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Evolution of Degree Metrics in Large Temporal Graphs

Christopher Rost1, Kevin Gomez1, Peter Christen2, Erhard Rahm1

Abstract: Graph metrics, such as the simple but popular vertex degree and others based on it, are
well defined for static graphs. However, adapting static metrics for temporal graphs is still part of
current research. In this paper, we propose a set of temporal extensions of four degree-dependent
metrics, as well as aggregations like minimum, maximum, and average degree of (i) a vertex over a
time interval and (ii) a graph at a specific point in time. We show why using the static degree can lead
to wrong assumptions about the relevance of a vertex in a temporal graph and highlight the need to
include time as a dimension in the metric. We propose a baseline algorithm to calculate the degree
evolution of all vertices in a temporal graph and show its implementation in a distributed in-memory
dataflow system. Using real-world and synthetic datasets containing up to 462 million vertices and 1.7
billion edges, we show the scalability of our algorithm on a distributed cluster achieving a speedup of
around 12 on 16 machines.
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1 Introduction

Temporal graphs are graphs that change in structure and content over time, where changes
are captured and maintained as part of the graph data model. Many approaches exist to
formally define a temporal graph [Iy21, Ko09, Ro22, HR21]. A graph’s evolution is either
represented as a series of snapshots, or by vertex and edge annotations for timestamps
or time intervals describing their validity. These extended graph models allow analyzing
the current or a past state of a graph as well as the evolution of the graph. Examples
for temporal graph analysis are the exploration of human contact networks to detect the
transmission of a disease [SK05, RKC01] or analyzing the change in the utilization of bike
rental stations [Li15, Tl20]. In such graphs, the concepts of graph metrics also change
because time is added as a new dimension. Metrics used for the characterization of static
graphs need to be redefined or extended to take temporal evolution into account [Ni13].

One simple yet important metric of a vertex is the vertex degree [GY03]. It is determined by
the number of incoming and outgoing edges (which is, except for multigraphs, equal to the
number of neighbors) and thus a simple indicator for the relevance or importance of a vertex
in a static graph. A vertex with a high degree can be seen as a strongly connected vertex,
whereas a vertex with a degree of zero is an isolated vertex or singleton. The vertex degree
is also known as the centrality measure degree centrality [Fr78], that can be used to find,
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Fig. 1: Degree evolution of selected rental stations in NYC for 2018. For each day, the average degree
is plotted. A indicates peaks on weekends, B a construction embargo event and C a Halloween parade.

for example, popular people according to their number of friendships in a social network, or
the stations with the highest throughput of bike rentals in a bike-sharing network.

The minimum and maximum degrees are metrics that describe the vertices with the
smallest and largest numbers of connections, respectively. The degree range [LJ21], degree
variance [LJ21, Sn81, SE20] and the average nearest neighbor degree (ANND) [LJ21,
YvdHL17], are aggregate metrics that can reveal important graph and vertex characteristics.
The degree range of a graph (the difference between the maximum and minimum degree)
describes the connectivity gap between the best and least connected vertices. For a bike-
sharing network, a small degree range indicates a good distribution of rental stations without
any hardly visited stations, whereas a high degree range indicates irregular usage. Another
extended measure of a graph’s heterogeneity is the degree variance, where a high variance
shows a high inequality in the connectivity of the vertices. The ANND, on the other hand,
reveals if a vertex is connected to others with a high connectivity, e.g., a social network user
who is mainly friend with other users who are strongly connected.

Using only the static vertex degree is of limited value in an evolving graph as it cannot
reflect the impact of topology changes. The same restriction applies for static aggregated
metrics such as the average degree value [KA12] or the sum of all degrees [TBF17]. There
is no information about when a vertex has what degree, how long this degree is valid, and
when it increases or decreases. This is important, for example, in a bike-sharing network
where vertices represent stations and directed edges connect the start and return stations of
bike rentals.

Fig. 1 shows the time series representing the evolution of the vertex degree of three selected
bike rental stations in NYC for 2018, calculated from the publicly available dataset also used
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Fig. 2: An example temporal graph.

in our evaluations (see Sect. 6). For example, one can see the popularity of the station at
Centre St & Chambers St on weekends by periodic peaks (marked with A) or the significantly
higher rental rate of two stations during the Summer Streets Construction Embargo3 in
August (marked with B). Further, the impact of a Halloween parade4 on Cherry St. (marked
by C) is visible in these time-series. This shows that there are stations that are generally
popular, such as in a city center or near train stations, as well as stations that are only popular
at certain times, e.g., on weekends or during events. Further, comparing stations using the
static or aggregated metrics, which are shown in Fig. 1 as dotted lines, may lead to the
assumption that they seem equal by sharing a similar degree value, which in fact is not true
over time which can be revealed by temporal metrics.

Fig. 2 shows a toy example of a temporal graph, which we use to illustrate the problem further.
Each vertex and directed edge has a unique numeric identifier and a left-close right-open
time interval [𝜔𝑎, 𝜔𝑏) 5 assigned. For example, the edge with identifier 5 (hereinafter
referred to as 𝑒5) is valid from time point 3 (in the following denoted as 𝜔3) to 𝜔6, whereas
the vertex 𝑣1 is valid from 𝜔0 to the maximum upper bound, denoted by the infinity symbol
∞ (𝜔𝑚𝑎𝑥).

From a static perspective, if we disregard the graph’s evolution, we can see that the vertex
degrees are 𝑑𝑒𝑔(𝑣1) = 6, 𝑑𝑒𝑔(𝑣2) = 7, and 𝑑𝑒𝑔(𝑣3) = 3. However, if time is considered,
then the degree values change continuously so that the evolution of the degree value forms a
time series. For example, at time 𝜔1, the degree of 𝑣1 is 1, and the same at time 𝜔5. Further,
since 𝑣1 is valid until forever and the last validity of its edges end at time 𝜔11 (exclusive),
the degree from 𝜔11 to forever (𝜔𝑚𝑎𝑥) is 0. Fig. 3 exemplifies the evolution of the degrees
of 𝑣1, 𝑣2 and 𝑣3, inclusive in- and outdegree of 𝑣1 (𝑑𝑒𝑔− (𝑣1) and 𝑑𝑒𝑔+ (𝑣1)).

It can be seen that the maximum degree of vertex 𝑣1 is only 3 over its entire period of
validity. From the vertex lower bound 𝜔0 to time 𝜔1, the degree is 0 – the same from 𝜔11

3https://www.milrose.com/insights/2018-summer-streets-construction-embargo (visited 2022-11-01)
4https://patch.com/new-york/east-village/halloween-dog-parade-2018-what-you-need-know (visited

2022-11-01)
5For simplicity we use integer interval bounds. It holds [𝜔𝑎 , 𝜔𝑏 ) := {𝜔 ∈ N : 𝜔𝑎 ≤ 𝜔 < 𝜔𝑏 }.
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Fig. 3: Degree evolution of vertex 𝑣1, 𝑣2 and 𝑣3 from 𝜔0 to 𝜔12. In addition, the indegree 𝑑𝑒𝑔− (𝑣1)
and outdegree 𝑑𝑒𝑔+ (𝑣1) are given for 𝑣1.

onwards. Compared to the static point of view, where the degree is 6 for 𝑣1, we can see
that during the evolution of the graph the vertex never reaches this value. The same holds
for the bike rental example of Fig. 1. For example, the static degree of the station “Cherry
St.” is 50, whereas the maximum value over the year is just 20 for a single day. This shows
the importance of considering the changes of the degree metric over time. The use of the
static degree metric for assessing the importance of a vertex can lead to misinterpretations,
whereas using the degree evolution provides the exact degree for any time in the lifetime of
the graph.

Contributions: In this work we focus on four time-sensitive degree-dependent graph
measures: the vertex degree itself and its aggregations, the degree range, the degree variance,
and the average nearest neighbor degree. We extend these well known static metrics with a
time dimension and establish two new formal definitions per metric: (i) a temporal version
which defines the metric at a specific point in time, and (ii) an evolutionary version which
defines the change of the metric within a time interval as a time series. We then present a
baseline algorithm that can calculate the degree evolution for all vertices of a given temporal
graph. Using a binary search tree called degree tree, the algorithm efficiently maintains the
degree changes of each vertex. We show how our algorithm can be adapted to a distributed
processing model, which is further illustrated by the implementation as a graph analysis
operator using a distributed in-memory dataflow system. In our experiments, we evaluate the
scalability of our implementation which shows a sublinear growth of runtime by increasing
dataset size as well as a speedup of up to 12 on a cluster with 16 physical machines.
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2 Related work

Some works have defined a degree metric for vertices in a temporal graph, mainly by
expanding the static version for temporal graphs. Thompson et al. [TBF17] introduce a
temporal degree centrality metric for the domain of network neuroscience. They show that
a node’s influence in a temporal network can be represented by the centrality metric, which
is the sum of the number of edges across a series of time points. If an edge is valid for
multiple time points, it will be counted multiple times. However, this approach does not
quantify the temporal order of edges so that different vertices with identical metrics cannot
be distinguished.

A similar definition of temporal degree centrality is given by Long et al. [Lo20] and Wu
et al. [Wu14]. Both calculate the sum of degrees over a time interval, which provides an
estimate of a node’s centrality in a temporal network. Wang et al. [Wa17] propose the
temporal degree deviation centrality metric that can be calculated from a temporal network
using graph snapshots. A similar approach defines the temporal degree as the number of
nodes to which a vertex is linked in all timestamps of an interval without interruption [Ci20].

The time-ordered graph model by Kim et al. [KA12] can represent a dynamic network
with a fixed vertex set and interval edges. For graphs of this model, several centrality
metrics were introduced (including degree) to include the graph’s temporal characteristic.
Temporal degree is defined as the degree 𝐷𝑖, 𝑗 (𝑣) for a vertex 𝑣 ∈ 𝑉 in a time interval [𝑖, 𝑗].
Tlebaldinova et al. [Tl20] use the degree as a temporal measure of centrality for bike-sharing
stations. They show that the changing degree determines the time-distributed intensity of
incoming and outgoing bike flows at a station.

In all these related works, the temporal degree is mostly seen as a scalar, aggregated
(summed) value over a certain time interval, that is used as a centrality measure. In our
approach, described next, we define both a temporal degree at a specific point in time as
well as degree evolution for a time interval as a time series. This allows exact statements
when a metric has what value for how long. In addition, our data model allows both changes
in vertices and edges, as we describe in Sect. 3.1.

3 Degree-dependent metric evolution

We first define the temporal graph data model we use as a basis for our work, and then
introduce new temporal notations of degree-dependent metrics for vertices in Sect. 3.2, and
metrics for a whole temporal graph in Sect. 3.3.

Evolution of Degree Metrics in Large Temporal Graphs 489
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3.1 Temporal graph model

We use a simplified version of the Temporal Property Graph Model (TPGM) data
model [Ro22]6. Although the model supports bitemporal versioning, for simplicity we limit
ourselves to one time dimension. Thus, vertices and edges are assigned with a left-closed
right-open time interval to represent the element’s validity according to application-specific
valid-time. Unlike most temporal graph models [Ca21], not only the edge set is dynamic,
but the vertex set can also change over time. Contact sequence graphs [Ho18] can also be
modeled by representing the time 𝜔𝑖 of the contact as time interval [𝜔𝑖 ,∞), [𝜔𝑖 , 𝜔𝑖+1)
or [𝜔𝑖 , 𝜔 𝑗 ) (depending on the use-case), where 𝜔 𝑗 is the time of a subsequent contact. A
TPGM graph is formally defined as follows:

Definition 1 (TPGM graph [Ro22, GS20]) A TPGM graph is a directed multigraph G =

(𝑉, 𝐸,Ω) with the following specifications:

𝑉 is a finite set of vertices. Each vertex 𝑣 ∈ 𝑉 is a tuple ⟨𝑣𝑖𝑑 , 𝜏⟩, where 𝑣𝑖𝑑 is a unique vertex
identifier, 𝜏 is a time-interval of the form [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑) for which the vertex is valid with
respect to Ω (defined below). We constrain that each 𝑣 ∈ 𝑉 has at least one edge throughout
the graph history, i.e., vertices that were isolated over the entire graph lifetime are not part
of 𝑉 .

𝐸 is a finite set of edges. Each edge 𝑒 ∈ 𝐸 is a tuple ⟨𝑒𝑖𝑑 , 𝑠𝑖𝑑 , 𝑡𝑖𝑑 , 𝜏⟩, where 𝑒𝑖𝑑 is a unique
edge identifier that allows multiple edges between the same nodes, 𝑠𝑖𝑑 and 𝑡𝑖𝑑 are the source
and target vertex identifier, 𝜏 is the time-interval of the form [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑) for which the
edge is valid with respect to Ω.

Ω represents the valid-time domain where an instant in time is a time point 𝜔𝑖 with limited
precision, e.g., milliseconds. A time interval 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑) with 𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑 ∈ Ω

starts at 𝜔𝑠𝑡𝑎𝑟𝑡 and ends at 𝜔𝑒𝑛𝑑 . Since it is a left-close right-open interval, it includes
𝜔𝑠𝑡𝑎𝑟𝑡 but excludes 𝜔𝑒𝑛𝑑 .

We refer to our previous work [Ro22], in which several constraints are defined to ensure
a consistent TPGM graph. Since the set of nodes 𝑉 and edges 𝐸 changes over time, we
introduce two time-dependent sets of nodes and edges that we use later in the formal
definitions in Sect. 3.2 and Sect. 3.3:

• 𝑉 (𝜔𝑖) ⊆ 𝑉 is a finite subset of vertices, where each vertex is valid at the given
time point 𝜔𝑖 , i. e., for all 𝑣 = ⟨𝑣𝑖𝑑 , 𝜏⟩ ∈ 𝑉 (𝜔𝑖) with 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑) it holds:
𝜔𝑠𝑡𝑎𝑟𝑡 ≤ 𝜔𝑖 < 𝜔𝑒𝑛𝑑 .

6A TPGM graph, in addition, formally defines the concept of so-called logical graphs and assigns type labels
and properties (key-value pairs) to nodes, edges, and logical graphs. Since neither is relevant for this work, we
excluded it for the sake of simplicity.
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• 𝐸 (𝜔𝑖) ⊆ 𝐸 is a finite subset of edges, where each edge is valid at the given time
point 𝜔𝑖 , i. e., for all 𝑒 = ⟨𝑒𝑖𝑑 , 𝑠𝑖𝑑 , 𝑡𝑖𝑑 , 𝜏⟩ ∈ 𝐸 (𝜔𝑖) with 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑) it holds:
𝜔𝑠𝑡𝑎𝑟𝑡 ≤ 𝜔𝑖 < 𝜔𝑒𝑛𝑑 .

• 𝐺 (𝜔) = (𝑉 (𝜔), 𝐸 (𝜔)) is a graph snapshot (or state) of a temporal graph 𝐺 at a
specific point in time 𝜔.

3.2 Vertex-centric temporal degree metrics

For each of the following degree-based metrics, we first refer to the static version and then
introduce our temporal and evolutionary version of the respective metric.

Vertex degree and aggregations. According to graph theory [GY03, Di10], the static
(non-temporal) vertex degree 𝑑𝑒𝑔(𝑣) is formally defined as follows:

Definition 2 (Vertex degree [GY03, Di10]) The degree (or valence) of a vertex 𝑣 in a
static graph 𝐺 = (𝑉, 𝐸), denoted 𝑑𝑒𝑔(𝑣), is the number of proper edges incident to 𝑣 plus
twice the number of self-loops. Simplified, the degree of a vertex is the number of its edges.
The indegree of a vertex 𝑣, denoted as 𝑑𝑒𝑔− (𝑣), is the number of edges directed to 𝑣 whereas
the outdegree of vertex 𝑣, denoted as 𝑑𝑒𝑔+ (𝑣), is the number of edges directed from 𝑣. Each
self-loop at 𝑣 counts one toward the indegree of 𝑣 and one toward the outdegree.

Having a static view on the graph of Fig. 2, example vertex degrees are 𝑑𝑒𝑔(𝑣1) = 6,
𝑑𝑒𝑔(𝑣2) = 7, 𝑑𝑒𝑔+ (𝑣2) = 3, and 𝑑𝑒𝑔− (𝑣3) = 1.

For temporal graphs, we now define the temporal degree as the degree of a vertex at a
specific point in time.

Definition 3 (Temporal degree) The temporal degree of a vertex 𝑣 in a temporal graph
𝐺 = (𝑉, 𝐸), denoted as 𝑑𝑒𝑔𝑡 (𝑣, 𝜔), is the degree of that vertex at time 𝜔 in the graph
snapshot 𝐺 (𝜔). It is defined as:

𝑑𝑒𝑔𝑡 (𝑣, 𝜔)
{
𝑑𝑒𝑔(𝑣), if 𝑣 ∈ 𝑉 (𝜔),
𝑛𝑜𝑡 𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑, otherwise.

(1)

If 𝑣 ∉ 𝑉 (𝜔), the degree is not defined. Analogous to the static degree, the temporal indegree
𝑑𝑒𝑔𝑡− (𝑣, 𝜔) is the number of edges directed to 𝑣, and temporal outdegree 𝑑𝑒𝑔𝑡+ (𝑣, 𝜔) is
the number of edges directed from 𝑣, at time 𝜔.

For example, in the graph of Fig. 2, the temporal degree of vertex 𝑣1 at time 𝜔4 is
𝑑𝑒𝑔𝑡 (𝑣1, 𝜔4) = 2, whereas the temporal indegree of vertex 𝑣1 at time 𝜔8 is 𝑑𝑒𝑔𝑡− (𝑣1, 𝜔8) =
3. There are clear differences between the static compared to the temporal metrics.

Evolution of Degree Metrics in Large Temporal Graphs 491
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From the perspective of a vertex 𝑣, the degree of that vertex changes according to the
existence of neighbours of 𝑣. For a given time interval 𝜏, we thus define the degree
evolution as a time series of temporal degrees, which contains all degree values with their
corresponding time in the given interval.

Definition 4 (Degree evolution) The degree evolution 𝑑𝑒𝑔𝑒𝑣(𝑣, 𝜏) := {𝑥1, 𝑥2, ..., 𝑥𝑚} of a
vertex 𝑣 is a time series of elements 𝑥𝑖 := 𝑑𝑒𝑔𝑡 (𝑣, 𝜔), with 1 ≤ 𝑖 ≤ 𝑚 and 𝑚 = 𝜔𝑒𝑛𝑑−𝜔𝑠𝑡𝑎𝑟𝑡 .
Each 𝑥𝑖 represents a temporal degree at time 𝜔 𝑗 , i.e., 𝑥1 at time point 𝜔𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑚 at
𝜔𝑒𝑛𝑑 − 1, for the interval 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑). Further, the temporal degree is a special case
of the degree evolution: 𝑑𝑒𝑔𝑒𝑣(𝑣, 𝜏) = {𝑑𝑒𝑔𝑡 (𝑣, 𝜔𝑖)} with 𝜏 = [𝜔𝑖 , 𝜔𝑖+1) as an interval with
a single time point. Furthermore, 𝑑𝑒𝑔𝑒𝑣+ (𝑣, 𝜏) denotes the outdegree evolution whereas
𝑑𝑒𝑔𝑒𝑣− (𝑣, 𝜏) denotes the indegree evolution.

For our example graph of Fig. 2, the degree evolution of vertex 𝑣1 in the interval 𝜏 = [𝜔0, 𝜔11)
is 𝑑𝑒𝑔𝑒𝑣(𝑣1, 𝜏) = {0, 1, 2, 3, 2, 1, 1, 1, 3, 3, 1}.

The degree evolution defines the development of a vertex degree over a given time interval.
This can now be used to determine the minimum, maximum and average degree of a vertex
over a time interval, i.e., a vertex-centric aggregation.

Definition 5 (Vertex-centric min/max/avg degree) The vertex-centric minimum degree
of a vertex 𝑣 within a time interval 𝜏 is the smallest value of all temporal degrees of 𝑣 in
this interval. Similarly, the vertex-centric maximum degree is the largest value and the
vertex-centric average degree is the average value over all time points 𝜔 ∈ 𝜏. With |𝜏 | as
the number of all time points in the interval 𝜏 holds:

𝑑𝑒𝑔𝑚𝑖𝑛 (𝑣, 𝜏) := 𝑚𝑖𝑛{𝑑𝑒𝑔𝑡 (𝑣, 𝜔) |∀𝜔 ∈ 𝜏}, (2)

𝑑𝑒𝑔𝑚𝑎𝑥 (𝑣, 𝜏) := 𝑚𝑎𝑥{𝑑𝑒𝑔𝑡 (𝑣, 𝜔) |∀𝜔 ∈ 𝜏}, (3)

𝑑𝑒𝑔𝑎𝑣𝑔 (𝑣, 𝜏) :=
1
|𝜏 |

∑︁
𝜔∈𝜏

𝑑𝑒𝑔𝑡 (𝑣, 𝜔). (4)

Average Nearest Neighbor Degree. An analyst may be interested in whether entities in a
graph tend to connect to others with a high connectivity, or, the opposite case, connections
occur randomly and irrespective of the degree [LJ21]. The former situation is referred to
as preferential attachment in network science [JNB03] and applies to many real-world
networks [Ne01, Ca06], including evolving networks [JNB03]. A metric to measure this
tendency is the average nearest neighbor degree (ANND) 𝑑𝑒𝑔𝑛𝑛 (𝑣). For a vertex 𝑣, the
ANND is the sum of the direct neighbor degrees divided by the degree of 𝑣.

492 Christopher Rost, Kevin Gomez, Peter Christen, Erhard Rahm



Evolution of Degree Metrics in Large Temporal Graphs 9

Definition 6 (Average nearest neighbor degree [LJ21]) The average nearest neighbor
degree 𝑑𝑒𝑔𝑛𝑛 (𝑣𝑖) of a vertex 𝑣𝑖 of a static graph 𝐺 is defined as the sum of the degrees of
each of the vertex’ neighbor 𝑣 𝑗 divided by the degree of 𝑣𝑖:

𝑑𝑒𝑔𝑛𝑛 (𝑣𝑖) :=
1

𝑑𝑒𝑔(𝑣𝑖)
∑︁

𝑣 𝑗 ∈𝑁 (𝑣𝑖 )
𝑑𝑒𝑔(𝑣 𝑗 ). (5)

The set 𝑁 (𝑣𝑖) ⊂ 𝑉 is defined as the set of vertices incident to a vertex 𝑣𝑖 (its neighbors).

From a static perspective of the example graph of Fig. 2, the ANNDs are 𝑑𝑒𝑔𝑛𝑛 (𝑣1) =
𝑑𝑒𝑔 (𝑣2 )+𝑑𝑒𝑔 (𝑣3 )

𝑑𝑒𝑔 (𝑣1 ) = 1.67, 𝑑𝑒𝑔𝑛𝑛 (𝑣2) = 1.43 and 𝑑𝑒𝑔𝑛𝑛 (𝑣3) = 4.34. These results suggest
that vertex 𝑣3 seems to have the strongest tendencies to connect to others who are also
popular, while 𝑣1 and 𝑣2 display weaker tendencies. The average degree of the graph (here
𝑑𝑒𝑔𝑎𝑣𝑔 = 5.34) can be used to interpret an ANND value. The larger the value compared to
the average degree of the graph, the more likely we can assume that its neighbors are more
popular than average. As the other degree-dependent metrics, the ANND will change over
time if a graph evolves. To calculate the ANND of a vertex at a specific point in time, we
now define the temporal average nearest neighbour degree:

Definition 7 (Temporal ANND) The temporal average nearest neighbor degree (TANND)
𝑑𝑒𝑔𝑡𝑛𝑛 (𝑣𝑖 , 𝜔) of a vertex 𝑣𝑖 is defined as the sum of the temporal degrees of each of the
vertex’ neighbor (at time 𝜔) divided by the temporal degree of 𝑣𝑖 . Furthermore, the set
𝑁 (𝑣𝑖 , 𝜔) ⊂ 𝑉 (𝜔) is defined as the set of neighbors of vertex 𝑣𝑖 at time 𝜔. It then holds:

𝑑𝑒𝑔𝑡𝑛𝑛 (𝑣𝑖 , 𝜔) :=
1

𝑑𝑒𝑔𝑡 (𝑣𝑖 , 𝜔)
∑︁

𝑣 𝑗 ∈𝑁 (𝑣𝑖 ,𝜔)
𝑑𝑒𝑔𝑡 (𝑣 𝑗 , 𝜔). (6)

For the example in Fig. 2, the TANND for 𝑣1 at time 𝜔4 is 𝑑𝑒𝑔𝑡𝑛𝑛 (𝑣1, 𝜔4) = 2.5, while at
time 𝜔9 it is 𝑑𝑒𝑔𝑡𝑛𝑛 (𝑣1, 𝜔9) = 1.

An analyst may be also interested in the evolution of the ANND over a time interval, like
how people’s propensity to rent a bike from one popular location and ride to another popular
location is changing within a month. We introduce the average nearest neighbor degree
evolution to define a series of TANND values within a time interval.

Definition 8 (ANND evolution) The average nearest neighbor degree evolution (ANNDE)
𝑑𝑒𝑔𝑒𝑣𝑛𝑛 (𝑣, 𝜏) := {𝑥1, 𝑥2, ..., 𝑥𝑚} of a vertex 𝑣 is a time series of elements 𝑥𝑖 := 𝑑𝑒𝑔𝑡𝑛𝑛 (𝑣, 𝜔),
with 1 ≤ 𝑖 ≤ 𝑚 and 𝑚 = 𝜔𝑒𝑛𝑑 − 𝜔𝑠𝑡𝑎𝑟𝑡 . Each 𝑥𝑖 represents the TANND at time 𝜔 𝑗 , i.e., 𝑥1
at time point 𝜔𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑚 at 𝜔𝑒𝑛𝑑 − 1, for the interval 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑). The TANND
is a special case of the ANNDE: 𝑑𝑒𝑔𝑒𝑣𝑛𝑛 (𝑣, 𝜏) = {𝑑𝑒𝑔𝑡𝑛𝑛 (𝑣, 𝜔)}, with 𝜏 = [𝜔𝑖 , 𝜔𝑖+1) as
an interval with a single time point.
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(b) Degree variance evolution.

Fig. 4: Resulting time-series of selected degree evolution metrics of dataset citibike for year 2018.

For example, the ANNDE of 𝑣1 in the interval 𝜏 = [𝜔1, 𝜔5) is 𝑑𝑒𝑔𝑒𝑣𝑛𝑛 (𝑣1, 𝜏) =

{1, 1, 2.67, 2}. For our small example graph, the ANND remains quite small in this
interval, which means that the popularity of the neighbours of 𝑣1 does not increase much.
Fig. 4a shows the resulting ANNDE time series of a selected rental station for the real world
bike-sharing graph we are using in our evaluation in Sect. 6. One can see that the tendency
that rentals happen between popular stations are high during the summer months.

3.3 Graph-centric temporal degree metrics

After looking at metrics for individual vertices of a graph, we now develop metrics that
concern an entire graph. Several metrics have already been defined for aggregating all
vertices of a static graph, such as the minimum, maximum, and average degree.

Definition 9 (Min/max/avg degree of a graph [LJ21]) The minimum, maximum, and
average degree of a static graph 𝐺 are defined as the minimum, maximum, and average
value of all vertex degrees 𝑑𝑒𝑔(𝑣) for all 𝑣 ∈ 𝑉 . It holds:

𝑑𝑒𝑔𝑚𝑖𝑛 (𝐺) := 𝑚𝑖𝑛{𝑑𝑒𝑔(𝑣) |𝑣 ∈ 𝑉}, (7)

𝑑𝑒𝑔𝑚𝑎𝑥 (𝐺) := 𝑚𝑎𝑥{𝑑𝑒𝑔(𝑣) |𝑣 ∈ 𝑉}, (8)

𝑑𝑒𝑔𝑎𝑣𝑔 (𝐺) :=
1
|𝑉 |

∑︁
𝑣∈𝑉

𝑑𝑒𝑔(𝑣), (9)

with 𝑑𝑒𝑔𝑚𝑖𝑛 (𝐺) ≤ 𝑑𝑒𝑔𝑎𝑣𝑔 (𝐺) ≤ 𝑑𝑒𝑔𝑚𝑎𝑥 (𝐺).

For the example graph in Fig. 2, the minimum, maximum, and average degrees are
𝑑𝑒𝑔𝑚𝑖𝑛 (𝐺) = 3, 𝑑𝑒𝑔𝑚𝑎𝑥 (𝐺) = 7 and 𝑑𝑒𝑔𝑎𝑣𝑔 (𝐺) = 5.34.

With the evolution of a graph, any aggregated graph metric can change over time. We
therefore define the minimum, maximum, and average temporal degree as an aggregated
value of all vertices 𝑉 (𝜔) in a temporal graph at time 𝜔.
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Definition 10 (Min/max/avg temporal degree) The minimum, maximum and average
temporal degree of a temporal graph 𝐺 are the minimum, maximum and average values of
all temporal vertex degrees at time 𝜔. With 𝑉 (𝜔) as the set of vertices at time 𝜔 it holds:

𝑑𝑒𝑔𝑡𝑚𝑖𝑛 (𝐺, 𝜔) := 𝑚𝑖𝑛{𝑑𝑒𝑔𝑡 (𝑣, 𝜔) |𝑣 ∈ 𝑉 (𝜔)}, (10)

𝑑𝑒𝑔𝑡𝑚𝑎𝑥 (𝐺, 𝜔) := 𝑚𝑎𝑥{𝑑𝑒𝑔𝑡 (𝑣, 𝜔) |𝑣 ∈ 𝑉 (𝜔)}, (11)

𝑑𝑒𝑔𝑡𝑎𝑣𝑔 (𝐺, 𝜔) :=
1

|𝑉 (𝜔) |
∑︁

𝑣∈𝑉 (𝜔)
𝑑𝑒𝑔𝑡 (𝑣, 𝜔), (12)

with 𝑑𝑒𝑔𝑡𝑚𝑖𝑛 (𝐺, 𝜔) ≤ 𝑑𝑒𝑔𝑡𝑎𝑣𝑔 (𝐺, 𝜔) ≤ 𝑑𝑒𝑔𝑡𝑚𝑎𝑥 (𝐺, 𝜔).

For the example graph in Fig. 2, at time 𝜔4, the aggregated degrees are 𝑑𝑒𝑔𝑡𝑚𝑖𝑛 (𝐺, 𝜔4) = 1,
𝑑𝑒𝑔𝑡𝑚𝑎𝑥 (𝐺, 𝜔4) = 5 and 𝑑𝑒𝑔𝑡𝑎𝑣𝑔 (𝐺, 𝜔4) = 2.67.

Degree range. The minimum degree reveals the smallest set of connections of a graph’s
vertices, whereas the maximum degree gives a measure of the most connections an vertex
has in the graph. The difference between the minimum and maximum degree of any vertex
in a graph is called the degree range [LJ21]. It provides a measure of the heterogeneity (or
gap) between the connectivity of the most and the least connected vertices in a graph [LJ21].

Definition 11 (Degree range [LJ21]) The degree range of a static graph 𝐺 = (𝑉, 𝐸),
denoted as 𝑑𝑒𝑔𝑟 (𝐺), is the difference between the maximum and minimum degree:

𝑑𝑒𝑔𝑟 (𝐺) = 𝑑𝑒𝑔𝑚𝑎𝑥 (𝐺) − 𝑑𝑒𝑔𝑚𝑖𝑛 (𝐺). (13)

From a static view on the example graph of Fig. 2, the degree range is 𝑑𝑒𝑔𝑟 (𝐺) = 7− 3 = 4,
which suggests that it has a high inequality related to connectivity. Now considering a
temporal graph, the temporal degree range provides information about the degree range of
a graph at a specific point in time.

Definition 12 (Temporal degree range) The temporal degree range 𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔) of a
temporal graph 𝐺 at time 𝜔 is defined as the difference between the maximum and minimum
temporal degree:

𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔) = 𝑑𝑒𝑔𝑡𝑚𝑎𝑥 (𝐺, 𝜔) − 𝑑𝑒𝑔𝑡𝑚𝑖𝑛 (𝐺, 𝜔). (14)

With respect to the example graph from Fig. 2, the temporal degree range at time 𝜔4 is
𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔4) = 5−1 = 4, which is equal to the static metric, while at times 𝜔1, 𝜔6 and 𝜔10,
the temporal degree range is 𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔1) = 𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔6) = 𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔10) = 1. Thus, as
the graph evolves, the degree range changes as well.

To obtain any changes of the degree range over a defined time interval, we introduce the
degree range evolution that defines a series of temporal degree range values for all time
points in a given interval.
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Definition 13 (Degree range evolution) The degree range evolution 𝑑𝑒𝑔𝑒𝑣𝑟 (𝐺, 𝜏) :=
{𝑥1, 𝑥2, ..., 𝑥𝑚} of a temporal graph 𝐺 is a time series of elements 𝑥𝑖 := 𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔), with
1 ≤ 𝑖 ≤ 𝑚 and 𝑚 = 𝜔𝑒𝑛𝑑 − 𝜔𝑠𝑡𝑎𝑟𝑡 . Each 𝑥𝑖 represents the temporal degree range at time
𝜔 𝑗 , i.e., 𝑥1 at time point 𝜔𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑚 at 𝜔𝑒𝑛𝑑 − 1, for the interval 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑).
The temporal degree range is a special case of the degree range evolution: 𝑑𝑒𝑔𝑒𝑣𝑟 (𝐺, 𝜏) :=
{𝑑𝑒𝑔𝑡𝑟 (𝐺, 𝜔)}, with 𝜏 = [𝜔𝑖 , 𝜔𝑖+1) as an interval with a single time point.

For the example graph of Fig. 2, the degree range evolution for 𝜏 = [𝜔0, 𝜔7) is
𝑑𝑒𝑔𝑒𝑣𝑟 (𝐺, 𝜏) = {0, 1, 2, 5, 4, 3, 1}, which shows a changing gap of connectivity in this
interval. Fig. 4a shows the time series of the degree range evolution for the real world bike
sharing graph we are using in our evaluations. One can see that the value is below 2 over
the whole year which indicates a low inequality of rentals between all rental stations.

Degree variance. Besides the simple metric of range, Snĳders introduced the more complex
metric called degree variance of a graph [Sn81], which involves its average degree to
characterize the heterogeneity in connectivity across nodes. This metric reveals information
about the spread of both well-connected and not so well-connected vertices in a graph. It is
formally defined as follows:

Definition 14 (Degree variance [LJ21]) The degree variance 𝑑𝑒𝑔𝑣 (𝐺) of a graph 𝐺 is
defined as the sum of the square of the difference between each vertex degree 𝑑𝑒𝑔(𝑣) and
the average degree of the graph 𝑑𝑒𝑔𝑎𝑣𝑔 (𝐺), divided by the total number of vertices |𝑉 |:

𝑑𝑒𝑔𝑣 (𝐺) :=
∑

𝑖 (𝑑𝑒𝑔(𝑣) − 𝑑𝑒𝑔𝑎𝑣𝑔 (𝐺))2

|𝑉 | . (15)

This metric quantifies the extent to which there are differences in the connectivity of the
vertices in a graph. High differences in connectivity mean high variance; if all node degrees
are the same then the degree variance is zero. If the example graph in Fig. 2 is considered
static it has a degree variance of 𝑑𝑒𝑔𝑣 (𝐺) = 2.89.

For temporal graphs, the degree of vertices can change over time, and so can the average
degree as well as the number of vertices. Therefore, we formally define the temporal degree
variance as follows:

Definition 15 (Temporal degree variance) The temporal degree variance, 𝑑𝑒𝑔𝑡𝑣 (𝐺, 𝜔),
of a temporal graph 𝐺 is defined as the sum of the square of the difference between
each temporal vertex degree 𝑑𝑒𝑔𝑡 (𝑣, 𝜔) and the temporal average degree of the graph
𝑑𝑒𝑔𝑡𝑎𝑣𝑔 (𝐺, 𝜔) at time 𝜔, divided by the total number of vertices |𝑉 (𝜔) | at that time:

𝑑𝑒𝑔𝑡𝑣 (𝐺, 𝜔) :=
∑

𝑖 (𝑑𝑒𝑔𝑡 (𝑣, 𝜔) − 𝑑𝑒𝑔𝑡𝑎𝑣𝑔 (𝐺, 𝜔))2

|𝑉 (𝜔) | . (16)
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Considering the example graph in Fig. 2 at 𝜔4, the temporal degree variance is
𝑑𝑒𝑔𝑡𝑣 (𝐺, 𝜔4) = 2.89, which is equal to the static value since the inequality of con-
nectivity is the same for this small example. In contrast, at time 𝜔1, the temporal degree
variance is 𝑑𝑒𝑔𝑡𝑣 (𝐺, 𝜔1) = 0.22 since there is a quite high equality of connectivity at this
time. To evaluate whether and how the degree variance changes in a given time interval,
i.e., if the inequality of degrees in a graph decreases or increases over time, or if it retains a
similar value, we define the degree variance evolution.

Definition 16 (Degree variance evolution) The degree variance evolution 𝑑𝑒𝑔𝑒𝑣𝑣 (𝐺, 𝜏)
:= {𝑥1, 𝑥2, ..., 𝑥𝑚} of a temporal graph 𝐺 is a time series of elements 𝑥𝑖 := 𝑑𝑒𝑔𝑡𝑣 (𝐺, 𝜔),
with 1 ≤ 𝑖 ≤ 𝑚 and 𝑚 = 𝜔𝑒𝑛𝑑 −𝜔𝑠𝑡𝑎𝑟𝑡 . Each 𝑥𝑖 represents the temporal degree variance at
time 𝜔 𝑗 , i.e., 𝑥1 at time point 𝜔𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑚 at 𝜔𝑒𝑛𝑑 − 1, for the interval 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑).
Further, the temporal degree variance is a special case of the degree variance evolution:
𝑑𝑒𝑔𝑒𝑣𝑣 (𝐺, 𝜏) = {𝑑𝑒𝑔𝑡𝑣 (𝐺, 𝜔𝑖)} with 𝜏 = [𝜔𝑖 , 𝜔𝑖+1) as an interval with a single time point.

The degree variance evolution of vertex 𝑣1 in the example graph of Fig. 2, for time interval
𝜏 = [𝜔0, 𝜔5), is the series: 𝑑𝑒𝑔𝑒𝑣𝑣 (𝐺, 𝜏) = {0, 0.22, 0.89, 2.89, 2.89}. The degree variance
increases over time in this example, which indicates a growth of the inequality of the vertex’
connectivity. With regard to the real world bike sharing graph, Fig. 4b shows the degree
variance evolution of the temporal graph. The inequality of the rental stations’ utilization is
low over the whole year but reaches its lowest values in the winter months.

4 Degree evolution algorithm

We now describe a baseline algorithm that calculates the degree evolution (see Definition 4)
for all vertices in a temporal graph.

We assume that the input is a temporal graph 𝐺 = (𝑉, 𝐸) including a set of temporal
vertices 𝑉 and temporal edges 𝐸 according to the TPGM model described in Sect. 3.1,
where the degree type Ψ = {𝑖𝑛, 𝑜𝑢𝑡, 𝑏𝑜𝑡ℎ} is given as configuration parameter. The output
of the algorithm is a time series representing the degree evolution for each vertex, where we
reduce the size of the result by merging succeeding time points without a degree change into
intervals. These intervals are tuples ⟨𝑣𝑖𝑑 , 𝜏𝑖 , 𝑑𝑒𝑔𝑡 (𝑣𝑖𝑑 , 𝜔 𝑗 )⟩, where 𝑣𝑖𝑑 is a vertex identifier,
𝜏𝑖 is the interval in which the degree is valid without interruption, and 𝑑𝑒𝑔𝑡 (𝑣𝑖𝑑 , 𝜔𝑖) the
constant temporal degree of 𝑣𝑖𝑑 for any time point 𝜔 𝑗 of the interval 𝜏𝑖 . We split the
algorithm into five steps which we described next.

(1) Vertex mapping. For each vertex 𝑣 ∈ 𝑉 we extract the vertex identifier and its time
interval into a tuple ⟨𝑣𝑖𝑑 , 𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑⟩. This tuple is later used as input of step (5). This
step can be skipped if the vertex times are not of relevance. Considering our example graph
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Fig. 5: Degree tree building for vertex 𝑣1 and Ψ = 𝑜𝑢𝑡.

in Fig. 2, each of the graph’s vertices 𝑉 = {𝑣1, 𝑣2, 𝑣3} is mapped to a tuple, resulting in a
set of three tuples ⟨𝑣1, 0,∞⟩, ⟨𝑣2,−∞,∞⟩ and ⟨𝑣3, 0, 11⟩7.

(2) Edge mapping. For each edge 𝑒 ∈ 𝐸 we extract the required vertex identifiers and the
edge’s time interval into one or two tuples ⟨𝑣𝑖𝑑 , 𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑⟩ depending on the degree type
Ψ. For Ψ = 𝑖𝑛, one tuple is created with 𝑣𝑖𝑑 ← 𝑡𝑖𝑑 (the target vertex identifier), for Ψ = 𝑜𝑢𝑡

one tuple is created with 𝑣𝑖𝑑 ← 𝑠𝑖𝑑 (the source vertex identifier), and for Ψ = 𝑏𝑜𝑡ℎ both of
these tuples are created. Considering the example graph in Fig. 2 and Ψ = 𝑜𝑢𝑡, each of the
graphs edges 𝐸 = {𝑒1, 𝑒2, ..., 𝑒8} is mapped to one tuple as described above. For example,
edge 𝑒4 is mapped to ⟨𝑣2, 6, 10⟩, whereas 𝑒5 is mapped to ⟨𝑣2, 3, 6⟩.

(3) Interval collection. We group the set of tuples ⟨𝑣𝑖𝑑 , 𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑⟩ from step (2) by
vertex identifier and create a mapping 𝑣𝑖𝑑 → 𝐼𝑣𝑖𝑑 = {𝜏0, 𝜏1, ..., 𝜏𝑛} which assigns a
unsorted set of edge intervals 𝐼𝑣𝑖𝑑 to the corresponding vertex identifier. For vertex 𝑣1 and
Ψ = 𝑜𝑢𝑡 of our example, the mapping to the collection of all incident edge intervals is
𝑣1 → 𝐼𝑣1 = {[1, 5), [2, 6), [3, 4)}.

(4) Capture degree evolution. For each vertex 𝑣 and its corresponding unsorted set of
(incoming, outgoing, or both) edge intervals created in step (3), a data structure maintaining
the rise or fall of the metric at all respective points in time, i.e., when the degree of the
vertex changes, is needed. A baseline approach is the maintenance of a typed list holding
two types of points in time: the lower interval bounds which indicate a degree rise of 1,
and the upper interval bounds which indicate a fall of 1. The space complexity is always
𝑂 (𝑛) with 𝑛 = 2 · |𝐼𝑣𝑖𝑑 |, i.e., the number of all time points including duplicates. All points
in time can be inserted with a time complexity 𝑂 (𝑛) (𝑂 (1) each), and the list has to be
sorted before the iteration which costs 𝑂 (𝑛 · 𝑙𝑜𝑔(𝑛)). The degree evolution for this vertex
can be created by iterating the list (with 𝑂 (𝑛)) and adding 1 to a aggregate value for all
lower interval bounds and -1 for all upper bounds.

An alternative is a Binary Search Tree (BST) [Be75] 𝑇𝑣 . Each node of the tree has a value
𝜔 ∈ Ω and a payload 𝜌 ∈ Z. 𝜔 represents a point in time, whereas 𝜌 (initialized with 0)
stores an aggregated value indicating the quantity of change (positive or negative) of the

7Note that we use integers for time points to improve readability.
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degree at this specific time 𝜔 compared to the aggregated value of the evolution until this
point in time. For a left-close right-open interval 𝜏 = [𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑), the payload 𝜌 of
node 𝜔𝑠𝑡𝑎𝑟𝑡 is increased by 1, whereas 𝜌 of 𝜔𝑒𝑛𝑑 is decreased by 1. Further, the left child
node 𝜔𝑙 of a parent node 𝜔𝑝 has a value 𝜔𝑙 < 𝜔𝑝 and the right child node 𝜔𝑟 has a value
𝜔𝑟 > 𝜔𝑝 , respectively. The worst case space complexity is 𝑂 (𝑛), too, but having 𝑛 without
duplicate time points. The time complexity of inserting a node in this tree is 𝑂 (𝑙𝑜𝑔(𝑛))
on average (𝑂 (𝑛) if all time points are different). The random insertion of points in time,
while keeping the tree sorted, and the lower memory requirements by avoiding duplicated
points in time, is our reason for choosing the BST, which will be called degree tree in the
following. Thus, the output of this step (4) is a mapping 𝑣𝑖𝑑 → 𝑇𝑣 that assigns a degree tree
to its corresponding vertex identifier.

If we again consider 𝑣1 in our example, the building of the degree tree 𝑇𝑣1 assuming Ψ = 𝑜𝑢𝑡

is shown in Fig. 5. Inserting the interval [1, 5) first inserts a node with value 𝜔 = 1 and
payload 𝜌 = 1, and then a node with 𝜔 = 5 and payload 𝜌 = −1. For the subsequent two
intervals, four additional nodes are added. A degree tree with six nodes is the result, as
shown on the right side.

(5) Tree traversal and result collection For each vertex, we now have a degree tree 𝑇𝑣 that
represents the degree evolution of this vertex for the degree type Ψ, and the lower and upper
bounds of the vertex’ validity interval, 𝜔𝑠𝑡𝑎𝑟𝑡 and 𝜔𝑒𝑛𝑑 . If the validity of the vertices can be
neglected, a default minimum and maximum time point can be used as initial values. Each
degree tree is now traversed using Depth First Search (DFS) [Ta72] and in-order traversal
(LNR) starting at the root node to obtain an ascending order of points in time. Algorithm 1
outlines this step.

The algorithm starts by traversing the tree 𝑇𝑣 in line 5 with the recursive function In-
OrderDFS (lines 8 to 11). Function ProcessNode describes the logic of a node visit,
where we first handle the special case of an vertex lower interval bound that is equal to the
value of first visited node of the tree (lines 13 to 15). For every following visited node, the
resulting temporal degree tuple is collected in line 17 if payload 𝜌 ≠ 0.

Next, to get the degree for the subsequent interval, the payload 𝜌 is first added to 𝑑 (line 18),
and second the time point 𝜔 is remembered as lower interval bound for the next interval
(line 19). After all nodes of the tree are visited, we check for a remaining time interval
from the last time point 𝜔𝑙𝑎𝑠𝑡 to the vertex upper interval bound 𝜔𝑚𝑎𝑥 and collect a last
tuple with 𝑑 = 0 accordingly (line 7). The final algorithm output is a series of tuples
⟨𝑣𝑖𝑑 , 𝜏, 𝑑𝑒𝑔𝑡 (𝑣𝑖𝑑 , 𝜔)⟩, with 𝑑𝑒𝑔𝑡 (𝑣𝑖𝑑 , 𝜔) as constant temporal degree for all time points
𝜔 ∈ 𝜏, that were collected by both collect() calls (lines 7 and 17).

For a better understanding, we exemplary go through Algorithm 1 by using the degree
tree 𝑇𝑣1 of vertex 𝑣1, shown on the right side in Figure 5, as input. Remember this is
the representation of the outdegree of 𝑣1. In addition, from step (1), the algorithm gets
the lower bound 𝜔𝑠𝑡𝑎𝑟𝑡 = 0 and upper bound 𝜔𝑒𝑛𝑑 = ∞ of the vertex interval as input
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Algorithm 1: Tree traversal and result collection
Data: 𝑇𝑣 , 𝑣𝑖𝑑 , 𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑 ; /* Input data */

1 𝜔𝑙𝑎𝑠𝑡 ← 𝜔𝑠𝑡𝑎𝑟𝑡 ; /* 𝜔𝑠𝑡𝑎𝑟𝑡 = −∞ if not given */
2 𝜔𝑚𝑎𝑥 ← 𝜔𝑒𝑛𝑑 ; /* 𝜔𝑒𝑛𝑑 = ∞ if not given */
3 𝑑 ← 0 ; /* Initialize degree with 0 */
4 Function Main():
5 InOrderDFS(𝑇𝑣); /* Traverse the tree with in-order DFS */
6 if 𝜔𝑙𝑎𝑠𝑡 < 𝜔𝑚𝑎𝑥 then /* Check for last remaining interval */
7 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (⟨𝑣𝑖𝑑 , [𝜔𝑙𝑎𝑠𝑡 , 𝜔𝑚𝑎𝑥), 𝑑⟩); /* Collect tuple for last interval */

8 Function InOrderDFS(𝑡𝑟𝑒𝑒):
9 if 𝑡𝑟𝑒𝑒.𝑙𝑒 𝑓 𝑡 ≠ 𝑛𝑢𝑙𝑙 then InOrderDFS(𝑡𝑟𝑒𝑒.𝑙𝑒 𝑓 𝑡);

10 ProcessNode(𝑡𝑟𝑒𝑒.𝑣𝑎𝑙𝑢𝑒,𝑡𝑟𝑒𝑒.𝑝𝑎𝑦𝑙𝑜𝑎𝑑);
11 if 𝑡𝑟𝑒𝑒.𝑟𝑖𝑔ℎ𝑡 ≠ 𝑛𝑢𝑙𝑙 then InOrderDFS(𝑡𝑟𝑒𝑒.𝑟𝑖𝑔ℎ𝑡);
12 Function ProcessNode(𝜔, 𝜌):
13 if 𝜔𝑙𝑎𝑠𝑡 == 𝜔 then /* Check first node visit */
14 𝑑 ← 𝑑 + 𝜌; /* Add payload to degree */
15 return ; /* Leave function */

16 if 𝜌 ≠ 0 then /* Check if the degree changes */
17 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (⟨𝑣𝑖𝑑 , [𝜔𝑙𝑎𝑠𝑡 , 𝜔), 𝑑⟩) ; /* Collect tuple */
18 𝑑 ← 𝑑 + 𝜌 ; /* Add degree change to degree */
19 𝜔𝑙𝑎𝑠𝑡 ← 𝜔; /* Remember 𝜔 for next call */

parameters to initialize 𝜔𝑙𝑎𝑠𝑡 and 𝜔𝑚𝑎𝑥 . During the in-order traversal of the DFS, function
ProcessNode(𝜔, 𝜌) is called first with the arguments (1, 1) (value,payload), followed by
(2, 1), (3, 1), (4,−1), (5,−1) and (6,−1).

According to the first tuple, the interval [0, 1) is defined and collected as part of the
first resulting temporal degree tuple ⟨𝑣1, [0, 1), 0⟩ afterwards (line 17). Then, the payload
1 is added to the degree value 𝑑 (line 18) and the timestamp value 1 is remembered
in variable 𝜔𝑙𝑎𝑠𝑡 (line 19). In the next function call with input tuple (2, 1), an interval
𝜏 ← [1, 2) is defined and collected together with the current degree value of 𝑑 which is
1. The collected result tuple is thus ⟨𝑣1, [1, 2), 1⟩. Again, the degree value is updated by
the payload and the timestamp is remembered. For the remaining four input tuples (3, 1),
(4,−1), (5,−1) and (6,−1) will be the following result tuples collected: ⟨𝑣1, [2, 3), 2⟩,
⟨𝑣1, [3, 4), 3⟩, ⟨𝑣1, [4, 5), 2⟩ and ⟨𝑣1, [5, 6), 1⟩.

To collect also the remaining interval from 6 to∞, the condition (line 7) checks whether the
largest timestamp in the tree (𝜔𝑙𝑎𝑠𝑡 ) is smaller than the maximum timestamp (𝜔𝑚𝑎𝑥 = ∞).
Since this is true in our case, we define the remaining interval 𝜏 = [6,∞) and collect the
output tuple ⟨𝑣1, [6,∞), 0⟩ which states that the degree of 𝑣1 is 0 for the interval [6,∞). The
result of this final step is a compact representation of the degree evolution of the outdegree
of vertex 𝑣1 as defined by Definition 4: 𝑑𝑒𝑔𝑒𝑣+ (𝑣1, [0,∞)) = {⟨0, [0, 1)⟩, ⟨1, [1, 2)⟩,
⟨2, [2, 3)⟩, ⟨3, [3, 4)⟩, ⟨2, [4, 5)⟩ ⟨1, [5, 6)⟩ ⟨0, [6,∞)⟩}.

500 Christopher Rost, Kevin Gomez, Peter Christen, Erhard Rahm



Evolution of Degree Metrics in Large Temporal Graphs 17

Output
result

tuples

Input
TPGM

Graph


V

E

V1

Map

v→(vid,𝜏)

E1

FlatMap
e→(sid,𝜏)

   (tid,𝜏)


Group
by sid/tid E2


GroupReduce
build (vid,Tv) E3


FlatMap
(vid,Tv)→


{(vid,𝜏,deg(vid,ω)),...}

E4


Ѱ

Join
on vid

(vid,[𝜏1,𝜏2,...])

(2) (3) (4) (5)

(1)

Fig. 6: Implementation details of the Degree Evolution-Operator.

5 Distributed implementation

The ability to process very large graphs efficiently is often a limitation of existing graph
processing systems [Sa20], requiring partitioning of large graphs and distributed processing
for example of analytical tasks. There are distributed graph processing systems, such as
Tegra [Iy21] based on Apache Spark [Za16], or Gradoop [Ro22, Ro21] which uses
Apache Flink [Ca15]. An analytical operator in Gradoop is a smart combination of Flink
transformations. A Flink transformation, e.g., map, flatMap and join, is a processing unit that
can be applied in parallel on a distributed Flink DataSet. A DataSet represents a distributed
collection of elements of the same type in Apache Flink. Its tuples are distributed among all
nodes of a cluster according to a partitioning strategy. We use this operator concept for our
distributed implementation of the algorithm described in Sect. 4.

Fig. 6 shows an architectural sketch of a Degree Evolution-Operator8 as a Directed Acyclic
Graph (DAG) representing multiple Flink transformations that are applied on the input
graph DataSets: 𝑉 with 𝑣𝑖 = ⟨𝑣𝑖𝑑 , 𝜏⟩ and 𝐸 with 𝑒𝑖 = ⟨𝑒𝑖𝑑 , 𝑠𝑖𝑑 , 𝑡𝑖𝑑 , 𝜏⟩. The enumeration of
the data flow follows the algorithm steps given in Sect. 4.

First, in step (1), each vertex of the input vertex DataSet 𝑉 , is mapped to a minimal
representation holding the vertex identifier and the bounds of the vertex’ time interval. The
resulting DataSet is named 𝑉1 in the figure. If the temporal information of the vertices
can be neglected, this step can be skipped and default min/max timestamps can be used
as input to step (5), which avoids the later described distributed join. Then, we apply a
FlatMap transformation, step (2), to the edge DataSet 𝐸 that is configured by the degree
type (Ψ ∈ {𝑖𝑛, 𝑜𝑢𝑡, 𝑏𝑜𝑡ℎ}) as selected by the user. According to the degree type, one or two
tuples of the format ⟨𝑣𝑖𝑑 , 𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑⟩ are extracted from an input edge tuple (step (2) in
Sect. 4). The resulting DataSet is denoted as 𝐸1.

On 𝐸1, we apply a Group transformation which groups all entities by the vertex identifier,
and creates a set of tuples ⟨𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑⟩ for each group. In the figure, this step is marked
by (3), whereas the resulting grouped DataSet is denoted as 𝐸2. Due to the grouping, 𝐸2 is
partitioned by the vertex identifier. For each group, we apply a GroupReduce transformation

8The operator code is open-source: https://github.com/dbs-leipzig/gradoop/tree/develop/gradoop-
temporal/src/main/java/org/gradoop/temporal/model/impl/operators/metric.
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|𝑉 | |𝐸 | Size (GB)
∑ |𝑑𝑒𝑔𝑒𝑣() |

LDBC SF1 3.2 M 17.3 M 4.2 30.6 M
LDBC SF10 30.0 M 176.6 M 42.3 319.6 M
LDBC SF100 282.6 M 1.77 B 421.9 3.18 B
Citi Bike 1174 97.5 M 22.6 381.0 M
Stackoverflow 462.9 M 664.8 M 199.0 1.3 B

Tab. 1: Dataset statistics, including their sizes on HDFS and number of result set tuples for Ψ = 𝑏𝑜𝑡ℎ,
i. e.,

∑ |𝑉 |
𝑖=1 |𝑑𝑒𝑔𝑒𝑣(𝑣𝑖) |. For example, 3.18B tuples result for the LDBC dataset with SF 100.

in step (4) which calls a user-defined function for each group. This function receives the
whole group at once and produces a mapping 𝑣𝑖𝑑 → 𝑇𝑣 assigning a degree tree to its
corresponding vertex identifier, represented as a tuple ⟨𝑣𝑖𝑑 , 𝑇𝑣⟩. The resulting tuples are
part of DataSet 𝐸3, which is partitioned by the vertex identifier.

Now, each tuple of 𝑉1 needs to be joined by the vertex identifier to it’s corresponding degree
tree tuple of DataSet 𝐸3 to extend it with the interval bounds of the vertex. As said before,
this step can be optionally skipped. As a result of the join, the DataSet 𝐸3 consists of tuples
⟨𝑣𝑖𝑑 , 𝑇𝑣 , 𝜔𝑠𝑡𝑎𝑟𝑡 , 𝜔𝑒𝑛𝑑⟩. As a last step, annotated with a (5), a FlatMap transformation is
applied on DataSet 𝐸3 where its internal logic implements the tree traversal and result
collection process defined in Algorithm 1. For each input tuple, the transformation produces
multiple (at least one) result tuples in the form ⟨𝑣𝑖𝑑 , 𝜏, 𝑑𝑒𝑔𝑡 (𝑣𝑖𝑑 , 𝜔)⟩, describing the constant
temporal degree (see Definition 3) of vertex 𝑣 ∈ 𝑉 (identified by 𝑣𝑖𝑑) for the whole interval
𝜏. The resulting DataSet is named 𝐸4.

6 Experimental Evaluation

We now evaluate the runtime and scalability of the temporal degree operator we discussed
in Sect. 5 with respect to increasing data set and cluster sizes. We ran all experiments on a
cluster with 16 worker nodes connected via 1 GBit Ethernet, where each worker consists of
a E5-2430 6(12) 2.5 Ghz CPU, 48 GB RAM, two 4 TB SATA disks, and running openSuse
13.2, Hadoop 2.7.3 and Flink 1.9.0. On a worker node, a Flink Task Manager [Ca15] is
configured with 6 task slots and 40GB memory.

We use three datasets for the evaluation, referred to as LDBC [Io16] (a synthetic social
network in three scale factors), citibike9 and stackoverflow10 (both real-world data). In Fig. 4
we show example time series of four evolution metrics for the citibike dataset. Each graph
is stored distributed using the Hadoop Distributed File System (HDFS) by hash partitioning
as two datasets 𝑉 and 𝐸 . Table 1 shows statistics of the three datasets with the different
scaling factors (SF) for LDBC. Each experiment includes reading the graph dataset from

9https://www.citibikenyc.com/system-data/ (visited 2022-10-01).
10https://archive.org/details/stackexchange (visited 2022-10-01).
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Fig. 10: Speedup of algorithm for Ψ = 𝑜𝑢𝑡.

the HDFS, executing the specific workflow, and finally writing all results back to the HDFS.
We ran each experiment five times and report average runtimes.

Impact of dataset size. Fig. 7 and 8 show the impact of the dataset size to the operator runtime
with full parallelism of 16 workers with respect to different degree types Ψ ∈ {𝑖𝑛, 𝑜𝑢𝑡, 𝑏𝑜𝑡ℎ}.
While Fig. 7 shows the actual runtime in seconds for all three dataset sizes, Fig. 8 visualizes
the factor by which the runtime has increased compared to the runtime of the LDBC SF1
dataset. For example, the runtime for the LDBC SF1 dataset for Ψ = 𝑏𝑜𝑡ℎ is only 23.3
seconds, for LDBC SF10 164.6 seconds (factor 7 higher compared to LDBC SF1) and for
LDBC SF100 1433.6 seconds (factor 61). The best result is given by degree type Ψ = 𝑖𝑛,
where the runtimes of LDBC SF100 are only 35.4 times larger compared to LDBC SF1,
although the dataset is 100 times larger. From LDBC SF10 to LDBC SF100 the runtimes of
all three degree types rise equally.

The results, specifically Fig. 8, show that a linear increase of the dataset size leads to only a
sublinear increase in the running time for a constant graph structure. Further, the runtimes
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of Ψ = 𝑏𝑜𝑡ℎ are always higher compared to the others which is due to the double amount
of collected tuples in step (2), as we discussed in Sect. 5.

Impact of worker count. We next examine the runtime and scalability of the algorithm for
all datasets. In addition, the effect of excluding the vertex time information as described in
Sect. 4 is evaluated. Without using the vertex time, the complete step (1) and the expensive
join after step (4) can be avoided (see Sect. 5). In the following, we refer to an execution
without vertex time as base and extended for the full algorithm. The results in Fig. 9 show
that the mentioned higher complexity has a significant impact on the running time. For
example, the runtime on a single machine for the citibike dataset is 397.6 seconds (base)
and 533.6 seconds (extended), which means an increase of 34.2%. For the stackoverflow
dataset, the execution takes 2,536 seconds (base) and 5,216 seconds (extended), which
means almost doubling the runtime on a single machine.

The more workers are added, the smaller the runtime and the difference between the two
algorithm variants, which can be seen in Fig. 10. With the citibike dataset, we can see that
the runtimes on a single machine are already low and that only a moderate improvement can
be achieved through horizontal scaling of resources. For this dataset, we reach a speedup
of about 6.7 for 16 machines using the extended variant, while for the LDBC SF100 and
stackoverflow datasets we achieve a speedup of up-to 11.1 and 12.07, respectively.

7 Conclusion

Most graphs that model real-world entities and their relationships are dynamic, where edges
and vertices can be valid for only a certain period of time. One simple but often used
centrality measure is the degree centrality using a vertex’ degree to judge it’s popularity
in a network. We show in this work that it is necessary to determine a vertex degree over
time, to know exactly when a node has which degree and how long this value is valid and
in which quantity it does change over time. We therefore provide temporal extensions to
the vertex degree metric itself, its aggregations and others based on it, namely the degree
range, the degree variance and the ANND, and define them formally. We further describe an
algorithm to calculate the newly introduced degree evolution for all vertices of a temporal
graph. We implemented the algorithm as a graph analysis operator in Gradoop [Ro22], an
open-source distributed graph analysis system.

We evaluated runtimes and scalability of the operator on a cluster with 16 machines to
determine the impact of different datasets and sizes. In summary, we have shown that a linear
increase in the dataset size leads to only a sublinear increase in runtime of our algorithm. We
also showed that the operator scales well by increasing the number of machines. Speedup
values between 10 and 12 were achieved on 16 machines using the two largest datasets.
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