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SPARQL Update queries over R2ZRML mapped data sources

Jorg Unbehauen! Michael Martin!

Abstract: In the Linked Data Life Cycle mapping and extracting data from structured sources is an
essential step in building a knowledge graph. In existing data life cycles this process is unidirectional,
i.e. the data is extracted from the source but changes like cleaning and linking are not fed back into
the originating system. SPARQL-to-SQL rewriters create virtual RDF without materializing data
by exposing SPARQL endpoints. With the Update extension of our SparqlMap system we provide
read/write access to structured data sources to enable a tighter integration of the source systems in
knowledge refinement process. in this paper, we discuss three different update methods and further
describe in two scenarios how the source system can benefit from feed back from the Linked Data
integration.
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1 Introduction

The Linked Data Lifecycle is an approach for managing information with the aim of
representing knowledge in a structured, machine readable way. The extraction of RDF
from structured data sources constitutes an important step in creating such an Linked
Data Lifecycle. However, current approaches like ontop [RMHC12], morph [PCS14] or
our own SparqlMap [UM16] only provide means for exposing structured data as (virtual)
RDF in order to integrate it into a linked data life cycle. As of now, feeding data back
into the originating system requires custom transformations and adapters is therefore held
back by high upfront costs. SPARQL 1.1 Update [SGPOS] offers Linked Data tools a
standardized method for updating data. We therefore extended SparqlMap with a SPARQL
Update capable endpoint which leverages integration of legacy systems into the Linked Data
Lifecycle. This bidirectional integration ultimately allows legacy system to participate from
the benefits of Linked Data knowledge management processes. We use mappings expressed
in the RDB-to-RDF Mapping Language (R2ZRML)[DSC12] for the SPARQL Update to
SQL Data Manipulation Language (DML) statements.

The rest of our paper is structured as follows. First, we introduce two scenarios to motivate
our research. In Sect. 3 we discuss other approaches on enabling SPARQL Update over
mapped data sources. Sect. 4 introduces our approach and our proposed solutions to the
previously determined requirements. Subsequently, we evaluate our approach in Sect. 5 by

1 University of Leipzig, AKSW/IIS, Germany [unbehauen|martin] @informatik.uni-leipzig.de

E©®® doi:10.18420/in2017_189


https://creativecommons.org/licenses/by-nc/3.0/
[ unbehauen|martin]@informatik.uni-leipzig.de
https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.18420/in2017_189

1892 Jorg Unbehauen, Michael Martin

simulating SPARQL insert operations. Finally, we draw a conclusion. For the sake of brevity,
we abbreviate vocabulary URIs by prefixing them: for URIs of the R2ZRML namespace we
utilize rr: <http://www.w3.org/ns/r2rml#>. Further we assume that in our ex-
amples, besides the FOAF namespace foaf: <http://xmlns.com/foaf/0.1/>,
our custom ex: <http://example.com/> namespace is also set as base URI.

2 Scenarios

Updates over mapped structured data sources allow interactive modification of the
data sources. A straightforward use case is an interactive data manipulation tool like
OntoWiki[ADROG6] which can persist data modifications using SPARQL update queries. In
order to foster a deeper understanding we consider two additional scenarios and determine
their requirements on bidirectional RDB-to-RDF mappings.

Scenario 1: Enterprise Search The enterprise search scenario is based on [Fr13] in which
Linked Data technologies are used for feeding a full text index. This enterprise search
use case is depicted in Fig. 1. Multiple heterogeneous data sources are extracted and
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Fig. 1: Enterprise use case of data aggregation and extraction from multiple data sources
and feeding an full text search engine.

loaded into a triple store. The extracts are cleaned, interlinked and streamlined using an
interactive authoring component, effectively constituting a Linked Data Lifecycle. The
resulting knowledge graph is finally materialized into the target Search system using a
custom program. By using a bidirectional mapping of the search index, we no longer require
a custom program for loading the data. Further, as the mapping allows also for read access,
the index data is visible from within Linked Data management tools.



SparqlMap-Update 1893

Desktop export read Extraction | — | Authoring Inter-
DBMS % Curation linking

write

Fig. 2: ETL pipeline, starting with an transient data export and feeding into an Linked Data
based enrichment pipeline with the proposed update extension as red arrow.

We can derive the following requirements from this scenario: (R1): Non-relational data
backends; (R2): (Bulk) insertion of large data volumes.

Scenario 2: Extract Transform Load Pipeline In the Extract-Transform-Load (ETL)
scenario we discuss how SPARQL update operations can be used to augment a pipelined
data operation. Such a pipeline, which is based on the data extraction scenario presented in
[BR16], is depicted in Fig. 2.

The date pipeline ingests exports from a desktop Data Base Management System (DBMS) and
translates the data via a RZRML mapping into a RDF materialization. This materialization
is then modified by an authoring component and further processed. Instead of modifying
the materialized RDF extract we suggest that the authoring component issues SPARQL
Update queries instead. The challenge in this scenarios is dealing with a data source that
either is read-only or is transient in the sense that it is frequently re-created and changes are
consequently discarded. An additional challenge poses the schema employed in the desktop
DBMS, which is not properly normalized. We can therefore infer the following requirements
of this scenario: (R1): Non-relational data backends (R3): Immutable or transient data
sources (R4): Denormalized schemata

3 Related Work

Translating the SPARQL to SQL is a well studied technique for accessing relational databases.
State-of-the-art SPARQL-to-SQL mappers like ontop [RMHC12], morph [PCS14] do not
feature Update capabilities, but SPARQL Update over mapped relational databases was the
subject of previous work, with two approaches extending D2R[BCO06].

R2RML [DSC12] is a W3C standard for relational to RDF mappings and is supported by
most of these rewriters. It utilizes rr : TermMap and rr: TriplesMaps for a row-wise
mapping of relational tables into RDF.

In [GG11] the authors systematically explore the translation of SPARQL into SQL queries,
covering both read and write scenarios. It is based on [CLF09], a SPARQL-to-SQL
translation approach originally developed triple stores implemented on top of relational
database management systems. The paper covers basic mechanisms, but does not give
details on how to deal with database constraints or translate more complex, template
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based rr: TermMaps efficiently. This paper is purely conceptual and does not feature an
evaluation.

OntoAccess [HRG10] proposes its own mapping language, R3M, to express bidirectional
mappings of relational databases. The approach discusses the insert and delete operations
in greater detail and considers schema imposed constraints.

With D2RQ++ [Ral0] the authors propose to integrate a native triple store into their system.
This triple store allows insertion of triples that are either not mapped or would violate
database schema constraints. Information stored in the triple store can later be conveyed
into the relational database, once the constraints are no longer violated.

D2RQ/update [EK12] is a relational schema aware SPARQL Update processor and introduces
a series of optimizations in order to prevent schema constraint violations. Further, the authors
aim at minimizing the number of SQL statements by grouping related triples together.

4 Approach

In this section we first introduce some basic terminology used in our mapping approach and
a small exemplary mapping. Further, we introduce three different methods of updating a
mapped triple store.

Our motivation behind creating those methods is our goal to cover as many usage scenarios
as possible. Naively, the translation of a SPARQL query for a given update may seem
straight forward due to the syntactic similarities between SPARQL and SQL. However,
SPARQL updates can easily modify the data that represents its schema. In native triples
stores, this does not pose a problem, as those schema triples are stored by the same means
as any other triples. In the case of mapped data however, schema information appearing
in a virtual graph can originate from the mapping and is tightly coupled to the schema
of the data source. The schema of the data source however cannot be modified, as other
application in a data landscape will rely upon it.

The data source update (Sect. 4.4 ) therefore deals with update operations that modify the
underlying database. Mapping updates (Sect. 4.5) perform certain large scale data updates
and schema modifications. The preprocessor update (Sect. 4.6) allows executing of updates
regardless of schema or constraint violations, at the cost of performance.

4.1 Terminology

In this section we briefly revisit the terminology introduced in [USA12]. While this
terminology is like RZRML[DSC12] building upon the relation data model, we showed in
[UM16] by using views, this terminology can be applied to NoSQL stores. Further, we use
the terms relation/table and attribute/column interchangeably.
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Term map A term map is a tuple tm = (A, ve) consisting of a set of relational attributes U
from a single relation R and a value expression ve that describes the translation of U into
RDF terms (e.g. RZRML templates for generating IRIs). Term maps are the base element of
a mapping.

An example for such a term map is in Fig. 3 (b) the subject template employee/ {id}.
This term map creates URIs by concatenating the mappings base prefix with “employee/”
and the content of the attribute “id” from the “employee” table.

Triple map A triple map trm is the triple (tmg, tmp, tmo) of three term maps for generating
the subject, predicate and object of a triple. All attributes of the three ferm maps must
originate from the same relation R. A triple map defines how triples are actually generated
from the attributes of a relation (i.e. rows of a table). RZRML allows both SQL tables and
views expressed by SQL queries to be used as relation, which is consquently termed logical
table.

Our definition conflicts with the RZRML TriplesMap specification, as a triple map
always has one subject, one predicate and one object. RZRML on the other hands allows the
definition of multiple predicate/object pairs. As this differentiation is only syntactical we
use in our examples the RZRML syntax, as it more commonplace. For the rest of this paper
we assume an implicit transformation into single predicate/object map TriplesMaps and
use triple map for definition purposes.

4.2 Exemplary Mapping

As an exemplary use case we map a two-column Employee table Fig. 3 (a) with an RZRML
mapping Fig. 3 (b). The R2RML mapping is composed out of two triples maps (i) and (ii)
and consequently for each row in the table two triples will be emitted. The triple subject is
in both cases build using a template and the id column. In case of (i) the name is mapped to
a foaf:name, in case of (ii) id is mapped to the custom id property.

<TriplesMapEmployee>
rr:logicalTable [rr:tableName "Employee"];
rr:subjectMap [rr:template "employee/{id}"];

"Employee” rr:predicateObjectMap [

id| name .

____________ rr:predicate foaf:name;

1 | *Mary.R.’ rr:objectMap [rr:column "name"]];
2 | ’James_ T.’ rr:predicateObjectMap [

3 | ’Patriciagl.’ rr:predicate <id> ;

rr:objectMap [ rr:column "id"]].
(a) Employee table with three en-
tries (b) R2ZRML mapping of the Employee table.

Fig. 3: Relational table mapped by a RZRML mapping.
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4.3 Update Pipeline

In the scope of this paper we will discuss only SPARQL 1.1 Update operations that are
composed out of INSERTs and DELETE:s, therefore not regarding graph manipulations.
The concepts presented here however can readily be adapted to meet graph manipulation
needs. Our approach for fulfilling the requirements determined in Sect. 2 is an extension of
the already existing SparqlMap[UM16] pipeline as presented in Fig. 4. Like in read only
scenarios, the first step in write scenario is to parse the request and in case of update queries,
skipping over the query analysis step.

The Mapping Binding associates each triple of the update query with triple maps that can
potentially generate such a triple. In a second step, resources occurring in more than one
triple are used to further narrow down candidate triple maps, effectively precomputing the
implicit SPARQL join in basic graph patterns. By not grouping triples same-subject wise
we can better deal with denormalized data, as for example a table may produce multiple,
different subjects based on different templates. This allows us to fulfill with requirement R4

In the subsequent Value Extraction the values to be modified are determined. Therefore
RDF-Terms are compared with the corresponding term maps in order to generate a multiset
of column/value pairs. In case of rr : column based term maps, a string representation of
the RDF node is used, in case of rr:template term maps this string is decomposed into
column-value pairs based on the template string. RDF-variables are likewise associated
with term maps.

After the Mapping Binding and Value Extraction steps, for each triple we have a set of
candidate rr: TriplesMaps and a multiset of column/value pairs, that represent potential
filter conditions. So far, the insert query used the same processes as described in [UM16],
where the Value Extraction is part of the query translation process. The Update Method
Select Fig. 4 (1) is the first step in the SPARQL Update specfic pipeline, which triple-wise

Query
Selective INSERT DATA {
Query Query Mapping |- Materialization Ty, :employee/4 foaf:name
Parsing |>| Analysis |[*| Binding | | "Nicole 0.m"}
" t.

Materialized B
SparqlMap Execution | 177 S
SparqlMap-Upd =
i nunsantunnatononcusastorfuscensnsnanunnsunhrsnnnnasaniransronensasasnonsdansnnnanes N E

o -
Value Ua;g?ltng Preproces-sor i Table Employee
Extraction / pdate Creation / id| name
~ ___— I
- 'Mary R.’/
. pdate Method | Query Execution 2 | "James T.’
: Select Building 3 | rPatricia 1.’
e yepopyeprypepeTpepepysprpeps oy w ................... 4| ’Nicole 0.’

Fig. 4: The SparqlMap processing pipeline with the four proposed extension for bidirectional
communication.



SparqlMap-Update 1897

determines the subsequent update methods. This process is described in greater details after
first describing the three update methods.

4.4 Data Source Update

The data source update Fig. 4 (4) aims at adding, modifying and deleting values or tuples
from the underlying database by translating SPARQL updates into SQL DML queries and
is comparable to the mechanisms of the other tools described in Sect. 3. The data source
update flow can be applied to each triples, for which holds, that a bound triple map at a
position wise comparison between the RDF Term and the term map at least one column of
the mapped table is involved. Multiple triples that share resources and that map to the same
table are grouped together into a single update operation to prevent constraint violations.
With those pairs we calculate the actual update request. In case of deletes, where all columns
of the mapped table are associated with either a value or a variable, rows can be deleted.
If not all columns are matched and they are not used in any other term map, the value of
those columns is set to NULL. In case of a constraint violation or the column is still used by
another term map, the SPARQL Update is rejected.

To illustrate this using our exemplary mapping consider the SPARQL Update request
DELETE DATA { :employee/3 :id 3 }. As here not all columns of the table are
mapped, we test if setting the id column to NULL possible. The id column is however used
in the subject of Fig. 3 triples map (i), therefore the update request has to be rejected.

Fig. 4 presents an example of a SPARQL Update insert query, which illustrates an other
problem: Inserting a single triple results in a mapped virtual graph with two additional
triples. Such insert operations can be rejected by an optional evaluation if additional triple
maps are affected by the insert.

In case of inserts, constraints violations occur if an insert creates a new row with a previously
used primary key or unique column value. We can either use backend specific methods,
for example the MySQL REPLACE INTO operation, or a decide after a look-up in the
database whether an insert is possible, as it targets a NULL value or if the insert has to
be rejected or processed by an other update method. One of the problems arising here, is
dealing with the lack of schema enforcement in the underlying data stores, caused by either
not strictly formulated relational schemata or schema-less data sources. In those cases no
schema violations can be detected and potentially inconsistent data may be inserted. We
therefore propose to either validate the insert query with a Shapes Constraint Language
(SHACL)? implementation or a backend specific validation tool, which allows us to fulfill
with R1.

2https://www.w3.0rg/TR/shacl/
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4.5 Mapping Update

The alternative to altering the mapped data source is updating the mapping itself. This can be
a more efficient way to remove or update all data originating from specific columns/tables or
term maps. Consider the following two queries: (a) DELETE { ?s ?p 20 } WHERE
{?s foaf:name ?name} and (b) DELETE {?s foaf:name 2?0} INSERT {7
s rdfs:label ?0}WHERE {?s foaf:name ?o0}. Query (a) deletes everything
which has a foaf : name, in RDB-to-RDF with Data Source updates on our exemplary
mapping, this will delete all rows from the employee table. Query (b) would in the RDB-to-
RDF Data Source Update scenario move cell values to another column. As the property
rdfs:label is not mapped in our exemplary scenario, the query would fail.

Executing a Mapping Update is a modification of the R2ZRML mapping, by means of
SPARQL 1.1 Update queries over the virtual graph. A Mapping Update instead of an Data
Source Update can be executed if for a specific triple all associated column/value pairs have
at the value position only variables. In other words, a query expressing an equivalent Data
Store Update contains no WHERE expressions. In case of delete statements, triple maps of
this triple pattern can simply be deleted. In case of an DELETE/INSERT queries, constant
term maps are replaced with an updated version. In any other case either an exception has to
be raised and the SPARQL Update request has to be rejected, or alternatively be processed
by one of the other update methods.

In our example a mapping update by query (a) would delete all triple maps of the employee
mapping. Query (b) executed as mapping update would replace the constant term maps at
the predicate position of Fig. 3 (b) term map (i).

4.6 Preprocessor Update

SparqlMap[UM16] features a lean RDF materialization pipeline for answering queries.
Instead of modifying the data source, incoming SPARQL Update queries are stored and
integrated into the mapping process. This integration can be performed by rewriting queries,
which can dramatically increases query complexity, or by pushing and removing data from
materialized graphs, which prohibits join pushing and increases data materialization. As
a consequence, we conjecture that this approach is only suitable for small data set sizes,
experiencing only a few updates.

This approach is comparable to the idea of using a dedicated overflow triple store in D2RQ++
[Ral0]. The preprocessor Update however allows the execution of updates, that previously
were rejected.

The query DELETE DATA { :employee/3 :id 3 }, which failed on the data
source update can now be executed. In consequence, during the materialization phase
of a query this triple is filtered before its RDF terms can be bound to variables.
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4.7 Update Method selection

In order to deal with scenario specific requirements, preferences can be configured and
methods be excluded. For example in Sect. 2 scenario 2 R3 defines that the data sources is
immutable. Therefore, first the Mapping Update method and as a fall back the Preprocessor
Update will be used. In contrast, scenario 1 demands handling of larger data volumes,
ruling out the Preprocessor Update method. In this scenario, Data Set Update is the only
applicable method, as the mapping is immutable because of it is ties to the logic of the
search component. Update queries that cannot be processed by the Data Set Update would
be rejected.

5 Implemenation and Evaluation

Our prototypical implementation of the Data Set Update pipeline in SparqIMap is available
on github3. SparqlMap can be used acting as both command line tool or SPARQL endpoint.
As SparglMap builds on Apache Jena* as RDF framework and Apache MetaModel> as
a pseudo-relational view on both relational and NoSQL DBMS, we therefore can fulfill
requirement R1.

We evaluated our approach using a subset of the data generated by the Berlin SPARQL
Benchmark (BSBM), namely instances of the review class on a Intel Xeon E3-1220 server
with 8 GB of RAM with all data on a SSD.

The data set of BSBM is synthetic and features three different use cases, all of which
represent interactions with a product database. A thorough description of the benchmark
can be found in [BS09]. In our test we want to examine the performance characteristics
of SparqlMap with varying insert bulk sizes and tests the systems performance in a use
case similar to Sect. 2 scenario 1. We therefore created an CSV representation of the SQL
output for the review instances with 100,000 entries. Mapped via R2ZRML mapping, this
table represents approx. 1.08 million (virtual) triples. During the test we double its size,
using varying sizes of bulk inserts. We run the benchmark with inserts of 1, 10, 100 and
1000 Reviews, with each review being represented on average by 10.8 triples.

Times were measured from withing SparqlMap, consequently HTTP overhead is ignored.
We measured the average execution time for the four different steps of the process Fig. 4
and depict them in Fig. 5.

In summary, insert operations scale linearly in all four steps of the mapping process. In this
scenario, inserting 10 triples takes about 1 millisecond. Notable in Fig. 5 is how the query
parsing step dominates query runtime. In all cases approximately this step takes 10 times as

3http://github.com/tomatophantastico/sparglmap
4http://jena.apache.org
Shttp://metamodel.apache.org


http://github.com/tomatophantastico/sparqlmap
http://jena.apache.org
http://metamodel.apache.org

1900 Jorg Unbehauen, Michael Martin

1x107

parse — query creation
1x106 — bind exec EEEEE |

100000 T

10000

7l

T
2555

5]
o

2l

e
ST,

S S

LG

o

2
!

2%

1000

0

o

2
ot

2%

o

T
s

Stitetet

e

s

2505
bt

o

100

£
oot
ot

duration in mircoseconds
S
2

o
o

o5

2K,

o
<
o
2
!
2%

o
Tetate
il

%

j9%es
o

L

10

.
o
XX

o

2
ot

2%

e
F%es
Kete!
o

<

{5
reteta
{5

e
L
L
o=

e

[

5
et

1

1000

distinct subjects per insert

Fig. 5: Query execution time of insert queries into the BSBM review table on a log scale.

long as all the other steps combined. Consequently, in these simple insert cases, there is
little room for improving the performance without modifying the Apache Jena SPARQL
parser. We therefore consider R2 to be fulfilled.

6 Conclusion

With our evaluation we demonstrate that SparqlMap Update scales well with increasing
insert size and further optimizations are not required. We therefore focus on implementing
the proposed multi-level validation and update-execution regime. Further, we will in future
version support update operations over rr : sqlViews, enables us to benchmark the system
using the full BSBM read/write scenario. Additionally, we plan on implementing the other
update methods and benchmark them as well.
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