
cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Discovering Multi-Dimensional Subsequence Queries from
Traces – From Theory to Practice

Sarah Kleest-Meißner1, Rebecca Sattler2, Markus L. Schmid3, Nicole Schweikardt4,
Matthias Weidlich5

Abstract: Subsequence-queries with wildcards and gap-size constraints (swg-queries, for short) are
an expressive model for sequence data, in which queries are described by patterns over an alphabet of
variables and types, along with a global window size and a number of gap-size constraints. They are
evaluated over a trace, i.e., a sequence of types, by replacing variables by single types, while satisfying
the window and the gap-size constraints. Kleest-Meißner et al. (Proc. ICDT 2022) formalised the task
of discovering an swg-query that describes best a given sample consisting of a finite number of traces,
and developed a discovery algorithm solving this task. However, in practical application scenarios,
traces are often multi-dimensional, i.e., a trace corresponds to a sequence of tuples of types, which
renders the existing technique inapplicable.
In this paper, we lift the notion of swg-queries to such a multi-dimensional setting, thereby enlarging
the applicability of the query model and the techniques for query discovery. We introduce a mapping
between one-dimensional and multi-dimensional sequence data, such that a multi-dimensional trace
matches a multi-dimensional query if and only if the corresponding one-dimensional trace matches
the corresponding one-dimensional query. We complement our formal results with a description of
our prototypical implementation of query discovery for multi-dimensional sequence data. Results
from evaluation experiments with real-world data indicate the feasibility of our approach.

Keywords: multi-dimensional subsequence queries on traces, detecting descriptive multi-dimensional
queries, subsequences, embeddings

1 Introduction

Models for sequence data define an order for a set of data items [Bab+02], which typically
follows from the order in which these items have been created, observed, or received. They
1 Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany, kleemeis@informatik.hu-berlin.

de. Supported by the German Research Foundation (DFG), CRC 1404: “FONDA: Foundation of Workflows for
Large-Scale Scientific Data Analysis”

2 Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany, rebecca.sattler@informatik.
hu-berlin.de. Supported by the German Research Foundation (DFG), CRC 1404: “FONDA: Foundation of
Workflows for Large-Scale Scientific Data Analysis”

3 Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany, MLSchmid@MLSchmid.de.
Supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) – project number
416776735 (gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 416776735)

4 Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany, schweikn@informatik.hu-
berlin.de

5 Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany, matthias.weidlich@hu-berlin.de

cba doi:10.18420/BTW2023-24

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 511

mailto:kleemeis@informatik.hu-berlin.de
mailto:kleemeis@informatik.hu-berlin.de
mailto:rebecca.sattler@informatik.hu-berlin.de
mailto:rebecca.sattler@informatik.hu-berlin.de
mailto:MLSchmid@MLSchmid.de
mailto:schweikn@informatik.hu-berlin.de
mailto:schweikn@informatik.hu-berlin.de
mailto:matthias.weidlich@hu-berlin.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-24

2 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias Weidlich

facilitate the analysis of the evolution of some system over time and have been adopted in
various domains. For instance, in cluster monitoring, sequence data describes the process of
executing tasks on machines [Ver+15]; in urban transportation, sequence data captures the
routes taken by vehicles [Art+14]; and in finance, sequence data represents a transaction
history [TRP12].

Sequence data may be queried for relevant patterns by specifying which data items, in which
order, and in which temporal context are of interest for a specific analysis question [Gia+20;
CM12]. This way, situations of interest that happened in the past and materialized in historic
data can be detected by evaluating a suitable subsequence query. Employing such a query
over a stream of data items also enables the detection of such a situation immediately upon
its occurrence, thereby enabling reactive and even pro-active applications.

As an example, consider a cluster monitoring scenario as illustrated in Figure 1. Here, data
items indicate transitions in the lifecycle of a task, see Figure 1a. A query may then specify
a subsequence of abnormal task execution in the cluster, e.g., as a sequence of data items
that indicate that a task was scheduled, killed, and, after being treated in the same way twice
(e.g., being updated twice), scheduled again for execution. Here, the respective subsequence
is not necessarily continuous and certain lifecycle transitions that are not indicative may
occur between the relevant ones. Figure 1b shows how such a query would be written
following common languages for complex event recognition [Gia+20].

In practice, finding a suitable query that detects a particular situation is far from trivial,
though. Users often know the time at which a situation occurred in the past, but lack insights
into the exact materialization of the situation in the sequence data. To provide guidance
in the formulation of an adequate query, it was therefore suggested to discover queries
that describe patterns linked to the situation of interest [GCW16; MCT14]. These queries
may then be interpreted and validated by a user in order to provide traceability and avoid
overfitting.

Previously, we proposed a query language for describing subsequence queries with wildcards,
a window size, and gap-size constraints [Kle+22], referred to as swg-queries. In essence, an
swg-query defines a pattern over an alphabet of variables and types, a global window size,
and gap-size constraints that bound the number of items that may occur between the queried
types and variables. Taking up the query from Figure 1b, the respective swg-query includes:
(i) a pattern SCH KIL 𝑥 𝑥 SCH with 𝑥 denoting a variable; (ii) a global window size of at
most 15 items; and (iii) gap-size constraints, e.g., (0, 10) to define that between zero and
ten data items may occur between the type KIL and the first occurrence of variable 𝑥.

The general concept of subsequences has extensively been studied both in a purely
combinatorial sense (in formal language theory, logic and combinatorics on words) and
algorithmically (in string algorithms and bioinformatics); see the introductions of the recent
papers [Gaw+21; Day+21] for a comprehensive list of relevant pointers. The problem of
matching subsequences with gap-constraints (and analysis problems with respect to the set

512 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 3

⟨SUB, SCH, EVI, SCH, KIL, UPD, CHE, UPD, SCH, FIN⟩

(a) Sequence of data items recorded for a task and indicating the task’s lifecycle: Submitted (SUB), scheduled
(SCH), evicted (EVI), killed (KIL), updated (UPD), checked (CHE), finished (FIN).

PATTERN SEQ(Item a, Item b, Item c, Item d, Item e)

WHERE a.status = e.status = SCH AND b.status = KIL AND c.status = d.status

WITHIN 15 data items

(b) A query over sequences of data items following common languages for complex event recognition [Gia+20].
It detects if a task was scheduled, killed, and, after treated in the same way twice (e.g. being updated twice),
scheduled again for execution. It matches the sequence in Figure 1a.

Fig. 1: Illustration of a query over sequence data in the domain of cluster monitoring.

of all gap-constrained subsequences of given strings) has been investigated in the recent
papers [Day+22; Kos+22a] (see also [Kos+22b] for a survey).

Patterns with variables were introduced by Angluin [Ang80]; they play a central role for
inductive inference, in formal language theory and combinatorics on words (see [SA95;
MS19; RS97]). Syntactically, our swg-queries are Angluin-style patterns, but adapted in a
way that variables refer solely to single types (whereas in Angluin’s semantics they refer to
finite sequences of types) and matches are further constrained by a global window size and
a number of gap-size constraints (such constraints are not available in Angluin’s pattern
queries).

Despite the fundamental semantic differences between swg-queries and Angluin-style
patterns, it is possible to adapt concepts and algorithms from inductive inference of the so-
called pattern languages that can be described by Angluin-style patterns. Most importantly,
the classical concept of descriptive patterns (already introduced in [Ang80], see also [FR10;
FR13]), can be adapted to swg-queries [Kle+22]: a query 𝑞 is called descriptive for a given
sample S (i.e., a finite set of sequences of data items) and a given support threshold sp if it
matches in at least a fraction of sp sequences of S and there is no strictly more restrictive
query 𝑞′ that also matches in a fraction of at least sp sequences of S.

For classical Angluin-style semantics, Shinohara’s algorithm [Shi82] computes a descriptive
pattern query upon input of a sample S and the support threshold sp = 1 (see also [Fer+18]
for a thorough analysis and extensions of Shinohara’s algorithm). In [Kle+22] we presented
an adaptation and extension of Shinohara’s algorithm that is capable of discovering, upon
input of a sample S and a support threshold sp ⩽ 1, a descriptive swg-query — and different
executions of this algorithm may be used to compute a number of different descriptive
swg-queries.

However, a major drawback of swg-queries as well as related models of Angluin-style
patterns is that they are based on a one-dimensional model of sequence data, i.e., data items
refer to atomic types. As a consequence, they are not applicable in many practical scenarios
in which sequence data comprise items that are instances of a multi-dimensional schema.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 513

4 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias Weidlich

(job=1, task=2, machine=5, status=SCH, priority=low)
(job=4, task=3, machine=5, status=SCH, priority=high)
(job=2, task=1, machine=1, status=UPD, priority=high)
(job=1, task=2, machine=5, status=EVI, priority=low)
(job=1, task=2, machine=3, status=SCH, priority=low)

(a) A sequence of multi-dimensional data items. Each data item has five attributes that characterise the job to
which a task belongs (job), the identifier of the task (task), the machine to which the task is assigned (machine),
the task’s lifecycle transition (status), and the execution priority of the task (priority).

PATTERN SEQ(Item a, Item b, Item c)

WHERE a.status = b.status = SCH AND c.status = EVI

AND a.job = c.job AND a.task = c.task AND

AND a.machine = b.machine AND b.priority = high

WITHIN 10 data items

(b) A query over sequences of multi-dimensional data items (again, following common languages for complex
event recognition [Gia+20]). The query is matched in the sequence depicted in Figure 2a by associating a, b, and c
with the first, second, and fourth tuple of the sequence.

Fig. 2: Illustration of a query over multi-dimensional sequence data.

Considering the application domain of cluster monitoring, data items may capture not only
the lifecycle transitions related to a task, but also the job to which the task belongs, the
assigned machine, and the priority of task execution, see Figure 2a. These attributes enable
the definition of more elaborate subsequence queries that incorporate predicates over the
respective values of data items. For instance, the query depicted in Figure 2b detects the
situation that a task is scheduled on a machine for which, subsequently, the scheduling of a
task of a high-priority job on the same machine leads to the eviction of the first task.

In this paper, we address the above limitation by lifting swg-queries to multi-dimensional
sequence data. This way, we extend the applicability of the query model and also enable the
discovery of descriptive queries from a sample database of multi-dimensional sequences.
Our approach is to formulate a suitable mapping between one-dimensional and multi-
dimensional sequence data that facilitates query evaluation: A multi-dimensional sequence
matches a multi-dimensional query if, and only if, the corresponding one-dimensional
sequence matches the corresponding one-dimensional query. We complement these formal
contributions with a description of our prototypical implementation of query discovery
for multi-dimensional sequence data. We further report on experiments on applying this
prototype to a real-world dataset in the domain of cluster monitoring, i.e., the Google Cluster
Traces [RWH11]. Our results indicate the general feasibility of discovering swg-queries
from multi-dimensional sequence data and also shed light on the sensitivity of the runtime
of the approach with respect to structural characteristics of the sequence database.

The rest of this paper is structured as follows. Section 2 introduces the multi-dimensional
query model and relates it to the previously studied one-dimensional case. Section 3 provides
a solution for the query discovery problem and briefly describes our implementation.
Section 4 presents our experimental evaluation. Section 5 concludes the paper.

514 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 5

2 Multi-Dimensional Subsequence-Queries

This section introduces the syntax and semantics of multi-dimensional subsequence-queries
with wildcards and gap-size constraints, for short: mswg-queries (Section 2.1). After briefly
discussing their relation to the (one-dimensional) swg-queries introduced in [Kle+22]
(Section 2.2) we present a way to encode mswg-queries as swg-queries (Section 2.3). Prior
to this, we fix some basic notation.

Let N and N⩾1 be the set of non-negative integers and positive integers, respectively. For
ℓ ∈ N we let [ℓ] = {𝑖 ∈ N : 1 ⩽ 𝑖 ⩽ ℓ}.

Let 𝐴 be a non-empty set. We write 𝐴∗ (and 𝐴+) for the set of all strings (and the set of
all non-empty strings) over 𝐴. We denote the length of a string 𝑠 by |𝑠 |. For a position
𝑖 ∈ [|𝑠 |] we write 𝑠[𝑖] to denote the letter at position 𝑖 in 𝑠. A factor of a string 𝑠 ∈ 𝐴∗ is a
string 𝑣 ∈ 𝐴∗ such that 𝑠 = 𝑢𝑣𝑢′ for 𝑢, 𝑢′ ∈ 𝐴∗. A subsequence of a string 𝑡 = 𝑡1𝑡2 · · · 𝑡𝑛,
where 𝑡𝑖 ∈ 𝐴 for all 𝑖 ∈ [𝑛], is a string 𝑠 = 𝑠1 · · · 𝑠𝑚 where 𝑚 ⩽ 𝑛 and there exist integers
1 ⩽ 𝑖1 < · · · < 𝑖𝑚 ⩽ 𝑛 such that 𝑠 𝑗 = 𝑡𝑖 𝑗 for all 𝑗 ∈ [𝑚]; the mapping 𝑒 : [𝑚] → [𝑛] with
𝑒(𝑗) = 𝑖 𝑗 for all 𝑗 ∈ [𝑚] is called an embedding of 𝑠 in 𝑡. For example, the string a c c is a
subsequence of the string a b a c c b with embedding 𝑒 where 𝑒(1) ∈ {1, 3}, 𝑒(2) = 4 and
𝑒(3) = 5. We write 𝑠 ≼𝑒 𝑡 to indicate that 𝑠 is a subsequence of 𝑡 with embedding 𝑒, and we
suppress the subscript 𝑒 if we only want to indicate that 𝑠 is a subsequence of 𝑡.

For the rest of this paper we define Γ to be a (finite or infinite) alphabet with |Γ | ⩾ 2. The
elements in Γ will be called types. Furthermore, we fix a countably infinite set Vars of
variables, which is disjoint with the set Γ of types.

2.1 Syntax and Semantics of mswg-queries

We fix a number 𝑘 ∈ N⩾1 which we will henceforth call the dimension. We model a data
item 𝑑 with 𝑘 attributes as an ordered 𝑘-tuple over Γ, i.e., an element in Σ := (Γ𝑘).6 A
𝑘-dimensional trace over Γ (for short: 𝑘-trace) is an element in Σ+, i.e., a finite non-empty
sequence of 𝑘-tuples over Γ. The length |𝑡 | of a 𝑘-trace 𝑡 is the number of 𝑘-tuples it
comprises — i.e., |𝑡 | is 𝑡’s length as a string over alphabet Σ. We write types(𝑡) for the set
of types in Γ that occur in 𝑡.

Example 1. We consider 5-dimensional data items with attributes job, task, machine,
status and priority (which, for a unique tuple representation, are ordered as indicated
above), and let Γ := {SCH, UPD, KIL} ∪ {0, 1, . . . , 10}. For example, (1, 2, 5, SCH, 0) and

6 When considering (Γ𝑘) as an alphabet, i.e., each 𝑘-tuple is viewed as a single letter of this alphabet, we use
brackets to visualize this.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 515

6 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias Weidlich

(1, 1, 5, KIL, 0) are two 5-dimensional data items (i.e., 5-tuples).
The following are two examples of 5-dimensional traces over Γ:

𝑠 := (1, 2, 5, SCH, 0) (1, 1, 5, KIL, 0) (1, 2, 5, SCH, 1)

𝑡 := (1, 2, 5, SCH, 0) (1, 2, 4, UPD, 0) (1, 1, 5, KIL, 0) (1, 2, 5, SCH, 1) (2, 3, 2, UPD, 1)

These traces have length |𝑠 | = 3 and |𝑡 | = 5. The mapping 𝑒 : [3] → [5] with 𝑒(1) = 1,
𝑒(2) = 3, and 𝑒(3) = 4 is an embedding of 𝑠 in 𝑡 and hence witnesses that 𝑠 is a subsequence
of 𝑡. From now on, we will illustrate such an embedding in the following way:

𝑠 = (1, 2, 5, SCH, 0) (1, 1, 5, KIL, 0) (1, 2, 5, SCH, 1)

𝑡 = (1, 2, 5, SCH, 0) (1, 2, 4, UPD, 0) (1, 1, 5, KIL, 0) (1, 2, 5, SCH, 1) (2, 3, 2, UPD, 1)

Definition 2. A 𝑘-dimensional subsequence-query with wildcards and gap-size constraints
(𝑘-swg-query, for short) 𝑞 = (𝑠, 𝑤, 𝑐) (over Vars and Γ), consists of a query string
𝑠 ∈ ((Vars ∪ Γ)𝑘)+ (i.e., 𝑠 is a non-empty string of 𝑘-tuples built from variables and types),
a global window size 𝑤 ∈ N⩾1 ∪ {∞} with 𝑤 ⩾ |𝑠 |, and a tuple of local gap-size constraints
𝑐 = (𝑐1, 𝑐2, . . . , 𝑐 |𝑠 |−1), where 𝑐𝑖 = (𝑐−

𝑖
, 𝑐+

𝑖
) ∈ N × (N∪ {∞}), such that 𝑐−

𝑖
⩽ 𝑐+

𝑖
for every

𝑖 ∈ [|𝑠 |−1] and |𝑠 |+∑ |𝑠 |−1
𝑖=1 𝑐−

𝑖
⩽ 𝑤.

We speak of multi-dimensional subsequence-queries (for short: mswg-queries) to refer to
𝑘-swg-queries for arbitrary dimension 𝑘 ∈ N⩾1. For an mswg-query 𝑞 = (𝑠, 𝑤, 𝑐) we write
types(𝑞) (or types(𝑠)) and vars(𝑞) (or vars(𝑠)) to denote the set of types (from Γ) and the
set of variables (from Vars), respectively, that occur in 𝑞’s query string 𝑠. Such a query 𝑞 is
called an (ℓ, 𝑤, 𝑐)-query for ℓ := |𝑠 |. We will refer to (ℓ, 𝑤, 𝑐) as query parameters.

The semantics of mswg-queries is defined as follows: Each variable in a query string 𝑠

serves as a wildcard representing an arbitrary type from Γ. A 𝑘-swg-query 𝑞 = (𝑠, 𝑤, 𝑐)
matches in a 𝑘-trace 𝑡 (in symbols: 𝑡 |= 𝑞), if the wildcards in 𝑠 can be replaced by types in
Γ in such a way that the resulting 𝑘-trace 𝑠′ satisfies the following: 𝑡 contains a factor 𝑡′ of
length at most 𝑤 such that 𝑠′ occurs as a subsequence in 𝑡′ and for each 𝑖 < ℓ := |𝑠 | the gap
between 𝑠′ [𝑖] and 𝑠′ [𝑖+1] in 𝑡′ has length at least 𝑐−

𝑖
and at most 𝑐+

𝑖
. I.e., 𝑡′ is of the form

𝑠′ [1] 𝑔1 𝑠
′ [2] 𝑔2 · · · 𝑔ℓ−1 𝑠

′ [ℓ] and 𝑐−
𝑖
⩽ |𝑔𝑖 | ⩽ 𝑐+

𝑖
for all 𝑖 ∈ [ℓ−1].

An alternative, more formal description of these semantics relies on the following additional
notation: An embedding 𝑒 : [ℓ] → [𝑛] is said to satisfy a global window size 𝑤, if
𝑒(ℓ) − 𝑒(1) + 1 ⩽ 𝑤; and we say 𝑒 satisfies a tuple 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐ℓ−1) of local gap-size
constraints (for ℓ and 𝑤), if 𝑐−

𝑖
⩽ 𝑒(𝑖+1)−1− 𝑒(𝑖) ⩽ 𝑐+

𝑖
for all 𝑖 < ℓ. Consider a mapping

` : (Vars ∪ Γ) → Γ with `(𝑎) = 𝑎 for all types 𝑎 ∈ Γ (such mappings will henceforth
be called substitutions). We lift ` to a mapping from (Vars ∪ Γ)𝑘 to Σ := (Γ𝑘) by letting
`((𝑎1, . . . , 𝑎𝑘)) := (`(𝑎1), . . . , `(𝑎𝑘)) for all (𝑎1, . . . , 𝑎𝑘) ∈ (Vars ∪ Γ)𝑘 ; and we further
lift ` to a mapping from query strings 𝑠 ∈ ((Vars ∪ Γ)𝑘)+ to 𝑘-traces of length ℓ := |𝑠 | by
letting `(𝑠) = `(𝑠[1]) · · · `(𝑠[ℓ]).

516 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 7

Using these notions, we obtain that a 𝑘-trace 𝑡 matches a 𝑘-swg-query 𝑞 = (𝑠, 𝑤, 𝑐) if, and
only if, there exist a substitution ` : (Vars ∪ Γ) → Γ and an embedding 𝑒 : [|𝑠 |] → [|𝑡 |]
such that `(𝑠) ≼𝑒 𝑡 and 𝑒 satisfies 𝑤 and 𝑐. We call (`, 𝑒) a witness for 𝑡 |= 𝑞.

Example 3. We consider 5-dimensional data items with attributes job, task, machine, status,
and priority (in this order) and types in Γ = {SCH, EVI, UPD, KIL} ∪ {0, 1, . . . , 10} ∪ {ℎ, 𝑙} (with
ℎ, 𝑙 being abbreviations for high and low). Consider the query from Figure 2b. This query
searches for a subsequence of three 5-dimensional data items, the first two of which have
status SCH (schedule) and the third of which has status EVI (evict) such that the following is
true: the first and third data items are related to the same job and to the same task, the first
and second data items are related to the same machine, and the second data item has a high
priority; all within at most 10 data items.
This can be expressed as a 5-swg-query 𝑞 = (𝑠, 𝑤, 𝑐) as follows: The query string length is
ℓ := 3. The window size is 𝑤 := 10. As there are no particular constraints on the gap sizes
between the data items, the gap size constraints 𝑐 are chosen to be 𝑐 = ((0,∞), (0,∞))
(meaning that each gap can be of arbitrary length). The query string 𝑠 is

𝑠 := (𝑥j, 𝑥t, 𝑥m, SCH, 𝑦1) (𝑦2, 𝑦3, 𝑥m, SCH, h) (𝑥j, 𝑥t, 𝑦4, EVI, 𝑦5)

where 𝑥j, 𝑥t, 𝑥m, 𝑦1, . . . , 𝑦5 are pairwise distinct variables in Vars. The sequence of 5-
dimensional data items depicted in Figure 2a corresponds to the 5-trace

𝑡 := (1, 2, 5, SCH, l) (4, 3, 5, SCH, h) (2, 1, 1, UPD, h) (1, 2, 5, EVI, l) (1, 2, 3, SCH, l).

Observe that 𝑡 |= 𝑞, and a witness substitution ` and embedding 𝑒 can be illustrated as:

𝑠 = (𝑥j, 𝑥t, 𝑥m, SCH, 𝑦1) (𝑦2, 𝑦3, 𝑥m, SCH, h) (𝑥j, 𝑥t, 𝑦4, EVI, 𝑦5)
𝑡 = (1, 2, 5, SCH, l) (4, 3, 5, SCH, h) (2, 1, 1, UPD, h) (1, 2, 5, EVI, l) (1, 2, 3, SCH, l)

2.2 One-dimensional swg-queries

For the special case of dimension 𝑘 = 1 we identify 𝑘-tuples of elements in Vars ∪ Γ with
plain elements in Vars ∪ Γ; i.e., we simply write 𝑎 instead of (𝑎) for (𝑎) ∈ (Vars ∪ Γ)1.
Using this identification, a 1-dimensional trace over Γ precisely corresponds to the notion
of trace over Γ used in [Kle+22]; and the syntax and semantics of 1-swg-queries precisely
coincides with the syntax and semantics of the swg-queries over Vars and Γ introduced and
studied in [Kle+22]. Hence, the notions introduced in Section 2.1 are a natural generalisation
of the notions of [Kle+22] from dimension 1 to arbitrary dimension 𝑘 ∈ N⩾1. Furthermore,
all results achieved in [Kle+22] for swg-queries over Vars and Γ immediately carry over
to the 1-swg-queries over Vars and Γ considered in the current paper. A brief survey of
[Kle+22] can be found in [Sch22].

The following example illustrates the correspondence between the swg-queries of [Kle+22]
and 1-swg-queries.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 517

8 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias Weidlich

Example 4. The sequence of data items depicted in Figure 1a corresponds the the 1-trace

𝑡 := (SUB) (SCH) (EVI) (SCH) (KIL) (UPD) (CHE) (UPD) (SCH) (FIN)

which, by omitting brackets around 1-tuples, we shortly write as

SUB SCH EVI SCH KIL UPD CHE UPD SCH FIN

and this is a trace in the sense of [Kle+22]. The query depicted in Figure 1b searches for
a subsequence of data items that indicates that a task was scheduled, killed, and, after
treated in the same way twice, scheduled again; all within a global window size of at
most 15 data items. This can be expressed as a 1-swg-query 𝑞 = (𝑠, 𝑤, 𝑐) as follows: The
query string length is ℓ := 5. The window size is 𝑤 := 15. As there are no particular
constraints on the gap sizes between the data items, the gap size constraints are chosen as
𝑐 := ((0,∞), (0,∞), (0,∞), (0,∞)) (meaning that each gap can be of arbitrary length).
The query string is 𝑠 := (SCH) (KIL) (𝑥) (𝑥) (SCH) , which, by omitting brackets around
1-tuples, is identified with SCH KIL 𝑥 𝑥 SCH , and this exactly yields a swg-query as considered
in [Kle+22]. We observe that 𝑡 |= 𝑞, and a witness substitution ` and embedding 𝑒 can be
illustrated as follows:

𝑠 = SCH KIL 𝑥 𝑥 SCH

𝑡 = SUB SCH EVI SCH KIL UPD CHE UPD SCH FIN

2.3 A one-dimensional representation of multi-dimensional traces and queries

This subsection fixes an encoding that allows to represent 𝑘-dimensional traces and
𝑘-swg-queries over Vars and Γ by corresponding 1-dimensional traces and 1-swg-queries
over Vars and a slightly extended type set Γ̃. This will allow us to transfer the results
obtained in [Kle+22] for the 1-dimensional case to the multi-dimensional setting.

We let Γ̃ := Γ ∪ {#} where # is a new symbol that belongs neither to Γ nor to Vars. We
will use # as a separator to mark the beginning of the encoding of every 𝑘-dimensional
data item. For each 𝑘-dimensional data item 𝑑 = (𝑎1, . . . , 𝑎𝑘) ∈ Γ𝑘 we let 𝑒𝑛𝑐(𝑑) be
the 1-dimensional trace over Γ̃ of length 𝑘+1 defined as 𝑒𝑛𝑐(𝑑) := # 𝑎1 · · · 𝑎𝑘 (recall
from Section 2.2 that we omit brackets around 1-dimensional data items, i.e., 𝑒𝑛𝑐(𝑑) is
(#) (𝑎1) · · · (𝑎𝑘)).
We lift 𝑒𝑛𝑐 to be a mapping from 𝑘-traces over Γ to 1-traces over Γ̃ in the canonical way: for a
𝑘-trace 𝑡 = 𝑡1𝑡2 · · · 𝑡𝑛 with 𝑡𝑖 ∈ Γ𝑘 for all 𝑖 ∈ [𝑛] we let 𝑒𝑛𝑐(𝑡) := 𝑒𝑛𝑐(𝑡1)𝑒𝑛𝑐(𝑡2) · · · 𝑒𝑛𝑐(𝑡𝑛).
Note that the 1-trace 𝑒𝑛𝑐(𝑡) has length (𝑘+1)·|𝑡 |.

The following example illustrates how an embedding 𝑒 of a 𝑘-trace 𝑠 in a 𝑘-trace 𝑡 (witnessing
that 𝑠 ≼ 𝑡) can be transferred into an embedding 𝑒 of the 1-trace 𝑒𝑛𝑐(𝑠) in the 1-trace
𝑒𝑛𝑐(𝑡).

518 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 9

Example 5. Let 𝑘 = 2 and Γ = {a, b, c}. Consider the following 2-traces 𝑠 and 𝑡:

𝑠 = (a, b) (a, b) (b, c) (a, c)
𝑡 = (a, b) (a, b) (a, c) (a, b) (b, c) (a, b) (a, c)

Note that 𝑠 ≼𝑒 𝑡, witnessed by the embedding 𝑒 illustrated above. I.e., 𝑒 : [4] → [7] with
𝑒(1) = 2, 𝑒(2) = 4, 𝑒(3) = 5, and 𝑒(4) = 7. The 1-traces 𝑠 := 𝑒𝑛𝑐(𝑠) and 𝑡 := 𝑒𝑛𝑐(𝑡) are

𝑠 = # a b # a b # b c # a c
𝑡 = # a b # a b # a c # a b # b c # a b # a c

Observe that 𝑠 ≼�̃� 𝑡 by the embedding 𝑒 illustrated above. This embedding is obtained from
𝑒 by translating each position of a 𝑘-tuple in the 𝑘-trace into a block of 𝑘+1 consecutive
positions in the corresponding 1-trace.

Note that there also exist other embeddings of 𝑠 in 𝑡 that do not correspond to embeddings
of 𝑠 in 𝑡; an example is the embedding 𝑒 illustrated as follows:

𝑠 = # a b # a b # b c # a c
𝑡 = # a b # a b # a c # a b # b c # a b # a c

The following notion is a straightforward generalization of the way the embedding 𝑒 was
obtained from 𝑒 in Example 5.

Let 𝑚, 𝑛 ∈ N⩾1 and let 𝑒 : [𝑚] → [𝑛] such that 𝑒(𝑖) < 𝑒(𝑗) for all 𝑖, 𝑗 ∈ [𝑚] with 𝑖 < 𝑗 .
Recall that 𝑘 ∈ N⩾1 is the fixed dimension. We let rep𝑘 (𝑒) be the mapping from [(𝑘+1)𝑚]
to [(𝑘+1)𝑛] defined as follows. We subdivide [(𝑘+1)𝑚] into 𝑚 consecutive blocks of length
(𝑘+1) each — the 𝑖-th block starting at position (𝑖−1) (𝑘+1) + 1 and ending at position
𝑖(𝑘+1), for every 𝑖 ∈ [𝑚]. The 𝑖-th block of [(𝑘+1)𝑚] is mapped by rep𝑘 (𝑒) onto the 𝑒(𝑖)-th
block of [(𝑘+1)𝑛]. I.e., for all 𝑖 ∈ [𝑚] and all 𝑝 ∈ {1, . . . , 𝑘+1} we let

rep𝑘 (𝑒) ((𝑖−1) (𝑘+1) + 𝑝) := (𝑒(𝑖)−1) (𝑘+1) + 𝑝.

The following lemma provides the property intended by the choice of the definition of
rep𝑘 (𝑒); the proof is straightforward and therefore omitted in this paper.

Lemma 6. Let 𝑠 and 𝑡 be two 𝑘-traces over Γ and let 𝑠 := 𝑒𝑛𝑐(𝑠) and 𝑡 := 𝑒𝑛𝑐(𝑡) be the
corresponding 1-traces over Γ̃. If 𝑒 is an embedding of 𝑠 in 𝑡 (witnessing that 𝑠 ≼𝑒 𝑡), then
𝑒 := rep𝑘 (𝑒) is an embedding of 𝑠 in 𝑡 (witnessing that 𝑠 ≼�̃� 𝑡).

Next, we focus on how to translate a 𝑘-swg-query 𝑞 = (𝑠, 𝑤, 𝑐) (over Vars and Γ) into a
1-swg-query 𝑒𝑛𝑐(𝑞) = (𝑠, �̃�, 𝑐) over Vars and Γ̃ in such a way that for all 𝑘-traces 𝑡 we
have: 𝑡 |= 𝑞 ⇐⇒ 𝑒𝑛𝑐(𝑡) |= 𝑒𝑛𝑐(𝑞).

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 519

10 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias
Weidlich

The choices of �̃� and 𝑠 are obvious: We let

�̃� := rep𝑘 (𝑤) :=
{
∞ if 𝑤 = ∞
(𝑘+1)𝑤 otherwise.

The query string 𝑠 is obtained from 𝑠 in the analogous way as 𝑒𝑛𝑐(𝑡) is obtained from
𝑡. I.e., every 𝑘-tuple 𝑑 = (𝑎1, . . . , 𝑎𝑘) ∈ (Vars ∪ Γ)𝑘 is mapped to 𝑒𝑛𝑐(𝑑) = #𝑎1 · · · 𝑎𝑘 ,
and 𝑠 = 𝑠1 · · · 𝑠ℓ with 𝑠𝑖 ∈ (Vars ∪ Γ)𝑘 for all 𝑖 ∈ [ℓ] is mapped to 𝑠 := 𝑒𝑛𝑐(𝑠) :=
𝑒𝑛𝑐(𝑠1) · · · 𝑒𝑛𝑐(𝑠ℓ).

Note that each position 𝑖 of 𝑠 now corresponds to 𝑘+1 consecutive positions in 𝑠. The
gap-size constraints in 𝑐 are chosen in such a way that they ensure that the 𝑘 gaps between
these positions are of size exactly 0. Consequently, we let

𝑐 := rep𝑘 (𝑐) =
(
(0, 0), . . . , (0, 0)︸ ︷︷ ︸

𝑘 times (0,0)

, 𝑐1, (0, 0), . . . , (0, 0)︸ ︷︷ ︸
𝑘 times (0,0)

, 𝑐2, . . . , 𝑐ℓ−1, (0, 0), . . . , (0, 0)︸ ︷︷ ︸
𝑘 times (0,0)

)
where for each 𝑖 ∈ [ℓ−1] the component 𝑐

𝑖
= (𝑐−

𝑖
, 𝑐+

𝑖
) is obtained from the 𝑖-th component

𝑐𝑖 = (𝑐−
𝑖
, 𝑐+

𝑖
) of 𝑐 by letting

𝑐−𝑖 := (𝑘+1)𝑐−𝑖 and 𝑐+𝑖 :=
{
∞ if 𝑐+

𝑖
= ∞

(𝑘+1)𝑐+
𝑖

otherwise.

The following theorem states that the above definitions indeed have the intended functionality.

Theorem 7. For every 𝑘-swg-query 𝑞 over Vars and Γ and every 𝑘-trace 𝑡 over Γ we have:
𝑡 |= 𝑞 ⇐⇒ 𝑒𝑛𝑐(𝑡) |= 𝑒𝑛𝑐(𝑞).

Proof. We prove the direction “=⇒” (the proof of the opposite direction is analogous).
Let 𝑞 = (𝑠, 𝑤, 𝑐) be a 𝑘-swg-query over Vars and Γ and let 𝑡 be a 𝑘-trace over Γ. Let
𝑞 := 𝑒𝑛𝑐(𝑞) = (𝑠, �̃�, 𝑐) and 𝑡 := 𝑒𝑛𝑐(𝑡) be the corresponding 1-swg-query and 1-trace. Let
ℓ := |𝑠 | and 𝑛 := |𝑡 |. Assume that 𝑡 |= 𝑞. I.e., there exists a substitution ` : (Vars ∪ Γ) → Γ

and an embedding 𝑒 : [ℓ] → [𝑛] that satisfies 𝑤 and 𝑐, such that `(𝑠) ≼𝑒 𝑡. In other words:
(`, 𝑒) is a witness for 𝑡 |= 𝑞.
We let 𝑒 := rep𝑘 (𝑒). And we define ˜̀ : (Vars ∪ Γ̃) → Γ̃ with ˜̀(𝑥) := `(𝑥) for all 𝑥 ∈ Vars
and ˜̀(𝑎) := 𝑎 for all 𝑎 ∈ Γ̃ = Γ ∪ {#}. We claim that (˜̀, 𝑒) is a witness for 𝑡 |= 𝑞. To prove
this, we have to show that ˜̀(𝑠) ≼�̃� 𝑡 and that 𝑒 satisfies �̃� and 𝑐 .
Let us start with the first task. By assumption we know that `(𝑠) ≼𝑒 𝑡. From Lemma 6 we
obtain that 𝑒𝑛𝑐(`(𝑠)) ≼�̃� 𝑡. Therefore, we are done by noting that 𝑒𝑛𝑐(`(𝑠)) = ˜̀(𝑠).
Let ℓ̃ := |𝑠 |. Let us now verify that 𝑒 satisfies �̃�. In case that 𝑤 = ∞, this is obvious. Let us
focus on the case where 𝑤 ≠ ∞. By assumption we know that 𝑒 satisfies 𝑤. We have:

𝑒(ℓ̃) − 𝑒(1) + 1 = 𝑒(ℓ) (𝑘+1) − ((𝑒(1)−1) (𝑘+1) + 1) + 1
= (𝑘 + 1) ·

(
𝑒(ℓ) − 𝑒(1) + 1

)
⩽(𝑘 + 1) · 𝑤 = �̃�.

520 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 11

Finally, let us verify that 𝑒 satisfies 𝑐. Note that 𝑐 contains ℓ−1+ℓ ·𝑘 = (𝑘+1) ·ℓ−1 = ℓ̃−1 gap-
size constraints, where ℓ−1 constraints correspond to the constraints 𝑐𝑖 in 𝑐 = (𝑐1, . . . , 𝑐ℓ−1),
which got multiplied by (𝑘+1). The remaining ℓ·𝑘 constraints in 𝑐 are equal to (0, 0). Our
definition of 𝑒 ensures that the (0, 0)-constraints are satisfied.
By assumption we know that 𝑒 satisfies 𝑐. Hence, for each 𝑖 ∈ [ℓ−1] we have: 𝑐−

𝑖
⩽ 𝑔𝑖 ⩽ 𝑐+

𝑖

for the actual size of the 𝑖-th gap 𝑔𝑖 := 𝑒(𝑖+1) − 1 − 𝑒(𝑖). Note that the size of the
corresponding gap in the 1-dimensional representation is (𝑘+1)𝑔𝑖 . This implies that the
corresponding gap-size constraints in 𝑐 are satisfied.
This completes the proof of the “=⇒”-direction of Theorem 7.

Theorem 7 serves as a tool to lift results known for the 1-dimensional case to the multi-
dimensional setting. In the next section, we implement this for the results on the query
discovery problem obtained in [Kle+22].

3 Query Discovery and Implementation

The following notions were introduced in [Kle+22] for the 1-dimensional case and straight-
forwardly carry over to the multi-dimensional setting.

The model set of a 𝑘-swg-query 𝑞 over Vars and Γ is ModΓ (𝑞) := { 𝑡 ∈ (Γ𝑘)+ : 𝑡 |= 𝑞 }.
A query 𝑞′ is said to be strictly more restrictive than 𝑞 if ModΓ (𝑞′) & ModΓ (𝑞).
A 𝑘-dimensional sample (over Γ) is a finite, non-empty set S of 𝑘-traces (over Γ). The
support supp(𝑞,S) of a 𝑘-swg-query query 𝑞 in a sample S is defined as the fraction of
𝑘-traces in S that match 𝑞, i.e., supp(𝑞,S) := | {𝑡∈S : 𝑡 |=𝑞} |

|S | .
A support threshold is a rational number sp with 0 < sp ⩽ 1. A query 𝑞 is said to cover a
sample S with support sp if supp(𝑞,S) ⩾ sp.

Let us fix the query parameters (ℓ, 𝑤, 𝑐) and a support threshold sp. Let S be a sample. A
𝑘-swg-query 𝑞 with parameters (ℓ, 𝑤, 𝑐) is said to be descriptive for S w.r.t. (sp, (ℓ, 𝑤, 𝑐)) if
𝑞 covers S with support sp, and there is no 𝑘-swg-query 𝑞′ with parameters (ℓ, 𝑤, 𝑐) that is
strictly more restrictive than 𝑞 and that still covers S with support sp. I.e., supp(𝑞,S) ⩾ sp
and there is no (ℓ, 𝑤, 𝑐)-query 𝑞′ such that supp(𝑞′,S) ⩾ sp and ModΓ (𝑞′) & ModΓ (𝑞).

The remainder of this section as well as the subsequent Section 4 are devoted to the
following query discovery problem for arbitrary dimension 𝑘 ∈ N⩾1: The input consists
of a support threshold sp, a 𝑘-dimensional sample S, and query parameters (ℓ, 𝑤, 𝑐). The
goal is to compute a 𝑘-swg-query 𝑞 with parameters (ℓ, 𝑤, 𝑐) that is descriptive for S w.r.t.
(sp, (ℓ, 𝑤, 𝑐)). An algorithm solving this discovery problem for the 1-dimensional case
(i.e., where 𝑘 = 1) was presented in [Kle+22]. In Section 3.1 we utilize Theorem 7 to lift
this algorithm to arbitrary dimension 𝑘 ⩾ 1; Section 3.2 gives a brief description of our
implementation of this algorithm.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 521

12 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias
Weidlich

3.1 An algorithm solving the query discovery problem for arbitrary dimension 𝑘

Let 𝑘 ∈ N⩾1 be the given dimension and let (ℓ, 𝑤, 𝑐) be the given query parameters. Note
that the most general 𝑘-swg-query with parameters (ℓ, 𝑤, 𝑐) is the query 𝑞mg = (𝑠mg, 𝑤, 𝑐)
whose query string 𝑠mg is of the form ((𝑥1,1, . . . , 𝑥1,𝑘) (𝑥2,1, . . . , 𝑥2,𝑘) · · · (𝑥ℓ,1, . . . , 𝑥ℓ,𝑘))
where the 𝑥𝑖, 𝑗 for 𝑖 ∈ [ℓ] and 𝑗 ∈ [𝑘] are ℓ·𝑘 pairwise distinct variables in Vars. It
is straightforward to see that ModΓ (𝑞′) ⊆ ModΓ (𝑞mg) for every 𝑘-swg-query 𝑞′ with
parameters (ℓ, 𝑤, 𝑐).

The discovery algorithm takes as input a 𝑘-dimensional sample S, a support threshold sp,
and the query parameters (ℓ, 𝑤, 𝑐).
If supp(𝑞mg,S) < sp, then there does not exist any 𝑘-swg-query 𝑞 with parameters (ℓ, 𝑤, 𝑐)
with supp(𝑞,S) ⩾ sp, let alone a query that is descriptive for S w.r.t. (sp, (ℓ, 𝑤, 𝑐)).
Therefore, the algorithm can safely abort with an error message indicating that the desired
query does not exist.
If, on the other hand, supp(𝑞mg,S) ⩾ sp, then the algorithm searches for an admissible
replacement operation for each variable 𝑥 ∈ vars(𝑞mg). Such an operation replaces 𝑥 by a
symbol 𝑦 (which can be a type or an available variable). It is admissible if the resulting
query 𝑞′ satisfies supp(𝑞′,S) ⩾ sp. If no replacement operation is possible, we keep 𝑥, i.e.,
the current query string remains unchanged, and 𝑥 becomes available. After each variable
𝑥 ∈ vars(𝑞mg) has been considered, the algorithm terminates and produces the current
query as output.

Pseudocode implementing this is provided in Algorithm 1. We start by letting 𝑞 be the
most general 𝑘-swg-query with parameters (ℓ, 𝑤, 𝑐) and we let 𝑠 be the query string of 𝑞.
If 𝑞 does not cover S with support sp, we abort and return the message ⊥, indicating that
there does not exist any 𝑘-swg-query with parameters (ℓ, 𝑤, 𝑐) that is descriptive for S
w.r.t. (sp, (ℓ, 𝑤, 𝑐)). Otherwise, we proceed by letting Δ be the set of types that satisfy the
support threshold (these will be the types available for replacement operations), and we
initialise the set 𝑈 of unvisited variables to be the set of all variables occurring in 𝑞. The set
𝑉 of available variables is initialized to be the empty set. During the main loop in line 5,
each variable 𝑥 ∈ 𝑈 is considered exactly once, and for each such variable, the algorithm
tests whether there exists a type or variable 𝑦 from Ω := (Δ ∪ 𝑉) such that replacing all
occurrences of variable 𝑥 by 𝑦 is an admissible replacement operation.7 If such an 𝑦 ∈ Ω

exists, we perform the actual replacement in line 12. Otherwise, no replacement operation is
possible, hence we do not change the current query string but add 𝑥 to the set 𝑉 of available
variables (line 16).
For dimension 𝑘 = 1, this algorithm was presented in [Kle+22].

Note that the lines 6 and 9 of Algorithm 1 allow to make an arbitrary choice. Different
choices lead to different “runs” of the algorithm, and different runs might produce different
output queries.

7 We write 𝑠⟨𝑥 ↦→ 𝑦⟩ to denote the query string obtained from 𝑠 by replacing every occurrence of the variable 𝑥

by the symbol 𝑦.

522 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 13

ALGORITHM 1: ComputeDescriptiveQuery(S,sp, (ℓ, 𝑤, 𝑐))
Input :𝑘-dim. sample S; support threshold sp with 0 < sp ⩽ 1; query parameters (ℓ, 𝑤, 𝑐)
Returns :descriptive 𝑘-swg-query 𝑞 for S w.r.t. (sp, (ℓ, 𝑤, 𝑐)) or error message ⊥

1 𝑠 := 𝑠mg; 𝑞 := (𝑠, 𝑤, 𝑐) // query string and query; start with the most general query
2 if supp(𝑞,S) < sp then stop and return ⊥
3 Δ := {𝛾 ∈ Γ : | {𝑡∈S : 𝛾∈types(𝑡) } |

|S | ⩾ sp} // types to be considered

4 𝑈 := vars(𝑞); 𝑉 := ∅ // unvisited variables and available variables
5 while 𝑈 ≠ ∅ do
6 select an arbitrary 𝑥 ∈ 𝑈 and let 𝑈 := 𝑈 \ {𝑥}
7 Ω := (Δ ∪𝑉); replace := False // available symbols
8 while Ω ≠ ∅ do
9 select an arbitrary 𝑦 ∈ Ω and let Ω := Ω \ {𝑦}

10 𝑞′ := (𝑠⟨𝑥 ↦→ 𝑦⟩, 𝑤, 𝑐)
11 if supp(𝑞′,S) ⩾ sp then
12 𝑠 := 𝑠⟨𝑥 ↦→ 𝑦⟩ // ReplaceOp
13 replace := True
14 break inner loop
15 if replace is False then
16 𝑉 := 𝑉 ∪ {𝑥} // NoChangeOp

17 stop and return 𝑞 := (𝑠, 𝑤, 𝑐)

Theorem 8. Let 𝑘 ∈ N⩾1, let S be a 𝑘-dimensional sample, let sp be a support threshold
with 0 < sp ⩽ 1, and let (ℓ, 𝑤, 𝑐) be query parameters.

(a) If there does not exist any 𝑘-swg-query with parameters (ℓ, 𝑤, 𝑐) that is descriptive forS
w.r.t. (sp, (ℓ, 𝑤, 𝑐)), then there is only one run of Algorithm 1 upon input S, sp, (ℓ, 𝑤, 𝑐),
and this run stops in line 2 with output ⊥.

(b) Otherwise, every run of Algorithm 1 upon input S, sp, (ℓ, 𝑤, 𝑐) terminates and outputs
a query that is descriptive for S w.r.t. (sp, (ℓ, 𝑤, 𝑐)).

Proof sketch. For the special case where 𝑘 = 1, the theorem was proved in [Kle+22].
Moreover, [Kle+22] provided the following slightly stronger result — again, for the 1-
dimensional case: The algorithm obtained from Algorithm 1 by omitting line 1 and, instead,
starting with an arbitrary input query 𝑞, outputs either a query 𝑞′ that is descriptive for S
w.r.t. (sp, (ℓ, 𝑤, 𝑐)) and satisfies ModΓ (𝑞′) ⊆ ModΓ (𝑞) or, in case that no such 𝑞′ exists, the
message ⊥. We use this for the particular 1-dimensional input query 𝑞 := 𝑒𝑛𝑐(𝑞mg), where
𝑞mg is the most general 𝑘-swg-query with parameters (ℓ, 𝑤, 𝑐) for an arbitrary dimension
𝑘 ⩾ 2. Utilizing the one-dimensional representation of 𝑘-dimensional traces and queries
presented in Section 2.3 and, in particular, Theorem 7, this yields the theorem’s statement
for arbitrary dimension 𝑘 ⩾ 2.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 523

14 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias
Weidlich

The above theorem guarantees that the output produced by Algorithm 1 is correct in the
sense that it is either a query that is descriptive for its input or the message ⊥ indicating
that no such query exists. Different runs of the algorithm may produce different queries
(each with the guarantee that the delivered query is descriptive for its input). Let us mention,
however, that (as shown in [Kle+22]) there exist inputs for which there exist some queries
that cannot be delivered by any run of Algorithm 1 but that are descriptive for the input.

We close this subsection with two example runs of Algorithm 1.

Example 9. For simplicity, the example deals with dimension 𝑘 = 1. Let Γ = {a, b, c},
S = {a b b, a c c}, sp = 1, ℓ = 𝑤 = 3, and 𝑐 = ((0, 0), (0, 0)). Upon this input, each run of
Algorithm 1 lets 𝑠 := 𝑠mg = 𝑥1𝑥2𝑥3, where 𝑥1, 𝑥2, 𝑥3 are three pairwise distinct variables
in Vars. Since supp(𝑞,S) = 1, the algorithm proceeds by computing Δ = {a} and letting
𝑈 = {𝑥1, 𝑥2, 𝑥3} and 𝑉 = ∅.
Let us assume that in the first transition through the outer loop the algorithm selects 𝑥 := 𝑥3.
Due to Ω = {a}, the only possible replacement is 𝑠⟨𝑥3 ↦→ 𝑎⟩ — but it turns out that this
replacement is not admissible as its support on S is < 1. Hence, 𝑥3 remains unchanged in
the query string and is inserted in the set 𝑉 of available variables, i.e., 𝑉 = {𝑥3}.
Let us assume that in the second transition through the outer loop the algorithm selects
𝑥 := 𝑥1, and in the inner loop it selects 𝑦 := a. It turns out that the replacement of 𝑥1 by a is
admissible (as it has support 1 on S). Hence, 𝑠 is replaced by the new query string a 𝑥2𝑥3
and 𝑉 remains unchanged.
In its last iteration through the outer loop, it turns out that 𝑠⟨𝑥2 ↦→ 𝑥3⟩ is the only admissible
replacement operation. The algorithm’s run terminates after this iteration and outputs the
query 𝑞 = (𝑠, 𝑤, 𝑐) with 𝑠 = a 𝑥3𝑥3.
We illustrate this entire run as follows:

𝑥1 𝑥2 𝑥3
Δ={a}, 𝑉=∅
⇝ 𝑥1 𝑥2 𝑥3

Δ={a}, 𝑉={𝑥3 }
⇝ a 𝑥2 𝑥3

Δ={a}, 𝑉={𝑥3 }
⇝ a 𝑥3 𝑥3

Another run (that outputs a very similar query) is:

𝑥1 𝑥2 𝑥3
Δ={a}, 𝑉=∅
⇝ 𝑥1 𝑥2 𝑥3

Δ={a}, 𝑉={𝑥2 }
⇝ a 𝑥2 𝑥3

Δ={a}, 𝑉={𝑥2 }
⇝ a 𝑥2 𝑥2

3.2 Implementation

In this section, we describe a prototypical implementation of our approach as a stand-alone
Python tool, which is publicly available.8 We explain how we express multi-dimensional
samples and queries. We also briefly discuss how to decide whether supp(𝑞,S) ⩾ sp for
given S, sp and 𝑞 in Algorithm 1. Our implementation is designed for 1-dimensional as
well as multi-dimensional queries and samples; in the context of this paper we focus on the
multi-dimensional setting.

8 https://gitlab.com/kleemeis95/sfb-1404-fonda-querydiscovery-prototype

524 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

https://gitlab.com/kleemeis95/sfb-1404-fonda-querydiscovery-prototype

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 15

Samples. We model traces as Python strings and use dedicated characters to separate data
items as well as data item attributes. Moreover, a (multi-dimensional) sample S is described
by an instance of a specific class (MultidimSample). It combines a list of traces (the actual
sample) with meta information, e.g., the sample size (i.e., the number of traces), the data
item dimension, and the set of all types occurring in S (optionally partitioned by the data
item attributes and filtered by a given support threshold).

Queries. A query 𝑞 = (𝑠, 𝑤, 𝑐) is implemented as an instance of a respective class
(MultidimQuery). It encapsulates the query string (a Python string, using different separator
symbols), the global window size (an integer), the local gap-size constraints (a list of tuples),
and meta information, e.g. the set of types which occur within 𝑠, and the set of variables
that occur more than once in 𝑠.

Matching. The matching routine is implemented as part of the class MultidimQuery. Here,
a function match_sample takes as input a MultidimSample-instance S and a support
threshold sp, and outputs true, if supp(𝑞,S) ⩾ sp, whereby 𝑞 denotes the query which
is represented by the current class instance. During a run of match_sample, we start by
transforming the query string into a regular expression according to the Python re module,
which takes into account the gap-size constraints 𝑐. We then test whether 𝑡 |= 𝑞, for each
𝑡 ∈ S, by using the function search provided by Python for regular expressions.

Discovery Algorithm. Algorithm 1 is implemented according to the pseudocode presented
in Section 3.1. However, we allow the user to influence the arbitrary choices in lines 6 and 9
of the algorithm: one may choose the next, not yet visited variable in the query string either
(i) arbitrarily (as described in Section 3.1) or (ii) by scanning the query string from left to
right, or vice versa. Furthermore, types (available variables) may be preferred over available
variables (types), instead of making an arbitrary choice.

4 Experimental Evaluation

Using the prototype introduced above, we applied our approach to real-world data in the
domain of cluster monitoring, a scenario that we already used as a running example. Our
goal has been to assess the general feasibility of our approach to the discovery of descriptive
queries for multi-dimensional sequence data. We summarize our results as follows:

• We have been able to discover queries from the real-world data, thereby providing
evidence that query discovery is indeed feasible. We note though, that the number
of discovered queries that cannot immediately be linked to situations of interest is
very large, since the given traces consist of many regularities that materialize in the
discovered queries.

• Comparing the runtime of our approach for different data samples, it turned out that,
in addition to the dataset size, the traversal of the query string and the need to assess
variable operations have a major impact.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 525

16 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias
Weidlich

Below, we first describe our experimental setup in Section 4.1, before we discuss the
obtained results in Section 4.2.

4.1 Experimental Setup

Datasets. Our experiments used the Google Cluster Traces [RWH11], a dataset that
contains cell information over multiple days. Cells are sets of machines that share a cluster-
management system. The machines handle incoming jobs, which consist of at least one task.
The dataset contains six types of tables, capturing information about machines, jobs, tasks,
constraints, and resources. For a detailed description of the dataset, we refer the reader
to [RWH11].

For our experiments, we considered the information on task executions. Specifically, each
data item includes the following attributes:

(1) job: The job to which the task belongs. Each job is assigned a unique 64-bit identifier.
(2) task: The task index within a job, given as an integer value.
(3) machine: The machine on which the task shall run. Each machine is assigned a unique

64-bit identifier.
(4) status: The task’s status in terms of its lifecycle. It is encoded an integer 𝑖 ∈ {0, . . . , 8}

that corresponds to one of the following states: SUBMIT (0), SCHEDULE (1), EVICT (2), FAIL
(3), FINISH (4), KILL (5), LOST (6), UPDATE_PENDING (7), or UPDATE_RUNNING (8).

(5) priority: The execution priority of the task, modelled as an integer. The larger the
number, the higher the priority.

To achieve a controlled setup for query discovery, we employed a setup that is based on
three pre-defined queries 𝑞𝑖 for 𝑖 ∈ [3]. The idea being that based on the matches of such a
query 𝑞𝑖 , we derive a sample of traces S𝑖 , so that our discovery algorithm can be expected
to discover query 𝑞′

𝑖
, with Mod (𝑞′

𝑖
) ⊆ Mod (𝑞𝑖), when using a support value of sp = 1.0.

We realised this approach with the following three queries:
q1: PATTERN SEQ(Task a, Task b, Task c)

WHERE a.status = c.status = 1 AND b.status = 5

AND a.job = b.job = c.job AND a.machine = b.machine = c.machine

WITHIN 1000 data items

q2: PATTERN SEQ(Task a, Task b, Task c, Task d)

WHERE a.status = b.status = c.status = d.status = 4

AND a.machine = b.machine = c.machine = d.machine

WITHIN 100 data items

q3: PATTERN SEQ(Task a, Task b, Task c)

WHERE a.machine = b.machine AND a.job=c.job

AND a.status = b.status = 1 AND c.status=2

WITHIN 100 data items

Based on the matches of these queries, we constructed the samples S𝑖 , 𝑖 ∈ [3], as follows:
For samples S1 and S2, the end of a trace was determined by the last item of a match. The

526 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 17

start of a trace was defined as the item following the last item of the previous match (or the
first item of the whole dataset, respectively), so that traces are non-overlapping, i.e., any
data item appears in at most one of the traces of a sample. Moreover, the traces for samples
S1 and S2 were partitioned by the machine attribute, as the respective queries refer solely to
items within such a partition. Finally, all traces with at most 100 items were included in
the sample, which selected more than 98% (S1) or 91% (S2) of the constructed traces. For
sample S3, again, the end of a trace was determined by the last item of a match. The start of
a trace, however, was defined to be the first item of a match. The constructed samples had
the following characteristics:

Sample Size Min. trace length Max. trace length

S1 558 3 96
S2 679 22 99
S3 84 4 197

Experimental Procedure and Measures. For each sample, Algorithm 1 was executed
using the most general query, setting its parameters (ℓ, 𝑤, 𝑐) as follows. For the length of
the query string, we set ℓ = 3 for S1 and S3, and ℓ = 4 for S2. The global window size was
set to 𝑤 = 100 for S1 and S2, and to 𝑤 = 200 for S3, as derived from the sample generation
procedure. We defined the local gap-size constraints to be least restrictive by setting them
to 𝑐 = ((0, 100), (0, 100)) for ℓ = 3, and to 𝑐 = ((0, 200), (0, 200), (0, 200)) for ℓ = 4,
respectively. We considered several support thresholds (namely, 0.6, 0.8, and 1.0).

Concerning the choices in Algorithm 1 on the next unvisited variable and replacement
preference, we consider all options outlined in Section 3.2: the next variable is derived
left-to-right (l2r), right-to-left (r2l), or arbitrarily (a). This choice is combined with no
preference (a), or preference given to types (t) or variables (v).

In addition to illustrating some of the discovered queries, we measure the runtime of our
approach for different instantiations. We further break down the runtime by profiling the
our implementation with Python’s cProfile to shed light on the contribution of the various
algorithmic steps.

Experimental Environment. All experiments have been executed on a 64 Bit Manjaro
system with an AMD Ryzen 5 Pro 5650U processor running at 4.1 GHz and 16GB RAM.

4.2 Evaluation

Discovered queries. Applying our approach for each sample S𝑖 , 𝑖 ∈ [3], we successfully
discovered multi-dimensional swg-queries. Moreover, the discovered queries turned out to

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 527

18 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias
Weidlich

be more specific than the queries used to create the samples (see Section 4.1). For instance,
we discovered the following query strings for sp = 1.0 for the three samples:

S1 : 𝑠1 = (𝑥 𝑗 , 𝑥𝑡 , 𝑥𝑚, 1, 𝑥𝑝) (𝑥 𝑗 , 𝑥𝑡 , 𝑥𝑚, 5, 𝑥𝑝) (𝑥 𝑗 , 𝑦1, 𝑥𝑚, 1, 𝑦2)
S2 : 𝑠2 = (𝑦1, 𝑦2, 𝑥𝑚, 4, 𝑥𝑝) (𝑦3, 𝑦4, 𝑥𝑚, 4, 𝑥𝑝) (𝑦5, 𝑦6, 𝑥𝑚, 4, 𝑥𝑝) (𝑦7, 𝑦8, 𝑥𝑚, 4, 𝑥𝑝)
S3 : 𝑠3 = (𝑥 𝑗 , 𝑦1, 𝑥𝑚, 1, 𝑥𝑝) (𝑦2, 𝑦3, 𝑥𝑚, 1, 𝑦4) (𝑥 𝑗 , 𝑦5, 𝑦6, 2, 𝑥𝑝)

whereby 𝑥 𝑗 , 𝑥𝑡 , 𝑥𝑚, 𝑥𝑝 , 𝑦1, . . . , 𝑦8 are pairwise distinct variables in Vars. We note that
these query strings can be used to derive queries in common languages for complex event
recognition. Taking 𝑠1 as an example, we derive the following query 𝑞′1:
q1': PATTERN SEQ(Task a, Task b, Task c)

WHERE a.status = c.status = 1 AND b.status = 5

AND a.job = b.job = c.job AND a.machine = b.machine = c.machine

AND a.task = b.task AND a.priority = b.priority

WITHIN 1000 data items

Comparing query 𝑞′1 with query 𝑞1 from Section 4.1, we observe that the last line of the
WHERE-clause renders the discovered query more specific. Similar observations are done
for the descriptive queries discovered for the other samples. For instance, the above query
strings 𝑠2 and 𝑠3 enforce conditions on the priority attribute that have not been part of the
queries used to generate the samples.

Our results indicate that it is feasible to discover multi-dimensional swg-queries from
real-world data. However, we also note that we discovered descriptive queries that would
not match the last item of a trace, i.e., the supposed situation of interest. This highlights that
the discovered queries will still have to be assessed by domain experts.

Runtime. Figure 3-5 provide the results for our runtime measurements in seconds, when
varying the support threshold and the configuration of Algorithm 1 for selecting the next
unvisited variable and the replacement preference. Overall, a higher support threshold
yields smaller runtimes. This is due to a smaller number of supported types that have to
be tested as well as the fact that the match test stops as soon as the support threshold
cannot be satisfied any more. Moreover, the fastest runs have in common that the algorithm
goes through the query string from left to right (l2r), while there is no clear trend for the
replacement preference. However, this result highlights the potential for improvements
based on heuristics to guide the exploration of the search space.

Performance profiling. We illustrate the results of the performance profile for S3 in
Figure 6, using a SnakeViz’ icicle plot [sna]. Here, each rectangle represents a function,
while the layering of rectangles captures the call hierarchy between functions (the top
function is called first). Moreover, each function is annotated with its overall runtime, which
is visualized by the width of the rectangle.
We observe that the runtime of the main function of our experiments is dominated by

the function compute_descr_swgquery, which implements Algorithm 1. It has to decide
whether supp(𝑞,S) ⩾ sp multiple times, i.e., for each unvisited variable 𝑥 the algorithm

528 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 19

Fig. 3: Runtime measurements for sample S1.

Fig. 4: Runtime measurements for sample S2.

Fig. 5: Runtime measurements for sample S3.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 529

20 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias
Weidlich

Fig. 6: Icicle visualisation of sample S3’s profile.

tests, whether there exists a type or variable so that the replacement yields a query satisfying
the support threshold. This check is realised by function _check_next_type_or_variable.
After building the regular expression corresponding to the current query, the matching
problem is solved. Figure 6 illustrates that this function search of re.Pattern dominates
the overall runtime. We conclude that performance improvements for query discovery may
be achieved through optimizations of the function to decide whether a trace matches a
query. In future work, we strive for algorithmic optimizations that exploit the fact that many
subsequent match tests are conducted over the same set of traces with only slightly changed
queries.

5 Concluding Remarks

Motivated by sequence data over a multi-dimensional schema, we defined an encoding to lift
swg-queries and corresponding concepts as described in [Kle+22] to a multi-dimensional
setting (Section 2). Furthermore we described our prototypical implementation of query
discovery for multi-dimensional data (Section 3) and discussed experiments and their results
on a real-world dataset (Section 4).
Our experiments’ main result can be summarised as general feasibility of discovering
swg-queries from multi-dimensional data: for each data set and configuration of Algorithm 1
we discovered a bunch of descriptive queries. This query set includes queries which are
more specific than the queries we used for the data set generation.
Furthermore, our experiments suggest that structural characteristics of the sequence data
plays an important role regarding the runtime of our discovery algorithm at various levels.
Firstly, we observed notable differences in runtime regarding the way we select the next
unvisited variable and its possible replacement. Hence we are interested in finding heuristics
to predict which combination is most promising. Besides, we might be able to exploit the
facts that 𝑞′ does not change while testing supp(𝑞′,S) ⩾ sp once and that S does not
change during the entire run of the discovery algorithm.

530 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 21

References

[Ang80] Dana Angluin. “Inductive Inference of Formal Languages from Positive
Data”. In: Inf. Control. 45.2 (1980), pp. 117–135. doi: 10.1016/S0019-
9958(80)90285-5.

[Art+14] Alexander Artikis et al. “Heterogeneous Stream Processing and Crowdsourcing
for Urban Traffic Management”. In: Proceedings of the 17th International
Conference on Extending Database Technology, EDBT 2014, Athens, Greece,
March 24-28, 2014. OpenProceedings.org, 2014, pp. 712–723. doi: 10.5441/
002/edbt.2014.77.

[Bab+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. “Models and Issues in Data Stream Systems”. In: Proceedings of the
Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 3-5, Madison, Wisconsin, USA. ACM, 2002, pp. 1–16.
doi: 10.1145/543613.543615.

[CM12] Gianpaolo Cugola and Alessandro Margara. “Processing flows of information:
From data stream to complex event processing”. In: ACM Comput. Surv. 44.3
(2012), 15:1–15:62. doi: 10.1145/2187671.2187677.

[Day+21] Joel D. Day, Pamela Fleischmann, Maria Kosche, Tore Koß, Florin Manea, and
Stefan Siemer. “The Edit Distance to k-Subsequence Universality”. In: 38th
International Symposium on Theoretical Aspects of Computer Science, STACS
2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference). 2021,
25:1–25:19. doi: 10.4230/LIPIcs.STACS.2021.25.

[Day+22] Joel D. Day, Maria Kosche, Florin Manea, and Markus L. Schmid. “Subse-
quences With Gap Constraints: Complexity Bounds for Matching and Analysis
Problems”. In: vol. abs/2206.13896. 2022. doi: 10.48550/arXiv.2206.13896.
arXiv: 2206.13896.

[Fer+18] Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid.
“Revisiting Shinohara’s algorithm for computing descriptive patterns”. In:
Theor. Comput. Sci. 733 (2018), pp. 44–54. doi: 10.1016/j.tcs.2018.04.035.

[FR10] Dominik D. Freydenberger and Daniel Reidenbach. “Existence and nonex-
istence of descriptive patterns”. In: Theor. Comput. Sci. 411.34-36 (2010),
pp. 3274–3286. doi: 10.1016/j.tcs.2010.05.033.

[FR13] Dominik D. Freydenberger and Daniel Reidenbach. “Inferring descriptive
generalisations of formal languages”. In: J. Comput. Syst. Sci. 79.5 (2013),
pp. 622–639. doi: 10.1016/j.jcss.2012.10.001.

[Gaw+21] Pawel Gawrychowski, Maria Kosche, Tore Koß, Florin Manea, and Stefan
Siemer. “Efficiently Testing Simon’s Congruence”. In: 38th International
Symposium on Theoretical Aspects of Computer Science, STACS 2021, March
16-19, 2021, Saarbrücken, Germany (Virtual Conference). 2021, 34:1–34:18.
doi: 10.4230/LIPIcs.STACS.2021.34.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 531

https://doi.org/10.1016/S0019-9958protect elax $80protect elax protect �egingroup immediate write @unused def MessageBreak
 let protect edef Your command was ignored.MessageBreak Type I <command> <return> to replace it with another command,MessageBreak or <return> to continue without it. errhelp let def MessageBreak
 def protect �egingroup def MessageBreak {
 }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup errmessage LaTeX Error: Bad math environment delimiter.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help protect �egingroup def MessageBreak {
 }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup endgroup 90285-5
https://doi.org/10.1016/S0019-9958protect elax $80protect elax protect �egingroup immediate write @unused def MessageBreak
 let protect edef Your command was ignored.MessageBreak Type I <command> <return> to replace it with another command,MessageBreak or <return> to continue without it. errhelp let def MessageBreak
 def protect �egingroup def MessageBreak {
 }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup errmessage LaTeX Error: Bad math environment delimiter.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help protect �egingroup def MessageBreak {
 }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup endgroup 90285-5
https://doi.org/10.5441/002/edbt.2014.77
https://doi.org/10.5441/002/edbt.2014.77
https://doi.org/10.1145/543613.543615
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.4230/LIPIcs.STACS.2021.25
https://doi.org/10.48550/arXiv.2206.13896
https://arxiv.org/abs/2206.13896
https://doi.org/10.1016/j.tcs.2018.04.035
https://doi.org/10.1016/j.tcs.2010.05.033
https://doi.org/10.1016/j.jcss.2012.10.001
https://doi.org/10.4230/LIPIcs.STACS.2021.34

22 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, Matthias
Weidlich

[GCW16] Lars George, Bruno Cadonna, and Matthias Weidlich. “IL-Miner: Instance-
Level Discovery of Complex Event Patterns”. In: Proc. VLDB Endow. 10.1
(2016), pp. 25–36. doi: 10.14778/3015270.3015273.

[Gia+20] Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis,
and Minos N. Garofalakis. “Complex event recognition in the Big Data era: a
survey”. In: VLDB J. 29.1 (2020), pp. 313–352. doi: 10.1007/s00778-019-
00557-w.

[Kle+22] Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
and Matthias Weidlich. “Discovering Event Queries from Traces: Laying Foun-
dations for Subsequence-Queries with Wildcards and Gap-Size Constraints”.
In: 25th International Conference on Database Theory, ICDT 2022. Vol. 220.
LIPIcs. 2022, 18:1–18:21. doi: 10.4230/LIPIcs.ICDT.2022.18.

[Kos+22a] Maria Kosche, Tore Koß, Florin Manea, and Viktoriya Pak. “Subsequences in
Bounded Ranges: Matching and Analysis Problems”. In: CoRR abs/2207.09201
(2022). doi: 10.48550/arXiv.2207.09201. arXiv: 2207.09201.

[Kos+22b] Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer. “Combinatorial
Algorithms for Subsequence Matching: A Survey”. In: CoRR abs/2208.14722
(2022). doi: 10.48550/arXiv.2208.14722. arXiv: 2208.14722.

[MCT14] Alessandro Margara, Gianpaolo Cugola, and Giordano Tamburrelli. “Learning
from the past: automated rule generation for complex event processing”. In:
The 8th ACM International Conference on Distributed Event-Based Systems,
DEBS ’14, Mumbai, India, May 26-29, 2014. ACM, 2014, pp. 47–58. doi:
10.1145/2611286.2611289.

[MS19] Florin Manea and Markus L. Schmid. “Matching Patterns with Variables”.
In: Combinatorics on Words - 12th International Conference, WORDS 2019,
Loughborough, UK, September 9-13, 2019, Proceedings. 2019, pp. 1–27. doi:
10.1007/978-3-030-28796-2_1.

[RS97] Grzegorz Rozenberg and Arto Salomaa. “Patterns”. In: Handbook of Formal
Languages. Vol. 1. Springer, 1997, pp. 230–242.

[RWH11] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. “Google cluster-usage
traces: format+ schema”. In: Google Inc., White Paper (2011), pp. 1–14.

[SA95] Takeshi Shinohara and Setsuo Arikawa. “Pattern Inference”. In: Algorithmic
Learning for Knowledge-Based Systems, GOSLER Final Report. 1995, pp. 259–
291. doi: 10.1007/3-540-60217-8_13.

[Sch22] Markus L. Schmid. “Extending Shinohara’s Algorithm for Computing De-
scriptive (Angluin-Style) Patterns to Subsequence Patterns”. In: CoRR
abs/2206.13918 (2022). doi: 10.48550/arXiv.2206.13918. arXiv: 2206.
13918.

532 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt,
Matthias Weidlich

https://doi.org/10.14778/3015270.3015273
https://doi.org/10.1007/s00778-019-00557-w
https://doi.org/10.1007/s00778-019-00557-w
https://doi.org/10.4230/LIPIcs.ICDT.2022.18
https://doi.org/10.48550/arXiv.2207.09201
https://arxiv.org/abs/2207.09201
https://doi.org/10.48550/arXiv.2208.14722
https://arxiv.org/abs/2208.14722
https://doi.org/10.1145/2611286.2611289
https://doi.org/10.1007/978-3-030-28796-2_1
https://doi.org/10.1007/3-540-60217-8_13
https://doi.org/10.48550/arXiv.2206.13918
https://arxiv.org/abs/2206.13918
https://arxiv.org/abs/2206.13918

Discovering Multi-Dimensional Subsequence Queries – From Theory to Practice 23

[Shi82] Takeshi Shinohara. “Polynomial Time Inference of Pattern Languages and Its
Application”. In: Proceedings of the 7th IBM Symposium on Mathematical
Foundations of Computer Science, MFCS. 1982, pp. 191–209.

[sna] snakeviz. SnakeViz documentation. url: https://jiffyclub.github.io/
snakeviz/.

[TRP12] Kia Teymourian, Malte Rohde, and Adrian Paschke. “Knowledge-based
processing of complex stock market events”. In: 15th International Conference
on Extending Database Technology, EDBT ’12, Berlin, Germany, March
27-30, 2012, Proceedings. ACM, 2012, pp. 594–597. doi: 10.1145/2247596.
2247674.

[Ver+15] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. “Large-scale cluster management at Google
with Borg”. In: Proceedings of the Tenth European Conference on Computer
Systems, EuroSys 2015, Bordeaux, France, April 21-24, 2015. ACM, 2015,
18:1–18:17. doi: 10.1145/2741948.2741964.

Discovering Multi-Dimensional Subsequence Queries from Traces – From Theory to
Practice 533

https://jiffyclub.github.io/snakeviz/
https://jiffyclub.github.io/snakeviz/
https://doi.org/10.1145/2247596.2247674
https://doi.org/10.1145/2247596.2247674
https://doi.org/10.1145/2741948.2741964

