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Programming IoT applications across paradigms based on
WebAssembly

Karl Fessel! André Dietrich! Sebastian Zug!

Abstract: The key to IoT applications’ success is the opportunity to exploit data generated by one
node for various applications. Solutions for this are either centralized server systems, which aggregate
the data and answer corresponding requests from different clients, or the concepts of edge computing,
in which individual nodes take over the provision and processing of data directly. Although the
advantages of immediate processing are obvious, edge computing concepts have so far been limited
to more powerful nodes. Embedded in the DoRIoT project, we transfer the idea to low performance
devices. This includes challenging questions related to security, scheduling and coordination issues.
Additionally, we have to support the programming process itself. In order to achieve sufficient
acceptance in the programming community we have to ensure that “freely programmable” is not
bounded by hardware oriented programming paradigms and languages. Furthermore, the developer
should be able to implement IoT-requests based on standard building blocks in a programming
language of his choice.

In this paper we introduce the architecture and a tool-chain to cope with these challenges based on
a WebAssembly-interpreter (WAMR) embedded in the DoRIoT software stack. The prototypical
integration provides the applicability of WASM compiler tool-chain, originally focused on web-
applications, and supports the orchestration of multiple requests in parallel.
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1 Motivation

The Internet of Things (IoT) [AIM10], Ubiquitous-Computing [We93], Industry 4.0
[HPO15], or Cyber-Physical Systems [Sh11], etc. is a collection of terms, which more or less
share the same fundamental idea: in which an assembly of temporal and regional fluctuating
heterogeneous systems share their information and capabilities to achieve a certain goal.
Capabilities in this case means either sensing, acting, or computational resources.

Although the idea is pretty straight forward, it comes with a variety of yet unsolved problems,
such as security and privacy issues, connectivity, the integration of hardware, diverging
standards, performance, etc. Especially for low performance embedded nodes these open
questions limit flexibility. Due to performance and security issues small sensor/actuator
nodes show a closed structure that offers little scope for individual adjustments. In contrast
to more powerful edge computing nodes, their behavior cannot be updated or adjusted
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according to specific use-cases. Based on a fixed firmware, nodes transmit their measurements
unfiltered with a predefined sample rate. The generic configuration intends to balance
required communication bandwidth and update frequency to cover the requirements of all
applications. But of course, individual messages generated according to tailored requests
promise a higher utilization of the node and better system performance[Sh16].

The DoRIoT project? intends to overcome this separation between different node performance
classes, related to their capability to execute user-specific requests. The project focuses
on methods and tools for building self-organized systems, ranging from small sensor
nodes (classes CO, C1, and C2 according to RFC7228 terminology) to server solutions.
Users specify data aggregation and processing methods, the distributed intelligence assigns
the requests to a specific node or a set of nodes according to communication bandwidth,
accessible interfaces, timing constraints, etc. Consequently, each request has to be executable
on different node architectures and operating systems. Virtual Machines (VM) or interpreters
are commonly used to ensure hardware independence of applications. We evaluated their
concepts and implementations, related to the chosen node classes, as well as multi-threading
and multi-user capabilities, required performance capacities, supported languages, security
issues, etc. In parallel, we investigate programming abstractions offered by the provided
programming languages and paradigms.

A promising new approach in the field of interpreters are projects that try to transfer
WebAssembly concepts to small IoT nodes. WASM is a binary instruction format for a stack-
based virtual machine. It was designed as a portable compilation target for programming
languages focused on client and server applications. WASM code runs natively in browsers; it
is usually run by a combination of a interpreter and different optimizing levels of just-in-time
(JIT) and ahead-of-time (AOT) compilation. WASM-bytecode can be generated by a huge
number of compilers (from different source languages like C(++), Rust, Go, and many more)
most of these compilers are build on top of LLVM-toolchain?3. In the context of Web and
C(++) code, the Emscripten SDK and tool-chain is often used to adapt preexisting C(++)
code to the browser, by providing a libc-like API.

Based on the selection process described in Sec. 2 we integrated the WebAssembly Micro
Runtime# interpreter into our project architecture, which is also supported by the Bytecode
Alliance’. We identify three basic types of programs/tasks/usage-patterns (request, process,
and function) that are typical for sensor networks and by providing generall WASM interfaces
we will make these available to many languages.

2 Dynamic runtime environment for organic (dis-)aggregating IoT-processes
DoRIoT project website http://www.doriot.net/

3 originally “Low Level Virtual Machine”, project website https://11vm.org/

4 https://github.com/bytecodealliance/wasm-micro-runtime

5 https://bytecodealliance.org/
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2 State of the Art

2.1 Programming Languages and Paradigms

According to the IoT Developer Survey held in 2019 by Eclipse Foundation (cf. [Ecl20]),
the highest ranked IoT programming languages on constrained devices in 2019 were C, C++,
Java, and surprisingly JavaScript. The available programming languages and paradigms
are determined by the underlying Operating System (OS) running on the node. For low
performance systems with tailored embedded OS (FreeRTOS, Contiki, RIOT OS¢[Bal8])
C is still the dominating language. As an alternative, TinyOS7 offers a component-based,
event-driven task model implemented in nesC8, a specific C dialect[Ka07; OB09].

In contrast to previous examples, TinyDB offers a more declarative approach. It is a
distributed query processing system for extracting information from a network of (smart)
TinyOS sensors ( [Ma05]). As the name suggests, it interprets a network of sensors similar to
a database and, therefore, also applies a SQL-like syntax to collect data from a heterogeneous
network of sensors. It borrows the semantics of SELECT, FROM, WHERE, and GROUP BY clauses
from SQL, but it also offers further features, which have been especially developed to
minimize the power consumption in sensor networks, such as life-time queries, dealing with
events, or the creation of Semantic Routing Trees (SRT) for power-efficient information and
query propagation.

SelectScript [DZK14] was developed while struggling with the dominant imperative
programming paradigm in order ease the development effort for embedded systems and their
access. It supports Python’s data-types and operations, Lua’s object-orientation based on
prototypes and dictionaries, LISP’s higher-order functions, lazy evaluation and tail-recursion.
This was combined with a three valued logic (to simplify error handling) and SQL-like
query capabilities, that can also be applied to solve reasoning problems. The key idea thereby
was, not to be forced to switch between a program and an interface, so that one syntax or
notion can be applied for programming but in the same way also be used for querying, no
matter how complex or divergent a query might be. It exists an implementation of an VM?®
that had also been tested on 8-Bit microcontrollers.

Although there are approaches to use multi-paradigm languages, it seems to be more
sufficient to support different languages on one device, based on the problem and the
developer experience. There are other concepts such as miniKanren (see [By09]), for
example. miniKanren is yet another relational programming language, but what makes it
important in the context of IoT is, that it allows applying temporal logic [Rul8] and since
it can run in “both” directions, it can be used either as a theorem-checker or -prover. For
example, given the task to a sensor of measuring for ever or as long as possible under certain

6 RIOT OS project website: https://riot-os.org/

7 TinyOS project website: http://www.tinyos.net

8 Network embedded systems C project website: http: //nescc.sourceforge.net

9 SandhillSkipperVM project website: https://github.com/andre-dietrich/SandhillSkipper
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timing constraints, the sensor could figure out the optimal schedule based on local energy
consumption, or at least give the answer why this goal cannot be fulfilled. This information
can be either used to pass this task to another sensor, which meets the defined requirements
or to re-plan the global task.

These examples show that tasks might need different tools and a flexible tool-chain for
developing IoT-applications. This separates the selection of programming languages from
the applied OS, and thus, liberates the user to chose the best solution for a given problem.

2.2 Virtual machines and Interpreters

Virtual Machines (VM) implement this request, but are mostly focused on one language.
Java VMs support a large bandwidth of devices including embedded devices implementing a
write-once-run-everywhere property based on a generic bytecode. Nevertheless, embedded
Java code and run-times differ from desktop VMs. The general concept enables code
mobility and thus to move code dynamically to different devices. This was utilized for
example by JINI (cf. [Wa99]) and the OSGi framework (cf. [LNHO03]), which are both
so-called “service delivery platforms” that are used to tackle modularization, collaboration
and service discovery in distributed systems. In contrast to fixed services traditionally
realized in IoT-nodes, JINI and OSGi allow services to be dynamically installed, started,
stopped, updated and even uninstalled. Additionally, services and clients can join or leave a
federation anytime. Whereby JINI can also load functionality into a process (locally) even
while the process is running.

Next to these not so commonly known examples there are of course also ports of other
(mostly imperative) languages to realm of embedded systems, such as Python MicroPython'©,
PyMite [PNS09], or Zerynth!!. Unfortunately Zerynth is not mentioned in the Eclipse IoT
survey, but next to an embedded Python VM it also offers an OS2 abstraction and combines
with ChibiOS or FreeRTOS, which allows to running Python and C programs in parallel.

There are a number of Projects that support running JavaScript on embedded devices like
Espruino® (supporting microcontrollers at C2 level) and Tessel#,which requires significant
more resources than C2 in RFC7228-Scale's. Alternative solutions use NodeJS on systems
starting from RaspberryPi level. They run JavaScript code either by just in time compilation
or interpretation, which means the code has to be transported over the network and be either
jit-compiled or interpreted on the target, this code can be preprocessed for compactness
and/or execution speed making JavaScript a pseudo assembly and VM.

10 MicroPython project website: https://micropython.org/
11 Zerynt project website: https://www.zerynth. com/
12 ZeryntOS project website: https://www.zerynth. com/zos
13 Espruino project website: http://www.espruino.com
14 Tessel project website: https://tessel.io/
Tessel 1 project website: http://web.archive.org/web/20150213073259/https://tessel.io/
15 Tessel 1: ARM-M3 (180MHz, 32MB RAM); Tessel 2: MIPS (580MHz, 64MB RAM)
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2.3 WASM implementations for embedded systems

If a VM is too restricive and taylored for one programming language only, the application
programmer is not able to choose the most suitable solution for the job anymore. Another
approach is to select a general VM to which multiple languages compile, such as the
VM-Model for WASM. It exists a huge number of open-source WASM interpreters'® some
of them are applicable to and/or target small embedded systems. Small systems need the
VM to run as an interpreter for bytecode without any JIT compilation. We tested a Rust
based approach (wasmi'?), which at the moment does not integrate well with RIOT and its
tool chain, in contrast to C that is well supported by RIOT that targets embedded systems
and has a good and active developer community. We applied the WebAssembly Micro
Runtime8(WAMR), which is based on a modular approach that makes it very adaptable,
furthermore it already supports multiple embedded operating systems. Other interpreters
that may fit such systems are WAC', which has been ported to ESP32, or WASM320 that
relies on tail-call optimization, which might be problematic with some compilers. The
WASM3 documentation states that is able to run on system starting at ~64Kb for code
and ~10Kb RAM. WAMR claims to use 85Kb for the Interpreter and use a low amount of
memory, it also provides a greater set of Post-M VP Features than WASM3.

3 Application concept

3.1 Building blocks of the aggregation

The range of potential user codes reaches from aperiodic single shoot accesses on current
measurements over periodic data aggregations in combination with smoothing algorithms
up to complex event driven aggregation functions, providing domain-specific data formats.
For realizing and monitoring the execution of dynamically assigned user byte-codes we have
to structure them in predefined building blocks, implemented on a set of abstract interfaces.
Hence, we need to identify common patterns in user code and provide related interface
implementations in the WASM tool-chain. System functions like wait (), readSensorData(),
or display() close the gap between the OS and WASM interpreter.

Based on the requirement analysis of the DoRIoT-Project we identified the three query
types representing abstract building blocks of actual user codes, they are described in a
pseudo-code semantic:

Request ... part of a program that run once and in most cases answers one question or
triggers one action. All resources (RAM, program memory) are free again after a single run.

16 https://github.com/appcypher/awesome-wasm-runtimes

17 https://github.com/paritytech/wasmi

18 https://github.com/bytecodealliance/wasm-micro-runtime
9 https://github.com/kanaka/wac

20 https://github.com/wasm3/wasm3
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1 request(){ send me the temperature at sensor 3 };

Process ... part of a program that will stay running and process data that is needed for the
app to provide its service or part of this.

1 process(){ wait(10 seconds);
2 query data and save to database };

Function ... part of a program that can provides a specific functionality that can be called
from nodes within the network. A function extends the interface of the node for all queries,
according to permissions.

1 fuction_avgtemp() {return average of saved temperature-data};

These conceptional elements are independent from each other and may be combined in an
app as they provide orthogonal functionality. Access to these building blocks and to the
SystemAPI will be managed by access control and capability management.

3.2 Implementing multi-paradigm aggregation requests

How can basic components support real world applications, coping with a variable number of
different aggregation and processing chains? Let’s consider a system of IoT-nodes equipped
with different sensors (temperature, humidity). Different users transmit queries for data
aggregation and processing.

The first example implements an isolated process, continuously calling the system functions
wait(), getTemperature() and display(). These functions are implemented in separate
headers and linked during compile time. We assume that individual IoT-nodes provide a
specific collection of these functions. Continuous updates of a temperature-display that
directly mounted to the node is realized by an imperative programming paradigm.

process(){

wait(10 seconds);

var x = getTemperature();
display(x);

};

[ T

Lst. 1: Process configuration for a single sensor data aggregation and output

If we extend the scenario with an additional node that controls a ventilation system, the
aggregation process may consider external sensory data too. Hence, an abstract query O
replaces the system function call from the previous example. The query() criteria is
evaluated at run-time and references local system functions or/and remote aggregation
methods. If external sensor data is relevant, the interpreter spreads out corresponding
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request () queries to surrounding nodes. This way, the second example implements a spatial
criteria (room) and amplitude (>22C) for filtering in Lst. 2, line 3. In order to realize such
potentially complex filters, the query concept has to integrate declarative programming
concepts.

process(){
wait(l minute);
if query(num of all room temperatures where temp > 22C)> 0:
switchhighQ;
else:
switchlow();

R T I S

Lst. 2: Ventilation system: instead of requesting it to switch its airflow, a process is installed
that automates this task

By adding humidity sensors to the system, its performance can be further improved. The
calculation of absolute humidity requires relative humidity information and air temperature,
which should be located in-between.

1 process(){ //virtual sensor, calculating absolute humidity

2 wait(10 seconds);

3 var sat_humidity = calcSatHumidityatNormalPressure( query(temperature where room is same as
this ) );

4 var rel_humidity = getHumidity(Q;

5 store abs_humidty = rel_humidity/sat_humidity;

6 };

7

8 function_absHumidity(){ //precalculated value

9 coap_return(abs_humidty) ;

10 }

11

12 process(){ //ventilation controller

13 wait(l minute);

14 if query(num of all temperatures where temp > 22C) > O:

15 switchhigh(Q;

16 else if query(num of all temperatures where temp < 16C) > 0:

17 switchlow();

18 else if coap_request(outdoor, absHumidity) < coap_request(indoor, absHumidity):

19 switchhighQ;

20 else

21 switchlow();

22 };

Lst. 3: Extending the temperature controlled ventilation system by a humidity sensor

The sensors act either as a function or as a process node, to keeping this information up to
date. A single shot calculation would be a request, thus it would require to transport the
code every time. This information and the air quality tracked at the outside and the inside
over time, to discover trends in combination with a weather service, may be a good measure
to decide when to open and close ventilation. A system like this may not need a full climate
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control and thus save energy. The required calculation may reside on a node that has access
to all of this data and may publish control information for the ventilation system. Such a
compilation needs memory and access to the weather service and therefore may reside on an
edge node. It spawns multiple processes and functions which send requests to other nodes.

The three pseudo code examples illustrate the vision of the project, an intuitive combination
of context-sensitive building blocks with complex logical statements. The user code accesses
actual hardware functions through system-API-functions for timing, memory access,
periphery access, and communication. This functionality gets combined and distributed via
self-defined functions.

4 Integration and Implementation

DoRIoT integrates the multi-user approach on three layers into the general system architecture
on top of RIOT OS. Actual user queries are realized by so-called DoRIoT-Apps, combining
the mentioned building blocks. WAMR implementation of a WASM interpreter connects
the app level and the OS, supervised by the Runtime Access Control layer. An integrated
supervisor creates and manages modules as well as VM instances and generates monitoring
information. The general access to OS interfaces is controlled by an internal a Run-time
Access Control Unit, control information will be provided by LCap-Lightweight Capability
Based Access Control [BG17].

The transfer of WASM code is managed by CoAP. The CoAP message may contain further
attributes that enable the evaluation of LCap’s access rules and performance restrictions of

an app.

Based on WASM integration and cor-
responding tools the system already
support the inclusion of multiple pro-
gramming languages. The availability
of WASM as a target within the LLVM-
tool-chain further help the adaption
of its massive number of Ilvm-front-
ends that implement the translation of
source-code and therefor programming
languages within the LLVM toolchain.
Other languages or combinations of mul-
tiple may be compiled in a multi-step

Doriot-
Coap-
Network

WASMModule

Fig. 1: DoRIOT compile chain

process. Fig. 1 illustrates this compile-chain.

We emphasized the need of a multi-paradigm concept while developing code for IoT-systems
and intend to realize the combination of imperative and declarative program parts following
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the LINQ (Language Integrated Query) concept. While LINQ? itself is a specific group
of implementations within .Net, its approach was ported to many other languages. The
example shows how the pseudo-code query might be adapted to a LINQ programming style,
that is already parseable for (pre)compilers with numerous adaptations of this concept.

1 request(){

2 TermperaturSensors.update();

3 coap.return( Query( from(s, TermperatureSensors).where( s.temp > 22).orderby(s.temp)));
4

}

Lst. 4: Query and filter temperature sensors based on Lst. 2 (similar but extended)

5 Outlook & Summary

We believe that there is a strong desire in porting different programming paradigms to IoT
applications, even to the smallest devices, since it liberates the development process. Some
standard tasks can and shall be realized in C while others can concentrate onto functional or
logical programming, or execute snippets in order to enable complex queries, and thus shift
some of the "global" task’s execution logic down to the end devices.

The basis, of course, is a working API that allows to access an all-of-systems-service for all
tasks (written in different languages). The application of a VM furthermore enables some
form of service control, that is not common in this particular case. On the one hand, it is
possible to restrict the memory consumption, which is vital. On the second hand, the usage
of an API and the VM’s possibility to enforce restrictions, it is also possible to define more
fine granular access and execution control for different tasks.
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