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Abstract:

Anomaly detection is a popular activity in time series analytics and covers various techniques for the
identification of rare data patterns. These techniques are often presented in the form of automatic
anomaly detection algorithms, whose performance depends significantly on the configuration of
hyperparameters. Frequently, specifying the hyperparameters of an anomaly detection algorithm
manually is particularly difficult because it requires an in-depth understanding of the data and the
algorithms’ internal behavior. While automatic methods for hyperparameter optimization exist, they
require labeled training data and many trials to assess a system’s performance before the system can
be applied to production data. Hence, existing methods basically shift the efforts from parameter
optimization to the labelling of datasets, which is – due to a general lack of high-quality, domain-
specific labeled training data – a complex and time-consuming task in time series analytics.
In this paper, we propose a novel hyperparameter optimization framework called HYPEX that learns
a parameterization model for anomaly detection algorithms from synthetically generated training data.
Based on a (user provided or automatically measured) description of a few time series characteristics,
HYPEX quickly suggests effective settings for unseen datasets. The suggestions are based on (i)
explainable hyperparameter rules and (ii) learned default parameters, and require no labels for the
to-be-analyzed target time series. Our evaluation shows that HYPEX’ suggestions significantly improve
an algorithm’s performance compared to the algorithms’ default values and handcrafted heuristics;
they often even compete well with the optimal performance achieved with full Bayesian optimization.
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1 The Curse of Hyperparameters

Anomaly detection algorithms for time series data analyze sequences of real-valued, usually
time-dependent data for rare subsequence patterns, called anomalies. To obtain good
results with these algorithms, various hyperparameters need to be specified. Many of these
hyperparameters are algorithm-specific and cover properties, such as learning rates, window
sizes, maximum cardinalities, move distances, node degrees, and neighbor counts, some of
which hidden behind cryptic names, such as k, phi, or delta. What makes the specification
of these hyperparameters hard is that (i) their implications are often hard to guess even by
technical experts, (ii) the algorithmic performance is often highly sensitive to the chosen
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settings, (iii) most hyperparameters are numeric with an infinite parameter space, and (iv) the
optimal values often depend on certain characteristics of the input data. For example, many
time series anomaly detection algorithms take a window size as input. The optimal value for
this hyperparameter then correlates, i. a., with the time series’ base oscillation frequency,
the expected anomaly length, or the time series’ extreme values. Most anomaly detection
algorithms, therefore, do not perform well with their default parameterization [SWP22].

Hyperparameter optimization is the process of tuning the hyperparameters of an algorithm to
a well performing setting [FH19]. This process can be conducted manually or automatically.
While the manual search is largely based on domain knowledge, automated approaches
find optimal values via, e. g., systematic Bayesian Optimization [DC21; DMC16; PGC+99;
Sh15] or comprehensive Grid Search [Hi12; Le12]. To make any of these approaches work,
labeled training data is required to measure the quality of specific hyperparameter settings.
Following established machine learning practice, we would collect possibly many labeled
time series, and use classical hyperparameter optimization to find optimal settings for some
anomaly detection algorithm. The default values found with this global optimization will
likely perform poorly on a given target dataset because they cannot consider that some
hyperparameter values, which are often the most important ones w. r. t. detection accuracy,
depend on time series characteristics. Furthermore, real-world data is regularly poorly
labeled and, hence, hardly usable for machine learning [SWP22]. For this reason, we would
require high-quality training data for every input dataset to effectively optimize an anomaly
detection algorithm. However, most practical use cases for time series anomaly detection do
not offer any labeled training data, and labeling a sufficient amount of training data is hard.

To ease the hyperparameter optimization process and improve upon globally defined
default values, we propose a novel approach: Given a to-be-analyzed target dataset and a
to-be-optimized anomaly detection algorithm, we ask the user to specify a set of dataset
characteristics, such as variance, min and max values, oscillation frequencies, and expected
anomaly lengths. These characteristics can mostly be profiled automatically from the input
data; if profiling is not possible, they are still easier to guess than hyperparameter values
and easier to provide than a sufficient amount of labeled training data. Our novel system,
then, generates training data based on the provided data characteristics and optimizes the
algorithm on this data. The optimization of the hyperparameters is an effective but also
expensive process. It, therefore, yields not only a set of possibly robust default parameters,
but also a generalizable parameterization model. Because the model learned the relationship
between data characteristics and optimal hyperparameter settings, it can quickly optimize
the algorithm for different target datasets with different characteristics.

More specifically, we propose Hyper Parameter Explanation (HYPEX), a hyperparameter
optimization framework that provides hyperparameter optimization models consisting of
explainable parameter rules. Assuming that data scientists can specify discrete hyperparam-
eters, such as preprocessors, CPU/GPU switches, or ML model types, easily (or at least
intuitively), HYPEX focuses on the optimization of continuous, numerical hyperparameters.
For this, HYPEX uses synthetically generated datasets to determine optimal hyperparam-
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Algorithm Family [SWP22] Float Integer Total

STOMP [Zh16] distance 1 2 3
DWT-MLEAD [TKB17] distribution 1 2 3
Series2Graph [BP20] encoding - 4 4
Sub-LOF [Br00] distance - 5 5
Donut [Xu18] reconstruction 1 5 6
Sub-IF [LTZ08] trees 2 3 5

Tab. 1: Selection of anomaly detection approaches and their hyperparameters by category.

eter values and to identify relationships between (a) different hyperparameters and (b)
hyperparameters and dataset characteristics. To learn a reliable hyperparameter model,
HYPEX takes as input (i) a time series anomaly detection algorithm, (ii) a hyperparameter
configuration that defines the to-be-optimized algorithm parameters, and (iii) a dataset
generation configuration that describes possible dataset characteristics. Both configurations
require the user to specify value ranges for the hyperparameters and data characteristics,
respectively. These ranges should cover the expected use cases and define the scope of the
optimization – the larger the ranges, the more general the trained model and the longer the
training time. The dataset generation configuration, for example, might specify an oscillation
frequency between 1Hz and 2Hz, a maximum value between 0.8 and 1.0, and anomaly
lengths between 5s and 30s. Any target dataset in this scope can later be parameterized.
Because HYPEX optimizes only numerical hyperparameters, the configurations need to
provide settings for all discrete hyperparameters. Once started, HYPEX uses the configura-
tions for automatic training data generation with the GutenTAG [WSP22] dataset generator
and for specifying the trials in a systematic Bayesian Optimization [PGC+99]. From the
many optimal configurations on different datasets, the system then distills all dependencies
between hyperparameters and data characteristics into a causal parameter model. With the
learned model, we can use HYPEX on any dataset with characteristics in the before specified
ranges to propose optimal settings. For this, the user provides the (profiled or estimated)
dataset characteristics of a concrete input dataset such that HYPEX can apply them to the
parameter rules. Note that all discrete settings, such as type of input data or learning strategy,
need to match the settings of the training. With the learned default values and parameter
dependencies, HYPEX finally derives well-performing hyperparameter values.

We evaluate HYPEX on the six algorithms shown in Tab. 1 using synthetic datasets in
Sect. 4.2. In Sect. 4.4, we exemplarily solve the hyperparameter optimization task for the al-
gorithm Sub-LOF [Br00] on five real-world time series. The algorithms are well-performing
representatives from five anomaly detection families that we introduced in a larger evaluative
study [SWP22]; they contain between three and six hard-to-optimize numerical hyperpa-
rameters of type float or integer. Our evaluation shows that the automatically suggested
hyperparameters improve the anomaly detection quality of the algorithms significantly com-
pared to their default parameters and a manual, heuristics-driven parameterization approach
from related work [SWP22]. In summary, HYPEX makes the following contributions:
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(i) Training data generation: We extend the GutenTAG data generator with mutation
rules to explore numeric dataset characteristics (Sect. 3.1).

(ii) Workload distribution: We design a distributed system for the scalable execution of
very many Bayesian optimization tasks (Sect. 3.2).

(iii) Causal structure learning: We propose an algorithm for the identification of
dependencies between numeric dataset characteristics and hyperparameters (Sect. 3.3).

(iv) Parameter inference: We discuss the automatic inference of hyperparameters from
Baysian optimization runs on generated data (Sect. 3.4).

2 Related Work

Optimizing hyperparameters is a well-known task in many research areas. The three most
common approaches for this task are (i) Random Search [BB12], (ii) Grid Search [Hi12;
Le12], and (iii) Bayesian Optimization [DMC16; PGC+99; Sh15]. All three algorithms
optimize hyperparameters in a way that a user-defined optimization criterion, such as F1
score, AUC-ROC score, or accuracy score, is maximized on a given dataset. While Random
Search uniformly samples from a given parameter distribution until its time constraint is
met, Grid Search tests all parameter combinations given by a user-defined parameter grid.
Bayesian Optimization uses a feedback loop to learn from previous parameter evaluations
and improve its parameter suggestions over time. All three algorithms require large amounts
of labelled data to evaluate the algorithm or machine learning (ML) model, which is subject
to optimization. Our approach overcomes this limitation by generating synthetic, labelled
datasets and then transferring learned parameter dependencies. The research community has
also come up with systems specifically designed to optimize hyperparameters in the context
of anomaly detection. We now discuss two such systems, namely Opprentice and Isudra.

Opprentice Opprentice [Li15] is an interesting approach that uses supervised machine
learning to improve the quality of anomaly detection in practice. The proposed algorithm
focuses on removing the manual work required to adjust parameters and thresholds to
reliably detect anomalies. Opprentice applies multiple existing anomaly detectors to the
incoming data (in parallel) while collecting all detector’s outputs, i. e. anomaly scores.
Moreover, domain experts are required to label anomalies in the incoming real-world data.
The combination of the detectors’ outputs and the manually generated labels are used to
train a random forest classifier to find reliable detector parameters and thresholds. The
authors show that their system removes the manual iterative parameter and threshold tuning.
However, domain experts are still required for data labelling purposes.

Isudra Isudra [DC21] was developed in the context of detecting anomalous data points
in clinical health data. The indirect supervision approach for anomaly detection methods
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serves to optimize existing unsupervised anomaly detectors and to tune them to concrete
application settings. The approach requires clinicians to label sensor time series data with
health events. The labelled data gets decomposed into smaller sub-sequences using the
sliding window approach with window size ws. From each of the resulting windows w,
Isudra extracts descriptive features fs(w) and, then, applies an anomaly detector 𝐷 with
a specific set of detector hyperparameters to these features. Once the anomaly detector
terminates, the Isudra supervisor calculates a score by comparing the detected anomalies
with the ground truth data. Subsequently, Bayesian optimization is used to identify the most
effective configuration of window size ws, feature set fs, unsupervised anomaly detector 𝐷,
and detector hyperparametersH . The authors show that the indirect supervision approach
delivers significantly better performance than the alternative methods iForest and One-Class
SVM in detecting six out of seven health events. While Isudra automatically optimizes
detector parameters, it still requires domain experts, i. e., clinicians, to label a significant
amount of anomalous events and, in this way, generate ground truth data.

Our approach also uses the automated hyperparameter optimization technique Bayesian
optimization. However, we overcome the requirement of domain experts providing anomaly
labels by using a data generator that generates synthetic ground truth data with anomaly
labels. Moreover, our work returns a set of parameter-rules, which can be used to adjust a
detector’s parameters to new, yet unseen datasets.

3 Finding Hyperparameter Explanations

In this section, we propose HYPEX, a framework to automatically optimize time series
anomaly detector hyperparameters and extract parameter rules without requiring access to
manually labelled ground truth data. We use a fully controlled data environment to gain
insights on causal dependencies between numerical data characteristics and well-performing
parameter sets, as well as relationships between hyperparameters themselves. Because we
demonstrate HYPEX in the domain of time series anomaly detection, we first introduce the
data (time series) and algorithms (anomaly detection algorithms), we work with.

A time series is an ordered sequence 𝑇 = {𝑇0, 𝑇1, ..., 𝑇𝑛−1, 𝑇𝑛} of real-valued data points
𝑇𝑖 ∈ R𝑚. An anomaly in such a time series is a subsequence of data points that deviates
w. r. t. some measure or model from the frequent patterns in the time series. In our work, we
consider w.l.o.g. only univariate time series with a single attribute per data point (𝑚 = 1). An
anomaly detector takes a time series 𝑇 as input and computes an anomaly score 𝑠𝑖 ∈ {0, 1}
for each data point 𝑇𝑖 ∈ 𝑇 . The anomaly score 𝑠 indicates the detector’s confidence that a
data instance𝑇𝑖 is anomalous. The anomaly scores cannot be compared to the anomaly labels
unless they are turned into binary labels using a threshold. Hence, the choice of threshold
significantly impacts the anomaly detector’s performance and to eliminate it as another
tuning parameter, we use the AUC-PR score [Br97; DG06] as a performance measure for
the anomaly detectors’ outputs. This measure is especially popular in applications dealing
with learning on imbalanced data, which is the case for anomaly detection.
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Fig. 1: Control flow of a distributed HYPEX execution consisting of five major steps: (i) data generation
(Sect. 3.1), (ii) hyperparameter optimization (Sect. 3.2), (iii) parameter-rule-discovery (Sect. 3.3),
(iv) parameter model validation (Sect. 3.3.5), and (v) fixed parameter identification (Sect. 3.4).

HYPEX consists of five consecutive steps that are explained in the following sections: (i) The
data generation step creates time series, injects anomalies, and labels them (Sect. 3.1),
(ii) the hyperparameter optimization step uses Bayesian Optimization to find optimal
parameters on the generated datasets (Sect. 3.2), (iii) the parameter-rule-discovery step finds
causal dependencies between data characteristics and the detector’s hyperparameters, which
creates a set of parameter model candidates (Sect. 3.3.1 to 3.3.4), (iv) the parameter model
selection step validates the parameter model candidates to produce the final parameter model
that incorporates all significant parameter rules (Sect. 3.3.5), and (v) the fixed parameter
identification step finds data-independent, fixed parameter values for those parameters that
are not covered by the parameter model (Sect. 3.4). The resulting final parameter model and
the fixed parameters can be used to calculate future hyperparameters on yet unseen time
series based on that time series’ characteristics. It is worth noting that training the parameter
model, including data generation, Baysian optimization and causal inference, is a costly
process. For this reason, we propose to parallelize and distribute the efforts. But the training
enables HYPEX to afterwards parameterize an algorithm for different input datasets in
constant time. Fig. 1 provides a high-level architecture overview of our HYPEX approach.
All time-intensive tasks, namely steps (i), (ii), (iv) and (v), are executed on a distributed
Dask [Ro15] cluster utilizing multiple parallel worker nodes to speed up the overall runtime.

3.1 Data Generation

We use the time series anomaly data generator GutenTAG [WSP22] to generate the synthetic
datasets used to optimize the anomaly detector’s parameters. Each generated time series has
a base oscillation behavior and potentially multiple injected anomalies of different types.
GutenTAG pre-defines six base oscillations and nine anomaly types. When generating a
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time series datasets, GutenTAG provides access to the time series, the anomaly labels,
and the generation metadata. This information is used to extract and control the dataset
characteristics. Fig. 2 shows a generated, univariate, real-valued time series, where the
underlying base oscillation simulates electrocardiogram (ECG) data. Two anomalies were
added, both indicated by the red background color: the first at position 140 of type frequency
and length 12, the second at position 240 of type extremum and length 1.

0 50 100 150 200 250 300 350 400
timestamp

0

10
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e

Fig. 2: Exemplary time series generated with GutenTag [WSP22]

To test how an anomaly detector’s parameters need to adapt w. r. t. a change in a specific
data characteristic, we introduce time series mutations. We define a time series mutation as
an attribute change in the GutenTAG configuration used to generate the synthetic time series
data. A generated dataset may contain multiple time series mutations, so-called mutation
sets, which means that two datasets can differ in multiple characteristics. HYPEX uses
user-defined mutation sets to generate synthetic datasets that vary in an arbitrary but fixed
set of data characteristics, such as anomaly lengths, oscillation frequencies, variances etc.
Fig. 3 shows an example of a mutation set that contains a single time series mutation of the
attribute base-oscillation.frequency applied to the predefined time series ecg-data. In this
case, HYPEX uniformly samples values for the attribute base-oscillation.frequency of the
user-provided time series ecg-data from the provided range [10, 50]. The sampling creates a
total of n_samples = 50 mutated GutenTAG configurations. Subsequently, those 50 different
GutenTAG configurations are used to generate the actual 50 datasets. More datasets improve
the training quality, but also increase the training time; our experiments use a generously
high value of 50 because we focus on quality. By randomly selecting dataset characteristics
from the specified ranges, the generated data has all the important characteristics of real
data, but with a certain variety and controlled anomalies – for this reason, the learnings on
the generated data translate well to real data. To conclude the data generation, HYPEX splits
the set of generated time series datasets 60:20:20 into distinct train, validation, and test sets.
All physical nodes in the Dask cluster perform the data generation task concurrently.

3.2 Hyperparameter Optimization

Once the data generation completes, HYPEX enters the distributed hyperparameter opti-
mization. For each time series dataset in the training split that GutenTAG generated, we
independently optimize the given anomaly detector’s parameters such that the algorithm
performs well on the selected dataset. Each step, i. e., a particular hyperparameter configu-
ration, of the optimization process is called trial and HYPEX keeps track of the dataset,

HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection 467



8 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

1 name: ecg-data # The time series to mutate
2 n_samples: 50 # The number of mutation sets to generate
3 mutations:
4 - paths: ["base-oscillation.frequency"] # The attribute to mutate
5 dtype: int
6 min: 10
7 max: 50

Fig. 3: Exemplary mutation of the data characteristic base-oscillation.frequency of a user-defined
time series called ecg-data.

its characteristics, the tested hyperparameters, and the resulting performance scores for all
performed trials over all datasets. The number of required trials to achieve reliable results
strongly depends on the number and data types of the hyperparameters to optimize.

Optimization Procedure HYPEX uses Bayesian Optimization for the optimization
procedure. While Random Search and Grid Search simply return the best performing
hyperparameters after testing several parameter configurations, Bayesian Optimization bases
hyperparameter guesses on past parameter evaluations, leading to a faster convergence.
Bayesian optimization is commonly used to optimize an objective function 𝑓 [Fr18]
that is expensive to evaluate, such as tuning an ML model’s architecture, or finding
the best hyperparameters for an anomaly detection algorithm. The most widely adopted
Bayesian optimization method is Sequential Model-Based Optimization (SMBO). Instead of
optimizing the objective function 𝑓 directly, SMBO uses a probabilistic model 𝑃( 𝑓 (H) | H)
as a surrogate for 𝑓 [DMC16]. Until a time constraint C is met, SMBO keeps repeating
the following four steps: (i) update the probabilistic model based on previously collected
benchmark results, (ii) select the next best guess parametersH based on the probabilistic
model, (iii) evaluate the objective function 𝑓 with the parameters H , which is the most
expensive step, and (iv) collect and save the benchmark results (H , 𝑓 (H)) for the upcoming
optimization steps. The research community came up with several samplers to generate the
next best parameter guess based on the previous evaluated parameters [Be11]. Our approach
uses the Tree-structured Parzen Estimator (TPE) algorithm. In each iteration, it fits two
Gaussian Mixture Models (GMMs) per hyperparameter 𝜂 ∈ H , the first GMM 𝑙 (𝜂) on the
set of well performing hyperparameters 𝑓 (𝜂) > 𝑦∗ and the second 𝑔(𝜂) on the remaining
ones 𝑓 (𝜂) ≤ 𝑦∗. The split value 𝑦∗ is automatically chosen by the TPE algorithm to match
some quantile 𝛾 of the observed values for the optimization criterion. In each iteration, for
each hyperparameter, TPE chooses the value 𝜂 that maximizes the ratio 𝑙 (𝜂)/𝑔(𝜂). Finally,
of all the evaluated parameter guessesH , the one with the best performance score 𝑓 (H)) is
returned. Our work builds upon the open-source SMBO framework Optuna [Ak19], which
implements the TPE algorithm with its TPESampler, and we use the AUC-PR score [Br97;
DG06] as the optimization criterion.
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Task Distribution HYPEX speeds up the optimization procedure using distributed
computing techniques: It splits the workload into smaller sub-tasks, which can be computed
independently and in parallel on potentially different physical nodes. For the implementation
of this distribution, we have chosen the framework Dask [Ro15]. Dask provides dynamic
task scheduling as well as a data collection library - both accessible through a convenient
Python API. We wrap each optimization trial into a Dask task such that we can submit the
entire set of tasks to the Dask scheduler at once. Dask then controls and schedules the tasks
on the cluster’s worker nodes. This procedure requires us to ensure that each trial can run on
each included physical node, i. e., the synthetic data must be present on all nodes. HYPEX,
therefore, seeds the random number generator in GutenTAG such that all physical nodes
generate all and the exactly same input datasets. To ensure the Bayesian optimizer bases its
parameter suggestion on previous parameter evaluation runs, each trial requires access to not
only the trial runs on the same physical cluster node, but to all trials from all cluster nodes.
Optuna achieves this trial synchronization by storing trial results in a MySQL database,
which HYPEX launches on the Dask scheduler on start up. Each trial first connects to the
database to fetch previous trials’ results, then suggests a new set of hyperparameters, runs
the desired algorithm with the suggested hyperparameters, computes the AUC-PR score
from the algorithm’s anomaly scores, and finally persists the tested parameters and AUC-PR
score in the MySQL database.

3.3 Parameter Rule Discovery

We use the optimized hyperparameters found by Optuna (Sect. 3.2) to discover parameter
rules that specify (a) how hyperparameters depend on other hyperparameters and (b) how
hyperparameters depend on specific data characteristics. These data characteristics are
represented by the applied time series mutations in our optimization process. To discover
the parameter rules, we first present a de-noising step for the trial results, which is the
basis of HYPEX’s rule discovery (Sect. 3.3.1). Then, we guide through the estimation of
an undirected causal graph, the so-called causal skeleton (Sect. 3.3.2). Because the causal
skeleton is undirected, we then need to orientate the edges into determinant and dependent
hyperparameters/characteristics (Sect. 3.3.3). Once the dependence graph is completed,
we discuss how HYPEX compiles the identified parameter rules into a parameter model,
which is used later in the process to predict hyperparameters on new, unseen time series
dataset based on specific data characteristics (Sect. 3.3.4). Finally, we present an approach
to validate discovered parameter rules (Sect. 3.3.5).

3.3.1 Noise Reduction

The set of collected Optuna trials consists of hyperparameter configurations with different
performance AUC-PR scores. To find parameter rules, HYPEX should, however, consider
only such trails that performed well, because configurations that led to poor trail results
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with low AUC-PR scores are not indicative for hyperparameter/characteristic correlations
and must, therefore, be considered as noise. To remove a large portion of that noise, we filter
out all trials with AUC-PR scores lower than a dynamic threshold 𝛾, which we calculate for
each time series in the training split: We define the threshold 𝛾 as the top 10% AUC-PR
score quantile, which has shown to be a robust selection strategy in all our experiments.

To further improve the explainability of the discovered parameter rules, we also prune
parameter rules for hyperparameters with low impact on an anomaly detector’s performance.
For this, HYPEX uses the parameter importance evaluator fANOVA [HHL14] to identify
important hyperparameters. fANOVA trains a random forest regressor to predict the AUC-PR
scores based on a given parameter configuration. The random forest regression’s feature
importance is used to assign importance scores to the anomaly detector’s hyperparameters.
Then, we prune all hyperparameters with an importance of less than 1% – these parameters,
which are usually runtime performance related parameters, do not require optimization.

After noise reduction, HYPEX combines the noise-reduced trials and the information on
hyperparameter importance into a matrix 𝑀 of dimensionality 𝐶 × 𝑁 . 𝑁 defines the number
of trials left after reducing the noise and 𝐶 = 𝑝 + 𝑑 + 1 defines the number 𝑝 of anomaly
detector hyperparameters with an importance score ≥ 0.01 plus the number 𝑑 of applied
time series mutations and an extra column for each trial’s achieved AUC-PR score. Consider
an anomaly detector taking two parameters window size with an importance score of 99.5%
and random state with an importance score of 0.5% as input. Moreover, let the datasets
contain the single applied time series mutation base-oscillation frequency. The resulting
matrix 𝑀 would consist of three columns, namely window size, base-oscillation frequency,
and the AUC-PR score; random state was removed due to its low importance score of 0.5%.
The number of rows in 𝑀 depends on the performed trials’ AUC-PR score distribution.
With the assumption of a uniform AUC-PR score distribution and 300 trial runs, we expect
𝑀 to have 0.1 · 300 = 30 rows.

3.3.2 Skeleton Estimation

To identify causal dependencies between columns of the noise-reduced data matrix 𝑀

(Sect. 3.3.1), HYPEX performs linear and non-linear independence tests. For these tests,
we found that most existing approaches for the detection of non-linear dependencies are
too sensitive on our data, given the potentially still tiny signal-to-noise ratio. This is why
we use a fairly simple, still powerful, regression-based non-linear independence test with
the PC algorithm [Sp00]. The PC algorithm is one of the oldest methods to discover
causal dependency graphs [GZS19; Sp00]. It supports plugging in many statistical tests
for checking independence and Conditional Independence (CI), which makes it usable in
a variety of settings. In HYPEX, we integrate an open-source implementation of the PC
algorithm in Python4 and extend it with own regression-based independence and CI tests

4 Code available at https://github.com/keiichishima/pcalg
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called Non-Linear Regression by Transformation (NLRegT) independence test and NLRegT
CI test. Note that they are applicable and perform well only on parameters of the numerical
data types integer and float. The PC algorithm uses the following five steps to estimate an
undirected version of the true causal graph, which we call the causal graph skeleton:

(i) Create a fully connected graph 𝐺 where each column in the data matrix, i. e.,
hyperparameter and dataset characteristic, is represented by a node in 𝐺.

(ii) For each edge (𝐴, 𝐵) ∈ 𝐺, run the (in-)dependency test and remove it from 𝐺 if the
variables 𝐴 and 𝐵 are (unconditionally) independent. We use dynamic confidence
thresholds 𝛼 (for more details, see Sect. 3.3.5).

(iii) For each of the remaining edges (𝐴, 𝐵) ∈ 𝐺 and each set of nodes 𝑍 = {𝑍1, ..., 𝑍𝑛}
with 𝑛 ∈ N+ that are all either connected to 𝐴 or 𝐵, remove the edge (𝐴, 𝐵) if 𝐴 and
𝐵 are conditionally dependent under 𝑍 . Start with 𝑛 = 1 and repeat this step with
increasing set sizes 𝑛. Consider a true causal graph 𝐴 → 𝐵 → 𝐶. Step (ii) finds
(unconditional) dependencies between {𝐴, 𝐵}, {𝐵,𝐶}, and {𝐴,𝐶}. However, the
dependency {𝐴,𝐶} only gets identified because there exists a path (𝐴, 𝐵, 𝐶) between
𝐴 and 𝐶. The PC algorithm uses the conditional independence test to identify such
dependencies {𝐴,𝐶} and remove them from the estimated causal graph. Note, that it
is possible to additionally have an edge 𝐴→ 𝐶 in the true causal graph. In this case,
{𝐴,𝐶} is not tested conditional dependent and their edge is therefore not removed
from the estimated causal graph.

In the following, we explain our NLRegT independence and CI tests, which HYPEX uses
with the PC algorithm to estimate the causal graph.

NLRegT Independence Test Our NLRegT test is a very robust and powerful independence
test for our application scenario. It runs the least squares optimization on pre-transformed
data and comes with two transformations by default: linear and hyperbola. The linear
transformation in front of the least squares optimization allows testing for relationships
between a predicting variable 𝑢 and a predicted variable 𝑣 of the form 𝑣 = 𝛽 ·𝑢+𝑐. 𝛽 being the
linear regression’s coefficient, and 𝑐 being its intercept. The hyperbola transformation, on the
other hand, enables us to detect causal dependencies between 𝑢 and 𝑣 of the form 𝑣 = 𝛽 · 1

𝑢
+𝑐.

This set of transformations is easily extendable, but our experiments strongly suggested
that (at least in the domain of anomaly detection on time series data) linear and hyperbola
dependencies are most common and, hence, sufficient. To fit the non-linear regression with
these transformations, our approach takes the following inputs: the slices X of the data
matrix 𝑀 containing the predicting variable and Y containing the predicted variable, a data
seriesW containing the achieved AUC-PR scores, and a set of transformation functions T .
For each of the provided transformation functions in T , the algorithm transforms the input
data of the predicting variable X and fits a linear regression on the transformed data X𝑇 :
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𝑚𝑜𝑑𝑒𝑙 ← 𝑓 𝑖𝑡𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(X𝑇 ,Y,W2). Then, the linear regression of Y onto the
transformed data X𝑇 gets fit by using the trials’ squared AUC-PR scoresW2 as sample
weights. We thereby increase the weight of trials with higher AUC-PR scores and decrease
the weight of those with smaller score values. Afterwards, the fitted regression model itself
is scored using the 𝑅2-Score. Finally, the model with the highest 𝑅2-Score and the 𝑅2-Score
itself are returned. To test for independence between X and Y, HYPEX checks whether the
calculated 𝑅2-Score is smaller than a provided threshold 𝛼. Hence, the quality of the causal
discovery output strongly depends on the chosen value for 𝛼. We provide more detailed
information on how we use 𝛼 to generate different model candidates in Sect. 3.3.5.

NLRegT CI Test While the provided (unconditional) independence test is generally
applicable, our conditional independence test performing X ⊥ Y | Z assumes the data to
be generated under the Additive Noise Model (ANM). For this case, Peters et al. [Pe14]
showed that the conditional independence test can be mapped to an unconditional one.
The ANM assumes that there is a functional relationship between Z and X such that
X = 𝑓 (Z) +N𝑥 withN𝑥 being a zero-mean noise independent ofZ. The same assumption
applies to Y = 𝑔(Z) + N𝑦 . These assumptions allow the redefinition of X ⊥ Y | Z to
N𝑥 ⊥ N𝑦 [Zh17]. Algorithm 1 shows the application of this redefinition: The CI test uses
two steps, which are (i) the estimation of the noise terms N𝑥 and N𝑦 , and (ii) the test for
independence between the two estimated noise termsN𝑥 andN𝑦 . To estimate the two noise
terms, we fit the non-linear regression of Z onto X (Line 2) and Y (Line 5); we then
calculate the regressions’ residuals 𝜖𝑋 (Line 3) and 𝜖𝑌 (Line 6). To test for independence
between the residuals 𝜖𝑋 and 𝜖𝑌 , we once again fit a non-linear regression (Line 8) to
check whether the 𝑅2-Score is larger than a threshold 𝛽. HYPEX evaluates the different 𝛽
threshold values 0.2, 0.4, 0.6, and 0.8. The best performing among these gets selected (for
more details, see Sect. 3.3.5).

Algorithm 1 NLRegT CI Test
1: procedure NLRegTCI(X,Y,Z,W, 𝛽)
2: 𝑚𝑜𝑑𝑒𝑙𝑋 ← 𝑓 𝑖𝑡𝑁𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(Z,X,W)
3: 𝜖𝑋 ← X − 𝑚𝑜𝑑𝑒𝑙𝑋 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (Z)
4:
5: 𝑚𝑜𝑑𝑒𝑙𝑌 ← 𝑓 𝑖𝑡𝑁𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(Z,Y,W)
6: 𝜖𝑌 ← Y − 𝑚𝑜𝑑𝑒𝑙𝑌 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (Z)
7:
8: 𝑠𝑐𝑜𝑟𝑒 ← 𝑓 𝑖𝑡𝑁𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝜖𝑋 , 𝜖𝑌 )
9: return 𝑠𝑐𝑜𝑟𝑒 > 𝛽

3.3.3 Edge Orientation

Until now, we found correlated hyperparameter-hyperparameter and hyperparameter-
characteristic edges as undirected relationships. To derive hyperparameters from other
hyperparameters or dataset characteristics, these relationships need to be oriented, which is
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done in three steps: (i) incorporation of prior knowledge on dataset characteristics, (ii) esti-
mation of the Completed Partially Directed Acyclic Graph (CPDAG), and (iii) conversion
of the CPDAG to a Directed Acyclic Graph (DAG).

In step (i), we incorporate a task-specific constraint: Because we aim to find good hyperpa-
rameters given certain dataset characteristics, edges need to point from characteristics to
parameters. Hence, given the edge (𝐴, 𝐵) with orientation 𝐴 → 𝐵, HYPEX removes all
edges (𝐴, 𝐵) from the graph skeleton where the node 𝐵 is a dataset characteristic. Step (ii)
then executes the PC algorithm’s CPDAG estimation. The PC algorithm is guaranteed to
converge to the Markov Equivalence Class (MEC) under the causal Markov condition and
faithfulness assumption and when there is no undiscovered confounder [GZS19]. Consider,
for example, a true causal graph 𝐺 containing only two nodes 𝐴 and 𝐵 with a single
undirected edge {𝐴, 𝐵} ∈ 𝐺. Here, the PC algorithm identifies 𝐴 and 𝐵 as dependent on
one another, but it cannot decide the dependency direction. Therefore, the resulting graph
contains an undirected edge between the nodes 𝐴 and 𝐵. Such a graph that represents the
MEC and possibly contains a mixture of directed and undirected edges is called a CPDAG.
To estimate the CPDAG, the PC algorithm executes the following two steps [GZS19]:

(i) Search for v-structures and orient edges accordingly. A v-structure is a triple of nodes
(𝐴, 𝐵, 𝐶) such that there exist the undirected edges {𝐴, 𝐵} ∈ 𝐺 and {𝐵,𝐶} ∈ 𝐺, but
{𝐴,𝐶} ∉ 𝐺 and the node 𝐵 is not contained in the set 𝑍 = {𝑍0, ..., 𝑍𝑛} under which
𝐴 and 𝐶 were tested conditionally independent. The edges in such a v-structure are
oriented 𝐴→ 𝐵 and 𝐶 → 𝐵.

(ii) Use orientation propagation to orient possibly many of the remaining edges. To
do so, search for a triple of nodes (𝐴, 𝐵, 𝐶) such that there exists a directed edge
(𝐴, 𝐵) ∈ 𝐺, an undirected edge {𝐵,𝐶} ∈ 𝐺, but no edge between 𝐴 and 𝐶. In each
of the found triples, the undirected edge {𝐵,𝐶} gets oriented 𝐵→ 𝐶.

The resulting CPDAG might still contain undirected edges, but our final parameter model
requires all discovered parameter rules to have a clear orientation. To ensure this requirement,
step (iii) of the edge orientation converts the estimated CPDAG to a DAG with a colored
depth-first search [Su17; ZG07]. The search removes back edges in the graph, thus breaking
existing cycles and creating a DAG with no undirected edges or cyclic dependencies.

3.3.4 Parameter Model

Given the dependency DAG, HYPEX now trains a set of parameter models that predict
optimal values for dependent anomaly detector hyperparameters from the set of data
characteristics and other hyperparameters: For each node in the DAG, HYPEX identifies all
predecessor nodes and fits the NLRegT model once again using the trials’ squared AUC-PR
score as the sample weight. While the NLRegT model previously contained just a single
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feature, which was used to predict the target variable, the number of features here depends on
the number of predecessors in the graph. The parameter model stores at most one NLRegT
model for each anomaly detector hyperparameter. Once the parameter models are trained
on generated data, HYPEX can use them to predict hyperparameter values on unseen data.
For this, the algorithm iterates over the estimated DAG in topological order. In each step, it
uses the stored NLRegT model to predict the respective parameter based on all previously
estimated parameters and data characteristics. In Sect. 3.4, we discuss how HYPEX assigns
fixed values to the hyperparameters that are not covered by the parameter model.

3.3.5 Parameter Model Selection

Our experiments show that the optimal 𝛼 and 𝛽 thresholds to choose for the parameter-
rule-discovery (Sect. 3.3.2) are algorithm- and base oscillation-specific. Therefore, we
run the parameter-rule-discovery for different 𝛼 and 𝛽 thresholds, leaving us with a set
of parameter model candidates. The set of 𝛼 thresholds to test is determined by fitting a
non-linear regression on each pair of variables in the data matrix 𝑀 , rounding the regressions’
𝑅2-scores to two decimal places and considering only 𝑅2-scores ≥ 5% as significant; the
set of 𝛽 thresholds is fixed and set to {0.2, 0.4, 0.6, 0.8}. These settings have been found
via systematic ablation tests and showed to be dataset and algorithm independent; hence,
we propose them as default settings for HYPEX. For each unique combination of 𝛼 and 𝛽

thresholds, we create a parameter model candidate by running our parameter-rule-discovery
using the respective threshold values. Subsequently, we measure the parameter model
candidates’ performances on the validation data split, which contains 20% of the generated
time series datasets. To test a candidate’s performance, we use the parameter model to
predict the anomaly detector’s parameters based on data characteristics. All parameters that
are not covered by the parameter model candidate are filled up with uniformly sampled
random values. For each pair of model candidate and time series dataset, we independently
sample non-covered parameters 10 times and, finally, choose the parameter model with the
highest mean AUC-PR score across all conducted tests.

3.4 Fixed Parameters

Our parameter models are expected to cover only such anomaly detector hyperparameters
that depend on either a data characteristic or another hyperparameter. For the remaining,
data-independent anomaly detector hyperparameters, we identify generally well-performing,
fixed values. To find these values, HYPEX again uses the Bayesian optimizer to optimize
the mean AUC-PR score across all generated validation time series datasets. For each time
series, we utilize the parameter model to predict the data-dependent hyperparameters based
on the contained time series anomalies. Only the data-independent parameters are subject to
optimization in this final step. Eventually, the hyperparameter values of the best performing
trial are selected as generally applicable, fixed parameters for the tested anomaly detector.
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The final parameter model holds a combination of NLRegT models and fixed parameters,
thus being able to predict all anomaly detector parameters on unseen time series data.

4 Evaluation

In this section, we evaluate HYPEX on a variety of anomaly detection algorithms and
time series datasets. We start with the explanation of the experimental setup (Sect. 4.1),
then compare the performance scores achieved by our parameter suggestions with relevant
alternative approaches (Sect. 4.2), review HYPEX’s sensitivity to automatically chosen
thresholds (Sect. 4.3), and show the application of HYPEX to real-world data (Sect. 4.4).

4.1 Experimental Setup

We evaluate our approach5 on six anomaly detection algorithms and four time series dataset
groups containing different base oscillations and anomaly types. The included base oscillation
behaviors are (i) sine, (ii) ECG, (iii) random walk, and (iv) cylinder bell funnel [WSP22].
Each base oscillation is considered separately, as we find this to have a large impact on
possible parameter rules and algorithm behaviors. All generated time series datasets consist
of 10, 000 individual data points and contain 3, 6, or 9 same-length anomalies at different
positions of types (i) variance, (ii) frequency, or (iii) pattern [WSP22]. We apply time series
mutations to (a) the base oscillation frequency (only applicable for sine and ECG), (b) the base
oscillation variance, (c) the length of anomalies, and (d) the number of anomalies. For each
of the four dataset groups characterized by the four base oscillation behaviors, we incorporate
50 time series mutations. We recall that 20% of the generated datasets are reserved for
evaluation purposes only (Sect. 3.1). We evaluate our approach on algorithms from five
out of six anomaly detector families defined by Schmidl et al. [SWP22]. The algorithms
stem from the areas (i) distance (STOMP [Zh16] and Sub-LOF [Br00]), (ii) distribution
(DWT-MLEAD [TKB17]), (iii) encoding (Series2Graph [BP20]), (iv) reconstruction
(Donut [Xu18]), and (v) trees (Sub-IF [LTZ08]). Each algorithm has between 3 and 6
hyperparameters that are subject to optimization. For the evaluation, we use the AUC-PR
score to measure the algorithms’ detection quality.

We do not have any information on the true relationships between data characteristics and
hyperparameters for any of the anomaly detectors, on which we evaluate our framework
HYPEX. Therefore, we measure the quality of our parameter model and fixed parameter
suggestions by comparing them to (a) the algorithms’ default parameters, (b) the manually
tuned parameter recommendations of TimeEval [SWP22], and (c) the optimization results
achieved by the Bayesian Optimizer Optuna (full optimization). While each detector’s
default hyperparameter configuration stays constant, regardless of which time series it runs

5 Code and evaluation scripts: https://github.com/HPI-Information-Systems/hypex
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Fig. 4: Evaluation of Donut [Xu18] on 10 sine time series comparing our Parameter Model with
Donut’s Default Parameters, the Timeeval Heuristics, and a Full Optimization run.

on, HYPEX’s parameter model as well as TimeEval’s parameter suggestions use specific
data characteristics to adapt a selected subset of the hyperparameters to the time series input
while keeping others constant. The full optimization, however, tunes every single parameter
to the specific input time series. Thus, the best scores of the full optimization represent an
upper bound for any optimization effort (which is achievable only with suitable training data)
while the algorithm’s default parameters represent a lower bound for HYPEX’s performance;
the TimeEval results show what results can be expected with significant manual effort.

4.2 Parameter Model Performance

In this section, we first show a single anomaly detector’s performance using HYPEX’s
suggested hyperparameters. Then, we present a general overview of the performance
achieved on the tested algorithms and base oscillations.

Fig. 4 visualizes our evaluation results on the anomaly detector Donut [Xu18] and 10 time
series datasets with base oscillation sine that cover various time series mutations with
different dataset characteristics and, in particular, different types and numbers of anomalies
in each time series. It compares the performance of HYPEX’s parameter model with
the performance achieved by (i) the detector’s default parameters, (ii) TimeEval’s
manually found default parameters and heuristics, and (iii) a full Bayesian optimization
run (full optimization). While the default parameters, the TimeEval heuristics, and our
parameter model recommend a single hyperparameter configuration per input dataset, the
full optimization is granted 300 trials to optimize Donut’s hyperparameters for each of
the 10 time series. Our first insight is that especially Donut’s default parameters perform
poorly, which clearly emphasizes the need for hyperparameter tuning. In comparison to
the algorithms’ default values, both the TimeEval approach and HYPEX’s parameter
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Fig. 5: Distribution of maximum AUC-PR scores achieved by Default Parameters, Timeeval
Heuristics, our Parameter Model, and Full Optimization per base oscillation and algorithm.
† Empty parameter model for base oscillations random walk and cylinder-bell-funnel.

model achieve high AUC-PR scores; the difference is that no manual work was needed
to find the parameter model. Furthermore, HYPEX’s performance scores get even close
to the maximum scores achieved via Bayesian optimization (consider the highest point
for comparison); as an unsupervised parametrization approach, though, HYPEX does not
require labels for the input time series to optimize it, but instead generates training data
automatically.

We summarize our evaluation results across all six tested algorithms on four base oscillations
in Fig. 5. A single box plot shows the distribution of 10 AUC-PR scores. Each score represents
the evaluation result on a single evaluation time series dataset. To represent the Bayesian
full optimization trials, we pick the maximum AUC-PR scores per time series dataset
obtained in each of the 300 trial runs. As expected and confirmed in this experiment, a full
optimization for a target dataset with training data performs best on all dataset types, i.e.,
base oscillations. Again, the algorithms’ default parameters achieve the worst performance

HYPEX: Hyperparameter Optimization in Time Series Anomaly Detection 477



18 Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

scores in the majority of the conducted experiments. The manual hyperparameter settings
and heuristics of TimeEval mostly deliver higher performance scores than the algorithms’
default parameters. In some cases, such as Donut on random walk, Series2Graph on ECG
and random walk, and Sub-IF on ECG, however, the TimeEval efforts could not predict
better-performing hyperparameters than the default parameters. With no human effort and no
pre-labeled training data, our parameter models’ hyperparameter suggestions surpass both
default parameterization and TimeEval performances in most experiments. Even in cases
where HYPEX did not discover any parameter rules for an anomaly detector and simply
suggested fixed values, these values still outperformed the detector’s default parameters
(see DWT-MLEAD on base oscillations sine, random walk, and cylinder bell funnel).

In terms of absolute performance, we see that all evaluated anomaly detectors tend to perform
best on cyclical base oscillations, such as sine and ECG, and struggle with non-cyclical
ones, such as random walk and cylinder bell funnel.

4.3 Sensitivity to Thresholds
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Fig. 6: Comparison of AUC-PR score distribu-
tions by selected 𝛼 and 𝛽 threshold values on 10
evaluation datasets for algorithm STOMP [Zh16]
and base oscillation sine. Each named threshold
tuple represents a set of tuples that all result in the
identification of identical parameter-rules.
† The threshold value HYPEX automatically se-
lected (see Sect. 3.3.5).

HYPEX uses two thresholds, namely 𝛼

and 𝛽, to adjust the minimum confidence
scores of the (in-)dependence and CI tests.
In Sect. 3.3.5, we discussed how the algo-
rithm automatically determines the optimal
values for 𝛼 and 𝛽 during the parameter
model selection. Fig. 6 shows the parame-
ter model results on the evaluation datasets
when HYPEX performs the optimal thresh-
old determination on the validation datasets.
We optimized each parameter model’s fixed
parameters independently for each of the
threshold tuples. Many experiments indi-
cate that the full optimization trial runs have
only low variances in optimal parameter
values across different evaluation datasets.
Thus, parameter rules do not showcase their
full potential, as optimized fixed parameters
achieve similar high-performance scores. However, the full optimization’s best parameter
value suggestions for the algorithm STOMP on the base oscillation sine showed high
variances across the different datasets. The (𝛼, 𝛽) threshold tuple (0.46, 0.2) resulted in an
empty causal graph, thus the suggested parameters on the evaluation datasets are based on
fixed values only. However, it achieves the second-best detection results on average among
the compared parameter models. We also see that using fixed values only comes at the cost
of increased variance across the evaluation datasets. Hence, HYPEX automatically chooses
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the threshold values (0.24, 0.2). Across all experiments, the resulting parameter models
contain a mixture of parameter rules and fixed hyperparameter values, which is a result that
performs best on the evaluation datasets and shows to have a lower variance than using only
fixed parameter values.

4.4 Application on real-world data

In this section, we evaluate how HYPEX’ hyperparameter suggestions perform on five
real-world datasets taken from the KDD-TSAD benchmark collection [Ke21]. All five
time series represent ECG signals with varying properties, and contain different anomalies.
Due to the space limitation and because Sub-LOF performed consistently well in all our
previous evaluations, we restrict our experiment to the Sub-LOF algorithm. We configured
HYPEX to optimize all four hyperparameters of Sub-LOF, which are window size, number
of neighbors, leaf size, and random state, and to create datasets with similar data
characteristics to the target datasets, i. e., ECG shaped data. We allow HYPEX to mutate
base oscillation frequency, noise level, amplitude, mean, and anomaly details, such
as position, length, and anomaly shift size. For both the generated training datasets
and the real-world datasets, HYPEX uses tsfresh [Ch18] to extract 12 time series features as
the dataset characteristics.

variance standard deviation maximum

window size

number of neighbors

constant

random state leaf size

dataset characteristic hyperparameter

(a) HYPEX parameter model learned for the Sub-LOF
algorithm on the synthetically generated training data.
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Fig. 7: HYPEX’ parameter model and AUC-PR scores for Sub-LOF on real ECG datasets.

Fig. 7a shows HYPEX’ final parameter model for Sub-LOF. The optimization on the
synthetic training datasets identified dependencies for the hyperparameters window size
and number of neighbors: While window size depends solely on the dataset characteristic
maximum, number of neighbors dependents not only on dataset characteristics, but also
on the hyperparameter window size. HYPEX assigned constant values to the parameters
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random state and leaf size because they had no significant influence on the algorithm’s
performance on the training datasets.

In Fig. 7b, we show the AUC-PR scores of Sub-LOF on the five real-world datasets using
(a) HYPEX’ parameter model, (b) the algorithms’ default parameters, (c) the parameter
recommendations of TimeEval, and (d) the maximum of a full optimization run with
300 trials. The full optimization run indicates the optimal performance that Sub-LOF
could achieve on each dataset when taking the ground truth into account. Both the
default hyperparameters and the TimeEval hyperparameters perform poorly for the datasets
sel840mECG1 and mit14134longtermecg. For the dataset ECG1, the AUC-PR scores using
the default values (1.00) and the hyperparameter values from TimeEval (1.00) are marginally
higher than HYPEX’ score (0.98). HYPEX’ hyperparameter values, however, can achieve
an AUC-PR score close to the full optimization run for all datasets. This demonstrates
HYPEX’s capability to learn a parameter model on synthetic training datasets that can
significantly outperform alternative parametrization strategies, and that routinely approaches
the maximum achievable score.

5 Conclusion

In this paper, we addressed the time-consuming process of tuning hyperparameters. Our
proposed system HYPEX extracts parameter rules that can be used to transfer knowledge
about the relationship (a) between parameters and data characteristics, and (b) between two
parameters to yet unseen application data. While previous work included manually crafted
heuristics [SWP22] or long-running optimization tasks [DC21; Le12; PGC+99; Sh15],
which both require labels on large test datasets, our work proposes an automated approach
using synthetic datasets to derive parameter calculation rules based on identified causal
relationships. In our evaluation, HYPEX’s parameter suggestions outperformed the anomaly
detectors’ default parameters as well as hand-crafted heuristics across different anomaly
detection methods and base oscillations. We showed that identified fixed parameters perform
well on a variety of different datasets at the cost of higher variance. HYPEX’s approach,
using a mixture of parameter rules and fixed hyperparameter values with the automatic
parameter model selection, predicts well-performing, reliable hyperparameter values on
different datasets. Future work includes the extension of HYPEX to categorical data types
and its application and evaluation in other domains, such as data cleaning or pattern mining.
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