
i
i

“proceedings” — 2017/8/24 — 12:20 — page 2143 — #2143 i
i

i
i

i
i

Maximilian Eibl, Martin Gaedke (Hrsg.): Informatik 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1

Training a deep policy gradient-based neural network with
asynchronous learners on a simulated robotic problem

Winfried Lötzsch1, Julien Vitay1 and Fred H. Hamker1

Abstract: Recent advances in deep reinforcement learning methods have attracted a lot of attention,
because of their ability to use raw signals such as video streams as inputs, instead of pre-processed
state variables. However, the most popular methods (value-based methods, e.g. deep Q-networks)
focus on discrete action spaces (e.g. the left/right buttons), while realistic robotic applications usually
require a continuous action space (for example the joint space). Policy gradient methods, such as
stochastic policy gradient or deep deterministic policy gradient, propose to overcome this problem by
allowing continuous action spaces. Despite their promises, they suffer from long training times as
they need huge numbers of interactions to converge. In this paper, we investigate in how far a recent
asynchronously parallel actor-critic approach, initially proposed to speed up discrete RL algorithms,
could be used for the continuous control of robotic arms. We demonstrate the capabilities of this
end-to-end learning algorithm on a simulated 2 degrees-of-freedom robotic arm and discuss its
applications to more realistic scenarios.

Keywords: deep learning; reinforcement learning; robotics; policy gradient methods; actor critic;
asynchronous learning; continuous action space

1 Introduction

Reinforcement learning (RL, [SB98]) is an important learning method used since decades
in many control problems, including robotics, to map states into actions, in order to
maximize the amount of reward received on the long-term. This state-action mapping can
even be performed through function approximators such as neural networks. However,
deep neural networks suffer from highly temporally correlated training samples and non-
stationary objective functions, which are inherent to RL. This prevented the use of complex
multidimensional state spaces such as raw images in deep RL and limited its applicability to
tasks where the sensors could be efficiently pre-processed and reduced to a limited number
of states. [Mn15] proposed a solution to this problem by introducing an experience replay
memory, where episodes are stored and randomly fed in mini-batches to the neural network,
as well as the use of target networks to increase the stationarity of the objective function.
This Deep Q Network (DQN) was applied on a series of Atari 2600 games and managed to
learn successfully efficient strategies with pixels as inputs and discrete actions as policy.
1 Technische Universität Chemnitz, Professur für Künstliche Intelligenz, Str. der Nationen 62, 09111 Chemnitz,

Deutschland. {winfried.loetzsch,julien.vitay,fred.hamker}@informatik.tu-chemnitz.de

cbe doi:10.18420/in2017_214

Maximilian Eibl, Martin Gaedke. (Hrsg.): INFORMATIK 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 2143

https://creativecommons.org/licenses/by-nc/3.0/
{winfried.loetzsch, julien.vitay, fred.hamker}@informatik.tu-chemnitz.de
https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.18420/in2017_214

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2144 — #2144 i
i

i
i

i
i

2 Winfried Lötzsch, Julien Vitay, Fred H. Hamker

However, DQN can only be applied to problems with discrete action spaces (DAC), such as
pressing left or right buttons, or initiating complex motor primitives. For control problems
requiring continuous action spaces (CAS, for example the joint space of robotic arms),
discretizing the action space does not work well, as a fine-grained discretization of outputs
would require an excessive amount of exploration [Zh15]. Alternatively, deep networks can
be used as a submodule of the complete system: [Le16] for example used a deep network
that predicts the probabilities of success of grasping attempts. This probability is then used
by a separate control algorithm to generate the optimal action.

End-to-end deep RL approaches called policy gradient methods have recently received a lot
of attention since they allow to directly learn continuous policies from high dimensional
state spaces. One major issue being ensuring a sufficient level of exploration during learning,
these methods either focus on learning stochastic policies [He15], which are by definition
able to explore different actions during learning, or on learning deterministic policies,
but exploring using a separate behavior (e.g. deep deterministic policy gradient - DDPG
[Si14, Li15]). Although policy gradient methods have been successfully applied to the
control of robotic arms, they require huge amounts of training data to converge (sample
complexity). A simple but expensive solution is to use multiple robots exploring in parallel
and sharing asynchronously their experiences in a common pool, which is then used to train
a single neural network [Le16, Gu17]. Multiplying robots reduces the acquisition time, but
does not impact the learning properties.

In the discrete domain, [Mn16] introduced the idea of using multiple parallel learners
sharing their acquired knowledge, not just experiences, with each other. Their asynchronous
advantage actor-critic (A3C) algorithm has been shown to be both superior in performance
and in training time to the classical DQN algorithms on a variety of tasks. In this paper,
we combine the idea of multiple parallel learners of [Mn16] with the DDPG algorithm
of [Li15] to form a new asynchronously parallel continuous control learning algorithm.
Additionally, the sample complexity of the algorithm is further reduced by pre-training an
internal model of the effector. We apply it to a simple reaching task with a simulated robotic
arm with 2 degrees-of-freedom, using raw pixels as inputs and joint angles as continuous
outputs, and discuss its applicability to more complex problems.

2 Background and related work

We start by explaining the general problem of RL and setting the notations in section 2.1.
We present deterministic policy gradient algorithms in section 2.2, as they allow to solve
RL problems with continuous action spaces. Finally, we present asynchronous methods
in section 2.3 which allow to train multiple actor-critic learners in parallel and reduce the
overall training time.

2144 Winfried Lötzsch, Julien Vitay and Fred H. Hamker

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2145 — #2145 i
i

i
i

i
i

Asynchronous training of deep continuous policy gradient algorithms 3

2.1 Basics of RL

Reinforcement learning problems are modeled as Markov Decision Processes (MDP), with
a state space S, an action space A, a transition dynamics model with density p(st+1 |st, at)
and a reward function r(st, at) : S × A → <. The policy is defined as a mapping of the
state space into the action space: a stochastic policy πθ : S → P(A) defines the probability
distribution P(A) of performing an action, while a deterministic policy µθ (st) is a discrete
mapping of S → A. θ ∈ <n is a vector of parameters defining the policy, typically the
weights of a neural network when using function approximators.

The policy can be used to explore the environment and generate trajectories of states, rewards
and actions. The performance of a policy is determined by calculating the expected discounted
return, i.e. the sum of all rewards received from time step t onwards: Rt =

∑∞
k=0 γ

k rt+k+1,
where 0 < γ < 1 is the discount rate and rt+1 represents the reward obtained during the
transition from st to st+1. The Q-value of an action a is defined as the expected discounted
reward if the agent takes a from a state s and follows the policy distribution πθ thereafter:

Qπθ (s, a) = Eπθ (Rt |st = s, at = a) (1)

The goal of the agent is to find the optimal policy maximizing the expected return from
every state. Value-based methods (such as DQN) achieve that goal by estimating the Q-value
of each state-action pair. Discrete algorithms transform these Q-values into a stochastic
policy by sampling from a Gibbs distribution (softmax) to obtain the probability of choosing
an action. The Q-values can be approximated by a deep neural network, by minimizing
the quadratic error between the predicted Q-value Qπθ (s, a) and an estimation of the real
expected return Rt after that action. Alternatively, policy gradient methods directly learn to
produce the policy (stochastic or not). The goal of the neural network is then to maximize
the objective function J(θ) = Eπθ (Rt), i.e. to maximize directly the expected discounted
return by finding the optimal policy.

2.2 Continuous action spaces

The stochastic policy gradient theorem [Su99] provides an estimate of the gradient that
should be given to the neural network in policy gradient methods, but it depends on the
unknown Q-value Qπθ (s, a). Qπθ (s, a) could be approximated by the actual return Rt after
that action, leading to the REINFORCE learning rule [Wi92]. Another option is to use a
second neural network to learn to approximate the Q-value. Such algorithms are called
actor-critic architectures, as the actor learns to produce a policy πθ based on the state alone,
while the critic learns to evaluate the Q-value of an action and sends this value to the actor
to improve the policy.

Asynchronous training of deep continuous policy gradient algorithms 2145

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2146 — #2146 i
i

i
i

i
i

4 Winfried Lötzsch, Julien Vitay, Fred H. Hamker

The deterministic policy gradient (DPG) method proposed by [Si14] is an example of such
an actor-critic architecture. The main novelty is that the actor produces a deterministic policy
µθ (st), what reduces the sample complexity and improves the training time. Exploration
is ensured by using an off-policy strategy, i.e. the actions actually taken are chosen
by a behavioral stochastic policy, different from the learned policy. [Si14] derived the
deterministic policy gradient theorem allowing the deterministic actor to learn in this
framework. [Li15] were able to use deep networks with the DPG architecture. The resulting
deep deterministic policy gradient (DDPG) algorithm is model-free, as it simply follows the
gradient of the Q-values, and thus can be applied independently from the systems dynamics.
DDPG has been successfully applied to a huge variety of continuous control problems,
including learning from raw pixels, and beats state-of-the-art performance on many of them.

2.3 Asynchronous methods

A rather practical problem originates from how the sample data is presented during the
learning phase. The straightforward way would be to immediately process the sample data
as it arrives from the simulated environment. However, robotics environments induce strong
correlations between samples that are temporally close to each other, since a robot might
behave very similarly in close situations. This means that the variance of the trained estimator
will be very high, negatively affecting the training performance of the deep network. A
standard method to reduce sample correlation is experience replay, where one basically
stores each sample in a buffer for a while and then randomly samples from the buffer to
increase the variability of the training data, at the cost of slowing down the learning process.
This is the approach chosen by [Li15] for the DDPG algorithm.

Another way to effectively overcome the problem of data correlation is to execute multiple
instances of the environment in parallel, by simultaneously running several simulations
or even using many similar real robots [Le16, Gu17]. [Mn16] has shown that this idea is
not only able to replace classical experience replay, but even outperforms its benefits. The
diversity of the sample data produced by the threads executed in parallel can be further
increased by chosing different exploration rates and starting conditions for the threads. Each
thread independently uses an online learning method to compute updates of the network
weights, which have to be synchronized during training. By weighting the updates with
a relatively small learning rate and accumulating some updates before synchronization,
one can reduce the risk to override changes from other threads and thus use a lock-free
algorithm such as Hogwild! [Ni11]. The resulting algorithm, asynchronous advantage
actor-critic (A3C), can replicate or even improve state-of-the-art performance on many
different experiments while learning much faster.

2146 Winfried Lötzsch, Julien Vitay and Fred H. Hamker

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2147 — #2147 i
i

i
i

i
i

Asynchronous training of deep continuous policy gradient algorithms 5

3 Methods

We first present the simulated environment in section 3.1, followed by the architecture of
the network (section 3.2), the learning procedure (section 3.3), a summary of the algorithm
(section 3.4) and the reward function used for the simulated environment (3.5).

3.1 Simulated robotic arm

As a proof of concept, we chose to control a simulated arm with two degrees-of-freedom,
where the gripper of the robotic arm, which is basically the end point of the last arm segment,
should be guided to reach a target. The original idea stems from the OpenAI Reacher
problem 2 and has been reproduced in essence using matplotlib for licensing reasons. Our
experiments for this paper restrict to the 2D space and only use two arm segments with
two degrees of freedom. The input to the network is a 84x84 grayscale image and its
outputs control changes of the two joint angles with continuous values. Fig. 1 illustrates the
simulation environment and the underlying physical states. The generated images include
a white dotted background to make the vision task more difficult. Important parts in the
image such as the segments of the arm and the target are displayed as bright spots in the
images and correspond to a high activation of the networks’ input neurons.

Fig. 1: Physical states of the robot arm in the two-dimensional space with two degrees of freedom.

3.2 Architecture

The actor-critic architecture of our algorithm is partially based on the A3C algorithm
[Mn16]. As the algorithm should work on raw pixels, the first layers of both the actor and the
critic are convolutional, but without pooling as the spatial information is critical for the task
here. It proved difficult to directly train the complete network as convolutional layers need
many samples to converge. We settled for a hybrid approach, where the convolutional layers
were first trained to reproduce the physical states in a supervised manner, which consist of
the arm segments angles and the target position (4 variables in our simulated task). After
training, the internal model can predict the physical state for a given image, which is then
used as an input for the actor and the critic. The complete architecture is depicted in Fig. 2.
2 https://gym.openai.com/envs/Reacher-v1

Asynchronous training of deep continuous policy gradient algorithms 2147

https://gym.openai.com/envs/Reacher-v1

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2148 — #2148 i
i

i
i

i
i

6 Winfried Lötzsch, Julien Vitay, Fred H. Hamker

Fig. 2: Architecture of the complete network model. The internal model transforms the visual
information into a physical state representation. The actor outputs an action sampled from the
continuous action space for a given state. The critic receives state and generated action as input and
outputs the action value.

The internal model uses two convolutional layers: the first convolutional layer has 8 filters
and a kernel size of 4x4, whereas the second one has 32 filters with a kernel size of 6x6.
The two following fully connected layers extract information about the physical states of
the arm and the target position: they are composed of rectified linear units with 90 and
50 neurons respectively. The output layer consists of 4 neurons with hyperbolic tangent
activation functions to model the physical states.

The actor network is used to predict an action, which is a two-dimensional vector in our
setup, defining the two components of the desired angular motion for the first and the second
segment of the arm respectively. At each step, each arm segment can be maximally moved
by 2 degrees in either direction, where the actions are scaled to the interval [−1, 1]. The
output layer has only two neurons with hyperbolic tangent activation functions. Both hidden
layers of the actor model consist of 200 rectified linear units. The critic has only one linear
output neuron, which represents the Q-value for the combined two-dimensional movement
vector passed into the network. An action chosen from the continuous action space is seen
as a transition from one position of the gripper to another. All hidden layers of the critic
consist of 200 rectified linear units.

2148 Winfried Lötzsch, Julien Vitay and Fred H. Hamker

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2149 — #2149 i
i

i
i

i
i

Asynchronous training of deep continuous policy gradient algorithms 7

3.3 Learning procedure

The learning procedure is organized into episodes, where the initial arm position and the
target position are randomly selected at the beginning. At each time step, the input image is
fed into the internal model, which outputs a prediction of the state variables st . It is then fed
into the actor, which outputs a continuous action µ(st). The selected action at is the sum
of this action and of a random variable taken from an Ornstein Uhlenbeck process (µ = 0,
θ = 0.3 and σ = 0.4). This additive noise encourages exploration, as the learned policy is
deterministic.

The critic Q with weights θQ can be trained with classical Q-learning [SB98]: after each
action, the expected return is approximated with Rt = rt + γQ′(st+1, µ

′(st+1)). This target
value for the critic is then saved in a buffer together with the state st and the action at , as
the neural network is trained in minibatches of 5 steps:

L(θQ) =
5∑

t=1
[rt + γQ′(st+1, µ

′(st+1)) −Q(st, at)]2 (2)

Equation 2 uses a Q-value prediction for the next state-action pair Q′(st+1, µ
′(st+1)) which

depends on the output of both the actor (for the next action) and the critic (for its Q-value).
Since [Mn15], it is known that training stability can be improved by not using the current
weights of the networks to perform this prediction, but those from an older version: the
target network. Target networks for both the actor µ′ and the critic Q′ are used to estimate the
expected return Rt (Eq. 2). Contrary to the classical approach [Mn15], the target networks
will not be updated after a certain amount of training steps, but gradually replicate the
changes made to the actor and critic, as in [Li15]:

θ ′← τ θ + (1 − τ) θ ′ (3)

The update rate for the target networks is set to a relatively low value of τ = 0.001. Early
experiments showed that a higher update rate in combination with the continuous reward
function would lead to fast rising Q-values, which means very high output values from the
critic and unstable learning. The deterministic policy gradient algorithm of [Li15] is finally
used to train the actor µ with minibatches of 5 steps:

∇θµ J(θµ) =
5∑

t=1
∇aQ(st, µ(st))∇θµ µ(st) (4)

There are 16 parallel learners exploring the environment with different initial configurations,
all updating simultaneously the same actor and critic networks as in [Mn16]. Instead of having

Asynchronous training of deep continuous policy gradient algorithms 2149

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2150 — #2150 i
i

i
i

i
i

8 Winfried Lötzsch, Julien Vitay, Fred H. Hamker

Fig. 3: Summary of the parallel learning process. A single thread pre-trains the internal model,
whereas 16 threads run the reinforcement learning based training for the actor and critic in parallel.
Actor and critic networks slowly update their respective target networks at each time step.

an episode split into minibatches of 5 steps, what would generate highly correlated inputs,
the networks therefore receive small minibatches coming randomly from 16 uncorrelated
environments. This could be seen as a distributed experience replay memory and greatly
improves the convergence of the networks. Ideally, the parallel learners should update the
networks after each step, but the risk of collision between the threads would become too
important. Fig. 3 summarizes the parallel execution of the algorithm.

3.4 Overview of the algorithm

The algorithm executed by each parallel learner during a single episode is described in
List. 1. The network has been implemented using the tensorflow library and simulated on a
shared-memory system with 16 cores and 8 Tesla K20m GPUs. The training of the internal
model works faster on the GPU, because larger batch sizes can be used and thus training can
be more effectively parallelized by tensorflow. The Adam learning rule is used [KB14] to
train all networks, with a learning rate of 10−4 for the actor and critic networks, and 8 · 10−4

for the internal model. As the network structure is very similar to [Li15], most of the weight
initialization parameters and learning rates were preserved. To limit the increase of the
Q-values during training, an L2 regularization penalty (coefficient 0.02) is introduced for
the weights to the output neuron of the critic. A discount factor of 0.97 is used, as episodes
last maximally 1000 steps.

3.5 Reward function

The environment returns a reward for each executed action, consisting of two parts: a
distance-related part and a control part. To effectively control the gripper, one would like

2150 Winfried Lötzsch, Julien Vitay and Fred H. Hamker

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2151 — #2151 i
i

i
i

i
i

Asynchronous training of deep continuous policy gradient algorithms 9

while t < 1000 do
Execute action at according to policy µ(st) + εN
Receive reward rt+1 and observe new state st+1

Compute Rt =

{
rt+1 + γ · Q′(st+1, µ

′(st+1)) if not terminal
rt+1 otherwise.

Store (st, at, Rt) in buffer
if t % 5 == 0 then

Update critic: L(θQ) =
5∑
i=1
(Ri −Q(si, ai))2

Update actor: ∇θµ J(θµ) =
5∑
i=1
∇µ(si)Q(si, µ(si)))∇θµ µ(si)

Update target critic: θQ′ ← τθQ + (1 − τ)θQ′
Update target actor: θµ′ ← τθµ + (1 − τ)θµ′
Empty buffer

end if
t = t+1

end while

List. 1: Algorithm for each actor learner per episode. The outer loop is broken when the target is
reached.

to reward actions getting the gripper closer to the target as fast as possible. The distance-
related part provides reward based on the distance between the gripper and the target:
rdist = e−|xgr ipper−xt arget | . If we only use this reward, a possible strategy for the algorithm
is to circle around the target until the end of the episode, without reaching it: this way it
gathers as much reward as possible, as experimentally observed. So we added a control term
rctrl = |xgripper−old − xtarget | − |xgripper − xtarget | which rewards the algorithm if the
arm endpoint is closer to the target after the action than before, and punishes it otherwise.
The total reward is the product of these two terms r = rctrl · rdist and is normalized to the
interval [−1, 1]. When rdist falls below 0.1, which is sufficiently small as both axes of the
simulated environment reach from -1 to 1, the episode is considered as terminated.

4 Results

For each experiment, we used 2,500,000 samples to train the internal model and 1,200,000
steps for the asynchronous reinforcement learning algorithm. Evaluation was then conducted
over 500 episodes with random starting conditions and the percentage of successful episodes
was monitored. An episode is considered successful when the gripper reaches the target
within 1000 steps. An important point besides proving that the network architecture is able
to solve the robotic problem was to investigate the influence of the convolutional layers on
the performance of the model. Therefore, we performed the whole learning and evaluation

Asynchronous training of deep continuous policy gradient algorithms 2151

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2152 — #2152 i
i

i
i

i
i

10 Winfried Lötzsch, Julien Vitay, Fred H. Hamker

Architecture Background noise Action noise Successful episodes
2 conv layers no no 57 %
2 conv layers yes no 55 %
2 conv layers no yes 77 %
2 conv layers yes yes 67 %
1 conv layer no no 45 %
1 conv layer yes no 34 %
1 conv layer no yes 65 %
1 conv layer yes yes 61 %
no conv layers no no 31 %
no conv layers yes no 29 %
no conv layers no yes 60 %
no conv layers yes yes 59 %

Tab. 1: Experimental results. Percentage of successful episodes (target reached before 1000 steps)
when varying the number of convolutional layers in the internal model, the presence of a noisy
background in the image and the presence of additive noise in the action selection.

process for two different environments, with or without background noise in the image.
Furthermore, we tested one internal model with the last convolutional layer replaced by a
fully connected layer with 200 rectified linear units and another with both convolutional
layers replaced by feed-forward layers consisting of 200 rectified linear units each.

Fig. 4: Convolutional layers are trained to effectively remove background noise and focus on specific
features. A: Input to the first convolutional layer with background noise. B: Output of one neuron of
the first convolutional layer. C: Output of one neuron of the second convolutional layer selective for
the target position.

The experimental results showed in Tab. 1 confirm that using convolutional layers effectively
eliminates background noise such as the white spots spread in the image. The performance
during evaluation without additive noise in the action selection and with two convolutional
layers only slightly decreased by 2 % from 57% to 55%, when adding the background noise.
Figure 4-C illustrates this observation, as the background noise disappears in the second
convolutional layer. The figure also shows the ability of convolutional layers to extract only
relevant information from the image like the target position and thus adapt to the specific
task. In contrast, the performance substantially decreases, when no convolutional layers or

2152 Winfried Lötzsch, Julien Vitay and Fred H. Hamker

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2153 — #2153 i
i

i
i

i
i

Asynchronous training of deep continuous policy gradient algorithms 11

only one is used, independent of the presence of different kinds of noise. This confirms the
importance of convolutions to process visual input.

The best performance of 77% was reached when the actions generated from the actor
during evaluation were not directly executed, but additional noise sampled from an Ornstein-
Uhlenbeck process was added as during training. Analysis of the videos showed that most
of the unsuccessful episodes failed because of the inaccurate identification of the physical
states by the internal model, which means that the arm reaches for a target with a relatively
small offset from the real target. Figure 5 illustrates the problem. The reinforcement learning
process directly on the real physical states however reaches a high success rate over 90%.

Fig. 5: Movement of the gripper for two successful episodes (first two pictures) and two failed attempts
(last two pictures). The brighter the color of a point, the later the gripper was at that position during
the episode.

Videos showing a random selection of 50 successful episodes and 5 failed episodes can be
found on Youtube3. The unsuccessful episodes last much longer, because they exploit all
possible 1000 steps and thus less are recorded. The simulated arm with its two segments is
shown in its random starting position together with the position of the target. All movements
of the arm are shown, which either lead to the successful end of an episode as the gripper
reaches the target or a failed episode, when the gripper does not reach the target after 1000
steps. The videos consist of screenshots taken from the environment at regular intervals.
Both were generated from an actor trained on environments without background and with
two convolutional layers. There was no random noise added during the action selection.

5 Discussion

We proposed to extend the deep deterministic policy gradient algorithm [Li15] with
asynchronous parallel learners [Mn16] to allow end-to-end learning in continuous action
spaces from raw pixels. We applied this novel algorithm to a simplified continuous control
task, with a simulated 2-DOF robotic arm and showed that it is able to achieve a satisfying
performance. We also further reduced the sample complexity of the algorithm by pretraining
an internal model whose role is to transform images into abstract representations. The
algorithm therefore combines a model-free actor-critic architecture with a model-based
internal model, what could prove beneficial for problems where such models can be learned.

3 https://youtu.be/PTdfxGde69s and https://youtu.be/u8aMe6M9jMI

Asynchronous training of deep continuous policy gradient algorithms 2153

https://youtu.be/PTdfxGde69s
https://youtu.be/u8aMe6M9jMI

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2154 — #2154 i
i

i
i

i
i

12 Winfried Lötzsch, Julien Vitay, Fred H. Hamker

However, analysis of failed trials shows that wrong state estimations by the internal model
are the main source of failure in our setup. Future work will address improving the state
representation needed by the actor-critic: the four variables used here may represent a too
strong bottleneck for the architecture and intermediate representations could improve the
performance of the algorithm.

Acknowledgments: This work was supported by the DFG Major Research Instrumentation
Programme (INST 270/221-1 FUGG).

References
[Gu17] Gu, S.; Holly, E.; Lillicrap, T.; Levine, S.: Deep Reinforcement Learning for Robotic

Manipulation with Asynchronous Off-Policy Updates. In: Proc. ICRA. 2017.

[He15] Heess, N.; Wayne, G.; Silver, D.; Lillicrap, T.; Tassa, Y.; Erez, T.: , Learning continuous
control policies by stochastic value gradients, 2015.

[KB14] Kingma, D.; Ba, J.: Adam: A Method for Stochastic Optimization. In: Proc. ICLR. pp. 1–13,
2014.

[Le16] Levine, S.; Pastor, P.; Krizhevsky, A.; Quillen, D.: Learning Hand-Eye Coordination for
Robotic Grasping with Deep Learning and Large-Scale Data Collection. In: Proc. ISER.
2016.

[Li15] Lillicrap, T.P.; Hunt, J.J.; Pritzel, A. et al.: Continuous control with deep reinforcement
learning. CoRR, 2015.

[Mn15] Mnih, V.; Kavukcuoglu, K.; Silver, D. et al.: Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, feb 2015.

[Mn16] Mnih, V.; Badia, A.P.; Mirza, M. et al.: Asynchronous Methods for Deep Reinforcement
Learning. In: Proc. ICML. feb 2016.

[Ni11] Niu, F.; Recht, B.; Re, C.; Wright, S.J.: HOGWILD!: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent. 1, p. 21, 2011.

[SB98] Sutton, R.S.; Barto, A.G.: Reinforcement learning: An introduction, volume 28. MIT press,
1998.

[Si14] Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M.: Deterministic
Policy Gradient Algorithms. In (Xing, Eric P; Jebara, Tony, eds): Proc. ICML. volume 32 of
Proceedings of Machine Learning Research, PMLR, Bejing, China, pp. 387–395, 2014.

[Su99] Sutton, R.S.; McAllester, D.A; Singh, S.P.; Mansour, Y.: Policy Gradient Methods for
Reinforcement Learning with Function Approximation. In: Neural Inf. Process. Syst. 12. pp.
1057–1063, 1999.

[Wi92] Williams, R. J.: Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8:229–256, 1992.

[Zh15] Zhang, F.; Leitner, J.; Milford, M.; Upcroft, B.; Corke, P.: Towards Vision-Based Deep
Reinforcement Learning for Robotic Motion Control. In: Proc. Acra. 2015.

2154 Winfried Lötzsch, Julien Vitay and Fred H. Hamker

