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Abstract: The task of determining whether a sample stems from a real subject (i.e, it is a bona
fide presentation) or it comes from an artificial replica (i.e., it is an attack presentation) is a manda-
tory requirement for biometric capture devices, which has received a lot of attention in the recent
past. Nowadays, most face Presentation Attack Detection (PAD) approaches have reported a good
detection performance when they are evaluated on known Presentation Attack Instruments (PAIs)
and acquisition conditions, in contrast to more challenging scenarios where unknown attacks are
included in the evaluation. For those more realistic scenarios, the existing approaches are in many
cases unable to detect unknown PAI species. In this work, we introduce a new feature space based
on Fisher vectors, computed from compact Binarised Statistical Image Features (BSIF) histograms,
which allows finding semantic feature subsets from known samples in order to enhance the detection
of unknown attacks. This new representation, evaluated over three freely available facial databases,
shows promising results in the top state-of-the-art: a BPCER100 under 17% together with a AUC
over 98% can be achieved in the presence of unknown attacks.

Keywords: Presentation attack detection, probabilistic visual vocabulary, common feature space,
unknown attacks, face.

1 Introduction

The deployment of biometric systems has increased over the last decades. In spite of their
advantages, facial recognition systems are also vulnerable to Presentation Attacks (PAs):
with the broad development experienced by social networks, an attacker can easily down-
load a photo or video of a given person, thereby gaining access to several applications in
which face recognition systems are commonly deployed. Moreover, the recent advances
in creating synthetic videos, or deep fakes, also poses a serious threat [To20].

In order to address those concerns, several Software-based face Presentation Attack Detec-
tion (PAD) methods have been proposed. In general, many PAD approaches have reported
a high detection performance for identifying Presentation Attack Instruments (PAIs) when
both the attack type and acquisition conditions are known a priori (i.e., known attacks
scenario). In contrast, a rather limited number of works have addressed so far a more real-
istic and challenging scenario where the PAI species in the test set remain unknown in the
training set (i.e., unknown attacks). Back in 2013, de Freitas Pereira et al. [Fr13] already
reported poor generalisation capabilities to unknown attacks of state-of-the-art face PAD
methods based on local binary patterns (LBP) and support vector machines (SVMs). In
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particular, the error rates increased by at least 100%. Motivated by these findings, Arashloo
et al. [AKC17] experimented over several unknown attack scenarios and concluded that
anomaly detection approaches trained only on bona fide data can reach a detection per-
formance comparable to two-class classifiers. However, the results are reported only in
terms of the area under the Receiving Operating Characteristic curve (AUC), thus lacking
a proper quantitative analysis in line with the ISO/IEC 30107-3 standard on biometric PAD
[IS17].

More recently, Nikisins et al. [Ni18] showed how a one-class Gaussian Mixture Model
(GMM) can outperform two-class classifiers, depending on the PAI species included in
the test set. The experimental evaluation reported an error rate increase with respect to the
known scenario and two-class classifiers. Following the same anomaly detection paradigm,
Xiong and AbdAlmageed studied in [XA18] the detection performance of one-class SVMs
and autoencoders in combination with LBP descriptors for PAD purposes. In most of the
scenarios tested, the detection rates increased with respect to common two-class classi-
fiers. Finally, Liu et al. also analysed in [Li19] the performance of a Deep Tree Network
(DTN) for facial PAD, which clusters the PAI species into semantic sub-groups. Over a
new database comprising 13 PAI species, and following a leave-one-out testing protocol,
an average D-EER of 16% is achieved, which is still above the state-of-the-art for known
attacks.

To tackle those open issues with unknown attacks, we focus on a different approach which
has already shown remarkable results in cross-sensor and unknown attacks scenarios for
fingerprint PAD [Go19a]. Gonzalez-Soler et al. proposed in [Go19a] a combination of lo-
cal feature descriptors and global feature encoding to model a new feature space in which
the generalisation capabilities of the PAD module are enhanced. In fact, this approach
achieved the best detection accuracy in the LivDet 2019 competition [Or19]. Whereas
some keypoint based descriptors such as SIFT and SURF have shown to be an appropri-
ate choice for fingerprint samples [Go19a, Go19b], in which minutiae can be regarded as
landmarks within the image, we anticipate that for facial images the textural information
is more relevant than the geometric information related to facial landmarks. Therefore, we
propose a new face PAD approach, which encodes accurate and compact dense Binarized
Statistical Image Features (dense-BSIF), extracted from local patches of the facial image,
and projects them into a new feature space with Fisher vectors. By assuming that the un-
known attacks share more texture, shape and appearance features with known PAIs than
with those BP samples, this FV representation allows in turn a definition of semantic sub-
groups from known samples to tackle the aforementioned issues on PAD generalisation
to unknown attacks. In order to validate the detection capabilities of the proposal, a thor-
ough evaluation compliant with the ISO/IEC 30107-3 standard on biometric PAD [IS17] is
also carried out over three well-established databases: CASIA Face Anti-Spoofing [Zh12],
REPLAY-ATTACK [CAM12] and REPLAY-MOBILE [Co16].

The remainder of this paper is organised as follows. The proposed PAD method is pre-
sented in Sect. 2. Sect. 3 describes the experimental protocol and presents the results.
Finally, conclusions and future work directions are presented in Sect. 4.
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Fig. 1: Face PAD approach overview which comprises three steps: i) BSIF descriptors are densely
extracted; ii) the BSIF data distribution is subsequently learnt by training an unsupervised Gaussian
Mixture Model (GMM) from known samples; iii) an unknown sample at hand is then encoded by
computing the gradient among their BSIF components and parameters obtained by the GMM; and
iv) the final features are finally classified using a linear SVM.

2 Proposed Method

We build upon the fingerprint PAD approach presented in [Go19a]. Fig. 1 shows an overview
of the proposed PAD approach, which consists of four main steps: (1) dense-BSIF his-
tograms are extracted from a face sample, which has been detected by the Viola and Jones
method [VJ04]; (2) our new feature space is built by learning an unsupervised Gaussian
Mixture Model (GMM) model from the aforementioned features; (3) the final descriptors
are subsequently encoded by computing the differences of first- and second-order statis-
tics with respect to the learned model parameters; and (4) a bona fide presentation (BP) or
presentation attack (PA) decision is taken by a linear SVM.

2.1 Dense-BSIF Descriptors

Usually, PAIs include artefacts (e.g. acute edges in the cut eyes of the CASIA images [Zh12])
which can be successfully detected by the quantization of filtered features. BSIF [KR12]
is a local image descriptor computed by binarising the responses of a given image to a set
of pre-learned filters to obtain a statistically meaningful representation of the data. More
specifically, let X be an image patch of size l× l and W = {W1, . . . ,WN} a set of linear
filters of the same size as X . Then, we compute binarised responses bn:

bn =

{
1 ∑u,v Wn(u,v)X(u,v)> 0
0 otherwise

(1)
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Fig. 2: BSIF feature extraction. a) BSIF histograms are densely computed at fixed points on a regular
grid with a stride of S pixels, b) average number of zero and non-zero components of dense-BSIF his-
tograms for different numbers of filters N, and c) a reduction example where a local BSIF histogram
of size 2N = 512 is represented as a 128-component vector.

All the filter responses bn are subsequently stacked to form a bit string b with size N for
each pixel. Subsequently, b is transformed to a decimal value, and then a 2N histogram for
X is computed. In our work, 60 filter sets with different sizes l = {3,5,7,9,11,13,15,17}
and number of filters N = {5,6,7,8,9,10,11,12} were obtained from [KR12].

Now, given that artefacts can be detected at any point in the image, not only at relevant
facial landmarks, BSIF-histograms are densely extracted over a regular grid with a fixed
stride S of 3. Furthermore, in order to capture local and global information of the artefacts
produced in the fabrication of the PAIs, histograms are computed over four circular patches
with different radii r = {4,6,8,10}, as depicted in Fig. 2a). Therefore, each point in the
grid is represented by four dense-BSIF histograms.

In addition, we have observed that the histograms become sparse vectors as the number
of linear filters N increases. Therefore, we computed the number of zero and non-zero
components per number of filters over the CASIA Face Anti-Spoofing database [Zh12]
in Fig. 2b), and noted that the number of non-zero components remains under 223 in all
cases, having an average value of 128. We will thus represent each 2N BSIF histogram as
a 128-component vector by summing the elements for each sequential 2N/128 sub-set in
the original histogram (see an example in Fig 2c)). This representation reduces the storage
requirements down to 12.5% for N = 10 or 3.1% for N = 12.
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2.2 Fisher Vector Encoding

The Fisher vector (FV) feature encoding approach transforms local features into an new
feature space based on the parameters learnt by a generative model, known as visual vo-
cabulary [PSM10]. This representation describes how the distribution of these local de-
scriptors extracted from unknown PAIs differs from the known PAI distribution previously
learned. In particular, a Gaussian Mixture Model (GMM) with K-components, which is
represented by their mixture weights (πk), means (µk), and covariance matrices (σk), with
k = 1, . . . ,K, allows discovering semantic sub-groups from known PAIs and BP samples,
which could successfully enhance the detection of unknown attacks. In order to compute
those semantic groups, the compact dense-BSIF descriptors (see Sect. 2.1) are decorre-
lated using Principal Component Analysis (PCA) [Je12], hence reducing their size to
d = 64 components while retaining 98% of the variance. Then, the average first-order
and second-order differences between the given decorrelated features and each semantic
sub-group are computed, thereby obtaining a 2Kd dimensional vector. For the GMM com-
putation, we selected K = 1024, since it allows representing a more complex structure
from data while preserving low computational requirements. Therefore, each facial image
is finally represented by a vector with size 2Kd = 2 ·1024 ·64 = 131072.

3 Experimental Evaluation

3.1 Experimental Protocol

The experimental evaluation was conducted over three well-established databases for fa-
cial PAD, whose images were captured with different resolutions and several acquisi-
tion conditions: CASIA Face Anti-Spoofing [Zh12], REPLAY-ATTACK [CAM12], and
REPLAY-MOBILE [Co16].

The experimental protocol aims to address the following goals: i) analyse the impact of
different BSIF filter configurations in terms of number of filters and filter’s size on the
detection performance of our PAD approach, ii) study its detection performance for each
RGB colour component under known and unknown attacks, and iii) benchmark the detec-
tion performance of our proposed PAD approach against the top state-of-the-art. Keeping
these goals in mind, we defined two different scenarios:

• Known-attacks: which includes an analysis of all PAI species. In all cases, PAI
species for testing are included in the training set, as described in [Zh12].

• Unknown-attacks, in which the PAI species used for testing are not incorporated in
the training set. In particular, we consider using the leave-one-out testing protocol
explained in [AKC17], in which a PAI is only evaluated whilst the remaining PAI
species are employed for training.

Finally, the experimental evaluation is conducted in compliance with the international met-
rics of ISO/IEC 30107-3 [IS17]: i) Attack Presentation Classification Error Rate (APCER)
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Tab. 1: Benchmark in terms of D-EER(%) of our PAD approach per colour component and the whole
RGB colour space against the top state-of-the-art methods.

Method Warped Cut Video Overall

BSIF + SVM [RB14] - - - 10.21
MBSIF-TOP [AKC15] 1.40 10.10 4.30 7.20
Texture fusion [BKH18] - - - 4.60
ResNet-15 on 3D [Gu19] - - - 2.22
shallowCNN-LE [QDN19] - - - 4.00
SPMT + SSD [So19] 0.35 0.20 0.03 0.04
Hybrid residual DL [MH19] - - - 0.02

Proposed Method (R) 1.42 ± 1.04 2.20 ± 0.83 0.28 ± 0.56 2.92 ± 0.93
Proposed Method (G) 1.44 ± 1.11 2.22 ± 0.79 0.50 ± 0.72 2.52 ± 1.18
Proposed Method (B) 1.59 ± 1.01 2.78 ± 1.27 0.59 ± 0.77 2.53 ± 0.99
Proposed Method (RGB) 1.20 ± 0.77 1.74 ± 0.75 0.30 ± 0.54 1.79 ± 0.82

which is defined as the proportion of attack presentations wrongly classified as bona fide
presentations, and ii) Bona Fide Presentation Classification Error Rate (BPCER) which
is the proportion of bona fide presentations missclassified as attack presentations. We
therefore report: i) the Detection Error Trade-off (DET) curves between both APCER and
BPCER, ii) the BPCER values for several security thresholds (BPCER10, BPCER20 and
BPCER100), and iii) the Detection Equal Error Rate (D-EER), which are defined as the
error rate value at the operating point where APCER = BPCER.

3.2 Results and Discussion

3.2.1 Known Attacks

First, we need to find the optimal configuration of our proposed method in terms of the
filter size l, the number of BSIF filters N, and the best performing RGB component. To
that end, we compute error rates for each of sixty filter configuration and report in Table. 1
the mean and standard deviation (std) of the D-EER achieved by each particular RGB
component and their fusion (i.e., RGB) over the Attack test and Overall test protocol in
the CASIA Face Anti-Spoofing database [Zh12]. As it could be expected, the entire RGB
space reports on average the best detection performance, since it fuses the information of
the three channels. In addition, it reports for N = 11 filters of size l = 11 a minimum D-
EER of 0.0% for warped, 1.11% for cut photo attacks, 0.0% for video replay attacks, and
0.37% for the overall test, which achieve the top state-of-the-art.

On the other hand, it may also be observed that among the three individual RGB colour
components, the R channel appears to be the one which contains the most discriminative
features for the PAD task. Specifically, it achieves for N = 9 filters of size l = 6, a D-EER of
0.0% for warped photo attacks, 2.22% for cut photo attacks, 0.0% for video replay attacks,
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Tab. 2: D-EER(%) values under the Unknown-attacks protocol for RGB and benchmark, in terms
of AUC(%), for the best unknown attack setting (i.e., N = 10 filters of size l = 9), against the top
state-of-the-art approaches.

CASIA REPLAY-ATTACK REPLAY-MOBILE
Cut Warped Video Digital Printed Video Digital Printed Video

OC-SVMRGB+BSIF [AKC17] 60.7 95.9 70.7 88.1 73.7 84.3 - - -
NN+LBP [XA18] 88.4 79.9 94.2 95.2 78.9 99.8 - - -

DTL [Li19] 97.3 97.5 90.0 99.9 99.6 99.9 - - -

our proposal (AUC) 99.6 97.9 99.9 100 99.9 100 100 100 100
our proposal (D-EER) 4.11 ± 1.99 6.15 ± 2.42 1.37 ± 1.60 0.00 ± 0.00 1.35 ± 1.73 0.00 ± 0.00 0.00 ± 0.00 0.34 ± 0.63 0.02 ± 0.12

and 0.37% for the overall test, which are almost the same minimum D-EER reported by
the entire RGB colour space.

In order to validate the detection performance of our PAD approach under different RGB
configurations, we select the non-parametric Mann-Whitney test with a 95% of confidence
and verify the statistical significance of error rates reported by each RGB component. To
that end, we define as null and alternative hypothesis:

• H0: two colour components provide the same discriminative information for PAD.

• H1: two colour components do not provide the same discriminative information for
PAD.

Then, an all-against-all comparison per database is performed. As a result of this test, we
do confirm that error rates for the three RGB colour components stem from the same pop-
ulation, thereby showing the same discriminative information for facial PAD. In contrast,
results for the entire RGB colour space claim to be statistically better than each particular
component. Therefore, we do confirm that even if each individual RGB component is cor-
related with each other, the entire RGB colour space includes some additional information
which allows learning more discriminative features for facial PAD.

3.2.2 Unknown Attacks

As it was mentioned in Sect. 1, one of the goals of our work is to successfully identify
unknown PAIs. To that end, a set of experiments is carried out over the three selected
databases following the leave-one-out protocol described in [AKC17]: two PAI species
are included in the training set, and the last one in the test set. Table 2 reports the corre-
sponding D-EER values, a benchmark against the top state-of-the-art PAD approaches and
the complete DET curves are depicted in Fig. 3.

Taking a look at Table 2, we can observe how error rates for each particular unknown PAIs
with respect to the corresponding known attack are multiplied by a factor of 2.36% for cut
photo attacks, 4.57% for video replay attacks and 5.13% for warped photo attacks, respec-
tively, for the CASIA database. However, for a fixed filter configuration, it should be noted
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Fig. 3: Unknown-attacks DET curves and BPCER(%) values over the leave-one-out protocol for the
CASIA and REPLAY-ATTACK databases. The REPLAY-MOBILE database reports a BPCER =
0.0% for any APCER.

that our proposed approach outperforms, in terms of AUC, the top state-of-the-art for all
attack types. Since we lack a proper quantitative analysis of the top state-of-the-art meth-
ods in compliance with the ISO/IEC 30107-3 standard on biometric PAD [IS17], we can
only establish a benchmark in terms of AUC. For the REPLAY’s databases, a higher de-
tection performance outperforming the top-state-of-the-art techniques can be observed: an
AUC of almost 100% for the entire set of attacks confirms the soundness of our proposed
method to identify PAIs stemming from this challenging scenario.

In addition, Fig. 3 confirms the detection performance showed by our approach: a low
BPCER100 of 0.0%, 0.0%, 13.3% and 16.7% are achieved by video replay, digital, cut
photo and warped photo attacks, respectively for a high security threshold (i.e., APCER of
1%). This in turn yields, in this challenging scenario, a secure (only one in 100 attacks are
not detected) and convenient (zero to seventeen in 100 bona fide presentation attempts are
rejected) system.

Finally, a t-SNE visualisation in Fig. 4 of BP and PA samples are in the CASIA database
confirms the aforementioned hypotheses, which state that the PAIs share more texture,
shape and appearance features with known PAIs than with those BP samples. Whereas the
FV representations of attack presentations (blue, red and yellow) are separated of the bona
fide presentations (green spots), they are close to each other. However, we can also observe
that some PAIs, such as warped (yellow) and cut photo attacks (blue), still overlap with
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Fig. 4: t-SNE visualisation for BP vs. PA samples in the CASIA Face Anti-spoofing database.

BP samples, thereby indicating that the data distribution learned by a GMM model using
the BSIF features needs to be improved in order to get a better detection performance.

4 Conclusions

In this work, a new face PAD approach to generalise to unknown attacks was proposed.
In essence, it projects compact dense-BSIF descriptors into a new feature space, which al-
lows discovering semantic feature sub-groups from known samples in order to improve the
PAD generalisation capability. In addition, a new strategy for computing compact dense-
BSIF histograms was presented, which can be applied to any other texture recognition
application. In more details, a reduction down to 95% in the feature vector length can
be achieved with no significant impact on the recognition accuracy but strongly reducing
the time required for PAD analysis. The experimental evaluation over three freely avail-
able databases confirmed the soundness of our proposal for detecting both known and
unknown PAIs. Specifically, experimental results indicated the statistical advantage of the
entire RGB colour space with respect to each of its particular components, thereby result-
ing in a minimum D-EER of 0.37% for known attack detection. Finally, BPCER100 in
a range of 0.0% to 17% for unknown attack detection, which outperform the top state-
of-the-art, showed that our PAD approach is able to yield a secure and convenient system
under that challenging scenario. As future work, we plan to evaluate our proposal on larger
databases for other colour spaces, which have shown to be superior in terms of detection
performance. In addition, a more thorough analysis on larger databases including a higher
number of different PAI species will be carried out.
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