J. Michael, J. Pfeiffer, A. Wortmann (Hrsg.): Modellierung 2022 Satellite Events,
Digital Library, Gesellschaft fiir Informatik e.V. 197

A Report on Automatic Generation of Petri Net Exercise and
Exam Task Instances'

André Brandt, Marcellus Siegburg? Janis Voigtlinder] Ke Wang

Abstract: We report on generators for different task types addressing Petri net concepts from a
modeling lecture for undergraduate students. A focus is on how to control difficulty and intended insights
about the subject matter on the learners’ side. We explain the influence of provided configuration
parameters for several task types on an exemplary instance each, and comment on presentation and
implementation, as well as very briefly on exam experience.

Keywords: Petri nets; E-learning; Task generation

1 Introduction

To help teaching Petri net concepts to undergraduate students, and assess their understanding,
we employ an e-learning setup with diverse types of exercise and exam tasks. We have
implemented task types for different Petri net concepts (mathematical representation,
concurrency, conflicts) and with different answer modi such as multiple-choice and matching
tasks. Each task type is equipped with a generator that can produce a multitude of task
instances. Each such generator is controlled by a set of custom configuration parameters.
Such parameters can involve size constraints (e. g., how large the Petri net should be),
structural constraints (e. g., whether certain graph patterns may or should appear in the Petri
net), and more task specific constraints (e. g., whether certain forms of distractors should
appear among the alternatives presented in a multiple-choice task). These parameters control
the difficulty of generated task instances and allow to steer learning and understanding of
specific aspects of the Petri net concepts under consideration. Setting the configuration
values for a task generation run is performed by the lecturer. Each obtained task instance
comes with a correct-by-construction answer that can be used in giving immediate automatic
feedback on student submissions. But we have also used the setup with non-immediate
grading as part of distant online exams, where the generation facilities were instrumental to
providing individual task instances to students, basically eliminating potential for plagiarism.

In what follows, we discuss our Petri net task types, with a focus on their configuration
parameters and how they can be used to adjust the level of challenge for students. We also

I Part of the work reported here was funded via:
Projekt ,,PITCH — Priifungen innovieren, Transfer schaffen, Chancengerechtigkeit fordern (08/2021-07/2024),
Projektnummer FBM2020-EA-1190-00081, aus Mitteln der Stiftung Innovation in der Hochschullehre

2 University of Duisburg-Essen, Faculty of Engineering, Germany, marcellus.siegburg @uni-due.de

3 University of Duisburg-Essen, Faculty of Engineering, Germany, janis.voigtlaender @uni-due.de

ClOC)

https://creativecommons.org/licenses/by-sa/4.0/
mailto:marcellus.siegburg@uni-due.de
mailto:janis.voigtlaender@uni-due.de

198 André Brandt, Marcellus Siegburg, Janis Voigtlidnder, Ke Wang

briefly discuss our implementation strategy, and then conclude with some subjective as well
as quantitative experience from exercises and an exam.

2 Task Type: Matching Representations of Petri Nets

In the lecture, students are given a formal definition
of Petri nets as a mathematical structure. This builds
on set-theoretic constructions they have learned in
a preceding discrete mathematics course. The role
in our lecture is to provide a basis for formal defi-
nition of subsequent semantic concepts, but also to
address frequent questions about the syntax of Petri
nets, such as whether it is allowed to have an arrow
directly from a place node to another place node,
whether it is allowed to have a transition node with-
out any outgoing arrows, etc. One task type used to
practice the relationship between mathematical and
diagrammatic representation is as follows: Students
are shown a mathematical representation using the
notation from the lecture, as in Fig. 1, and several
Petri net diagrams, as in Fig. 3, and are asked which of
the diagrams corresponds to the given mathematical
rendering.

N = (57 T7.()7 ().7

my), where

S = {51, 82, 83,84} and

T = {t1,12,t3,t4}, as well as using
the place ordering (s1, 2, $3, $4):
~* = (0,1,0,0)

- *ty = (0,0,0,1
- *t; = (0,0,0,1
- *ty = (1,0,0,0
-2 =1(0,0,1,0)
-5 =(1,0,1,0)
-5 =(1,0,1 0)
-2 =(0,0,1,0)

Moreover, mg =

(1,0,1,0)

Fig. 1: Mathematical representation of a

Petri net

Let us discuss the main configuration parameters used for this task type, besides the obvious
one controlling how many diagrams to present as possible choices. Several of them are also
employed in other task types considered later on. Here we additionally mention with what
concrete settings for the parameters the generator was called to obtain the task instance
from Figs. 1 and 3, and the effect certain changes to those settings could have had.

81

Fig. 2: A Petri net abiding by the given configuration values

parameter value
places 4
transitions 4
minTokensOverall 2
maxTokensOverall 2
maxTokensPerPlace 1
minFlowOverall 10
maxFlowOverall 10
maxFlowPerEdge 1

A Report on Automatic Generation of Petri Net Exercise and Exam Task Instances 199

1 2

Fig. 3: Four Petri net diagrams, exactly one of which corresponds to Fig. 1

There are some self-explanatory size constraints which restrict the numbers of nodes and
edges in a Petri net, as well as provide control over tokens and edge weights. These are illus-
trated in Fig. 2 by putting one generated Petri net alongside their specific values used. Note
that we could have increased maxTokensOverall to 3 without changing minTokensOverall.
This could have had two effects: First, some students might have received a task instance
like the one from Figs. 1 and 3, with only two tokens in each net, while others would
have seen three tokens per diagram. Second, even for a single task instance, it could in
principle have been the case that some displayed diagrams contain two tokens, and others
three tokens. The latter, however, would have been prevented here because we also set
tokenChangeOverall = @ when generating Figs. 1 and 3. That makes sense in the current
task type because redistributing tokens would simplify the generated task instances a lot:
For example, since the initial marking is given as mg = (1,0, 1,0) in Fig. 1, any diagram
that does not have one token on each of s; and s3 and no others, would immediately be
disqualified from being the correct answer — without the student even having to look at the

200 André Brandt, Marcellus Siegburg, Janis Voigtlinder, Ke Wang

pre- and postcondition weights in the mathematical representation.* In order to actually
have some differences (apart from layout) between the presented diagrams, and to ensure
that only one of them corresponds to the given mathematical representation, we use a setting
flowChangeOverall = 2 (and maxFlowChangePerEdge = 1).

One structural constraint setting used in the example is isConnected = Just True. Setting
that parameter to Just False instead would have enforced that each of the four Petri
nets offered as choices in Fig. 3 would have consisted of at least two disjointed graph
components, while setting it to Nothing would have meant that we do not care. The same
kind of “three-valued logic” applies to the configuration parameters presence0fSelfLoops,
presenceOfSinkTransitions, and presenceOfSourceTransitions, which were all set to
Just False for the example. By allowing, or even enforcing, self loops and sink or source
transitions to occur, we can already expose students to Petri nets containing these patterns,
which will have a more interesting interplay with concepts like concurrency and conflicts
later in the lecture. For example, a source transition can never be involved in a conflict.

Another parameter setting used here was atLeastActive = 1, basically preventing that any
of the displayed Petri nets is deadlocked, despite that aspect not really having much of a
conceptual impact on solving instances of this task type.

Concerning display, note that no weight numbers are being shown on the arrows in Figs. 2
and 3 because we set option hideWeightl = True. This is the case throughout the paper
to avoid issues with readability of overlapping labels. In our online setting, interactive
highlighting features such as demonstrated in net 2 in Fig. 3 are available to students:
marking nodes or edges in tandem with their corresponding labels when pointing on them.

Finally, we had useDifferentGraphLayouts = True and graphLayout = [Sfdp, Circo,

Neato, TwoPi], ensuring that each Petri net is displayed using a different GraphViz layout
engine from a fixed set of choices. Setting useDifferentGraphlLayouts = False and
graphLayout = [Circo] would have meant that all four Petri nets in Fig. 3 are displayed in
the current style of the first one, thus making it much simpler to work out — just visually —
what the changes between them are, and thus which one corresponds to the mathematical
representation in Fig. 1.

Another task type, similar to the one discussed above, and also implemented, works the
other way around: displaying one diagram and several mathematical renderings, then again
asking for correspondence.

3 Task Type: Finding Concurrent Transitions in Petri Nets

An important concept introduced in the lecture, for Petri nets but also with a more general
modeling outlook, is concurrency. One task type used to practice detecting concurrency in

4 In other task types, positive values for tokenChangeOverall make more sense, and are then accompanied by a
positive setting for maxTokenChangePerPlace.

A Report on Automatic Generation of Petri Net Exercise and Exam Task Instances 201

the context of Petri nets is as follows: Students are shown a Petri net, as in Fig. 4, told that it
contains two concurrently activated transitions, and asked to identify the relevant pair.

Several configuration parameters used for this task type
are the same, and play the same role, as in Sect. 2. For
example, there are again those mentioned in Fig. 2 as
well as the isConnected parameter. The presence of a
transition node without any outgoing arrows in Fig. 4
is not by happenstance but a consequence of setting
presenceOfSinkTransitions = Just True in the con-
figuration used when generating this example. Also,
now atLeastActive = 3 was used to avoid instances
where only two transitions are activated at all, which
would necessarily have made those the concurrently
activated ones. That is, we wanted to have at least
one further activated transition as a potential distractor.
A new setting hidePlaceNames = True was used to
simplify the display. In Sect. 2 that would not even
have been an option because it would most likely make
it impossible to always solve task instances (uniquely).

@ What might be called “change settings” (concretely
tokenChangeOverall = flowChangeOverall = 2 and

Fig. 4: A Petri net with two concur- paxTokenChangePerPlace = maxFlowChangePerEdge
rently activated transitions = 1 in the configuration used when generating the
example in Fig. 4) now play a slightly different role

than before. Essentially, they control “how far away” the Petri net with concurrent transitions
is from one that does not contain any concurrency. For example, we could thus deliberately
generate only instances where the concurrency hinges on a single token (taking away that
token would destroy the concurrency), or where it hinges on a single arrow’s absence or

weight (e. g., adding one arrow would destroy the concurrency).

A variant of the task type discussed above, also implemented, displays two Petri nets, one
without concurrent transitions and one with a pair of concurrent transitions, and simply asks
which net is which — without requiring students to pick out the specific pair of transitions.

4 Task Type: Finding and Explaining Conflicts in Petri Nets

Another important concept introduced in the lecture is the notion of two transitions in a Petri
net being in conflict. One task type used to practice working with this concept is as follows:
Students are shown a Petri net, as in Fig. 5, told that it contains two transitions in conflict,
and asked to identify the relevant pair as well as the place(s) that is/are responsible for the

202 André Brandt, Marcellus Siegburg, Janis Voigtlinder, Ke Wang

conflict. That is, they also have to identify all places that are joint preconditions for the
conflicted transitions while not having enough tokens to fire both transitions concurrently.

There are again several configuration parameters that are already known from Sects. 2
and 3 — we do not repeat most of them here. To generate the example in Fig. 5, we again
used atLeastActive = 3, but also presenceOfSelfLoops = Just True. Concerning the
“change settings”, similar comments as towards the end of Sect. 3 apply. A new parameter
is uniqueConflictPlace. Setting it to Just True means that where the students have to
identify all places bearing responsibility for the conflict, the correct answer will actually be
a singleton. Distractors for the conflict and its origin can be configured using more advanced
settings:

Setting addConflictCommonPreconditions = Just True
enforces that the two transitions in conflict have an ad-
ditional place as common precondition, i.e., both hav-
ing an incoming arrow from at least two same places.
Such additional precondition places are meant to not be
causes of the conflict. However, depending on the setting
of uniqueConflictPlace from above, actual additional
conflict-causing places could be enforced as well. Another
setting that was used when generating the example in
Fig. 5 is withConflictDistractors = Just True. It en-
forces the existence of at least one other pair of transitions,
besides the conflicted pair, with non-disjoint preconditions.
In the example, this resulted in the distractor pair t1 and
t2 with common precondition s3. This pair has no additional common precondition
places because conflictDistractorAddExtraPreconditions = Just False was set. Its
common precondition place has only one token, and thus looks like a conflict, because
conflictDistractorOnlyConflictLike = True was set.> What students would have to
“discover” in the concrete instance from Fig. 5, in order to overcome the distractor pair, is
that t1 and t2 are not actually conflicted, because t1 is not even activated. But, of course,
we as educators avoided having to handcraft the example to achieve this effect — instead
relying on our generator and its declarative parameter settings.

Fig. 5: A Petri net with two tran-
sitions in conflict (t3 and t4)

In a slightly simpler version of the task type discussed above, the conflict-causing places do
not have to be identified as part of the answer. Moreover, there is yet another task type, also
implemented, which displays two Petri nets, one without a conflict and one with a pair of
conflicted transitions, and simply asks which net is which.

5 Setting conflictDistractorOnlyConcurrentLike = True instead would have resulted in more tokens on that
place.

A Report on Automatic Generation of Petri Net Exercise and Exam Task Instances 203

5 Implementation

While we discussed the task types on concrete examples in the preceding sections, each
has an underlying generator. That is, for Sect. 2 we have a generator that from numeric
and Boolean (or three-valued conditional) settings for places, transitions, etc., gives us
many pairs of “Figs. 1 and 3”, and likewise for Sects. 3 and 4. For example, Fig. 6 shows
four random instances that were generated with the same configuration settings as Fig. 5.
They are from a distant online exam, which is referred to in the next section, that employed
literally hundreds of these (one per student). In preparation for the exam, similar exercise
task instances had been provided to students, some generated with larger values for places
and transitions and the token and flow numbers.

It is probably apparent that
randomness would not re-
ally do the job here. That
is, a pure generate-and-test
approach where Petri nets
would be randomly generated
(within given size constraints)
and then tested whether they
satisfy all the desires (like
presence of certain distrac-
tors) and otherwise discarded,
would not really be practi-
cal. Moreover, it would defy
our correct-by-construction
aspirations for task instances
and feedback/sample solu-
tions. Hence, we followed a
more formal approach already
adopted in previous work on
generating task instances on
the topic of UML class and
object diagrams [KSV20, SV20]. It uses Alloy [Ja02, Jal1] to model the subject matter
(back then, UML diagrams; now, Petri nets) along with various structural properties and
semantic concepts on top. This gives an Alloy library, originally prototyped in [Wa19] and
since then adapted and extended. Each task type can be thought of as a certain use case of
that library. We let configuration parameters influence a logic formula built using predicates
from the library, and sending that formula to the Alloy model checker and interpreting the
returned outcomes gives us task instances. Initial experiments in this direction were the
topic of [Br20], while the current work represents more fully developed task types and
generators.

Fig. 6: Four of many different-but-alike instances used in an exam

204 André Brandt, Marcellus Siegburg, Janis Voigtlinder, Ke Wang

6 Conclusion

Subjectively, judging from forum discus-

. . S
sions with and among students, our gener- » 293 [Z
. . 75 2.
ated exercise tasks on UML and Petri net % 200 5 &
concepts have been successful in furthering £ 100 25 B
. . 2 g
engagement with the material as well as o WL ITTV TR TP - 2
pointing to areas of miscomprehension and Sagzogsggco-antne O

1t 101 M M MM M M M M M M M MM M M

need for additional practicing before the EEEEEEEEEREEEFERY

exam. We are also gaining more experience
with using such generated tasks in actual ex-
ams. Fig. 7 shows some data from our latest
installment (March 2022). Tasks 09 to 14
are Petri net task types reported on in this
paper, while Tasks 02 to 08 are task types reported on earlier [KSV20, SV20], and the
remaining three tasks are yet different. A deeper analysis is out of scope here, but even
at a superficial glance we see interesting effects, such as the difference in results between
Task 13 and Task 14, both “from Sect. 4”, but only the latter requiring students to identify
the conflict-causing place(s).

Fig. 7: Exam submissions made by students (blue 0)
and point percentages received for those submis-
sions on average (red [).

We also would like to systematically categorize our task types and configuration options by
the learning objectives they address, also using appropriate taxonomies. A first foray in this
direction was undertaken in [Sc20], but not for the specific task generators discussed here.

Bibliography

[Br20] Brandt, André: Automatische Generierung von Ubungsaufgaben zu Petrinetz-Konzepten
mittels Alloy. Bachelor thesis, University of Duisburg-Essen, 2020.

[Ja02] Jackson, Daniel: Alloy: A Lightweight Object Modelling Notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256-290, 2002.

[Jall] Jackson, Daniel: Software Abstractions — Logic, Language, and Analysis, Revised edition.
MIT Press, 2011.

[KSV20] Kafa, Violet; Siegburg, Marcellus; Voigtldnder, Janis: Exercise Task Generation for UML
Class/Object Diagrams, via Alloy Model Instance Finding. In: SACLA 2019, Proceedings.
Springer, pp. 112—128, 2020.

[Sc20] Schweiger, Matthias: Analyse von Ubungsaufgaben zu Petrinetz-Konzepten. Bachelor
thesis, University of Duisburg-Essen, 2020.

[SV20] Siegburg, Marcellus; Voigtlinder, Janis: Generating Diverse Exercise Tasks on UML Class
and Object Diagrams, Using Formalisations in Alloy. In: MoHoL 2020. volume 2542 of
CEUR Workshop Proceedings. CEUR-WS.org, pp. 89-100, 2020.

[Wal9] Wang, Ke: Exploring Petri net concepts through formalization in Alloy. Bachelor thesis,
University of Duisburg-Essen, 2019.

