J. Michael, J. Pfeiffer, A. Wortmann (Hrsg.): Software Engineering 2022 Workshops,
68 Digital Library, Gesellschaft fiir Informatik 2022

A Translation Semantics for Driving Simulation Languages

J6rn Schneider, Marvin Schneider!

Abstract: The development of advanced driver assistance systems and automated driving functions
requires the usage of driving simulation as integral part of the software engineering process. Moreover,
safety standards such as SOTIF (ISO 21448) and legal regulations give driving simulation a key role
for the safety validation of automated driving functions by OEMs and Tier-1s as well as independent
or governmental institutions. Even as new standards for driving simulation languages come into use,
this gives rise to the need for translation tools between different driving simulator languages. Two
major challenges in this context for translation tools are hitherto not well addressed: 1. Adaptability
to new languages or versions thereof. 2. Correctness of translation. We elaborate on some of the
central challenges in this regard, present a prototype of a retargetable translator for driving simulation
languages, and a suiting translation semantics, as first cornerstones of a future approach to validate or
verify translations.

Keywords: Driving Simulation; Formal Semantics; Automated Driving; SOTIF

1 Introduction

Driving simulation has become an integral part of automotive software engineering for
driver assistance systems (DA) and automated driving functions (ADF) in the recent years.
This is no surprise, as it enables the frontloading of activities such as testing and validation
in the development process, supports a more agile style of software development, and allows
for reproducible and safe virtual driving. Moreover, driving simulation can be utilized to
train artificial intelligence algorithms, evaluate the user acceptance and behavior of drivers
and passengers, as well as validate the behavior of DA and ADF systems.

The typical development process of automotive software involves different contributors
and stakeholders from Tier-N-Suppliers to OEMs, and as agile as it may be, still takes a
considerable amount of time. Consequently, it is not guaranteed that all involved driving
simulations are either using identical language formats or are completely independent, i. e.
having nothing in common regarding the considered road networks. Furthermore, the life
cycle of a vehicle and thereby the relevance of related driving simulation results is much
longer than the initial development phase, leading to (further) legacy issues. Moreover,
driving simulations are considered as key to the validation of the safety of DA and ADF
systems and their (future) type approval. This necessitates the involvement of independent
(e. g. governmental) institutions, that need to replicate driving simulation results. Although

1 {j.schneider, marv.schneider} @hochschule-trier.de, Trier University of Applied Sciences, Department of
Computer Science, Schneidershof, Trier, Germany

@GD Copyright © 2021 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/

A Translation Semantics for Driving Simulation Languages 69

it is certainly not sufficient to have a correct translation between different driving simulation
languages (or language versions), to achieve reproducibility and comparability of different
simulations, it can hardly be assumed that a correct translation is irrelevant or not necessary.

While there are many aspects of driving simulation with more or less relevance for different
fields within and beyond automotive software engineering, the simulated road network is
clearly among the most fundamental things that need to be described in one way or another.
Consequently, that is the focus of this work. Since many vendors of driving simulation
software used to develop their own proprietary description format, compatibility became an
issue. The rising importance of driving simulations in automotive software engineering
has led to efforts to harmonize this by a new family of ASAM e.V. standards. Regarding
road networks OpenDRIVE is part of this family. This standard still evolves and the current
released version is ASAM OpenDRIVE 1.7.0, the subsequent version 1.8.0 is projected to
be released in November 2022, and work on version 2.0 is already in progress [As21]. Since
it is unlikely that this will be the last change to the standard and because other description
formats are still in use, tools that translate between different description language formats
are required now and in future.

Two major requirements for translation tools in this context will be adaptability to new
source and target languages or versions thereof, and provable correctness of translation.

The remainder of the paper starts with a brief description of languages considered in the
context of our retargetable driving simulation language translator. Section 3 discusses
the question how correctness of translation can be achieved and to this end considers the
semantics of driving simulation languages in relation to the notion of formal semantics of
programming languages. This is also the place where we discuss related work and possible
solutions to these aspects. Thereafter the architecture and implementation of our translator
is presented. In Section 5 its translation semantics is described. The last Section summarizes
the presented results.

2 Driving Simulation Languages and Formats

We consider examples of languages with different levels of abstraction and different origin
as well as application area. In all cases it is possible to describe the basic stationary aspects
of streets, e. g. road geometries, lane markings, and traffic signs. The formats differ in the
way they represent data and regarding additional aspects supported.

ASAM Open Dynamic Road Information for Vehicle Environment (ASAM OpenDRIVE)
is an open standard (developed from a formerly proprietary language) for describing road
and rail networks [As21]. It is XML based and supports complex connections between
multiple roads and lanes. Traffic signs, traffic lights and specific road markings can also be
defined.

70 Jorn Schneider, Marvin Schneider

SILAB is an example of a simulation software with a proprietary language for describing
the simulation scenarios, and has its origin in the area of human-factors research [Wii]. It
covers static description of roads, objects and environments, and notably supports dynamic
road connections, i. e. the simulated road network can be changed during runtime, e. g. to
allow the sequence of road segments to be picked by an algorithm or an operator. Moreover,
events, which influence the state of the simulation, can be defined. Triggering of events is
for instance possible via so-called hedgehogs (triggering points within lanes). Additionally,
objects can be placed in the scenario with coordinates and a 3D-Model. An environment
next to the street can also be defined with a surface texture and mathematical descriptions
of terrain and tree distribution. More complex roads can be described via a software tool,
which creates so-called Area2 language elements, that can be connected with other roads.
The language is also used to integrate additional software to add further functionality to the
simulation.

RoadXML is an open XML file format which describes the data in multiple layers for fast
access for real time applications. In the four main layers it characterizes topology, logic,
physical properties and visual representation [10].

OKSTRA® is a German standard for road design, documentation and traffic data acquisi-
tion [21]. It defines an XML file format and is used to design, construct and document road
networks. OKSTRA® differs significantly from the above mentioned languages, as it was
not developed to be used in simulation context.

3 Translation Correctness: Challenges and Solution Idea

3.1 Formal Semantics of Programming Languages

The problem to ensure that the translation from one driving simulation language to another
is correct, has similarities with challenges in the domain of compiler design, where the
translation of one high-level programming language to several low-level languages (e. g.
assembler) should be true to the original, or when translating one high-level language into
another. The existence of at least one commercially available optimizing compiler that is
formally verified [Le16] demonstrates that this is a viable approach in practice.

In compiler design a formal semantics of a programming language exists (at least in the ideal
case) that exactly describes how the state of a system shall be altered by each individual
language construct. Leaving open for the moment what kind of formal mathematical model
could serve this purpose for driving simulation, we can seek inspiration by looking at the
case of translating from one programming language to another.

Given two languages L and L, and two interpreters /; and I, and the goal of a semantics
preserving translator 7. Let E be the input alphabet and A the output alphabet for the

A Translation Semantics for Driving Simulation Languages 71

programs, and X the space of possible states of the interpreters. The interpreters and the
translator can be considered as functions

I :LIXE"XX —>YxA"

L:LhyXxXE"'XYX —>3YxA"
T:L1—>L2

Let’s assume we have a formal semantics for L; and L,, e. g. as denotational semantics,
which could be defined as set of partial functions specifying the semantics of each language
construct. For example, if Com is the syntactic set of commands of a language, the semantic
function

C:Com— (Z—1X)

provides for each valid command a function that describes the effects of the command on
the state of the system. For a given language construct to assign a value to a variable the
matching partial definition of C could be

Clx :=a] = {(o,0[x/n])|o € £ An=A[a]},

where A : AExp — (£ — N) is the semantic function for arithmetic expressions.? For
our Translator 7' we could identify matching partial functions of the semantics of the input
and the output languages for each construct of the input language.3 Given these pairs, we
would have a starting ground to prove the correctness of the translation by showing that the
corresponding partial functions indeed deliver the same results.

However, to follow that approach would require to establish a formal semantics for each
language, be it input or output, we consider for our retargetable translator.

3.2 (Formal) Semantics of Driving Simulator Languages

Considering the task to translate from one driving simulator language to another, one would
like to have a formal semantics for each of the involved languages, for example a semantics
such as the one sketched above, which maps language constructs to changes of the system
state.

In compiler design an abstract machine is typically used to describe the effect of a certain
language construct. For these abstract machines there usually is a more or less straight-
forward way to come up with a mapping to real processor architectures. Moreover, they
can constitute a bridge between the programming language paradigm (e. g. of a functional
programming language) and the strictly imperative execution style of real hardware.

2 Note, that the brackets [|| are traditional in denotational semantics.
3 In practice this is typically not quite as easy as it might seem. Especially not, if the two languages belong to
different families, e. g. an imperative and a functional programming language.

72 Jorn Schneider, Marvin Schneider

Given an abstract machine, a formal semantics can be formulated in a generic way that
is agnostic of the ‘dirty’ details of the real hardware and the specific flavors of different
processor architectures. The relevant properties of the state space of an abstract machine in
the programming language domain are for instance the values of its stores (e. g. registers,
stack, heap). An interesting question is: What would be the relevant properties of the state
space of an abstract driving simulator machine?

Let’s consider the description of a road as example. What aspects of the state space of an
abstract driving simulator machine would be altered by the road, or expressed otherwise,
what is the semantics of the language construct(s) describing the road? Its shape? Its
elevation? Its roughness? Even considering the complete geometry of the road as its
semantics, ignores many (potentially) important aspects, e. g. the color of the road markings,
or the reflection behavior for electromagnetic waves emitted from a radar system.

A more comprehensive approach would be to consider the (vector-based or discrete)
geometry of all elements of the road plus their ‘exact’ relevant physical properties. The
problem here is not only the amount of data, or the question how ‘exact’ is ‘exact’ enough,
and what properties are relevant (this could begin with the geometry of the road network,
and continue up to the physical properties regarding reflection of light, or radar signals
of simulated elements and beyond). Of course, one could think of a ‘flat’” and simply
adjustable model, where everything is just a number, be it the three-dimensional position and
orientation, or an arbitrary physical property. A core problem is that this kind of semantics
prevents almost any abstraction. To know how a certain part of the geometry reflects
electromagnetic waves of a given spectrum can be very important, but the information
whether it is a stop sign or a lane marking should not be dropped in favor of ‘exactness’.

From the viewpoint of provability of correct translation, one would like to have a common,
detailed mathematical model, e. g. the above sketched three-dimensional space with a list of
exact properties for each point in that space. However, what is it worth to have this, unless
driving simulator software A and driving simulator software B react identical and provide
the same properties (e. g. color in case a video camera is used as sensor of the DA or ADF
system) at its interfaces? From the perspective of developing or discussing a certain driving
simulation scenario, one would like to have a semantics following the abstract concepts,
such as road sign, lane marking, and so on.

3.3 Related Work

In fact, both lines of thought (abstract concepts and detailed properties) are considered in
literature and practice, though to the best of our knowledge no existing work resulted in a
universal formal semantics that could be used for the translation between driving simulation
languages.

A Translation Semantics for Driving Simulation Languages 73

Ulbrich et al. define a scene in the context of automated driving as a snapshot of the
environment and the self-representations of all actors and observers and the relationship
between those [Ul15]. While this is too informal to immediately help regarding a formal
semantics, the snapshot concept would suit to the idea of a state space that is changed at
discrete events or times. And of course, if we realize a driving simulator based on discrete
event simulation, each subsequent simulator state would contain a scene representation.*

Menzel et al. discuss a hierarchy of scenario representations, distinguishing functional,
logical, and concrete scenarios, with the former ones being the most abstract [MBM18]. In
their work abstraction is seen as a way to characterize multiple scenarios? in one description,
for instance by considering ranges of parameters. They also formulate the requirement that
a scenario must be reproducible.

Menzel et al. describe a format conversion from a parametrized representation of scenarios
to OpenDRIVE, where the relevant parameters of the higher language have been derived
from OpenDRIVE [Me19]. They report that a strict evaluation regarding the correctness of
their translation was not possible. Instead, they manually inspected (examined) the generated
files for potential errors and executed the generated scenarios in a driving simulation
environment to visually check whether 3-D graphics were completely displayed and whether
lanes had been correctly connected.

Schwab et al. describe an approach to map OpenDRIVE to the 3D city model standard
CityGML [SBK20]. They mention that their chosen mapping between language elements is
ad-hoc and should not be considered as final. A formal presentation of the translation is not
given, nor a formal semantics of the used languages.

To the best of our knowledge, there is up to now no published related work on the formal
correctness of the translation of driving simulation languages regarding the road network or
other static aspects. While there are published results regarding formalizing and proving
correctness regarding dynamic aspects of driving simulation, this is outside the scope of
this work.

3.4 Solution Idea

What could help is a kind of universal semantics that orients itself on the abstract meanings
of the elements of a road network and allows for arbitrary detailed additional properties.
And in fact (and by no means surprising), the syntax of existing driving simulator languages
also (at least somewhat) follows this path, by using syntactic elements that are connected to

4 It might be worth noting that there is no immediate correlation between a language construct (e. g. describing the
shape of a road) and an immediately visible state change. When considering static aspects of the simulated world,
the related language constructs are similar to declarations and definitions in a programming language, as they
have no immediate effect on the output, but are important when evaluated later on.

5 If not stated otherwise we use the terms scene and scenario as defined in [Ul15]. Where a scenario is a certain
sequence of concrete static scenes.

74 Jorn Schneider, Marvin Schneider

typical terms humans use to characterize road networks. However, what in one description
format might be a semantic concept, is not necessarily found in another (let alone the
syntactic differences, which are not of primary concern here). Unfortunately to the best of
our knowledge, there is no readily usable formal semantics of driving simulator languages
(although OpenDRIVE has some good concepts, that could be building blocks to be used
for that purpose).

Instead of striving for a ‘universal’ and unifying formal semantics we propose a universal
mathematical model that allows for the description of a translation semantics, i. e. the state
space of the semantics comprises the language constructs. This has two major advantages.
First, we can somewhat ignore the mismatches between semantic concepts of different
description formats, which would jeopardize an elegant and consistent way to form a
unifying semantics. Second, we can ignore the unsolved problem of coming up with a
unified abstract machine of driving simulators. Conceptually we can achieve the most that
can currently be expected, regarding provability of correctness of translation. This is similar
to the problem of verifying correct translation from one high-level programming language
to another such as C, without a strictly defined formal semantics of one or both languages.®
An established approach here is translation validation [PSS98], that follows the concept of
proving for each individual translation that the target code correctly implements the source
program, and does that by showing that each refinement step from source language to target
language has been performed as specified. Our translation semantics approach allows to
realize a similar concept.

4 Architecture and Implementation

Our approach uses two main components for the translations between formats. The front-end
parses the source file format to construct the intermediate representation, which then is
translated via the back-end to the target file format. This well-known concept from the
domain of compiler design offers the flexibility to easily adapt to additional or changed
source or target languages. For example, adding a new source file format only requires to
implement that specific format as front-end. All other components remain unaffected.

Figure 1 shows a diagram of the basic program structure. The source file formats, are
shown on the left. Next to it is the command line interface, with which the user can
interact. The compilation starts with the lexical and syntactical analyses on the given format.
Thereafter the intermediate representation is generated on which a semantic analysis can be
applied and subsequent optimizations are possible. The last step is to generate the target file
format, which again is format specific. The file formats surrounded with dashed lines and
optimizations are not implemented yet.

6 For instance as reported in [Lel6] the semantics of the C programming language standard permits different
evaluation orders of expressions.

A Translation Semantics for Driving Simulation Languages 75

Input Du_lpul
Source File Format Target File Format

DrivingSimulationFormatCompiler

ASAM OpenDRIVE ASAM OpenDRIVE

Intermediate
Representation

Lexical Analysis* | ———— Syntactical Analysis* |———

SILAB SILAB

RoadxML Command Line Interface RoadxML

OKSTRA / OKSTRA
Semantic Analysis |——— Transformation/ L o o pils Generatort
Optimization

Additional Files Additional Files

* format specific

Fig. 1: Basic program structure

ASAM OpenDRIVE and SILAB are both partially implemented in the front- and back-end,
which means that it is possible to translate from one to another. To add a file format to the
front-end, there are three steps required. First to prepare the translation, second to read the
given files and third to construct the intermediate representation with the acquired data. For
ASAM OpenDRIVE the ad-xolib? XMLParser is utilized within the front-end. In case of
SILAB we reengineered the grammar of the supported constructs and developed our own
parser. Flex and Bison were used for the scanner and the parser, respectively.

The front-end’s result is the intermediate representation (IR), which is an in-memory data
structure. This approach is very flexible and can be extended if some required information is
missing. Transformations or optimizations can be performed on the IR before it is converted
to the target file format in the back-end. The main parts of the IR are Street, StreetType,
Environment, Module and Map. Street stores the information specific to one road. StreetType
can be used by one or many Streets and contains data about the lanes. The Environment
describes the surrounding area next to the road. A Module stores the road network and a
Map can be used to connect Modules. These components were chosen to cover different
approaches of the individual formats.

In the context of file formats, transformations or optimizations could be a reduction of
elements in the formats to reduce file size and complexity. Another possible optimization
could be a restructuring of individual elements such that the target files could be parsed
more efficiently in the simulation context. The optimization part is not implemented yet.

The final step is the target file generation, where the IR is translated into target language
constructs. This is done by iterating over the different components of the IR and piecewise
generation of target format elements.

7 Source: https://github.com/javedulu/ad-xolib

76 Jorn Schneider, Marvin Schneider

5 Translation Semantics

As motivated above, we introduce a semantics of the translation between driving simulation
languages. This encompasses the translation from source to intermediate language and from
intermediate to target language. The central piece is the state space of the IR, which is
defined as follows.

Let A be a set of attributes, where each attribute comprises a set of key-value pairs (&, v),
with k constituting a property and v an associated value. Let further be T a set of predefined
tokens (i. e. the language keywords of the main components of the IR described in Section 4),
and S a set of names. Then £ = P (S X T X A) constitutes the state space of the IR. Whenever
the translator reads a new statement (e. g. a language construct describing an element of a
road), its translation state is updated to reflect the effect of the statement.

5.1 Translating Source Format to Intermediate Representation

As it is beyond the scope and available space of this paper to provide a detailed semantics
of the languages supported by out translator, we present the following very simple language
VSL with no further utility, except for illustrating the concept of the translation semantics.
The syntactic set for VSL road constructs is Con:

c:=i(n,a)|i(n)]i(a)] co;c
i ::=road | lane
a:=vl|v,a

Where n are names (strings) to identify the individual constructs, and v are key-value pairs
as we also use them in the IR (see above), which can provide details such as geometric
properties. An example of an element of a specification in VSL for a single-lane street with
element named MainRoad with a length of 1000 meters, and a width of 3 meters would
look like this.

road (MainRoad, (length, 1000), (width, 3), (lanes, 1))

Consider the translation semantics function O for VSL with O : Con — (X — X).

A new token is added or an existing token with the same name is modified, if the input is an
identifier with name and attribute:

{(o,0") | 0’ = o[(name,t;,ala/v])]} if (name,t;,a) € o

{(g,0") |o"=0U {(name,ti,ag [@/ve])} otherwise

Oli(name,vy)] = {

Where o [(name, t,a[a/v4])] is short for o[(name, t,a)/(name,t,ala/v.])].

A Translation Semantics for Driving Simulation Languages 77

Note, that #; is the token of the intermediate language that matches the identifier i of the
source language (in this example we assume a static 1:1 mapping). The default attribute a?
is needed to provide for (yet) missing values, e. g. when the input is a street with a name
but incomplete data (either because of implicit rules of the source language or because of
postponed definitions). For instance a given road identifier could come without a value for
the length of the road, and the matching value for the IR could be set to zero in this case.

Applying O[] to our example MainRoad from above would yield streer as token in the IR
and more or less identical key-value pairs as given in the input example.

If there is more than one attribute in the input, the suitable functions are applied in orders:

Oli(name,vy,, ..., va,)]| = Oli(name,va,, ..., va,)] o Oli(name,vy,)]

If the input is a named identifier i without attribute (e. g. a new road element in the input
description without details yet) the matching token is added with name and default attributes
a):

Oli(name)] = Oli(name, v, s s Va,)1
Where vy,), s Va, |, are the default values from ap).
If the input is unnamed with an attribute, the matching token is added with a new name and
the given attribute:

Oli(va)] = Oli(name’,vo)]

Where name’ is a new name.

5.2 Translating Intermediate Representation to Target Format

We briefly present the principle approach to describe the translation semantics function
from our IR to SILAB and to ASAM OpenDRIVE, respectively.

5.2.1 SILAB

Let B be the set of all SILAB track components and P the set of all attributes of these
components. The state space can be described with ® = P (SxBxP). To define the translation
semantics function from the IR to SILAB, a helper function sil : SXT XA — SXBXP
is used, so that sil provides the specific SILAB syntax for each tuple in a concrete state
o of the IR to be processed. The translation semantics function Oyg;; is similar to O in
Subsection 5.1, with Oy : X — (0 — ©).°

8 As composition function we use (g o f) (x) = g(f(x))

9 We do not include the serialization of the target language constructs to an output file, as we consider this as
separate subsequent step. However, this can be accounted for either as another semantics function or by adopting
Oy accordingly.

78 Jorn Schneider, Marvin Schneider

For any o € X with o = {(s1,#1,a1), ..., (Sn> n> an)} An > 1 we can define Oy;; as:

Ositll (52,12, a2)5 .y (Sns tns @)]| © Ost[[(51, t1,a1)] if [o] > 1
Osil (s.t.a)] = {(0,6) | 6 =6 U {sil(s,t,a)}} otherwise

Osill[a—]] = {

5.2.2 ASAM OpenDRIVE

Let E be the set of all ASAM OpenDRIVE XML-Elements and Q the set of all XML-
Attributes. The state space can be described with I' = P(§ X E x Q). Similar to the case
for SILAB we use a helper function od : S XT x A — T, that provides the specific
XML-Elements of OpenDRIVE for a given tuple from the IR state. O,y : £ — (I' > T') is
the translation semantics function for OpenDRIVE as target language.

For any o € X with o = {(s1,t1,a1), ..., (Sn, tn, an)} An > 1 we can define O, as:

Ooall (52,12, a2), ey (Spstnsan)] © Opall (s1,t1,a1)] if |o| > 1

Ooallo] = {Ood[[(s,t,a)]] ={(y,¥) | ¥ =y U{od(s,t,a)}} otherwise

6 Conclusion and Further Work

We stated that the field of driving simulation languages is of rising importance for software
engineering in the automotive domain. Not only because driving simulation is an important
tool for the software development itself, but also because future type approvals of automated
driving functions without simulation results seem to be impossible, as a formal verification
of all involved software, especially of artificial neuronal networks is (yet) out of reach.
Nevertheless, there are things that can be verified, and should be formally proven as far as
possible for the sake of safety and our profession. This holds for instance for tool chains
used to develop safety-related functionality.

As a small contribution to this interesting field, we presented a semantics based retargetable
driving simulation language translator, together with some thoughts about the relation
between formal semantics of programming languages and driving simulation semantics.
Additionally, we described the underlying translation semantics, which we developed to
form an initial stepping stone to prove the correctness of translations from one driving
simulation language to another.

Future work will be to develop a tool that allows to prove the correctness of the translations
per instance in a manner similar to the approach taken in the area of programming languages
following the concepts of [PSS98] and more recent work in that field.

A Translation Semantics for Driving Simulation Languages 79

References

[10]

[21]

[As21]

[Lel6]

[MBM18]

[Me19]

[PSS98]

[SBK20]

[U115]

[Wii]

RoadXML Website, July 2010, URL: https://www.road-xml.org/index.php,
visited on: 11/30/2021.

Objektkatalog fiir das StraBen- und Verkehrswesen Website, Nov. 2021, URL:
https://www.okstra.de/.

Association for Standardization of Automation and Measuring Systems:
ASAM OpenDRIVE V1.7.0 User Guide, version 1.7.0, Aug. 2021, URL:
https://www.asam.net/index.php?eID=dumpFile&t=£f&£f=4422&token=
e590561f3c39aa2260e5442e29e93£6693d1cccd.

Leroy, X.; Blazy, S.; Késtner, D.; Schommer, B.; Pister, M.; Ferdinand, C.:
CompCert - A Formally Verified Optimizing Compiler. In: ERTS 2016:
Embedded Real Time Software and Systems. Jan. 2016.

Menzel, T.; Bagschik, G.; Maurer, M.: Scenarios for Development, Test
and Validation of Automated Vehicles. In: 2018 IEEE Intelligent Vehicles
Symposium (IV). IEEE, June 2018.

Menzel, T.; Bagschik, G.; Isensee, L.; Schomburg, A.; Maurer, M.: From Func-
tional to Logical Scenarios: Detailing a Keyword-Based Scenario Description
for Execution in a Simulation Environment. In: 2019 IEEE Intelligent Vehicles
Symposium (IV). Pp. 2383-2390, June 2019.

Pnueli, A.; Siegel, M.; Singerman, E.: Translation Validation. In: Tools and
Algorithms for the Construction and Analysis of Systems. Springer Berlin
Heidelberg, pp. 151-166, Mar. 1998, 1sBN: 978-3-540-64356-2.

Schwab, B.; Beil, C.; Kolbe, T. H.: Spatio-Semantic Road Space Modeling for
Vehicle-Pedestrian Simulation to Test Automated Driving Systems. Sustain-
ability 12/9, 2020, 1ssn: 2071-1050, urL: https://www.mdpi . com/2071-
1050/12/9/3799.

Ulbrich, S.; Menzel, T.; Reschka, A.; Schuldt, F.; Maurer, M.: Defining and
Substantiating the Terms Scene, Situation, and Scenario for Automated Driving.
In: 2015 IEEE 18th International Conference on Intelligent Transportation
Systems. IEEE, Sept. 2015.

Wiirzburger Institut fiir Verkehrswissenschaften: SILAB Documentations,
version SILAB 5, Wiirzburger Institut fiir Verkehrswissenschaften GmbH.

https://www.road-xml.org/index.php
https://www.okstra.de/
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.mdpi.com/2071-1050/12/9/3799
https://www.mdpi.com/2071-1050/12/9/3799

