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Multiple Sequence Alignment using Deep Reinforcement
Learning

Roman Joeres!

Abstract: Multiple sequence alignment (MSA) is one of the primal problems in biology and
bioinformatics. The question of how to align multiple sequences correctly is crucial for many other
fields of research, e.g., gaining information about the evolutionary distance of two or more sequences
and therefore about their corresponding species, finding protein targets for drugs, or finding a drug for
a certain target protein.

Reinforcement learning (RL), and especially deep reinforcement learning (DRL), has become popular
in recent years. To name just a few, DRL has shown major success in complex games such as Atari
Games, Chess, and Go.

We model the problem of aligning multiple sequences as a Markov decision process (MDP) and
examine the performance of different (D)RL algorithms compared to state-of-the-art tools.

Keywords: Bioinformatics; Multiple Sequence Alignment; Reinforcement Learning; Deep Reinfor-
cement Learning

1 Introduction

MSA is one of the most important open fields in bioinformatics because it has applications
in nearly every other field of bioinformatics research. Some of the most intuitive examples
are phylogenetic trees that are used to describe the evolutionary distance between species.
This can be measured relative to the number of similar or dissimilar patterns between
sequences of the compared species [FD87]. Other applications are drug design and drug
development where similar regions of sequences are matched and information on secondary
structures and functionalities are inferred [Ko06; Li10].

Because this problem is NP-complete, the optimal alignment cannot be computed directly
[WJ94]. Most classical approaches use a biological fine-tuned scoring function to score
alignments computed using dynamic programming or fast Fourier transformation to
reproduce the real evolutionary changes between sequences [Ed04; Ka02; THG94]. Aside
from these, some new ideas use techniques from machine learning to find good or optimal
alignments. RL provides techniques to solve multiplayer games or problems of sequential
decision-making by learning and interacting in an MDP. The key idea in such settings is
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to have an agent learning by trial-and-error in the MDP [SB18]. RL has been successfully
applied to the traveling salesman problem [Ag19], solving the Rubik’s Cube [KVW18], or
optimizing a car manufacturing process [GGW20]. With methods from RL, DeepMind’s
AlphaFold won the CASP13 competition [M095], a comparison of different protein folding
prediction programs that tries to find the correct fold of a protein structure [Se20].

In this paper, we give a comprehensive analysis of the performance of different RL algorithms
in MSAs and offer a variety of interesting and promising ideas for future improvements. We
use an MDP proposed by Mircea et al. [MBD14] who already received interesting results.
At first, we will test multiple algorithms and optimization settings on DNA data from Mircea
et al. Second, we test fewer algorithms on protein data from the BAIiBASE dataset [TPP99].

2 Related Work

There are already approaches that apply RL to the problem of aligning multiple sequences.
In 2014, Mircea et al. introduced RL to the field of MSAs [MBD14]. They focused on a
tabular approach and proposed a first MDP to tackle the problem. Their work had promising
results on some test data, and in a second paper with a slightly modified scoring function,
the results were improved a bit [MBC16]. Jafari et al. introduced DQNs and an actor-critic
algorithm in their work and could further improve the results of Mircea et al. in [JJIR19]. But
both papers suffer from the problem of a small selection of data to test their performance.
In addition, both did not publish their code to reproduce the results and test it on larger
benchmarks like BAliBASE [TPP99].

Other researchers also investigated the possibility to use RL techniques for MSAs using
other models to represent sequence alignments. Edelkamp et al. [ET15] used a modified
version of Monte Carlo tree search (MCTS) and achieved good results on some alignments
from BAIiBASE. Ramakrishnan applied DRL to the model of the Phylo game [Kal2]. But
this model is too detailed to be applied to real-world problems with dozens of sequences
and hundreds of molecules.

3 Multiple Sequence Alignment

The goal in MSA is to find mutations between sequences that model the evolutionary process
the best. To test how well algorithms model this evolutionary process, benchmark datasets
collect "true", hand-crafted solutions of alignments of multiple sequences. Before defining
the different scorings in this field, we first define sequences and alignments formally.

Definition 3.1 (Sequence) A sequence seq is a string over an alphabet ¥ representing
molecules M. For protein sequences, this alphabet contains 20 letters for the 20 amino
acids (the molecules). For DNA sequences holds Zpna = {A, C, G, T}, representing the
four nucleic bases.
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Definition 3.2 (Alignment) We denote an aligned sequence as seq’, a string over ¥/ =
YU{-}. The gaps, —, represent mutations such as insertions and deletions between sequences.
Let SE be the set of all sequences of one alignment problem instance and SE’ be the set of
all seq’. Then the alignment A C SE’ contains possible aligned sequences and must fulfill
three properties: (i) ¥V seq1, seqy € A : |seqi| = |seqa|, (ii) VY seq’ € A : seq’ \ {-} = seq,
and (iii) Ai < |A| : V seq’ € A : seq) = —

To align two or more sequences and to interpret the results of an alignment process, we
have to score the resulting alignments to evaluate the quality of an alignment. Therefore,
different scores have been developed and each of them has advantages and disadvantages as
we discuss in the following.

Optimization Scores The sum-of-pairs-score (SP-score) is the most used score to align
sequences. Used in a dynamic programming approach, one can compute the optimal
alignment of k sequence of length at most  in O (n*) [NW70]. The SP-score for alignments
SP : SE’ — R is defined using the function sp : M X M — R to score two molecules.

0 ifc{:c’fz—
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measures the quality of aligned pairs of bases by assigning weights to types of pairs.
We follow the definition of Mircea et al. [MBD14]. This kind of score is also used in
state-of-the-art tools, namely CLUSTAL [THGY94], MAFFT [Ka02], and MUSCLE [Ed04],
which we later compare ourselfes to. Besides the SP-score, we use a relative score, called
column score (C-score). This score C : SE” — [0, 1] is defined as

C(A) = # perfectly aligned columns in A

# columns in A

Evaluation Scores Databases like the BAIIBASE offer hand-crafted and hand-optimized
solutions for alignment problems and from the supervised learning point of view, those
solutions are the label for the problem instance. For the evaluation of an algorithm, one can
compare the output of the algorithm with the labeled alignment R € SE’ using the Q-score
Q :SE' X SE’ — [0,1] and TC-score TC : SE’ x SE’ — [0, 1] [Ed04].

#correctly aligned pairs in A

A,R) = . —
o ) #aligned pairs in R

#correctly aligned columns in A

TC(A,R) = -
( ) #columns in R
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3.1 Markov Decision Process

An MDP is defined as a tuple (S, A, T, R, Sp). The state-space S consists of all states
and the action-space A represents all actions. The transition function 7 : S X A — S
describes to which states on can get. The reward function R : S X A X S — R maps states
and actions to rewards. Sy is the initial state of the problem.

For us, S defines the possible orders of the sequences, including incomplete orders when
not all sequences are aligned. These sequences are subsets of SE’. The applicable actions A
remain in every state the same, i.e., every sequence can be aligned to the current alignment.
The transition function 7 is, therefore, deterministic and maps a state and an action to the
state representing the resulting order of sequences when aligning sequences (performing the
actions) from the start state. Using this definition, a state can also be defined as the order
of sequences (sequence of actions) that lead to a state. The rewards R are defined using a
scoring function score : S — R used for optimization.

0 ifn=1
R(s,a;,s") = -0 ifa; €s

score(s’) otherwise

where a; € s means that the i-th action was already performed earlier, i.e., the sequence i
has already been aligned in s. The initial state Sy is the empty order, i.e., when no sequence
is aligned. This model is visualized in Figure 1A.

4 Reinforcement Learning

RL is, besides supervised and unsupervised learning, the third big paradigm in machine
learning. In contrast to supervised learning, RL does not depend on the existence of datasets.
This learning technique is a trial-and-error approach that learns from the returns received
from the environment, as depicted in Figure 1B. For each action the agent performs in the
environment, it observes a reward that is used in reward functions to determine the quality
of the selected action. The overall goal is to find a good policy, i.e., rules on how to behave
in a state of the environment.

As in the papers of Mircea et al. [MBC16] and Jafari et al. [JJR19] we implement tabular
agents (using the SARSA algorithm) as well as deep g-networks (DQN5s) and apply both with
three different reward structures, namely MC return, TD return, and A-return. Jafari et al.
used also an actor-critic approach with LSTM-cells. We will use the advantage actor-critic
(A2C) consisting of an actor using policy gradients and a critic approximating the state-value
function. To see the performance of policy gradients alone, we added the REINFORCE
algorithm with and without a baseline to the portfolio of algorithms that are tested on MSAs.

We also implement an algorithm called "Upper confidence bounds applied to trees" (UCT)
which is an improvement of normal MCTS. This algorithm also performs random rollouts
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Environment (MDP)

State and
Reward

Action

A - . . - B
Fig. 1: A: Schematic overview of the model we use to describe multiple sequence alignments. B:
Schematic view of a Markov decision process with the interactions between a learning agent and the
environment.

in the state space to find a good action but improves its search using a tree policy to select a
node in the known state space. The tree policy is given by

Inn
max vy + 4|— (1
a ng

where v, is the average reward of action a, n is the total number of rollouts in the whole
tree, and n, the number of rollouts through this action. This formula is used to decide which
child node to explore next by maximizing the score of the actions. If the child has not been
explored yet, it expands the search tree in this node and performs a random rollout in one of
the children [Co06].

5 Evaluation and Results

In the first step, we focus on the data that were already used by Mircea et al. [MBC16].
In Figure 2A, we can see exemplary results of the agents on the OxBench 429 data. This
alignment contains 12 DNA sequences of length around 170 bases. For this task, our agents
optimized the SP score and could outperform the classical reference tools as well as the
results from Mircea et al. and Jafari et al.

One problem of SP-score optimization is the drop in performance in the alignments of the
UCT-agent. The second part of the tree-policy (Equation 1) is most likely around 1, while
the first part only depends on the reward (SP-score) of the alignments. Because the SP-score
is unbounded, the first part dominates the formula. Here it can happen that the tree-policy
always selects the same child because the SP-score of the first random rollout in the other
children was too low. To solve this problem, we scaled the SP-score into the interval from 0
to 1. This is done using the center-star algorithm, which is proven to be a 2-approximation
[Gu93]. The result is then used to estimate the upper bound, the lower bound is estimated as
the highest score of 10 randomly arranged alignments. Using this trick, we could improve
the SP-scores of UCT-alignments to a competitive level (see Table 1).
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Fig. 2: Both plots show results from the OxBench 429 dataset. On the left, a comparison of the
SP-scores and the C-scores of the 10 different agents and the reference algorithms. On the right, the
number of explored states in the MDP is shown. The upper bound is given by the number of epochs
(6000). The reference algorithms are not shown, because the numbers cannot be measured.

UCT-Mode | Hep.-C | P. Anubis | Ox469 | Ox429 | LGM | RLO | Ds. 1
Normal 18627 18848 639 11553 342 488 167
Adjusted 18627 18875 672 12006 348 488 167

| Improvement | 0.0% [ 0.1% [ 52% [ 4.0% | 1.8% [ 0.0% | 0.0% |

Tab. 1: Improvement of adjusted UCT search with scaled rewards over normal UCT search with no
scaling of the rewards.

CLUSTAL | MAFFT | MUSCLE | SARSA | DQN | REINF. | A2C | UCT

0Ox433 268 290 24 353 353 353 353 353
Ox641t2 659 723 442 1053 1053 1053 1053 | 1053
Ox34 355 377 -206 1215 1223 1223 1223 | 1208

Tab. 2: First protein analysis with data from the OxBench dataset.

In Figure 2B, we can see the number of unique explored states during the training. In
contrast to tools like CLUSTAL, MAFFT, and MUSCLE, the presented agents perform
many more alignments. From this, it follows that also the runtimes are much longer than for
the classical tools. While CLUSTAL needs 0.06 seconds to find an alignment in OxBench
429, the SARSA agents need 20 minutes, and the policy agents up to 7 hours.

To extend this limited amount of data and to get an insight on how the tools might perform
on protein sequence alignments, we choose three protein alignments from the OxBench
dataset. OxBench focuses mainly on alignments between sequence families [Ra03]. The
alignments consist of 3 and 6 sequences with lower sequence similarity but similar length
compared to the DNA sequences. For those additional alignments, the results can be seen in
table 2.
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Fig. 3: Comparison of the performances of the algorithms with respect to different scoring functions.
The values are averaged over the used alignments from the reference set 1.1 (left) and reference set
1.2 (right) of the BAIiBASE dataset [TPP99].

In the second part of the analysis, we use alignments from the BAIiBASE dataset [TPP99].
BAIiBASE is made of reference subsets that contain sequences with similar properties.
For each alignment in BAIiBASE, there is a labeled alignment of the sequences. For our
analysis, we use from the first reference set the alignments with fewer than or exactly ten
sequences and an average length of the sequences of at most 500. These bounds are chosen
because with longer sequences or more sequences the execution of RL algorithms takes too
long. Those sequences can be split into two groups, namely the reference sets 1.1 and 1.2
containing alignments with lower and higher sequence similarities, respectively.

The comparison in this field is a bit different from the one before. Instead of analyzing an
exemplary single sequence file, we average over the results within a reference subset. As the
computation of these alignments takes much longer than aligning the few sequences above,
we focus on DQN using the A-return, the REINFORCE algorithm, the A2C algorithm, and
the UCT agent. All of those agents will only optimize for the SP-score, except the DQN, it
also optimizes for the C-score. We choose those agents because of their performance on the
DNA data.

In Figure 3 the comparison of the average scores is denoted. Here, we additionally see the
Q-scores and TC-scores of the alignments. The classical tools outperform the RL agents in
terms of the Q-score and the TC-score due to the more fine-tuned scoring. On the other
hand, the RL algorithms receive better SP-scores as they explicitly optimize for them. Again,
this metric is evaluated using our simpler definition. We can also see that the RL tools
narrow the gap to the state-of-the-art tools when the sequences to align are more similar as
this is the case in the reference set 1.2 (Figure 3B).
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6 Discussion

In Figure 2A, there is no big difference within the RL agents we implemented, because all
of them work very similarly and the alignments are not complex. There are only a few DNA
sequences, those are very similar and vary not much in length. The difference between our
agents and the other RL agents is caused by the optimization score of the alignments. The
agents of Mircea et al. and Jafari et al. optimized the C-score, not the SP-score, but the
C-score is not a good measure for optimization. It automatically shrinks towards zero when
there are more sequences or more different molecules in the type of sequence. The blue lines
in Figure 2 show the optimization of the C-score and emphasize this problem. There are no
big differences in the C-scores between the different agents and the scores are very low.

The results from the classical tools are optimized for their own SP-score, which is highly
different from the simple one we use as described in section 3. In CLUSTALW, among
others, this is done by sequence weighting based on the (dis-)similarity of a sequence to other
sequences. The higher the dissimilarity or divergence of a sequence compared to others,
the higher the sequence weight. These weights are used as multiplication factors for the
sequences. There are several other improvements to this plain SP-scoring function presented
above [THGY94]. For the comparison, we computed our SP-scores of the alignments;
therefore, those results are not very expressive. To get a more powerful result, one has to
evaluate the alignments also using the SP-score function of the tools or know the labeled
alignments as we do for the protein data.

When it comes to runtime, we see that the RL agents take much more time than the
state-of-the-art tools caused by the increased number of alignments they have to compute.
The reason for those additional alignments is rooted in the idea of RL and its trial-and-error
character. To learn, an agent has to train for many episodes in its environment. Transferred
to multiple sequence alignment, the agent has to perform many alignments to find out which
are good ones and which are not that good.

The first results on the OxBench protein alignments are promising. Nevertheless, they are
not very expressive, because the properties of the alignments are very similar to the ones
from the dataset of Mircea et al. The pairwise sequence similarity is higher than in the
BAIBASE dataset, the number of sequences is low, and the evaluation is done without
labeled alignments. So, it is not very surprising that the RL tools perform better than the
state-of-the-art tools. Furthermore, we can see that the adjusted UCT-algorithm still has
some shortcomings. We see the scaling improves the performance (Table 1), but this does
not always work (Table 2), as the estimates of the bounds might not be accurate enough.

The low performance has several reasons. If we inspect the alignments and in which order
the sequences are aligned, we can get some additional insights in the alignment quality
and how they were computed. The fine-tuned SP-score makes some implicit assumptions,
such as one should align similar sequences first. From those assumptions, the alignments
get a structure, i.e., the order of how the sequences are aligned. They produce complex
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alignment-trees with the sequences in its leaves and the alignments of the corresponding
leaves in the inner nodes. These structures are similar within the classical tools but cannot
be found in the simpler, path-like alignments from the reinforcement agents. This might
cause lower performance when it comes to the Q-score and TC-score.

An additional problem that is related to the way we defined the SP-score is the fragmentation
of the sequences, i.e., there are many small gaps and many single nucleotides aligned in
a longer segment of another sequence. This problem comes from the way we handle the
gaps. In our definition, every gap gets the same penalty. Alternatively, extending an already
existing gap is much more biologically meaningful and should therefore be punished less
than opening a new gap as in convex gap costs [MBD14].

7 Conclusion

In this work, we applied multiple algorithms from the field of RL to the biological problem
of multiple sequence alignments. We performed an extensive comparison with three state-
of-the-art tools, namely CLUSTAL, MUSCLE, and MAFFT, and with other RL algorithms
that were applied to multiple sequence alignments.

We tested ten different algorithms on several DNA sequence alignment problems and
compared the results to other tools. We could easily reproduce results from other approaches
that also used RL. Second, we applied the methods to alignments of protein sequences from
the BAIiBASE dataset.

We saw that RL performs well on sequences that have almost the same length. Unfortunately,
for the DNA instances we used, no labeled solutions are available. So, we cannot compute
Q-scores and TC-scores to see how well RL performs in terms of biological correctness.
For sequences from the BAIIBASE whose lengths are more different, the alignment quality
sinks as multiple small gaps are interrupting the sequences in the final alignments. On most
of the alignments, all state-of-the-art tools outperformed our agents.

But the major drawback of RL in multiple sequence alignments is the time that is needed
to compute the alignments. Classical approaches solve the BAIIBASE alignments within
seconds or milliseconds; whereas the computations of our agents last for hours on the
same sequence data. The reason for this is primarily based on the number of alignments
a reinforcement agent computes, which is much higher than the number of alignments
a classical alignment algorithm performs. For example, CLUSTAL performs mostly one
progressive alignment that is then improved by a few iterative refinement steps, no matter
how many sequences there are to align.

Although the results are not good, RL can help improve MSAs. Progressive alignments can
be modeled as MDPs and RL can help distinguish good from bad alignment decisions. These
new approaches should then be evaluated on expressive benchmarks such as BAIIBASE
with labeled alignments.
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8 Future Work

To receive better Q-scores and TC-scores, one can use other variants of the SP-score for
optimization. We use a SP-score with linear gap costs that lead to many single and small
gaps in the alignment and multiple spread nucleotide islands. To prevent this, affine gap
costs or the SP-Score implementations from state-of-the-art tools can be used.

One way to reduce the runtime and to increase the flexibility is to let the network generalize
between alignments using additional data from the sequences and to modify the approach
such that align-trees can be output. An idea could be to combine graphs and RL to directly
compute align-trees. Therefore, each sequence is represented as a node in a fully connected
graph. Then a graph neural network (GNN) can be used to choose an edge to contract by
aligning the two nodes of the contracted edge. The resulting alignment structure can be
more complex because alignment-trees can be produced. RL would be used to learn the
optimal strategy that contracts edges.
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Appendix

Tool Setting

CLUSTAL | Version 1.2.4 from December 16th, 2016 (Clustal Omega)
Version 7.271 from July 3rd, 2020

MUSCLE (fast and progressive FFT-NS-2 option [Ka02] p.4)

MAFFT Version 3.8.31

Tab. 3: All of the tools are executed in default mode, so no search-influencing parameters were set.

General

Network Input x 256 x 128x x 64 x output
Activations | Mix of ReLU and Softmax

epochs 50*# seqs

SARSA and DQN Policy Gradients

a 0.1 a 0.01

y 0.9 b% 0.99

A 0.1 Baseline/critic | state-value network
e-start 1 UCT

e-end 0 simulations 50*# seqs
€ time 10% rollouts 1
TD-steps TD) || C 1

Tab. 4: Hyperparameters used in the training of the agents.

Everything was executes on an Ubuntu Server, Version 18.04.4 LTS (Bionic Beaver) with 8
kernels and 4 GHz clocking.

The code for this paper and the underlying thesis is available on GitHub
(https://github.com/Old-Shatterhand/MSADRL).
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