
cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

CLOCQ: A Toolkit for Fast and Easy Access to Knowledge
Bases

Philipp Christmann1, Rishiraj Saha Roy2, Gerhard Weikum3

Abstract: Curated knowledge bases (KBs) store vast amounts of factual world knowledge, and
are therefore ubiquitous in many information retrieval (IR) and natural language processing (NLP)
applications like question answering, named entity disambiguation, or knowledge exploration. Despite
that, accessing information from complete knowledge bases is often a daunting task. Researchers and
practitioners typically have crisp use cases in mind, for which standard querying interfaces can be
overly complex and inefficient. We aim to bridge this gap, and release a public toolkit that provides
functionalities for common KB access use cases, and make it available via a public API. Experiments
show efficiency improvements over existing KB interfaces for various important functionalities.

Keywords: Knowledge Base; Knowledge Graph; RDF; Efficiency

1 Introduction

Large curated knowledge bases (KBs), also known as knowledge graphs (KGs), like
Wikidata [VK14], DBpedia [Au07], YAGO [SKW07], Freebase [Bo08], and industrial
counterparts (e.g. at Amazon, Apple, Google, or Microsoft), store factual world knowledge
in compact RDF (Resource Description Framework) triples.

Such knowledge bases empower question answering (QA) systems [BH15, Be13, Ch19,
SRA22], that offer natural interfaces for accessing information. Most digital personal
assistants like Alexa, Siri, Google Assistant, or Cortana are essentially QA systems accessing
a variety of information at their backends, including curated KBs. There is a wide range of
research on QA, ranging from methods that target simple single-shot questions [Ab18, Be13],
spanning methods dedicated for complex multi-hop questions [Su18], to algorithms that
keep track of an ongoing conversational context [CSRW22b, KSRW21, LJ21, Sa18].

For implementing QA systems, one can identify a common set of basic KB functionalities
that are very often necessary. For example, retrieving all KB facts with a specific entity, or
computing the shortest KG path between two entities, are two such frequent needs.

Apart from QA, there is a range of other tasks/applications that benefit from quick and
easy access to large KBs. Named entity recognition and detection (NERD) systems can be
1 Max-Planck-Institut für Informatik & Saarland University, Saarbrücken, Deutschland, pchristm@mpi-inf.mpg.de
2 Max-Planck-Institut für Informatik & Saarland University, Saarbrücken, Deutschland, rishiraj@mpi-inf.mpg.de
3 Max-Planck-Institut für Informatik & Saarland University, Saarbrücken, Deutschland, weikum@mpi-inf.mpg.de

cba doi:10.18420/BTW2023-28

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 579

mailto:pchristm@mpi-inf.mpg.de
mailto:rishiraj@mpi-inf.mpg.de
mailto:weikum@mpi-inf.mpg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-28

2 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

used for mapping entities in text to canonicalized objects, which can give insights about
a text at hand [FS10, Ho11, Li20]. Another example use case is entity ranking [CD22],
which features in search engines to show entity-centric information for queries like “Angela
Merkel”. Further, information or statistics extracted from the KB can be leveraged for
improving performance on downstream tasks: the distance between entities can serve as
a proxy for their semantic similarity [ZI16], the frequency of an entity in the KB can be
used for understanding how popular an entity is [Ch19], and the KB ontology can help in
relation extraction [Ko14] or answer verification [BH15].

For implementing such methods, several shared KB functionalities are required: identifying
the distance between two entities, retrieving the frequency of a KB item, retrieving the type
of an entity, or computing the shortest path between two KB items.

Available interfaces to large KBs, with multiple terabytes of data, are often based on
query languages like SPARQL. Such interfaces allow for a very general access to the
KB with arbitrary complexity, and are heavily optimized for different query patterns and
workloads [Fe13, Ur16]. However, implementing some of the basic operations mentioned
above can lead to a high degree of query complexity, manual effort and efficiency overhead.

One key problem is that using existing interfaces for accessing KBs requires deep knowledge
and understanding of the respective KB schema, which is different for every KB. Another
problem that we identify is that the whole KB storage and the corresponding query languages
are optimized for the native RDF triple structure. However, modern KBs store n-ary facts,
using reification (e.g. via qualifier statements in Wikidata, or Compound Value Types
(CVTs) in Freebase), going beyond the self-contained triples [HHK15]. In fact, one fourth of
the facts in Wikidata provide additional information via such qualifier statements. Consider
the real-life fact that Angela Merkel was chancellor of Germany, in triple structure:

⟨Angela Merkel, position held, Federal Chancellor of Germany⟩

From this fact, important contextual information is missing: she was chancellor in the past,
from 2005 to 2021, she was the 8th German chancellor, she replaced Gerhard Schröder,
etc. In triple structure, this additional context is represented by reification of the basic fact,
and adding more triples that refer to the basic fact’s identifier and express the contextual
information. The single n-ary (compound) fact discussed above would be represented as:

⟨Angela Merkel, position held, fact-id⟩
⟨fact-id, position held, Federal Chancellor of Germany⟩

⟨fact-id, start time, 2005⟩
⟨fact-id, end time, 2021⟩

⟨fact-id, series ordinal, 8⟩
⟨fact-id, replaces, Gerhard Schröder⟩

Using traditional query interfaces, retrieving all facts with Angela Merkel from the knowledge
base can be cumbersome and inefficient: queries with the entity as subject, object, and

580 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

CLOCQ 3

qualifier-object of the fact are required. An example SPARQL query for detecting all facts
with Angela Merkel as subject from Wikidata is shown below:
SELECT DISTINCT ?fact_id ?subject ?predicate ?object ?qual_pred ?qual_obj {

VALUES (?subject) {(Angela Merkel)}

?subject ?p ?fact_id .

?fact_id ?ps ?object .

?predicate wikibase:claim ?p .

?predicate wikibase:statementProperty ?ps .

OPTIONAL{

?fact_id ?pq ?qual_obj .

?qual_pred wikibase:qualifier ?pq

}

}

Similar queries need to be run binding Angela Merkel to the object and qualifier-object
position. Afterwards, the results need to be post-processed, joining all constituents for one
fact-id. Overall, this causes quite a few KB interactions and processing overhead.

Further, certain KB concepts are not well-defined for such scenarios. How should this fact
be represented in graphical form, where graphs of all facts would be overlaid to obtain a
knowledge graph? Would 2009 belong to the 1-hop neighborhood of Barack Obama? What
would be the KB distance between Barack Obama and George W. Bush? Should the shortest
path include non-content like fact-ids?

We present a fact-centric definition of the KB, which represents KB facts as arbitrary-length
lists, considering context information in qualifiers to be of comparable importance as that in
the main triple4. This allows us to establish intuitive definitions for KB neighborhood, KB
distance, and shortest paths between entities. Based on these definitions, we implement a fact-
centric KB index, ClocqKB, that allows efficient KB access to perform the functionalities
described above. The resulting KB interface is made available to the community for accessing
KBs more conveniently, both as a public API and open-source code repository.

Contributions. Our contributions in this work are as follows:

• Identifying and outline key problems with existing interfaces for common KB access
needs in many NLP and IR use cases;

• Proposing an efficient solution to the problems with existing triple-centric interfaces,
based on a fact-centric view of the KB;

• Proposing concise and unambiguous definitions for basic KB concepts;
• Making our code available, and release a public API that allows people to conveniently

access Wikidata, without having to deal with multiple terabytes of data5.

4 This implements and extends our work in WSDM 2022 [CSRW22a].
5 https://clocq.mpi-inf.mpg.de

CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases 581

https://clocq.mpi-inf.mpg.de

4 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

Federal Chancellor
of Germany

position heldstart time2005

replacesGerhard
Schröder

end time2021

series
ordinal

8

RelationEntity Literal

country

country league

1. FC Kaiserslautern

start time

end time

1963

1996
Angela
Merkel

Germany Bundesliga

Fact 𝑓! Fact 𝑓" Fact 𝑓# Fact 𝑓$

Fig. 1: Graph representation of a KB fact.

2 KB Index

Our primary design choice is to take a fact-centric view of the KB. Therefore, we treat
the KB as a set of facts, instead of a set of triples. As a result, we also directly store and
index the facts as a whole. With that, we avoid any complex query structures or post-hoc
joining of separate fact constituents at runtime. This helps us to significantly improve the
runtime efficiency of several important KB functionalities, like retrieving all KB facts with
a specific KB item, or computing the distance between two KB items.

2.1 Concepts and definitions

Based on a fact-centric view of the KB, we establish the following definitions, answering
the questions posed in Sec. 1.

Knowledge base. A knowledge base K is a set of KB facts.

KB fact. A KB fact f is a list of KB items, and expresses objective information or knowledge.
It consists of the main triple, which has a subject, predicate, and object, and an optional set
of qualifiers represented as ⟨qualifier-predicate, qualifier-object⟩ pairs. The subject is an
entity, the predicate and qualifier-predicate are relations. The object is an entity, type or
literal (date or string), and the qualifier-object can be an entity or literal. An example fact
is ⟨Angela Merkel, position held, Federal Chancellor of Germany; start time, 2005; end
time, 2021; series ordinal, 8; replaces, Gerhard Schröder⟩, which represents the same
information as the compound fact in Sec. 1. A set of facts can be represented in a graph as
illustrated in Fig. 1. In this representation, the qualifiers are connected to the predicate of a
fact, describing the relation between the subject and object in more detail. Note also, that
each instance of a relation becomes an individual node. If, for example, the two country
nodes were merged, information would be lost: ⟨Bundesliga, country, Angela Merkel⟩ could
be inferred as a fact then.

KB item. A KB item x is either an entity (Angela Merkel), relation (position held), type
(human), or literal (2021).

582 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

CLOCQ 5

Neighborhood. The 1-hop neighborhood 𝑁 𝑓 of an item 𝑥 is the set of all facts in 𝐾 with
𝑥: 𝑁 𝑓 (𝑥) = { 𝑓 |𝑥 ∈ 𝑓 ∧ 𝑓 ∈ 𝐾}. To generalize, the ℎ-hop neighborhood 𝑁ℎ

𝑓
(𝑥) is then the

union of all facts with any of the items in the (ℎ-1)-hop neighborhood.

Neighbors. The 1-hop neighbors 𝑁𝑖 of 𝑥 are all KB items in the 1-hop neighborhood of 𝑥:
𝑁𝑖 (𝑥) = {𝑥′ |𝑥′ ∈ 𝑓 ∧ 𝑓 ∈ 𝑁 𝑓 (𝑥)}. Analogously, the set of ℎ-hop neighbors 𝑁ℎ

𝑖
(𝑥) is given

by all KB items in the ℎ-hop neighborhood.

Frequency. The frequency of a KB item is given by the size of its 1-hop neighborhood
|𝑁 𝑓 (𝑥) |, i.e. the number of facts 𝑥 appears in. Without loss of generality, the frequency can
be measured w.r.t. a specific position in the fact (e.g. frequency in subject-position).

KB distance. The KB distance between two KB items 𝑥 and 𝑦 is ℎ, if the items are ℎ
hops away from each other, i.e. ℎ = minℎ′ 𝑥 ∈ 𝑁ℎ′

𝑖
(𝑦). For example, the distance of Angela

Merkel and Gerhard Schröder is 1, since they appear in the same fact. The distance between
Angela Merkel and Bundesliga is 2.

Shortest path. The shortest path between two KB items is given by the (set of) fact(s) in
between. This ensures that important contextual information is not skipped, considering
the facts as a whole. For example, if we used only the direct connection between Angela
Merkel and Federal Chancellor of Germany in the graph, incorrect inferences could be made.
Instead, the whole fact 𝑓1 is the shortest path. The shortest path between Angela Merkel and
Bundesliga would be 𝑓2 ◦ 𝑓3, where ◦ denotes concatenation.

2.2 Implementation

For improving space efficiency, each KB item 𝑥 is first integer-encoded as 𝑖𝑛𝑡 (𝑥) [Fe13, Ur16],
and we create mappings from 𝑥 → 𝑖𝑛𝑡 (𝑥) and 𝑖𝑛𝑡 (𝑥) → 𝑥. Each fact 𝑓 = ⟨𝑥0, 𝑥1, ...⟩ is
then stored as 𝑖𝑛𝑡 (𝑓) = ⟨𝑖𝑛𝑡 (𝑥0), 𝑖𝑛𝑡 (𝑥1), ...⟩. For facilitating our computations, we index
the following information for each item in the KB: the 1-hop neighborhood 𝑁 𝑓 (𝑥) and
the set of 1-hop neighbors 𝑁𝑖 (𝑥), both in an integer-encoded manner. This allows us to
compute the most important functionalities via simple lookups or set operations at runtime,
improving efficiency. Details on the specific implementations of individual functionalities
can be found in Sec. 3.

The neighborhoods for each item 𝑥 are stored in two lists, holding pointers to the individual
facts: one list for facts with 𝑥 in subject-position, and one for all other facts with 𝑥. This will
be useful later, for retrieving only salient facts with a KB item. The neighborhood lists of 𝑥
are then stored in position 𝑖𝑛𝑡 (𝑥) in the index, which is implemented by another list.

The neighbors of an item 𝑥 are stored as a set, which is again stored in position 𝑖𝑛𝑡 (𝑥) in the
corresponding index list. Another possibility would be to extract the set of neighbors from
the 1-hop neighborhood at runtime. This reduces the memory footprint, but increases the
costs for computing KB distances.

CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases 583

6 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

3 Functionalities

In this section, we will describe the functionalities provided with our KB interface in more
detail, elaborating some of the implementation details. All functions are implemented for
Wikidata, the largest public KB that is actively maintained. However, the principles would
still hold for other large curated KBs like DBpedia as well.

3.1 Direct lookups

Label. To avoid collisions due to duplicate labels, KBs typically use identifiers for
representing KB items. For example, Angela Merkel is stored as Q567 in Wikidata, and
position held as P39 (for simplicity, we use labels to refer to items in this paper). We provide
a simple function to look up the (English) label for a provided Wikidata ID.

Aliases. Another useful information on a KB item are aliases. These are alternative labels
that one can use for the same KB item. For example, “CR7” is an alias of Cristiano Ronaldo,
and “office held” is an alias of position held. Such aliases can be used for improving
relation extraction [Ba21, Va18] or NERD systems [BOM15]. Relation aliases can also be
used for training crisp paraphrase models.

Description. Further, Wikidata stores a crisp description for each KB item, which can e.g.
be helpful for deriving latent representations of an item [GSR17].

Types. Another important information on an entity are the KB types. Typical use cases
are entity linking [GSR17], answer verification [BH15] in QA systems, or enhanced
efficiency [Zi17] of QA systems. For example, Angela Merkel is a human, and Germany
is associated with the types sovereign state, republic, and country. To enhance the
expressiveness of the types, we add the occupations of a human, which are not stored as
types in Wikidata. E.g. Angela Merkel would also be associated with politician or physicist.

Most frequent type. In some use cases, having exactly one type for an entity is desir-
able [CSRW22b]. Unlike the deprecated KB Freebase, Wikidata does not indicate the most
notable type of an entity. As a proxy, we use the most frequent type of an entity in the KB.

3.2 More complex functionalities

1-hop neighborhood. This function is used for retrieving the 1-hop neighborhood of an
item, which is a frequent use case in QA [Ch19, SRA22, Su18], but can also be useful for
other applications like KB completion [Ba19] or entity alignment [Su20]. For implementing
this function, we can simply look up the neighborhood in our fact-centric KB index. We
further implement a mechanism to retrieve the more salient facts for a specific KB item:
frequent KB items like Germany can easily have millions of facts in their neighborhood.
However, retrieving all these facts is often not desired in IR or NLP applications [SRA22].

584 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

CLOCQ 7

A parameter 𝑝 is used to control the amount of facts returned as follows: if there are more
than 𝑝 facts with 𝑥 in the object or qualifier-object position, then these facts are dropped, i.e.
only facts with 𝑥 in the subject-position are kept. This can also help improve the efficiency
of downstream applications: the I/O time can be drastically reduced, and only a subset of
more salient facts needs to be processed. The output of this function is a set of KB facts.

Frequency. For computing the frequency, we count the number of facts with 𝑥 as subject,
and the number of facts with 𝑥 not in subject position, using the neighborhood index. The
output of this function are the two resulting counts.

Connectivity. We can also compute a connectivity score for two KB items. Note that when
retrieving the 3 or 4-hop neighborhood of an item, this will give almost the entire KB.
Therefore, we define a connectivity score of two KB items, which we found more useful
than a standard distance function in practice [CSRW22a]. The connectivity is 1 if the items
have a KB distance of 1, 0.5 if they have a distance of 2, and 0 if they are not connected
within 2 hops. The function can be efficiently implemented using basic set operations:

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑥, 𝑦) =

1 if 𝑥 ∈ 𝑁𝑖 (𝑦) ∨ 𝑦 ∈ 𝑁𝑖 (𝑥)
0.5 if 𝑁𝑖 (𝑥) ∩ 𝑁𝑖 (𝑦) ≠ ∅
0 otherwise

(1)

Note that the 1-hop neighbors 𝑁𝑖 (𝑥) and 𝑁𝑖 (𝑦) are simply looked up in the index.

Shortest path. Another often-needed KB functionality is obtaining the shortest path between
two items, which can be used to analyze their semantic relationship [JJ19], obtaining training
data for QA [Su18], or for connecting multiple subgraphs [Pr21]. The implementation
makes use of the connectivity function outlined above: if two items 𝑥, 𝑦 have a connectivity
of 1, we search the smaller of the two 1-hop neighborhoods for a fact with both items. For a
connectivity of 0.5, we identify the “items in the middle” {𝑚𝑖}, i.e. the set of items that are
connected with 𝑥 in 1 hop and with 𝑦 in 1 hop. For these items {𝑚𝑖}, we search for the joint
facts with 𝑥 and 𝑦, respectively. The output of this function is a set of facts (connectivity =
0.5), or a set of 2-hop paths, one for each 𝑚𝑖 , where each such path is given by a set of facts
connecting 𝑥 and 𝑚𝑖 , and a set of facts connecting 𝑚𝑖 and 𝑦 (connectivity = 1).

3.3 Search Space Reduction

Finally, we briefly introduce the key algorithm introduced in our recent work [CSRW22a],
which retrieves a set of relevant KB facts for a given question. This is typically the first
step in QA systems [CSRW22b, SRA22, Su18] for reducing the search space. Consider
an input like “Who scored the final goal for Germany in 2014?”. For a human interested
in football it is obvious that “Germany” refers to the German national football team, and
that the question is on the 2014 FIFA World Cup. However, this only becomes clear when
considering the question as a whole, taking the respective context into account. Therefore,
mapping the question words to KB items is a non-trivial task.

CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases 585

8 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

We propose a method that first retrieves a set of candidate disambiguations for each question
word. These candidate disambiguations are then scored based on four different signals.
We use the word-level scores for term matching and question relatedness. Further, to
understand the text as a whole, we also consider the connectivity and coherence among
disambiguations. Note that certain question words may be more ambiguous than others,
and providing additional candidate disambiguations for such question words could alleviate
potential errors. Therefore, we dynamically adjust the number of disambiguations 𝑘 for
each individual question word. The algorithm provides the disambiguations, and facts with
the disambiguated items, as the output.

Entity and relation linking. Based on this algorithm, we also make functionalities for
entity linking and relation linking available. The idea is to prune less relevant entities or
relations from the disambiguations provided by the search space reduction method outlined
above. These functions have been developed using data from the SMART 2022 Task6.

4 Experiments

In this section, we conduct experiments to compare the efficiency of our fact-centric KB
interface with existing triple-centric ones on a set of important KB functionalities.

4.1 Experimental Setup

The ClocqKB is initiated with a Wikidata dump from 31 January 2022, that has been
cleaned for removing information irrelevant for most common tasks7. We show runtimes of
a locally running version of ClocqKB, a version without the neighbors’ index (ClocqKB
w/o 𝑁𝑖), and the publicly available ClocqKB-API8.

We compare our fact-centric KB inferface with two triple-centric ones: Hdt [Fe13] which
implements fast triple lookups based on efficient bitmap encodings, and the publicly
available QueryService9 provided by Wikidata. For Hdt, we used the latest dump made
available (3 March 2021)10, and run it on our local machine. Note that it is highly non-trivial
to perform the cleaning steps (mentioned above) for the HDT dump, since it comes in a
highly compressed form. While function results may therefore not be exactly the same, the
runtimes are still comparable. All experiments with the QueryService are conducted in
September 2022. Note that we measure all network latencies (if any), and subtract these
from the measured timings for fair comparisons. The local experiments are run on an AMD
EPYC 7702 Processor, and the public API is running on an AMD EPYC 7302P Processor.

6 https://smart-task.github.io/2022/

7 https://github.com/PhilippChr/wikidata-core-for-QA

8 https://clocq.mpi-inf.mpg.de

9 https://query.wikidata.org

10 https://www.rdfhdt.org/datasets/

586 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

https://smart-task.github.io/2022/
https://github.com/PhilippChr/wikidata-core-for-QA
https://clocq.mpi-inf.mpg.de
https://query.wikidata.org
https://www.rdfhdt.org/datasets/

CLOCQ 9

KB interface Hdt [Fe13] ClocqKB ClocqKB w/o 𝑁𝑖 QueryService ClocqKB-API
RAM consumed 150 GB 470 GB 360 GB − −

Neighborhood 1.21 s 5.99 × 10−5 s 6.01 × 10−5 s 0.561 s 4.36 × 10−3 s
Frequency 3.12 × 10−2 s 1.02 × 10−5 s 1.15 × 10−5 s 0.122 s 4.24 × 10−3 s
Connectivity 0.802 s 1.83 × 10−5 s 5.02 × 10−5 s 1.11 s 4.22 × 10−3 s
Shortest path 3, 046 s 0.553 s 15.8 s 1.18 s 0.591 s

Tab. 1: Large-scale runtime efficiency analysis of KB interfaces.

4.2 Large-scale efficiency analysis

We first compare the efficiency of the KB interfaces for the following four functionalities:
i) retrieving the 1-hop neighborhood, ii) computing the frequency, iii) computing the
connectivity, and iv) identifying the shortest path. We restrict our experiments on the
more complex functionalities (Sec. 3.2) here. However, even for accessing the simpler
functionalities (Sec. 3.1), deep knowledge of the KB schema is required for the baselines.

As input, we use 10, 000 random item (pairs when applicable) for each functionality, using
the same random seed for all interfaces. We only used 100 random pairs for shortest path,
due to substantially higher runtimes. In case an error is thrown for a function call, which
might sometimes occur for the QueryService, the corresponding instance is dropped
from the analysis for all methods. The results are shown in Table 1.

The key observations are as follows. Due to its smart KB indices, ClocqKB can achieve
extremely low runtimes for retrieving 1-hop neighborhoods, frequencies, or performing
connectivity checks. Removing the neighbors’ index only has a minor effect on the
connectivity check, while the effect on the shortest path functionality is notable. The runtime
of the triple-centric baselines is higher by a factor of 103 to 105 than that of ClocqKB in
most scenarios, indicating the runtime benefits of a fact-centric approach for such use cases.
The public ClocqKB-API has higher runtimes than the version running locally, due to a
different processor and some I/O overhead, but is still substantially faster than the baselines.

Note that ClocqKB consumes quite some RAM. One could store the indexes in a dedicated
database to save memory. However, in an industrial use case, ∼500 GB RAM is not a major
concern, and for scientific use cases the ClocqKB-API can be used.

4.3 Anecdotal examples

Results in Table 1 are for a random sample, and can show trends among the different KB
interfaces. We also conducted experiments on a set of popular items that may often appear in
a real application. We chose the following KB items: Angela Merkel, Germany, Bundesliga,
and run the same functionalities on these items. Results can be seen in Table 2. Time-outs
are indicated by "n/a".

CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases 587

10 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

KB interface Hdt [Fe13] ClocqKB QueryService ClocqKB-API
Neighborhood(Angela Merkel) 20.8 s 2.55 × 10−3 s 2.12 s 1.07 × 10−2 s
Neighborhood(Germany) 2, 990 s 2.73 s "n/a" 15.6 s
Neighborhood(Bundesliga) 15.2 s 1.10 × 10−2 s "n/a" 3.56 × 10−2 s

Frequency(Angela Merkel) 2.85 × 10−2 s 2.55 × 10−5 s 0.186 s 5.34 × 10−3 s
Frequency(Germany) 5.20 × 10−5 s 2.56 × 10−5 s 0.280 s 5.39 × 10−3 s
Frequency(Bundesliga) 5.20 × 10−5 s 2.47 × 10−5 s 8.33 × 10−2 s 5.44 × 10−3 s

Connectivity(Angela Merkel, Germany) 61.3 s 3.48 × 10−5 s "n/a" 5.37 × 10−3 s
Connectivity(Germany, Bundesliga) 60.3 s 3.27 × 10−5 s "n/a" 5.21 × 10−3 s
Connectivity(Angela Merkel, Bundesliga) 0.328 s 8.28 × 10−4 s "n/a" 5.10 × 10−3 s

Shortest path(Angela Merkel, Germany) 118 s 7.80 × 10−2 s "n/a" 8.42 × 10−2 s
Shortest path(Germany, Bundesliga) 120 s 8.10 × 10−2 s "n/a" 8.89 × 10−2 s
Shortest path(Angela Merkel, Bundesliga) 5, 260 s 0.156 s "n/a" 0.178 s

Tab. 2: Runtime efficiency analysis on manually chosen function calls for popular entities.

The results reveal that the public QueryService cannot cope with use cases in which
larger intermediate results are obtained (like for Germany or even Bundesliga). Most such
runs faced server-side time-outs. Hdt obtains results for all experiments, but can take
quite some time to do so: runtimes > 1 s are rarely acceptable in IR or NLP applications.
While runtimes for ClocqKB can get higher in extreme cases, like for retrieving the 1-hop
neighborhood of Germany with more than 1.4 million facts, the runtimes remain tractable,
indicating runtime benefits of 103 to 105 of our fact-centric approach in most cases.

5 Related Work

There has been substantial work on optimizing query performance on KBs [EM10, NW08,
Ur16]. Jacobs [UJ20] proposed Trident, for enabling different kinds of workloads (e.g.
SPARQL, graph analytics) on large KBs. Hdt [Fe13] is an efficient representation of
RDF data, that is both space and runtime efficient. The individual triples of the KB are
encoded using bitmaps. Two integer-streams holding all predicates and objects for a fixed
subject are established. The relations between these predicates and objects are encoded
using bit-streams. Using several indexes, Hdt can search for triple pattern very efficiently.
However, there is no dedicated mechanism for querying n-ary facts.

While the proposed approaches show high performance on traditional SPARQL(-like)
queries, we showed through comparison that important KB functionalities can be more
efficiently implemented taking a fact-centric view of the KB.

6 Conclusion

We present a fact-centric view of the KB, and based on this, provide simple and efficient
implementations of several important KB functionalities. These are either not available
in existing implementations, or would be quite complex to use, especially for new users.
Experiments show that we outperform existing KB interfaces w.r.t. runtime efficiency. We
make our code available, and provide a public API to enhance KB applications and research.

588 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

CLOCQ 11

Bibliography
[Ab18] Abujabal, Abdalghani; Saha Roy, Rishiraj; Yahya, Mohamed; Weikum, Gerhard: Never-

ending learning for open-domain question answering over knowledge bases. In: WWW.
pp. 1053–1062, 2018.

[Au07] Auer, Sören; Bizer, Christian; Kobilarov, Georgi; Lehmann, Jens; Cyganiak, Richard;
Ives, Zachary: DBpedia: A nucleus for a Web of open data. In: The Semantic Web. pp.
722–735, 2007.

[Ba19] Bansal, Trapit; Juan, Da-Cheng; Ravi, Sujith; McCallum, Andrew: A2N: Attending to
neighbors for knowledge graph inference. In: ACL. pp. 4387–4392, 2019.

[Ba21] Bastos, Anson; Nadgeri, Abhishek; Singh, Kuldeep; Mulang, Isaiah Onando; Shekar-
pour, Saeedeh; Hoffart, Johannes; Kaul, Manohar: RECON: relation extraction using
knowledge graph context in a graph neural network. In: WWW. pp. 1673–1685, 2021.

[Be13] Berant, Jonathan; Chou, Andrew; Frostig, Roy; Liang, Percy: Semantic parsing on
freebase from question-answer pairs. In: EMNLP. pp. 1533–1544, 2013.

[BH15] Bast, Hannah; Haussmann, Elmar: More accurate question answering on freebase. In:
CIKM. pp. 1431–1440, 2015.

[Bo08] Bollacker, Kurt; Evans, Colin; Paritosh, Praveen; Sturge, Tim; Taylor, Jamie: Freebase: A
collaboratively created graph database for structuring human knowledge. In: SIGMOD.
pp. 1247–1250, 2008.

[BOM15] Blanco, Roi; Ottaviano, Giuseppe; Meĳ, Edgar: Fast and space-efficient entity linking
for queries. In: WSDM. pp. 179–188, 2015.

[CD22] Chatterjee, Shubham; Dietz, Laura: BERT-ER: Query-specific BERT Entity Represen-
tations for Entity Ranking. In: SIGIR. pp. 1466–1477, 2022.

[Ch19] Christmann, Philipp; Saha Roy, Rishiraj; Abujabal, Abdalghani; Singh, Jyotsna; Weikum,
Gerhard: Look before you hop: Conversational question answering over knowledge
graphs using judicious context expansion. In: CIKM. pp. 729–738, 2019.

[CSRW22a] Christmann, Philipp; Saha Roy, Rishiraj; Weikum, Gerhard: Beyond NED: Fast and
Effective Search Space Reduction for Complex Question Answering over Knowledge
Bases. In: WSDM. pp. 172–180, 2022.

[CSRW22b] Christmann, Philipp; Saha Roy, Rishiraj; Weikum, Gerhard: Conversational Question
Answering on Heterogeneous Sources. In: SIGIR. pp. 144–154, 2022.

[EM10] Erling, Orri; Mikhailov, Ivan: Virtuoso: RDF support in a native RDBMS. In: Semantic
Web Information Management. pp. 501–519, 2010.

[Fe13] Fernández, Javier D; Martínez-Prieto, Miguel A; Gutiérrez, Claudio; Polleres, Axel;
Arias, Mario: Binary RDF representation for publication and exchange (HDT). In:
Journal of Web Semantics. pp. 22–41, 2013.

[FS10] Ferragina, Paolo; Scaiella, Ugo: TAGME: On-the-fly annotation of short text fragments
(by Wikipedia entities). In: CIKM. pp. 1625–1628, 2010.

CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases 589

12 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

[GSR17] Gupta, Nitish; Singh, Sameer; Roth, Dan: Entity linking via joint encoding of types,
descriptions, and context. In: EMNLP. pp. 2681–2690, 2017.

[HHK15] Hernández, Daniel; Hogan, Aidan; Krötzsch, Markus: Reifying RDF: What Works Well
With Wikidata? In: SSWS. p. 32, 2015.

[Ho11] Hoffart, Johannes; Yosef, Mohamed Amir; Bordino, Ilaria; Fürstenau, Hagen; Pinkal,
Manfred; Spaniol, Marc; Taneva, Bilyana; Thater, Stefan; Weikum, Gerhard: Robust
Disambiguation of Named Entities in Text. In: EMNLP. pp. 782–792, 2011.

[JJ19] Joseph, Kevin; Jiang, Hui: Content based news recommendation via shortest entity
distance over knowledge graphs. In: WWW. pp. 690–699, 2019.

[Ko14] Koch, Mitchell; Gilmer, John; Soderland, Stephen; Weld, Daniel S: Type-aware distantly
supervised relation extraction with linked arguments. In: EMNLP. pp. 1891–1901,
2014.

[KSRW21] Kaiser, Magdalena; Saha Roy, Rishiraj; Weikum, Gerhard: Reinforcement Learning
from Reformulations in Conversational Question Answering over Knowledge Graphs.
In: SIGIR. pp. 459–469, 2021.

[Li20] Li, Belinda Z.; Min, Sewon; Iyer, Srinivasan; Mehdad, Yashar; Yih, Wen-tau: Efficient
One-Pass End-to-End Entity Linking for Questions. In: EMNLP. pp. 6433–6441, 2020.

[LJ21] Lan, Yunshi; Jiang, Jing: Modeling transitions of focal entities for conversational
knowledge base question answering. In: ACL-ĲCNLP. pp. 3288–3297, 2021.

[NW08] Neumann, Thomas; Weikum, Gerhard: RDF-3X: a RISC-style engine for RDF. Pro-
ceedings of the VLDB Endowment, pp. 647–659, 2008.

[Pr21] Pramanik, Soumajit; Alabi, Jesujoba; Saha Roy, Rishiraj; Weikum, Gerhard: UNIQORN:
unified question answering over RDF knowledge graphs and natural language text. In:
arXiv. 2021.

[Sa18] Saha, Amrita; Pahuja, Vardaan; Khapra, Mitesh; Sankaranarayanan, Karthik; Chandar,
Sarath: Complex sequential question answering: Towards learning to converse over
linked question answer pairs with a knowledge graph. In: AAAI. pp. 705–713, 2018.

[SKW07] Suchanek, Fabian M; Kasneci, Gjergji; Weikum, Gerhard: YAGO: A core of semantic
knowledge. In: WWW. pp. 697–706, 2007.

[SRA22] Saha Roy, Rishiraj; Anand, Avishek: Question Answering for the Curated Web: Tasks
and Methods in QA over Knowledge Bases and Text Collections. Springer, 2022.

[Su18] Sun, Haitian; Dhingra, Bhuwan; Zaheer, Manzil; Mazaitis, Kathryn; Salakhutdinov,
Ruslan; Cohen, William: Open Domain Question Answering Using Early Fusion of
Knowledge Bases and Text. In: EMNLP. pp. 4231–4242, 2018.

[Su20] Sun, Zequn; Wang, Chengming; Hu, Wei; Chen, Muhao; Dai, Jian; Zhang, Wei; Qu,
Yuzhong: Knowledge graph alignment network with gated multi-hop neighborhood
aggregation. In: AAAI. pp. 222–229, 2020.

[UJ20] Urbani, Jacopo; Jacobs, Ceriel: Adaptive Low-level Storage of Very Large Knowledge
Graphs. In: WWW. pp. 1761–1772, 2020.

590 Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

CLOCQ 13

[Ur16] Urbani, Jacopo; Dutta, Sourav; Gurajada, Sairam; Weikum, Gerhard: KOGNAC: Efficient
encoding of large knowledge graphs. In: ĲCAI. pp. 3896–3902, 2016.

[Va18] Vashishth, Shikhar; Joshi, Rishabh; Prayaga, Sai Suman; Bhattacharyya, Chiranjib;
Talukdar, Partha: Reside: Improving distantly-supervised neural relation extraction using
side information. In: EMNLP. pp. 1257–1266, 2018.

[VK14] Vrandečić, Denny; Krötzsch, Markus: Wikidata: A free collaborative knowledgebase.
In: CACM. pp. 78–85, 2014.

[ZI16] Zhu, Ganggao; Iglesias, Carlos A: Computing semantic similarity of concepts in
knowledge graphs. In: IEEE TKDE. pp. 72–85, 2016.

[Zi17] Ziegler, David; Abujabal, Abdalghani; Roy, Rishiraj Saha; Weikum, Gerhard: Efficiency-
aware Answering of Compositional Questions using Answer Type Prediction. In:
ĲCNLP. pp. 222–227, 2017.

CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases 591

