal of Functional Programming 15/3,
pp. 477–502, 2005.

[Ma15] Martsinkevich, T.; Subasi, O.; Unsal, O.; Cappello, F.; Labarta, J.: Fault-Tolerant
Protocol for Hybrid Task-Parallel Message-Passing Applications. In: 2015 IEEE
International Conference on Cluster Computing. Pp. 563–570, Sept. 2015.

[Ur12] Ureña, I. A. C.; Riepen, M.; Konow, M.; Gerndt, M.: Invasive MPI on Intel’s
Single-Chip Cloud Computer. In (Herkersdorf, A.; Römer, K.; Brinkschulte, U.,
eds.): Architecture of Computing Systems – ARCS 2012. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 74–85, 2012.

[WYT17] Weidendorfer, J.; Yang, D.; Trinitis, C.: LAIK: A Library for Fault Tolerant
Distribution of Global Data for Parallel Applications. In: Konferenzband des
PARS’17 Workshops. Hagen, Germany, 2017.

[Ya18] Yang, D.; Weidendorfer, J.; Kuestner, T.; Trinitis, C.; Ziegler, S.: Enabling
Application-Integrated Proactive Fault Tolerance. In. Vol. 32, IOS Press,
Bologna, Italy, pp. 475–484, 2018.

119

120

B. Juurlink, W.Karl (Hrsg.)
Proceedings 28th PARS Workshop

Comparing MPI Passive Target Synchronization Schemes on
a Non-Cache-Coherent Shared-Memory Processor

Steffen C hristgau,1 Bettina Schnor2

Abstract: MPI passive target synchronisation offers exclusive and shared locks. These are the
building blocks for the implementation of applications with Readers & Writers semantic, like for
example distributed hash tables. This paper discusses the implementation of MPI passive target
synchronisation on a non-cache-coherent multicore, the Intel Single-Chip Cloud Computer. The
considered algorithms differ in their communication style, their data structures, and their semantics.
It is shown that shared memory approaches scale very well and deliver good performance, even in
absence of cache coherence.

Keywords: process synchronization; programming models and systems for manycores; MPI

1 Introduction

Distributed hash tables (DHTs) are a common approach for fast data access in big data and

data analytics applications. However, DHTs imply dynamic communication which makes
an implementation using two-sided communication, i. e. with SEND and RECV operations,
cumbersome. In contrast, one-sided communication (OSC) with PUT and GET operations is a

suited programming model for a DHT with its dynamic communication pattern.

Concerning the process coordination, a DHT application follows the Readers & Writers
model [CS17a]: reads may occur concurrently while inserts have to be done exclusively.
Hence, a resource has to be locked before it is updated. Typically, writers are given

preference to avoid readers reading old data. This coordination scheme maps on MPI’s
passive target synchronization which offers exclusive locks (one writer) and shared locks
(many readers). In addition, an MPI implementation has much freedom to implement the

process synchronization for passive target OSC [Me15, p. 448].

This paper discusses different synchronisation algorithms on the experimental non-cache-
coherent 48-core Intel Single-Chip Cloud Computer (SCC) [Ho10]. Figure 1 shows an

architectural overview of the chip. While core counts steadily increase, the management of
cache coherence becomes a more challenging task due to that high number of cores and

high memory bandwidths [Mo15]. Although coherent high-end processors with 64 cores
are currently available, non-coherent architectures provide an interesting research domain.
1 Zuse Insitute Berlin, Supercomputing Department, christgau@zib.de
2 University of Potsdam, Institute for Computer Science, schnor@cs.uni-potsdam.de

121

christgau@zib.de
schnor@cs.uni-potsdam.de

S. Christgau, B. Schnor

It has been shown in previous work that such nCC shared-memory systems can be easily
programmed with well established technologies like, e. g., MPI [CS17b].

MC 0 MC 1

MC 2 MC 3

R Tile

cores
0+1

cores
10+11

cores
36+37

cores
46+47

Fig. 1: Overview of the Intel SCC.

In this paper we compare the performance of three synchronization schemes for MPI
passive target OSC: the message-based scheme from MPICH, the writer preference locks
by Mellor-Crummey and Scott [MS91a] for shared memory systems (MCS-WP), and a
best effort approach originally designed for RMA-capable distributed memory systems by
Gerstenberger, Besta and Hoefler (GBH) [GBH14].

The next section gives an overview over related work. The different synchronization schemes
and their data structures are described in Section 3, their implementation on the SCC
is described in Section 4. Results from a micro-benchmarks are presented in Section 5,
followed by a discussion. Section 6 concludes the paper.

2 Related Work

An early work on the topic of efficient MPI OSC implementations is the discussion for
InfiniBand clusters [Ji04]. Recently, implementation schemes for NUMA-aware locks
on cache-coherent multicore machines are gaining interest [DMS15, GLQ16, KMK17,
CFMC15], but non-cache-coherent architectures are still neglected.

Concerning the SCC, the authors of [AMB12] investigate barrier synchronization on
the SCC and use the Message Passing Buffer (MPB) to store the synchronization data.
In [ASB14], they even exploit unused entries in the rare lookup tables of the chip’s
memory subsystem. The bottom line of this research is that synchronization data should
be placed close to the spinning core. RCKMPI [UGT12] is a tuned message-based MPI
implementation for the SCC and uses the fast on-chip MPB for message transport. One-sided
communication is fully supported but is based on messages as well. In case of MPI’s
general active synchronization, we have already shown that an implementation using
shared memory and uncached memory accesses outperforms the message-based approach
significantly [CS17b]. Similar, Reble et al. discuss the active target fence synchronization
style which they implement on top of an efficient barrier [RCL13].

Regarding Distributed Memory Architectures, Gerstenberger et al. have published perfor-
mance numbers of a distributed hash table application running on up to 32k cores [GBH14].

122

Comparing MPI Passive Target Synchronization on a nCC Processor

They use their own MPI-3.0 RMA library implementation for Cray Gemini and Aries
interconnects called foMPI (fast one-sided MPI). The presented synchronization scheme
for passive synchronization is described in Section 3.1 and adapted for the SCC (see
Section 4). Schmid et al. have proposed a scheme for Readers & Writers locking dedicated
for distributed memory architectures with RMA capabilities like the Cray XC30 [SBH16].
The synchronization data structures are organized hierarchically in a distributed tree.

Subsuming the related work, there are no efforts in passive target synchronization for nCC
many-core CPUs with shared memory like the SCC.

3 Synchronization Schemes for nCC Architectures

This section describes three implementation designs for MPI passive target synchronization.
The first two are known from the literature. The third one describes the default implementation
on the SCC. While [GBH14] presents a best-effort approach for a distributed-memory
machine, the work from [MS91a] addresses scaling on shared-memory machines.

3.1 GBH Best Effort Synchronization

In [GBH14], Gerstenberger, Besta and Hoefler (GBH) present an implementation for MPI
passive target synchronization for the Cray XC super-computers. It is based on atomic
remote direct memory operations (RDMA) operations which are supported by the hardware.
The design uses two stages of counters for each created window object: a single global
counter and per-process local counters. All counters are allocated in memory close to the
owning process. The global counter resides in the memory of a designated process (rank 0).
All counters are accessible by RDMA operations.

The global counter tracks active LOCKALL operations and exclusive locks which are mutual
exclusive. The per-process counter indicates the number of active exclusive and shared
locks. As there can be only one exclusive access at a given time and process, a single bit is
used to indicate such epochs (see Fig. 2).

machine word size

global

local

lockall counter excl. counter

rank 0 shared counter excl. bit

. . . shared counter excl. bit

rank n − 1 shared counter excl. bit

Fig. 2: Counters used by the GBH synchronization scheme.

Whenever a lock of either type is going to be acquired, the respective fields in the counters
are incremented using atomic operations which return the previous value (fetch and add).

123

S. Christgau, B. Schnor

When a conflict is detected, e. g. shared locks are active at a process but an exclusive one
should be acquired, the counter modifications are reverted and the process tries again at
a later time using an exponentially growing back-off. The scheme does not distinguish
between different process types, so any reader may overtake writers.

3.2 MCS Locks with Writer Preference

To avoid centralized spin objects which cause high interconnect traffic, Mellor-Crummey
and Scott proposed MCS locks [MS91a]. Those are based on linked lists of lock objects
that are allocated in shared memory. Each process that wants to enter a critical section by
means of MCS locks appends a list entry which consists of a boolean flag blocked and a
pointer to the next waiting process. The flag is initially set to TRUE. A process that wants to
acquire the lock repeatedly polls the flag in its list entry until it is set to FALSE by a process
which releases its lock.

The main advantage of using one list item per process is that spinning is done only on a
local list item and not on a globally shared one like a single spin lock, for example.

Based on the original MCS locks, which do not differentiate between process types, Mellor-
Crummey et al. present specialized locks that give precedence to either reading or writing
processes [MS91b]. We have implemented MCS locks with writer preference (MCS-WP),
since it fits best to the DHT use case where lots of readers and rare writers are expected.

Independent of the precedence, the proposed lock data structures contain lists for waiting
reader and writer processes as shown in Figure 3. In addition to the lists, there is a state
variable which is a single integer variable. For writer-precedence, the state tracks the number
of active readers and provides flags for indicating presence of interested readers, interested
writers, and active writers. Those are manipulated with atomic operations [MS91b, Sec. 3].
For usage with MPI passive target synchronization, every window i is associated with a
lock data structure Li as shown in Figure 3.

rank 0

window

lock L0
– writer queue
– reader queue
– state

blocked = 0

rank 1

window

lock L1
– writer queue
– reader queue
– state

blocked = 1

rank 2

window

lock L2
– writer queue
– reader queue
– state

blocked = 1

sh
ar

ed
m

em
or

y

Fig. 3: MCS-lock based data structure for reader or writer precedence.

124

Comparing MPI Passive Target Synchronization on a nCC Processor

3.3 Message-Based Synchronization

RCKMPI, the MPI implementation for the SCC, uses messages to implement passive target
synchronization. This behaviour is inherited from MPICH’s CH3 device implementation but
varies depending on the configuration. By default, the LOCK synchronization and subsequent
communication operations are deferred until the end of the UNLOCK operation. The library
then sends a control message from the origin to the target process, waits for a reply, i. e. lock
granted message, issues the communication operations, and signals the unlock operation
by setting an according field in the message header of the final communication operation.
The unlock indicator can be piggy-backed in case of a single RMA operation. If no RMA
operation is performed, no messages are sent. However, MPICH/RCKMPI can be configured
to send a control message to the target for lock acquisition at the beginning of the access
epoch. This also ensures transfer of control messages even in the absence of communication.
Although this implements one-sided communication it actually requires participation of the
target to process the synchronization messages.

Independent of the active configuration, the lock requests from different origins are serialized
at the target process. Since the received messages are processed in the order at which they
are received by the target, there is no preference of readers or writers (or lock type).

4 Implementation on the SCC

The SCC is not a product but a research vehicle [Ho10]. Each of the 48 cores has two
integrated 16 KB L1 caches – one for data and instructions – as well as an external unified
256 KB L2 cache. There is no cache coherence between the caches of different cores, but
every core can access all memory location. In addition to main memory, a fast 16 kB
Message Passing Buffer (MPB) is placed on each tile.

All of the of the above synchronization schemes have been implemented in RCKMPI.
Messages exchange is done by writing messages in the receiver’s MPB who polls the buffer
for new incoming messages. This implementation is considered as the baseline version.

The GBH and MCS-WP implementations do not use messages. Instead, the required
data structures are allocated in shared off-chip DRAM memory. Due to the non-coherent
architecture of the SCC, those data structures are polled using uncached memory accesses.
While previous research proved that polling the on-tile MPB or even the Lookup Tables (see
Section 2) reduces the traffic on the interconnect, both approaches are hardly feasible in our
case due to a resource conflict (MPB) or a missing resource management (LUTs). Therefore,
the external DRAM is used as a resource for the synchronization data. As shown in previous
work [CS17a], synchronization data is allocated in a distributed fashion: Per-process data is
stored in the DRAM memory close to the owning core.

125

S. Christgau, B. Schnor

5 Experimental Evaluation

We evaluate the different design schemes using a communication-free microbenchmark.
The experiments were conducted on a SCC system with cores clocked at 533 MHz and
800 MHz for the mesh network and the memory controllers. A total of 32 GB of RAM was
installed on the system. Each core runs Linux 3.1.4 with platform-relevant patches applied.
Software is cross-compiled using GCC 4.4.6 with optimization (-O2), and MPICH 3.1.3
was used as the foundation MPI implementation.

5.1 Microbenchmark description

The employed microbenchmark measures the latency for a pair of LOCK/UNLOCK
operations. No communication is performed between those two operations. The time for
performing these operations is compared for the GBH and MCS-WP implementations as
well as for the message-based but SCC-optimized RCKMPI. Because the default RCKMPI
implementation defers the synchronization, we also measure RCKMPI with a forced message
exchange for synchronization (cf. Section 3.3).

Each process of the microbenchmark performs 1000 pairs of LOCK/UNLOCK calls in a tight
loop. The type of the employed lock is controlled by an input parameter that specifies the
share of shared and exclusive locks each process shall issue. According to that parameter,
every process randomly decides between the two lock types. The target process is chosen
randomly as well and may include the origin process. The access mode (shared or exclusive)
will obviously have an influence on the results. Therefore, three different ratios of shared and
exclusive locks, i. e.. readers and writers, were measured: only shared locks (only readers),
all accesses are made with exclusive locks (only writers) and a mixture of both where shared
and exclusive accesses are equally distributed (see Figure 4a–5).

Since we are interested in the scaling of the different synchronization schemes, we run the
benchmark with different numbers of processes. The processes are mapped according to the
core with matching number. That is, the rows of the SCC’s mesh network are filled before
moving to the next row. In case for 24 processes, the chip’s lower half (see Figure 1) is filled.

From each of the 1000 LOCK/UNLOCK cycles, the required time is measured. Finally, all
samples from all processes are gathered and the median time from all synchronization
operations is computed. This value is shown in the following diagrams for different core
counts. We compare MCS-WP, RCKMPI with both immediate messaging (synchronization
message upon method call) and default behaviour (no messages), and GBH. In addition
to GBH, a version without back-off is included in the evaluation in order to analyze the
impact of the back-off on the synchronization latency. For the version with back-off, the
initial delay between two lock acquisition attempts is 1 µs. This value is doubled for each
consecutive failed attempt. It has been shown for the SCC that the usage of back-offs can
improve the performance of synchronization primitives [RCL13].

126

Comparing MPI Passive Target Synchronization on a nCC Processor

5.2 Results: Shared Locks Only

Figure 4a shows the latency of the different implementations when all accesses are
shared. The RCKMPI implementation with immediate messaging has the highest latency
due to overhead from sending and processing the control messages. The default RCKMPI
implementation includes only library overhead but no message exchange and scales therefore
well. It is slightly slower than both GBH versions due to additional management in the
message-based code path that are not used for the GBH and MCS implementations.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 4 8 12 16 20 24 28 32 36 40 44 48

la
te

n
cy

 /
 u

s

process count

GBH without back-off
GBH with back-off
MCS-WP
RCKMPI (default)
RCKMPI (immediate)

(a) Shared locks only.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 4 8 12 16 20 24 28 32 36 40 44 48

la
te

n
cy

 /
 u

s

process count

GBH without back-off
GBH with back-off
MCS-WP
RCKMPI (default)
RCKMPI (immediate)

(b) 50% shared and 50% exclusive locks.

Fig. 4: Synchronization latencies for the shared-only and mixed cases.

Both GBH versions exhibit nearly constant and identical synchronization latencies because
no conflicts occur in the shared-only use case and thus no back-off is required. Consequently,
the two curves overlap in the plot. Similar, the reason for the constant time is that shared
accesses are not mutual exclusive. In the GBH scheme, acquiring a shared lock only
involves incrementing the shared counter in the target’s local counter (see Fig. 2). Due to
the distribution of the synchronization data and missing exclusive locks, which might cause
more attempts to acquire the shared lock, no contention on these counters is observed on
the SCC.

In case of the of the MCS-WP, the latency is generally higher than for GBH. The latter only
involves incrementing a single per-process counter value, but for MCS the state variable
needs to be checked and list data has to be changed. This causes the operations to take
longer than for GBH.

From the data one can also note an increasing latency for up to 24 processes. After that, the
latency remains nearly constant with a slight drop for 32 processes. This observation can be
attributed to the distributed synchronization data. With up to 24 processes, the two lower
memory controllers of the chip (see Figure 1) have to handle the polling requests of the 12
processes associated to each of them. Additional processes are then handled by the next
memory controllers, but do not increase the load on the already utilized ones.

This is also the reason for the slight latency drop at 32 processes: Since the upper two
memory controllers have to serve fewer processes than the lower two, the median latency

127

S. Christgau, B. Schnor

reduces. Similar behavior can be identified for the switch from 6 (only handled by MC 0) to
8 processes (MC 1 handles additional polling accesses).

Since for 24 processes the two lower memory controllers experience maximum usage and
because of the distributed data, no further increase of the lock latency is observed when the
number of MPI processes is raised. This is different from the statement in [SBH16, p. 11],
that MCS locks that distinguish between readers and writers do not scale well under heavy
read contention. We are not able to confirm this remark by our experiments on the SCC.

5.3 Results: Lock Type Mix

In Figure 4b, the results for the 50% mix of shared and exclusive locks is displayed. For
this workload, no data — except for two processes — could be acquired for the immediate
RCKMPI variant. The benchmark deadlocked in those cases. Our assumption is that required
responses to control message are not sent when they are expected. This might be due to
absent message processing and might be solved by triggering process through MPI_Test
calls. However, a deeper investigation was out of the paper’s scope.

The default variant of RCKMPI which does not send any message unsurprisingly performs
as in case for shared lock.

For GBH, the latency is slightly increased compared to the previous results. The scaling,
however, remains nearly identical and still shows a constant time for the synchronization
for all process counts. The increased latency can be accounted to the higher probability for
an unsuccessful attempt for lock acquisition. In such a case, the processes perform their
back-off but are able to acquire the lock in a later attempt very soon, since the median
latency only increases by about 3 µs.

Opposite to GBH with back-off, the version without this feature shows a latency that
increases linear with the number of processes. The effect is due to the contention. This can
be explained by a competition for both the global and the per-process counter variables.
This reduces the chance of a lock acquisition for either process type. Especially, the global
counter must be modified both at the beginning and at the end of the lock attempt — notably,
this has to be done also in the unsuccessful case. Since the global counter is a centralized
data structure, contention on the responsible memory controller is likely.

With the exception of the GBH without back-off and the dysfunctional immediate RCKMPI
version, the overall performance and scaling is identical to the previous scenario.

For MCS-WP, an almost identical performance as in the previous experiment is observed.
While two different process types are active, the same data structures are used and the
same operations (state manipulation and list management) are performed. Thus, the overall
performance stays the same.

128

Comparing MPI Passive Target Synchronization on a nCC Processor

5.4 Results: Exclusive Locks Only

Finally, Figure 5 shows the scaling where only exclusive locks are used. The GBH variant
without back-off clearly suffers from the sole usage of exclusive locks and its aggressive
best-effort approach. The effect of contention on the global counter from the previous
experiment is amplified which causes increased latency.

Contrary to that observation, the other synchronization schemes still perform with identical
scaling behavior and similar absolute latency. For GBH with back-off, the latency increases
slightly and approaches MCS-WP. This might be caused by an increased number of attempts
to acquire the lock.

For MCS-WP, the performance is still equivalent to the previous experiments. Because
writers just queue up at the individual per-process queues (cf. Figure 3), the median time to
acquire the lock does not increase. Further, the completely distributed data structures pays
off as no contention occurs.

The immediate RCKMPI variant works without problems in this experiments. However,
the latency is up to about four times higher than for the other implementations. Moreover,
linear scaling can be observed.

 0

 10

 20

 30

 40

 50

 60

 0 4 8 12 16 20 24 28 32 36 40 44 48

la
te

n
cy

 /
 u

s

process count

GBH without back-off
GBH with back-off
MCS-WP
RCKMPI (default)
RCKMPI (immediate)

Fig. 5: Latency for exclusive locks.

5.5 Discussion

Although a tuned implementation for message transfer is available on the SCC, it does not
pay off in case for MPI passive target synchronization. Besides issues with deadlocks, which
may be fixable, the observed latency is much higher than for the presented memory-based
approaches that use uncached-memory accesses due to the immanent data transfer and
processing overhead.

Contrary, the memory-based schemes perform with low latencies and nearly constant scaling
and are therefore a favorable choice for nCC shared memory architectures like the SCC.
The implemented synchronization schemes take special care for the distribution of data

129

S. Christgau, B. Schnor

structures and their access pattern. The MCS-WP scheme avoids centralized data, and the
GBH scheme with back-off uses a rate-limited access to its data structures.

6 Conclusion

In this paper, we discussed and evaluated three different synchronization schemes for non-
cache-coherent shared memory architectures, like the SCC. Two memory-based schemes
known from the literature have been implemented for that platform. The evaluation shows
that such schemes are well-suited for nCC many-core architectures both in terms of absolute
performance and scalability. Despite, they employ uncached memory operations, the
approaches even outperform competitors that rely on SCC-optimized message passing.

The experiments also show that the MCS-WP scheme which gives precedence to writers
can be used on nCC systems without scalability or severe performance degradations. The
reason is the avoidance of centralized data structures. To achieve a comparable performance,
the GBH scheme that also uses centralized data structures in addition to distributed ones,
a back-off mechanism appears to be crucial for the median latency. Nevertheless, the
algorithms have to be evaluated in the context of an application in subsequent work. Future
work may also include an analysis how the presented approaches perform on contemporary
processors built from multiple chiplets when taking their inherent NUMA-design and
hardware support for cache coherence into consideration.

Bibliography
[AMB12] Al-Khalissi, Hayder; Marongiu, Andrea; Berekovic, Mladen: Low-Overhead Barrier

Synchronization for OpenMP-like Parallelism on the Single-Chip Cloud Computer. In:
Many-core Applications Research Community (MARC) Symposium at RWTH Aachen
University, November 29th-30th 2012, Aachen, Germany. 2012.

[ASB14] Al-Khalissi, Hayder; Shah, Syed Abbas Ali; Berekovic, Mladen: An Efficient Barrier
Implementation for OpenMP-Like Parallelism on the Intel SCC. In: 22nd Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing, PDP
2014, Torino, Italy, February 12-14, 2014. 2014.

[CFMC15] Chabbi, Milind; Fagan, Michael; Mellor-Crummey, John: High Performance Locks for
Multi-level NUMA Systems. In: Proceedings of the 20th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. PPoPP 2015, ACM, New York, NY,
USA, 2015.

[CS17a] Christgau, Steffen; Schnor, Bettina: Design of MPI Passive Target Synchronization for a
Non-Cache-Coherent Many-Core Processor. In: Parallel-Algorithmen, -Rechnerstrukturen
und -Systemsoftware: 27. PARS Workshop. volume 34 of Mitteilungen. Gesellschaft für
Informatik, 2017.

[CS17b] Christgau, Steffen; Schnor, Bettina: Exploring one-sided communication and synchro-
nization on a non-cache-coherent many-core architecture. Concurrency and Computation:
Practice and Experience, 29(15), 2017.

130

Comparing MPI Passive Target Synchronization on a nCC Processor

[DMS15] Dice, David; Marathe, Virendra J.; Shavit, Nir: Lock Cohorting: A General Technique
for Designing NUMA Locks. ACM Trans. Parallel Comput., 1(2), February 2015.

[GBH14] Gerstenberger, Robert; Besta, Maciej; Hoefler, Torsten: Enabling highly-scalable remote
memory access programming with MPI-3 One Sided. Scientific Programming, 22(2),
2014.

[GLQ16] Guiroux, Hugo; Lachaize, Renaud; Quéma, Vivien: Multicore Locks: The Case is Not
Closed Yet. In: Proceedings of the 2016 USENIX Conference on Usenix Annual Technic
al Conference. USENIX ATC ’16, USENIX Association, Berkeley, CA, USA, 2016.

[Ho10] Howard, Jason et al.: A 48-Core IA-32 message-passing processor with DVFS in 45nm
CMOS. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010
IEEE International. February 2010.

[Ji04] Jiang, Weihang et al.: Efficient Implementation of MPI-2 Passive One-Sided Communi-
cation on InfiniBand Clusters. In (Kranzlmüller, Dieter; Kacsuk, Péter; Dongarra, Jack J.,
eds): 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary. volume 3241
of Lecture Notes in Computer Science. Springer, 2004.

[KMK17] Kashyap, Sanidhya; Min, Changwoo; Kim, Taesoo: Scalable NUMA-aware Blocking
Synchronization Primitives. In: Proceedings of the 2017 USENIX Conference on Usenix
Annual Techni cal Conference. USENIX ATC ’17, USENIX Association, Berkeley, CA,
USA, 2017.

[Me15] Message Passing Interface Forum: , MPI: A Message-Passing Interface Standard, Version
3.1. online, June 2015. http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

[Mo15] Morgan, Timothy Prickett: , More Knights Landing Xeon Phi Secrets Unveiled, March
2015. http://www.nextplatform.com/2015/03/25/more-knights-landing-xeon-phi-
secrets-unveiled/ accessed 2019-08-28.

[MS91a] Mellor-Crummey, John M.; Scott, Michael L.: Algorithms for Scalable Synchronization
on Shared-Memory Multiprocessors. ACM Trans. Comput. Syst., 9(1), 1991.

[MS91b] Mellor-Crummey, John M.; Scott, Michael L.: Scalable Reader-Writer Synchronization
for Shared-Memory Multiprocessors. In (Wise, David S., ed.): Proceedings of the Third
ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming (PPoPP),
Williamsburg, Virginia, USA, April 21-24, 1991. ACM, 1991.

[RCL13] Reble, Pablo; Clauss, Carsten; Lankes, Stefan: One-sided communication and synchro-
nization for non-coherent memory-coupled cores. In: International Conference on High
Performance Computing & Simulation, HPCS 2013. IEEE, 2013.

[SBH16] Schmid, Patrick; Besta, Maciej; Hoefler, Torsten: High-Performance Distributed RMA
Locks. In (Nakashima, Hiroshi; Taura, Kenjiro; Lange, Jack, eds): Proceedings of the
25th ACM International Symposium on High-Performance Parallel and Distributed
Computing, HPDC 2016, Kyoto, Japan, May 31 - June 04, 2016. ACM, 2016.

[UGT12] Ureña, Isaías A. Comprés; Gerndt, Michael; Trinitis, Carsten: Wait-Free Message Passing
Protocol for Non-coherent Shared Memory Architectures. In: 19th European MPI Users’
Group Meeting, EuroMPI 2012, Vienna, Austria. 2012.

131

http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.nextplatform.com/2015/03/25/more-knights-landing-xeon-phi-secrets-unveiled/
http://www.nextplatform.com/2015/03/25/more-knights-landing-xeon-phi-secrets-unveiled/

132

1. Aktuelle und zukünftige Aktivitäten (Bericht des Sprechers)
Die 35. Ausgabe der PARS-Mitteilungen enthält die Beiträge des 28. PARS-Workshops.

Der 28. PARS-Workshop fand am 20. und 21. März 2019 an der Technischen Universität Berlin statt.
Der Workshop war mit 30 Teilnehmern gut besucht. Am Morgen des ersten Tages hielten Nadjib
Mammeri und Sohan Lal von der TU Berlin (Embedded System Architecture) ein Tutorial zum Thema
„LPGPU2“. Insgesamt wurden 11 sehr interessante Vorträge präsentiert, die zusammen ein
umfangreiches Themenspektrum abdeckten. Prof. Dr.-Ing. Jeronimo Castrillon (TU Dresden) hielt einen
eingeladenen Vortrag zum Thema „Programming abstractions: When domain-specific goes
mainstream“.

Auch dieses Mal wurde wieder der mit 500 EUR dotierte Nachwuchspreis vergeben. Er ging in diesem
Jahr an Farzaneh Salehiminapour (TU Berlin). Die Übergabe erfolgte am Ende des PARS Workshops.
Professor Ben Juurlink und Daniel Maier (TU Berlin) sei herzlich für die reibungslose Organisation
gedankt.

Preisübergabe in der Halle der TU Berlin
Prof. Dr. Wolfgang Karl mit der Preisträgerin Farzaneh Salehiminapour.

Während des PARS-Workshops fand auch eine Sitzung des PARS-Leitungsgremiums statt. In das
Leitungsgremium wurden als neue Mitglieder Dr. Steffen Christgau (ZIB Berlin), Dr. Stefan Lankes
(RWTH Aachen) und Prof. Dr. Martin Schulz (TU München) aufgenommen.

Vom 10. bis 11. Oktober 2019 fand in Hünfeld ein Perspektiv-Workshop des Leitungsgremiums der FG
PARS statt.

GESELLSCHAFT FÜR INFORMATIK E.V.
PARALLEL-ALGORITHMEN, -RECHNERSTRUKTUREN

UND -SYSTEMSOFTWARE

INFORMATIONSTECHNISCHE GESELLSCHAFT IM VDE

PARS

133

Unser nächster Workshop ist der

14. PASA-Workshop am 23. Und 24. Mai 20120 in Aachen.

Der Workshop wird wie in den vergangenen „geraden“ Jahren gemeinsam mit der Fachgruppe ALGO
im Rahmen der Tagung ARCS 2020 durchgeführt.

Aktuelle Informationen finden Sie auch auf der PARS-Webpage

http://fg-pars.gi.de/
Die PARS-Mitteilungen und ihre Beiträge erscheinen auch in der Digitalen Bibliothek der Gesellschaft
für Informatik (https://dl.gi.de/handle/20.500.12116/1903).

Anregungen und Beiträge für die Mitteilungen können an den Sprecher (wolfgang.karl@kit.edu)
gesendet werden.

Ich wünsche allen ein gutes und erfolgreiches Jahr 2020.

Karlsruhe im Januar 2020

Prof. Dr. Wolfgang Karl

134

https://dl.gi.de/handle/20.500.12116/1903

2. Zur Historie von PARS
Bereits am Rande der Tagung CONPAR81 vom 10. bis 12. Juni 1981 in Nürnberg wurde von
Teilnehmern dieser ersten CONPAR-Veranstaltung die Gründung eines Arbeitskreises im Rahmen der
GI: Parallel-Algorithmen und -Rechnerstrukturen angeregt. Daraufhin erfolgte im Heft 2, 1982 der GI-
Mitteilungen ein Aufruf zur Mitarbeit. Dort wurden auch die Themen und Schwerpunkte genannt:

1) Entwurf von Algorithmen für
• verschiedene Strukturen (z. B. für Vektorprozessoren, systolische Arrays oder

Zellprozessoren)
• Verifikation
• Komplexitätsfragen

2) Strukturen und Funktionen
• Klassifikationen
• dynamische/rekonfigurierbare Systeme
• Vektor/Pipeline-Prozessoren und Multiprozessoren
• Assoziative Prozessoren
• Datenflussrechner
• Reduktionsrechner (demand driven)
• Zellulare und systolische Systeme
• Spezialrechner, z. B. Baumrechner und Datenbank-Prozessoren

3) Intra-Kommunikation
• Speicherorganisation
• Verbindungsnetzwerke

4) Wechselwirkung zwischen paralleler Struktur und Systemsoftware
• Betriebssysteme
• Compiler

5) Sprachen
• Erweiterungen (z. B. für Vektor/Pipeline-Prozessoren)
• (automatische) Parallelisierung sequentieller Algorithmen
• originär parallele Sprachen
• Compiler

6) Modellierung, Leistungsanalyse und Bewertung
• theoretische Basis (z. B. Q-Theorie)
• Methodik
• Kriterien (bezüglich Strukturen)
• Analytik

In der Sitzung des Fachbereichs 3 ‚Architektur und Betrieb von Rechensystemen’ der Gesellschaft für
Informatik am 22. Februar 1983 wurde der Arbeitskreis offiziell gegründet. Nachdem die Mitgliederzahl
schnell anwuchs, wurde in der Sitzung des Fachausschusses 3.1 ‚Systemarchitektur’ am 20. September
1985 in Wien der ursprüngliche Arbeitskreis in die Fachgruppe FG 3.1.2 ‚Parallel- Algorithmen und -
Rechnerstrukturen’ umgewandelt.

Während eines Workshops vom 12. bis 16. Juni 1989 in Rurberg (Aachen) - veranstaltet von den Herren
Ecker (TU Clausthal) und Lange (TU Hamburg-Harburg) - wurde vereinbart, Folgeveranstaltungen
hierzu künftig im Rahmen von PARS durchzuführen.

Beim Workshop in Arnoldshain sprachen sich die PARS-Mitglieder und die ITG-Vertreter dafür aus, die
Zusammenarbeit fortzusetzen und zu verstärken. Am Dienstag, dem 20. März 1990 fand deshalb in

München eine Vorbesprechung zur Gründung einer gemeinsamen Fachgruppe PARS statt.

135

Am 6. Mai 1991 wurde in einer weiteren Besprechung eine Vereinbarung zwischen GI und ITG sowie
eine Vereinbarung und eine Ordnung für die gemeinsame Fachgruppe PARS formuliert und den beiden
Gesellschaften zugeleitet. Die GI hat dem bereits 1991 und die ITG am 26. Februar 1992 zugestimmt.

3. Bisherige Aktivitäten
Die PARS-Gruppe hat in den vergangenen Jahren mehr als 20 Workshops durchgeführt mit Berichten
und Diskussionen zum genannten Themenkreis aus den Hochschulinstituten,
Großforschungseinrichtungen und der einschlägigen Industrie. Die Industrie - sowohl die Anbieter von
Systemen wie auch die Anwender mit speziellen Problemen - in die wissenschaftliche Erörterung
einzubeziehen war von Anfang an ein besonderes Anliegen. Durch die immer schneller wachsende Zahl
von Anbietern paralleler Systeme wird sich die Mitgliederzahl auch aus diesem Kreis weiter vergrößern.

Neben diesen Workshops hat die PARS-Gruppe die örtlichen Tagungsleitungen der CONPAR-
Veranstaltungen:

CONPAR 86 in Aachen,
CONPAR 88 in Manchester,
CONPAR 90 / VAPP IV in Zürich und
CONPAR 92 / VAPP V in Lyon
CONPAR 94/VAPP VI in Linz

wesentlich unterstützt. In einer Sitzung am 15. Juni 1993 in München wurde eine Zusammenlegung der
Parallelrechner-Tagungen von CONPAR/VAPP und PARLE zur neuen Tagungsserie EURO-PAR
vereinbart, die vom 29. bis 31. August 1995 erstmals stattfand:

Euro-Par’95 in Stockholm

Zu diesem Zweck wurde ein „Steering Committee” ernannt, das europaweit in Koordination mit
ähnlichen Aktivitäten anderer Gruppierungen Parallelrechner-Tagungen planen und durchführen wird.
Dem Steering Committee steht ein „Advisory Board” mit Personen zur Seite, die sich in diesem Bereich
besonders engagieren. Die offizielle Homepage von Euro-Par ist http://www.europar.org/.

Außerdem war die Fachgruppe bemüht, mit anderen Fachgruppen der Gesellschaft für Informatik
übergreifende Themen gemeinsam zu behandeln: Workshops in Bad Honnef 1988, Dagstuhl 1992 und
Bad Honnef 1996 (je zusammen mit der FG 2.1.4 der GI), in Stuttgart (zusammen mit dem Institut für
Mikroelektronik) und die PASA-Workshop-Reihe 1991 in Paderborn, 1993 in Bonn, 1996 in Jülich,
1999 in Jena, 2002 in Karlsruhe, 2004 in Augsburg, 2006 in Frankfurt a. Main und 2008 in Dresden
(jeweils gemeinsam mit der GI-Fachgruppe 0.1.3 ‚Parallele und verteilte Algorithmen (PARVA)’) sowie
2012 in München, 2014 in Lübeck, 2016 in Nürnberg und 2018 in Braunschweig (gemeinsam mit der
GI-Fachgruppe ALGO, die Nachfolgegruppe von PARVA). Der nächste PASA Workshop wird wieder
gemeinsam mit der GI FG ALGO 2020 in Aachen stattfinden.

136

PARS-Mitteilungen/Workshops:
Aufruf zur Mitarbeit, April 1983 (Mitteilungen Nr. 1)
Erlangen, 12./13. April 1984 (Mitteilungen Nr. 2)
Braunschweig, 21./22. März 1985 (Mitteilungen Nr. 3)
Jülich, 2./3. April 1987 (Mitteilungen Nr. 4)
Bad Honnef, 16.-18. Mai 1988 (Mitteilungen Nr. 5, gemeinsam mit der GI-Fachgruppe 2.1.4

‘Alternative Konzepte für Sprachen und Rechner’)
München Neu-Perlach, 10.-12. April 1989 (Mitteilungen Nr. 6)
Arnoldshain (Taunus), 25./26. Januar 1990 (Mitteilungen Nr. 7)
Stuttgart, 23./24. September 1991, “Verbindungsnetzwerke für Parallelrechner und Breitband-

Übermittlungssysteme” (Als Mitteilungen Nr. 8 geplant, gem. mit ITG-FA 4.1, 4.4 und GI/ITG FG
Rechnernetze, wg. Kosten nicht erschienen. siehe Tagungsband Inst. für Mikroelektronik Stuttgart.)

Paderborn, 7./8. Oktober 1991, “Parallele Systeme und Algorithmen” (Mitteilungen Nr. 9, 2. PASA-
Workshop)

Dagstuhl, 26.-28. Februar 1992, “Parallelrechner und Programmiersprachen” (Mitteilungen Nr. 10,
gemeinsam mit der GI-Fachgruppe 2.1.4 ‘Alternative Konzepte für Sprachen und Rechner’)

Bonn, 1./2. April 1993, “Parallele Systeme und Algorithmen” (Mitteilungen Nr. 11, 3. PASA-
Workshop)

Dresden, 6.-8. April 1993, “Feinkörnige und Massive Parallelität” (Mitteilungen Nr. 12, zusammen mit
PARCELLA)

Potsdam, 19./20. September 1994 (Mitteilungen Nr. 13, Parcella fand dort anschließend statt)
Stuttgart, 9.-11. Oktober 1995 (Mitteilungen Nr. 14)
Jülich, 10.-12. April 1996, “Parallel Systems and Algorithms” (4. PASA-Workshop), Tagungsband

erschienen bei World Scientific 1997)
Bad Honnef, 13.-15. Mai 1996, zusammen mit der GI-Fachgruppe 2.1.4 ‘Alternative Konzepte für

Sprachen und Rechner’ (Mitteilungen Nr. 15)
Rostock, (Warnemünde) 11. September 1997 (Mitteilungen Nr. 16, im Rahmen der ARCS’97 vom 8.-

11. September 1997)
Karlsruhe, 16.-17. September 1998 (Mitteilungen Nr. 17)
Jena, 7. September 1999, “Parallele Systeme und Algorithmen” (5. PASA-Workshop im Rahmen der

ARCS’99)
An Stelle eines Workshop-Bandes wurde den PARS-Mitgliedern im Januar 2000 das Buch ‘SCI:

Scalable Coherent Interface, Architecture and Software for High-Performance Compute Clusters‘,
Hermann Hellwagner und Alexander Reinefeld (Eds.) zur Verfügung gestellt.

München, 8.-9. Oktober 2001 (Mitteilungen Nr. 18)
Karlsruhe, 11. April 2002, (Mitteilungen Nr. 19)
Travemünde, 5./6. Juli 2002, Brainstorming Workshop “Future Trends” (Thesen in Mitteilungen Nr. 19)
Basel, 20./21. März 2003 (Mitteilungen Nr. 20)
Augsburg, 26. März 2004 (Mitteilungen Nr. 21)
Lübeck, 23./24. Juni 2005 (Mitteilungen Nr. 22)
Frankfurt/Main, 16. März 2006 (Mitteilungen Nr. 23)
Hamburg, 31. Mai / 1. Juni 2007 (Mitteilungen Nr. 24)
Dresden, 26. Februar 2008 (Mitteilungen Nr. 25)
Parsberg, 4./5. Juni 2009 (Mitteilungen Nr. 26)
Hannover, 23. Februar 2010 (Mitteilungen Nr. 27)
Rüschlikon, 26./27. Mai 2011 (Mitteilungen Nr. 28)
München, 29. Februar 2012 (Mitteilungen Nr. 29)
Erlangen, 11.+12. April 2013 (Mitteilungen Nr. 30)
Lübeck, 25. Februar 2014 (Mitteilungen Nr. 31)
Potsdam, 7.+8. Mai 2015 (Mitteilungen Nr. 32)
Nürnberg, 4.+5. April 2016 (Mitteilungen Nr. 33)
Hagen, 4.+5. Mai 2017 (Mitteilungen Nr. 34)
Berlin, 21. +22. März 2019 (Mitteilungen Nr. 35)

137

4. Mitteilungen (ISSN 0177-0454)

Mit dieser Ausgabe sind 35 Mitteilungen zur Veröffentlichung der PARS-Aktivitäten und verschiedener
Workshops erschienen. Darüberhinaus enthalten die Mitteilungen Kurzberichte der Mitglieder und
Hinweise von allgemeinem Interesse, die dem Sprecher zugetragen werden.

Teilen Sie - soweit das nicht schon geschehen ist - Tel., Fax und E-Mail-Adresse der GI-Geschäftsstelle
mitgliederservice@gi-ev.de mit für die zentrale Datenerfassung und die regelmäßige Übernahme in die
PARS-Mitgliederliste. Das verbessert unsere Kommunikationsmöglichkeiten untereinander wesentlich.

5. Vereinbarung
Die Gesellschaft für Informatik (GI) und die Informationstechnische Gesellschaft im VDE (ITG)
vereinbaren die Gründung einer gemeinsamen Fachgruppe

Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware,

die den GI-Fachausschüssen bzw. Fachbereichen:

FA 0.1 Theorie der Parallelverarbeitung
FA 3.1 Systemarchitektur
FB 4 Informationstechnik und technische Nutzung der Informatik

und den ITG-Fachausschüssen:

FA 4.1 Rechner- und Systemarchitektur
FA 4.2/3 System- und Anwendungssoftware

zugeordnet ist.

Die Gründung der gemeinsamen Fachgruppe hat das Ziel,

- die Kräfte beider Gesellschaften auf dem genannten Fachgebiet zusammenzulegen,
- interessierte Fachleute möglichst unmittelbar die Arbeit der Gesellschaften auf

diesem Gebiet gestalten zu lassen,
- für die internationale Zusammenarbeit eine deutsche Partnergruppe zu haben.

Die fachliche Zielsetzung der Fachgruppe umfasst alle Formen der Parallelität wie

- Nebenläufigkeit
- Pipelining
- Assoziativität
- Systolik
- Datenfluss
- Reduktion
 etc.

und wird durch die untenstehenden Aspekte und deren vielschichtige Wechselwirkungen umrissen.
Dabei wird davon ausgegangen, dass in jedem der angegebenen Bereiche die theoretische Fundierung
und Betrachtung der Wechselwirkungen in der Systemarchitektur eingeschlossen ist, so dass ein
gesonderter Punkt „Theorie der Parallelverarbeitung“ entfällt.

138

1. Parallelrechner-Algorithmen und -Anwendungen

- architekturabhängig, architekturunabhängig
- numerische und nichtnumerische Algorithmen
- Spezifikation
- Verifikation
- Komplexität
- Implementierung

2. Parallelrechner-Software

- Programmiersprachen und ihre Compiler
- Programmierwerkzeuge
- Betriebssysteme

3. Parallelrechner-Architekturen

- Ausführungsmodelle
- Verbindungsstrukturen
- Verarbeitungselemente
- Speicherstrukturen
- Peripheriestrukturen

4. Parallelrechner-Modellierung, -Leistungsanalyse und -Bewertung

5. Parallelrechner-Klassifikation, Taxonomien

Als Gründungsmitglieder werden bestellt:

von der GI: Prof. Dr. A. Bode, Prof. Dr. W. Gentzsch, R. Kober, Prof. Dr. E. Mayr, Dr. K. D.
Reinartz, Prof. Dr. P. P. Spies, Prof. Dr. W. Händler

von der ITG: Prof. Dr. R. Hoffmann, Prof. Dr. P. Müller-Stoy, Dr. T. Schwederski, Prof. Dr.
Swoboda, G. Valdorf

139

Ordnung der Fachgruppe
Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware

1. Die Fachgruppe wird gemeinsam von den Fachausschüssen 0.1, 3.1 sowie dem Fachbereich 4 der
Gesellschaft für Informatik (GI) und von den Fachausschüssen 4.1 und 4.2/3 der
Informationstechnischen Gesellschaft (ITG) geführt.

2. Der Fachgruppe kann jedes interessierte Mitglied der beteiligten Gesellschaften beitreten. Die
Fachgruppe kann in Ausnahmefällen auch fachlich Interessierte aufnehmen, die nicht Mitglied einer der
beteiligten Gesellschaften sind. Mitglieder der FG 3.1.2 der GI und der ITG-Fachgruppe 6.1.2 werden
automatisch Mitglieder der gemeinsamen Fachgruppe PARS.

3. Die Fachgruppe wird von einem ca. zehnköpfigen Leitungsgremium geleitet, das sich paritätisch aus
Mitgliedern der beteiligten Gesellschaften zusammensetzen soll. Für jede Gesellschaft bestimmt deren
Fachbereich (FB 3 der GI und FB 4 der ITG) drei Mitglieder des Leitungsgremiums: die übrigen werden
durch die Mitglieder der Fachgruppe gewählt. Die Wahl- und die Berufungsvorschläge macht das
Leitungsgremium der Fachgruppe. Die Amtszeit der Mitglieder des Leitungsgremiums beträgt vier
Jahre. Wiederwahl ist zulässig.

4. Das Leitungsgremium wählt aus seiner Mitte einen Sprecher und dessen Stellvertreter für die Dauer
von zwei Jahren; dabei sollen beide Gesellschaften vertreten sein. Wiederwahl ist zulässig. Der Sprecher
führt die Geschäfte der Fachgruppe, wobei er an Beschlüsse des Leitungsgremiums gebunden ist. Der
Sprecher besorgt die erforderlichen Wahlen und amtiert bis zur Wahl eines neuen Sprechers.

5. Die Fachgruppe handelt im gegenseitigen Einvernehmen mit den genannten Fachausschüssen. Die
Fachgruppe informiert die genannten Fachausschüsse rechtzeitig über ihre geplanten Aktivitäten.
Ebenso informieren die Fachausschüsse die Fachgruppe und die anderen beteiligten Fachausschüsse
über Planungen, die das genannte Fachgebiet betreffen. Die Fachausschüsse unterstützen die Fachgruppe
beim Aufbau einer internationalen Zusammenarbeit und stellen ihr in angemessenem Umfang ihre
Publikationsmöglichkeiten zur Verfügung. Die Fachgruppe kann keine die Trägergesellschaften
verpflichtenden Erklärungen abgeben.

6. Veranstaltungen (Tagungen/Workshops usw.) sollten abwechselnd von den Gesellschaften organisiert
werden. Kostengesichtspunkte sind dabei zu berücksichtigen.

7. Veröffentlichungen, die über die Fachgruppenmitteilungen hinausgehen, z. B. Tagungsberichte,
sollten in Abstimmung mit den den Gesellschaften verbundenen Verlagen herausgegeben werden. Bei
den Veröffentlichungen soll ein durchgehend einheitliches Erscheinungsbild angestrebt werden.

8. Die gemeinsame Fachgruppe kann durch einseitige Erklärung einer der beteiligten Gesellschaften
aufgelöst werden. Die Ordnung tritt mit dem Datum der Unterschrift unter die Vereinbarung über die
gemeinsame Fachgruppe in Kraft.

140

CALL FOR PAPERS
14th Workshop on Parallel Systems and Algorithms

PASA 2020
https://www.cs12.tf.fau.de/conf/pasa2020/

in conjunction with

ARCS 2020 – 33rd International Conference on Architecture of Computing Systems
Aachen, Germany, 25 - 26 May 2020

organized by

GI/ITG-Fachgruppe 'Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware' (PARS)
and GI-Fachgruppe 'Algorithmen' (ALGO)

The PASA workshop series has the goal to build a bridge between theory and practice in the
area of parallel systems and algorithms. In this context practical problems which require
theoretical investigations as well as the applicability of theoretical approaches and results to
practice shall be discussed. An important aspect is communication and exchange of experience
between various groups working in the area of parallel computing, e.g. in computer science,
electrical engineering, physics or mathematics.

Topics of Interest include, but are not restricted to:

• parallel architectures & storage
systems

• parallel and distributed algorithms
• parallel embedded systems
• models of parallel computation
• ubiquitous and pervasive systems
• scheduling and load balancing
• reconfigurable parallel computing
• parallel programming languages

• data stream-oriented computing
• software engineering for parallel systems
• interconnection networks
• parallel design patterns
• network and grid computing
• performance evaluation of parallel systems
• distributed and parallel multimedia systems
• parallel algorithms for artificial intelligence

applications

PASA 2020 Webpage: https://www.cs12.tf.fau.de/conf/pasa2020/

The workshop will comprise invited talks on current topics by leading experts in the field as well
as submitted papers on original and previously unpublished research. Accepted papers will be
published in the ARCS Workshop Proceedings as well as in the PARS Newsletter (ISSN 0177-
0454). The conference languages are English (preferred) and German. Papers are required to be
in English.

A prize of 500 € will be awarded to the best contribution presented personally based on a
student's or Ph.D. thesis or project. Co-authors are allowed, the PhD degree should not have
been awarded at the time of submission. Candidates apply for the prize by e-mail to the
organizers when submitting the contribution. We expect that candidates are or become
members of one of the groups ALGO or PARS.

141

http://arcs2018.itec.kit.edu/?p=0

Important Dates
16 March 2020: Deadline for submission of full papers under:
https://easychair.org/conferences/?conf=pasa2020

6 pages in English, formatted according to IEEE CIS template in "conference mode" (see
http://www.ieee.org/conferences_events/conferences/publishing/templates.html). More
details depend on the requirements given by the ARCS organizers and will be provided here as
soon as possible

31 March 2020: Notification of authors

 13 April 2020: Final version for workshop proceedings

Program Committee
M. Dietzfelbinger (Ilmenau), S. Christgau (Berlin), A. Doering (Zurich), N. Eicker (Jülich), T.
Fahringer (Innsbruck), D. Fey (Erlangen), R. Hoffmann (Darmstadt), K. Jansen (Kiel), B. Juurlink
(Berlin), W. Karl (Karlsruhe), J. Keller (Hagen), S. Lankes (Aachen), Ch. Lengauer (Passau), E.
Maehle (Lübeck), U. Margull (Ingolstadt), E. W. Mayr (Munich), U. Meyer (Frankfurt), F. Meyer
auf der Heide (Paderborn), J. Mottok (Regensburg), W. Nagel (Dresden), M. Philippsen
(Erlangen), H. Räcke (Munich), K. D. Reinartz (Höchstadt), Ch. Scheideler (Paderborn), B. Schnor
(Potsdam), M. Schulz (Munich), U. Schwiegelshohn (Dortmund), P. Sobe (Dresden), C. Trinitis
(Munich), R. Wanka (Erlangen)

Organisation
Prof. Dr. Wolfgang Karl, Karlsruhe Institute of Technology (KIT), Institute of Computer
Engineering (ITEC), 76129 Karlsruhe, Phone +49-721-608-43771, E-Mail wolfgang.karl@kit.edu

Prof. Dr. Rolf Wanka, Univ. Erlangen-Nuremberg, Dept. of Computer Science, 91058 Erlangen,
Germany, Phone/Fax +49-9131-8525-152/149, E-Mail rolf.wanka@fau.de

142

ARCS 2020

33nd GI/ITG INTERNATIONAL CONFERENCE ON ARCHITECTURE OF COMPUTING SYSTEMS
THIS YEAR’S FOCUS: SELF-ORGANIZATION AND SELF-ADAPTION IN HIGH-PERFORMANCE COMPUTING

Aachen, Germany
Mai 25 – 28, 2020

http://arcs2020.itec.kit.edu/

CALL FOR PAPERS

The ARCS conferences series has over 30 years of tradition reporting leading edge research in computer
architecture and operating systems. The focus of the 2020 conference will be on concepts and tools for
incorporating self-adaptation and self-organisation mechanisms in high-performance computing systems.
This includes upcoming approaches for runtime modification at various abstraction levels, ranging from
hardware changes to goal changes and their impact on architectures, technologies, and languages.
The proceedings of ARCS 2020 will be published in the Springer Lecture Notes on Computer Science
(LNCS) series. A best paper and best presentation award will be presented at the conference.

Paper submission: Authors are invited to submit original, unpublished research papers on one or more of
the following topics:

• Hardware Architectures
• System-on-chip
• Distributed systems
• High performance systems
• Heterogeneous multi- and many-core architectures
• Architectures for real-time and mixed-criticality systems
• Coarse- and fine-grained reconfigurable architectures
• Flexible I/O support
• Advanced computing architectures
• New Memory Technologies

• Programming Models and Runtime Environments

• Programming models for many-core and/or heterogeneous computing platforms
• Operating systems, hypervisors and middleware for homogeneous and heterogeneous multi-

/many-core computing platforms
• System management including but not limited to scheduling, memory management,

power/thermal management, and RTOS

• Cross-sectional Topics
• Organic Computing
• Adaptive systems (energy aware, self-x technologies)
• Pervasive systems
• Approximate Computing
• Autonomous systems
• Support for safety and security

143

Submission guidelines: Submissions should be done through the link that is provided on the conference
website https://easychair.org/conferences/?conf=arcs2020. Papers must be submitted in PDF format.

They should be formatted according to Springer LNCS style (see: https://www.springer.com/gp/computer-
science/lncs/conference-proceedings-guidelines) and must not exceed 12 pages, including references and
figures.

Workshop and Tutorial Proposals: Proposals for workshops and tutorials within the technical scope of the
conference are solicited. Submissions should be done through email directly to the corresponding chair:
Carsten Trinitis, (Carsten.Trinitis@tum.de)

Important Dates:
Paper submission deadline (extended): January 31, 2020
Workshop and tutorial proposals: TBA
Notification of acceptance: February 21, 2020
Camera-ready papers: March 23, 2020

Organizing Committee:

General Chair
Stefan Lankes, RWTH Aachen University, Aachen, Germany
Wolfgang Karl, Karlsruher Institut für Technologie, Karlsruhe, Germany

Program Chairs
Sven Tomforde, Christian-Albrechts-Universität Kiel, Germany
André Brinkmann, Johannes Gutenberg University Mainz, Germany

Workshop and Tutorial Chair
Carsten Trinitis, TU Munich, Germany

Publicity Chair
Lena Oden, Fernuniversität Hagen, Germany

Publication Chair
Thilo Pionteck, Magdeburg University, Germany

Program Committee

Mladen Berekovic, Universität zu Lübeck, Germany
Jürgen Brehm, Leibniz University Hannover, Germany
André Brinkmann, Johannes Gutenberg University Mainz, Germany
Uwe Brinkschulte, University of Frankfurt/Main, Germany
João Cardoso, FEUP/University of Porto, Portugal
Thomas Carle, Institut de Recherche en Informatique de Toulouse, France
Ahmed El-Mahdy, Egypt-Japan University of Science and Technology (E-JUST)
Lukas Esterle, Arrhus University, Danmark

Dietmar Fey, University of Erlangen-Nuremberg, Germany
Giorgis Georgakoudis, Lawrence Livermore National Laboratory, USA
Roberto Giorgi, University of Siena, Italy
Daniel Gracia-Pérez, Thales Research & Technology, France
Jörg Hähner, Augsburg University, Germany
Heiko Hamann, Universität Lübeck, Germany
Andreas Herkersdorf, TU Munich, Germany

144

Christian Hochberger, TU Darmstadt, Germany
Gert Jervan, Tallinn University of Technology, Estland
Wolfgang Karl, Karlsruher Institut für Technologie, Karlsruhe, Germany
Jörg Keller, Fernuniversität Hagen, Germany
Dirk Koch, University of Manchester, UK
Hana Kubátová, FIT CTU, Prague, Czech Republic
Stefan Lankes, RWTH Aachen University, Germany
Erik Maehle, Universität zu Lübeck, Germany
Lena Oden, Fernuniversität Hagen, Germany
Alex Orailoglu, UC San Diego, USA
Thilo Pionteck, Magdeburg University, Germany
Mario Porrmann, Osnabrück University, Germany
Reza Salkhordeh, Johannes Gutenberg University Mainz, Germany
Toshinori Sato, Fukuoka University, Japan
Martin Schoeberl, University of Denmark, Denmark
Martin Schulz, TU Munich, Germany
Leonel Sousa, University of Lisbon, Portugal
Olaf Spinczyk, Osnabrück University, Germany
Benno Stabernack, Fraunhofer HHI, Germany
Walter Stechele, TU Munich, Germany
Anthony Stein, University of Augsburg, Germany
Jürgen Teich, University of Erlangen-Nuremberg, Germany
Djamshid Tavanagraian, University of Rostock, Germany
Jürgen Teich, University of Erlangen-Nuremberg, Germany
Sven Tomforde, Christian-Albrechts-Universität Kiel, Germany
Carsten Trinitis, TU Munich, Germany
Theo Ungerer, University of Augsburg, Germany
Hans Vandierendonck, Queen's University Belfast, Great Britain
Stephane Vialle, SUPELEC, France
Klaus Waldschmidt, University of Frankfurt, Germany
Dominik Wist, University of Potsdam, Germany
Stephan Wong, Delft University of Technology, The Netherlands

145

PARS-Beiträge

Studenten --,-- €
GI-Mitglieder 7,50 €
studentische Nichtmitglieder -,-- €
Nichtmitglieder 15,00 €

Leitungsgremium von GI/ITG-PARS

Dr. Steffen Christgau, ZIB, Berlin
Dr. Andreas Döring, IBM Zürich
Prof. Dr. Norbert Eicker, FZ Jülich
Prof. Dr. Thomas Fahringer, Univ. Innsbruck
Prof. Dr. Dietmar Fey, Univ. Erlangen
Prof. Dr. Vincent Heuveline, Univ. Heidelberg
Prof. Dr. Ben Juurlink, TU Berlin
Prof. Dr. Wolfgang Karl, Sprecher, KIT
Prof. Dr. Jörg Keller, stellv. Sprecher, FernUniversität in Hagen
Dr. Stefan Lankes, RWTH Aachen
Prof. Dr. Christian Lengauer, Univ. Passau
Prof. Dr.-Ing. Erik Maehle, Universität zu Lübeck
Prof. Dr. Ulrich Margull, TH Ingolstadt
Prof. Dr. Ernst W. Mayr, TU München
Prof. Dr. Jürgen Mottok, OTH Regensburg
Prof. Dr. Wolfgang E. Nagel, TU Dresden
Dr. Karl Dieter Reinartz, Ehrenvorsitzender, Univ. Erlangen-Nürnberg
Prof. Dr. Bettina Schnor, Univ. Potsdam
Prof. Dr. Martin Schulz, TU München
Prof. Dr. Peter Sobe, HTW Dresden
Dr. Carsten Trinitis, TU München
Prof. Dr. Theo Ungerer, Univ. Augsburg
Prof. Dr. Rolf Wanka, Univ. Erlangen-Nürnberg

Sprecher

Prof. Dr. Wolfgang Karl
Karlsruher Institut für Technologie
Institut für Technische Informatik (ITEC)
Haid-und-Neu-Straße 7
76131 Karlsruhe
Tel.: + 49 721 608-43771
Fax: + 49 721 608-43962
E-Mail: wolfgang.karl@kit.edu
URL: http://fg-pars.gi.de/

146

	01-2020_28ParsWS_Deckblatt_S2
	03-20181120-CfP-PARS2019-de
	CALL FOR PAPERS

	04-28ParsWS_Inhaltsverzeichnis
	05-PARS2019_paper_1
	Introduction
	Secure Hash Algorithms
	SHA-1 and SHA-2
	SHA-3

	Experimental Setup
	FPGA Design
	Engine Design
	SHA-1 Engine

	SHA-3 Engine
	Software implementation

	Experimental Results
	Software solution
	FPGA-based solution
	Performance
	Hardware Cost
	Energy Efficiency

	Comparison with state-of-the-art Hardware
	Password Cracking Time

	Conclusions
	Leere Seite

	06-PARS2019_paper_11
	Introduction
	Current Status
	Methodology of the Evaluation
	Main Findings

	Mathematical Background
	Soving Systems of Coupled ODEs
	Coupled ODEs used for testing

	Strategies for Asynchronous ODE Solvers
	Semi-Asynchronous Runge-Kutta Method
	Full Asynchronous Runge-Kutta Method

	Experiments
	Evaluation Metrics
	Analysis of (Semi-)Asynchronous Runge-Kutta Method
	Discussion

	Conclusion and Future Directions

	07-PARS2019_paper_2
	Introduction
	Related Work
	Problem Analysis
	GDDR5X
	Proposed Memory Scheduler

	Experimental Setup
	Experimental Results
	Conclusions and Future Work
	Leere Seite

	08-PARS2019_paper_10
	Motivation
	Fundamentals
	Method
	Evaluation
	Fault Injection
	Benchmarks
	Experiments
	Statistical Analysis

	Related Work
	Conclusion

	09-PARS2019_paper_8
	10-PARS2019_paper_5
	Einleitung
	Time Warping Distanzfunkionen
	Implementierung
	Basis-Implementierung
	Sub- und Supersequenzanfragen
	Implementierung für lange Zeitreihen

	Evaluierung
	Fazit

	11-PARS2019_paper_6
	Introduction
	Related Work
	Target Platforms
	Tool Flow
	AutoPerf: Application Profiling
	AutoStreams: Automatic Annotations
	LoopOptimizer: Loop Optimizations

	µStreams: Annotated Source-Code Transformation
	Refine Timing Constraints
	Contributions of this Work

	Evaluation
	Used Benchmarks
	Results

	Conclusion
	Leere Seite

	12-PARS2019_paper_7
	Introduction
	Related Work
	Xilinx Zynq Ultrascale+
	Benchmark Tool
	Evaluation
	Experimental setup
	Results

	Conclusions

	13-PARS2019_paper_3
	Introduction
	Background
	Scheduling Approaches for Parallelizable Tasks
	Sanders Speck Scheduling
	Converting a Sanders Speck Schedule
	Crown Scheduling

	Experiments
	Conclusions
	Leere Seite

	14-PARS2019_paper_4
	Introduction
	Related Work
	LAIK - Library for Automatic Data Migration
	Porting The Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) to LAIK
	Evaluation
	Conclusions and Future Work
	Leere Seite

	15-PARS2019_paper_9
	16-PARS-Bericht-2020
	17-cfp-pasa2020
	18-CFP-ARCS2020
	Program Committee

	19-2020-28ParsWS_Beiträge_letzteSeiteInnen
	Leere Seite

