
cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Workload-Aware Contention-Management
in Indexes for Hierarchical Data

Kevin Wellenzohn1, Michael H. Böhlen2, Sven Helmer3, Marcel Reutegger4

Abstract: Queries in hierarchical databases (HDBs) often combine predicates referring to values of
node properties with path predicates relating to the structure, which are called property-and-path (PP)
queries. Usually, PP indexes are used to support these types of queries efficiently. In an environment
in which HDBs are updated concurrently, we encounter conflicts which may lead to transaction aborts.
We identify preventable aborts caused by conflicts in the index, while the operations in the actual
database are executed without any problems. These index conflicts are due to the deletion of a path
in the index concurrently taking place with an insertion underneath a node on the deleted path. We
leverage recent workload information to detect and suspend the deletion of substructures in PP indexes
that are likely to conflict with concurrent insertions. However, the suspension of these deletions has
a detrimental effect on the query performance, which means this becomes a tradeoff between the
number of transaction aborts and the speed of the query evaluation. We implement our approach
in Apache Jackrabbit Oak and FOEDUS, experimentally investigate the tradeoff, and show how to
balance the effects to maximize the transactional throughput for a given workload.

Keywords: hierarchical databases; structural indexes; concurrency control

1 Introduction

A lot of the data in business and engineering applications, such as bills of materials [Fi13],
enterprise asset hierarchies [Fi13], and business rules [Lo15], is organized in a hierarchical
way. Additionally, many NoSQL content stores manage hierarchical data, e.g. in the form of
JSON. Similar to relational databases, though, in which we index a subset of attributes in
a relation to speed up query evaluation, in hierarchical databases (HDBs), we also often
index a subset of nodes in a hierarchy relevant for frequent queries. This set of nodes is
application-dependent and we assume that a user flags these nodes, which are then indexed
by the system.

Clearly, in a multi-user environment, node indexes can become a bottleneck if nodes are
frequently updated concurrently. This leads to conflicts not just on the node level, but may
also result in path conflicts on common ancestor nodes of updates. We show how to prevent
path conflicts in node indexes that would otherwise lead to transaction aborts. Figure 1a
1 University of Zurich, Dept of Informatics, Binzmühlestrasse 14, 8050 Zurich, Switzerland wellenzohn@ifi.uzh.ch
2 University of Zurich, Dept of Informatics, Binzmühlestrasse 14, 8050 Zurich, Switzerland boehlen@ifi.uzh.ch
3 University of Zurich, Dept of Informatics, Binzmühlestrasse 14, 8050 Zurich, Switzerland helmer@ifi.uzh.ch
4 Adobe Systems, Barfusserplatz 6, 4051 Basel, Switzerland mreutegg@adobe.com

cba doi:10.18420/BTW2023-03

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 71

mailto:wellenzohn@ifi.uzh.ch
mailto:boehlen@ifi.uzh.ch
mailto:helmer@ifi.uzh.ch
mailto:mreutegg@adobe.com
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-03

2 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

(a) Hierarchical database 𝐺

content

dax

... ...

dow

tech

aapl msft∗

aid:9

pub:now

retail

wmt∗

aid:5

ftse100

... ...

(b) Node index 𝐼

index

aid

5

content

dow

retail

wmt

aid:5

9

content

dow

tech

msft

aid:9

pub

now

content

dow

tech

msft

pub:now

(c) Updates

index

aid

5

content

dow

retail

wmt

aid:5

9

content

dow

tech

msft

aid:9

pub

now

content

dow

tech

msft

pub:now

retail

wmt

pub:now

Fig. 1: Transactions 𝑇𝑖 and 𝑇 𝑗 conflict when 𝑇𝑖 deletes index node msft and its ancestors upwards (red
nodes), while 𝑇 𝑗 adds a new child to a deleted ancestor (green hatched nodes).

shows an example of a content management system (CMS), such as Adobe Experience
Manager [Ad23] or Magnolia [Ni06], built on top of an HDB. In this application scenario,
users change webpages in a private workspace of the CMS and, when finished, flag them as
being publishable: this adds a property pub with the value now to publishable nodes. For
example, in Figure 1a, the node msft is ready to be published. Eventually, the CMS pushes
the changes to the webserver and removes the property pub:now from the node msft. We
marked the indexed nodes in the HDB with an asterisk (∗) to make them easier to spot and
Figure 1b shows the corresponding index, containing the flagged nodes and their ancestors.
We now run the two transactions 𝑇𝑖 and 𝑇𝑗 on this database: 𝑇𝑖 removes the property pub
from the node msft, while 𝑇𝑗 concurrently adds pub:now to the node wmt. These updates
need to be propagated to the index (Figure 1c). 𝑇𝑖’s deletion of index node msft propagates
upwards: the empty path pub/now/content/dow/tech/msft is deleted (red nodes) since
we do not have any nodes with the property pub anymore. Concurrently, 𝑇𝑗 needs to add
the green nodes retail/wmt below dow to update the index. This results in a path conflict
between 𝑇𝑖 and 𝑇𝑗 since 𝑇𝑖 wants to delete a path, while 𝑇𝑗 wants to insert a branch on
this path. The conflict arises at the shared ancestor nodes. In our example, the nodes msft
and wmt in the index have the lowest common ancestor dow and share the path from dow to
the root. We propose a technique identifying problematic regions in node indexes leading
to conflicts, i.e., regions in which the same shared ancestor nodes are frequently inserted
and deleted. In our example, if we had kept the path from dow upwards in the index when
removing node msft, anticipating an insertion, we could have inserted node wmt without any
problems. However, this comes at a price: we temporarily keep purposeless nodes in the
index, slowing down query evaluation. We experimentally show how to balance reducing
contention with query performance to maximize the throughput.

In summary, we make the following contributions:

• We describe and define preventable aborts, which are aborts caused by propagated
node insertions and deletions in node indexes for hierarchical databases.

72 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 3

• We introduce the notion of node volatility, which allows us to identify nodes that are
repeatedly involved in preventable aborts.

• We develop the robust node index (RNI), which detects and suspends the deletion of
volatile nodes to decrease the number of preventable aborts significantly.

• We implemented RNI in Apache Jackrabbit Oak [Ap22] and FOEDUS [Ki15] and
evaluated it experimentally with different workloads and datasets. We show that
making the node index robust is more effective than (a) alternative concurrency-
control protocols reducing aborts [WK16] and (b) lazy techniques for node deletions
in indexes [Lo04, LS97], increasing the throughput by up to a factor of six.

2 Related Work

High-contention workloads are a significant bottleneck for database systems [Ap17, Ha17,
RFA16, RTA14, Ti18]. We discuss approaches that deal with contention (a) on the level of
the concurrency-control protocol and (b) on the level of the index.

The most similar approach to RNI among the protocol-level approaches is MOCC [WK16]
(that is the reason why we chose it for the experimental evaluation). It starts by using
optimistic concurrency-control (OCC) to synchronize accesses to records. However, it
also monitors the number of aborts caused by a record due to concurrent accesses. If this
number reaches a certain threshold, the record is regarded as hot and MOCC switches
to a pessimistic locking protocol to reduce the number of aborts. Like MOCC, in RNI
we monitor the load on heavily contentious nodes and switch to a different mode when
necessary. In the following, we briefly describe other protocol-level approaches. Yuan
et al. [Yu16] reduce the number of aborts in OCC by aborting a transaction only if an
essential pattern exists between transactions, which is more restrictive than the read-write
conflict OCC checks for. Similarly, Bumper [DR13] only aborts a transaction if a so-called
triad (conceptually similar to an essential pattern) is detected. Tian et al. [Ti18] propose a
contention-aware locking scheme that reduces the overall lock-waiting times. They choose
which transaction 𝑇 to grant a lock to based on the number of other transactions that depend
on 𝑇’s progress. Johnson et al. [JPA09] reduce contention in the lock manager by passing
hot locks directly from transaction to transaction, without releasing and re-acquiring them.
QURO [YC16] analyzes program code and reorganizes the code within transactions to
reduce contention by acquiring a lock as late as possible. Deterministic concurrency-control
has been proposed to reduce synchronization in replicated databases [TA10]. A transaction
acquires all locks at its start, which means that transactions competing for exclusive access
to a contended record must execute in serial order [Th12]. This prevents conflicts and aborts
due to deadlocks at the expense of concurrency (especially under contention). Calvin [Th12]
and other deterministic systems require that the read/write sets of transactions be known a
priori [Ha17], which is not the case in our application scenario.

Workload-Aware Contention-Management in Indexes for Hierarchical Data 73

4 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Frequently inserting and deleting nodes into and from indexes is a known concurrency
bottleneck [LY81, LS97]. Lomet et al. [Lo04, LS97] propose to defer node deletions during
updates in B-trees. During deletion, the key is (eagerly) removed from the correct leaf
and if it becomes underutilized, the node deletion is deferred and processed later. When
to exactly process deferred operations is not specified [LS97], though. Even though there
is a lot of work on indexing hierarchical data [HL11, Sh15], concurrency control (CC)
specifically for indexes in HDBs has received little attention in comparison to CC for HDBs
in general [Be15, Be11, Fi02, HHL06]. For instance, there are path indexes only considering
the structure, such as DataGuides [GW97] and APEX [CMS02], and indexes that consider
the structure and values, such as IndexFabric [Co01] and CAS (content-and-structure)
indexes [Ma15, WBH20]. However, none of these papers discuss concurrency control and
we believe there is still untapped potential in this area. For example, node deletions in HDB
indexes can be suspended as long as the indexed values are removed during the deletion.
In general, this is not possible for CC in the HDB itself, as the actual removal of the node
is part of a transaction’s semantics. Workload-aware indexing has been shown to improve
index query and/or update performance [CMS02, Id11, TYJ09]. APEX [CMS02] optimizes
frequently queried paths in XML databases. QU-Trade [TYJ09] uses the recent workload
to balance the cost of writing/reading frequently updated/queried objects. Again, none of
these approaches discuss concurrency control. In contrast, adaptive indexing incrementally
sorts and refines an index during query execution [Id11], sketching ideas on how to realize
CC in the future work section. This promise is delivered in [Gr14], which provides more
details on concurrency control. Queries can cause contention if they concurrently attempt
to optimize overlapping query-ranges. In that case adaptive indexing forgoes the chance to
optimize the index and skips the optional optimization.

3 Background

3.1 Data Model

We model a database 𝐺 as an unordered tree that is defined as a set of nodes 𝐺 =

{𝑛1, 𝑛2, . . .}.5 A node 𝑛 = /𝜆1/. . ./𝜆𝑥 is uniquely identified by the node labels 𝜆𝑖 on the
path from the root node to node 𝑛. The last node label in this sequence, 𝜆𝑥 , is 𝑛’s label. The
label of the root node is the empty string.

Example 1 Consider the database 𝐺 in Fig. 1a. Node 𝑛 = /content/dow/tech/msft

has label msft. If no ambiguity arises, we shorten node labels by using only
the initials, hence 𝑛 = /c/d/t/m. 𝐺 consists of the labels of all its nodes
{/, /c, /c/d, /c/d/t, /c/d/r, /c/d/t/a, /c/d/t/m, /c/d/r/w, . . .}. From now on, we denote
a node by its label 𝜆; the full ID can be derived from its ancestors’ labels. �

5 Based on Apache Jackrabbit Oak’s data model [Ap22].

74 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 5

A node may have an arbitrary number of properties. We define the property set 𝑃(𝐺) of
tree 𝐺 as a set of triples (𝑛, 𝑘, 𝑣), which denote that node 𝑛 ∈ 𝐺 has property 𝑘 set to
value 𝑣 ≠ 𝜖 . We use the notation 𝑛[𝑘] (𝐺) = 𝑣 iff (𝑛, 𝑘, 𝑣) ∈ 𝑃(𝐺), and 𝑛[𝑘] (𝐺) = 𝜖 iff
�𝑣((𝑛, 𝑘, 𝑣) ∈ 𝑃(𝐺)) to denote that node 𝑛 does not have property 𝑘 in 𝐺. If it is clear
from the context which tree we are referring to, we omit the subscript and write 𝑛[𝑘] = 𝑣 or
𝑛[𝑘] = 𝜖 . A node 𝑛 is an ancestor of node 𝑚 (and 𝑚 is a descendant of 𝑛) iff 𝑛 = /𝜆1/. . ./𝜆𝑥

is a prefix of 𝑚 = /𝜆1/. . ./𝜆𝑥/. . ./𝜆𝑦 or, stated shortly, prefix(𝑛, 𝑚). A node is an ancestor
and descendant of itself, i.e., prefix(𝑛, 𝑛) is true for every node 𝑛.6

Example 2 Consider Fig. 1 and let 𝑛 = /c/d/t/m. We have 𝑛[pub] (𝐺) = now before running
transaction 𝑇𝑖 and 𝑛[pub] (𝐺) = 𝜖 after running 𝑇𝑖 . Node /c/d is an ancestor of 𝑛, since
prefix(/c/d, /c/d/t/m) is true. �

Typically, queries in HDBs are property-and-path (PP) queries, meaning we need to provide
a property, a value to compare to, and a path. As we only consider paths (and not twigs), the
order of the siblings in a tree does not matter.

Definition 1 (PP Query) A PP query 𝑄 = (𝑘, 𝑣, 𝑚) returns the set of nodes with property
𝑘 equal to value 𝑣 that are descendants of 𝑚, i.e., {𝑑 | 𝑑 [𝑘] = 𝑣 ∧ prefix(𝑚, 𝑑)}. �

3.2 The Property-and-Path (PP) Index

A property-and-path (PP) index 𝐼 is used to efficiently query all nodes in a subtree that have
a property 𝑘 set to a value 𝑣. Essentially, a PP index is modeled as an unordered tree, similar
to an HDB as described in Section 3.1. The first label of every path in 𝐼 is called index, the
second is the name of a property 𝑘 , and the third is a value 𝑣 for 𝑘 . This is then followed
by paths to all nodes in the indexed database 𝐺 that have a property 𝑘 with a value 𝑣 (cf.
Figure 1b). In a typical application, a node can have many properties (e.g., author ID aid
and other metadata), but usually only some are indexed.

Querying: Evaluating PP query 𝑄 = (𝑘, 𝑣, /𝜆1/. . ./𝜆𝑥) with index 𝐼 translates to
navigating down the path /index/𝑘/𝑣/𝜆1/. . ./𝜆𝑥 , traversing all descendants of 𝜆𝑥 , searching
for index nodes 𝑛 with 𝑛[𝑘] = 𝑣, and returning their corresponding content nodes. These
are obtained by truncating the three leading node labels of 𝑛. For example, for index node
/i/p/n/c/d/t/m the corresponding content node is /c/d/t/m.

Example 3 Assume we want to find pages under dow that are ready for publication, i.e., we
run the query 𝑄 = (pub, now, /c/d) on 𝐺. Using the index 𝐼 in Figure 1b, we descend to

6 This is similar to the ancestor-or-self and descendant-or-self axes in XPath.

Workload-Aware Contention-Management in Indexes for Hierarchical Data 75

6 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

node /i/p/n/c/d and check if any descendant contains the property-value pair pub:now.
This is the case for node 𝑚 = /i/p/n/c/d/t/m, thus the query returns {/c/d/t/m}. (As we
will see later, there may be unproductive nodes in the index missing the property-value pair
pub:now. These nodes are currently not active and will not be returned.) �

Insertion: An insertion into index 𝐼 is described by a triplet (𝑘, 𝑣, 𝑛 = /𝜆1/. . ./𝜆𝑥),
where 𝑘 is a property, 𝑣 is a value, and 𝑚 is a node (that now has a property 𝑘 set to value
𝑣). The insertion is executed as follows. First, the system traverses the nodes along path
𝑛 = /index/𝑘/𝑣/𝜆1/. . ./𝜆𝑥 or creates them if they do not exist yet. Then, the system sets
𝑛[𝑘] = 𝑣.

Example 4 When transaction𝑇𝑗 adds property pub:now to node /c/d/r/w in𝐺 (cf. Figure 1a),
we add a branch /r/w underneath /i/p/n/c/d in index 𝐼 in Figure 1b, setting the property
pub in node wmt to now. �

Deletion: A deletion is also described by a triplet (𝑘, 𝑣, 𝑛 = /𝜆1/. . ./𝜆𝑥). During the
deletion, we first descend to node 𝑛 = /index/𝑘/𝑣/𝜆1/. . ./𝜆𝑥 and remove property 𝑘 by
setting 𝑛[𝑘] = 𝜖 . However, it does not stop there. We prune 𝑛 and all its ancestors one by
one as long as they are a leaf and do not have the property 𝑘 (we do not prune the index
definition /index).

Example 5 When transaction 𝑇𝑖 removes property pub from node /c/d/t/m in 𝐺, the
property pub is removed from index node 𝑛 = /i/p/n/c/d/t/m. As 𝑛 is now a leaf node
without a property, it is deleted. The pruning continues up to index, essentially removing
the path p/n/c/d/t/m from index 𝐼 (cf. Figure 1b). �

4 Conflicts and Aborts

This section describes concurrent operations that lead to conflicts in HDBs.We assumemulti-
version concurrency control (MVCC) with snapshot isolation. MVCC resolves conflicts by
aborting transactions.

4.1 Snapshots

The state of an HDB logically progresses from one snapshot of the database to the next as
transactions commit. A history is a sequence 𝐻 = 〈. . . , 𝐺𝑖〉 of databases (including any
indexes) ordered by commit time. A committed HDB 𝐺𝑖 ∈ 𝐻 is an immutable snapshot.
A new transaction 𝑇𝑗 logically creates a mutable copy 𝐺 𝑗 of the last committed snapshot

76 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 7

content

. . . dow

tech

aapl msft

. . .

index content

. . . dow

tech

aapl msft

retail

wmt

pub:now

. . .

index

pub

now

content

dow

retail

wmt

pub:now

content

. . . dow

tech

aapl msft

retail

wmt

. . .

index content

. . . dow

tech

aapl msft

pub:now

retail

wmt

. . .

index

pub

now

content

dow

tech

msft

pub:now

HDB 𝐺0, Index 𝐼0 HDB 𝐺1, Index 𝐼1 HDB 𝐺2, Index 𝐼2 HDB 𝐺3, Index 𝐼3

Transaction 𝑇1 Transaction 𝑇2 Transaction 𝑇3

Each transaction’s changes to the content subtree:
⊲ Transaction 𝑇1: An author adds a webpage wmt with property pub set to now
⊲ Transaction 𝑇2: The CMS removes property pub from wmt after pushing it to the webserver
⊲ Transaction 𝑇3: An author publishes webpage msft by setting its property pub to now

Fig. 2: A typical CMS-workload in which authors repeatedly publish webpages.

𝐺𝑖 ∈ 𝐻 with snapshot 𝐺𝑖 being the base snapshot of 𝑇𝑗 . Transaction 𝑇𝑗 applies all its read
and write operations on 𝐺 𝑗 .

Example 6 Our running example (see Figure 2) shows an initial HDB 𝐺0 with a corre-
sponding (empty) index 𝐼0.7 After running the transactions 𝑇1 to 𝑇3, one after the other, we
have the history 𝐻 with the committed snapshots 𝐺0 to 𝐺3: 𝐻 = 〈𝐺0, 𝐺1, 𝐺2, 𝐺3〉. �

4.2 Conflict Detection and Handling

Before going into the details of resolving conflicts between concurrent transactions, we
define basic notions of transactions in HDBs. A transaction 𝑇𝑗 can change a database with
two primitives: node-write operations wn(𝑛), to insert or delete nodes, and property-write
operations wp(𝑛, 𝑘), to add, delete, or change a property 𝑘 of node 𝑛.

Definition 2 (Write Set) The write set Δ𝑇𝑗 of a transaction 𝑇𝑗 is the set of node- and
property-write operations in tree 𝐺 𝑗 . Let 𝐺𝑖 be 𝑇𝑗 ’s base snapshot. Δ𝑇𝑗 contains:

1. Node-write operations wn(𝑛):

wn(𝑛) ∈ Δ𝑇𝑗 ⇔ (𝑛 ∈ 𝐺𝑖 − 𝐺 𝑗) ∨ (𝑛 ∈ 𝐺 𝑗 − 𝐺𝑖)
7 For the sake of simplicity, we dropped the property aid.

Workload-Aware Contention-Management in Indexes for Hierarchical Data 77

8 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

2. Property-write operations wp(𝑛, 𝑘):

wp(𝑛, 𝑘) ∈ Δ𝑇𝑗 ⇔(𝑛 ∈ 𝐺 𝑗 − 𝐺𝑖 ∧ 𝑛[𝑘] (𝐺 𝑗) ≠ 𝜖) ∨
(𝑛 ∈ 𝐺𝑖 − 𝐺 𝑗 ∧ 𝑛[𝑘] (𝐺𝑖) ≠ 𝜖) ∨
(𝑛 ∈ 𝐺𝑖 ∩ 𝐺 𝑗 ∧ 𝑛[𝑘] (𝐺𝑖) ≠ 𝑛[𝑘] (𝐺 𝑗)) �

Example 7 The write set Δ𝑇1 of transaction 𝑇1 in Figure 2 contains the follow-
ing operations: wn(/c/d/r and /c/d/r/w), creating the node retail and then
the node wmt, and wp(/c/d/r/w, pub:now), adding the property pub with the
value now to the node wmt. Moreover, it also includes the operations wn(/i/p),
wn(/i/p/n), wn(/i/p/n/c), wn(/i/p/n/c/d), wn(/i/p/n/c/d/r), wn(/i/p/n/c/d/r/w),
and wp(/i/p/n/c/d/r/w, pub:now), updating the index. �

We have to distinguish different types of conflicts between two concurrent transactions 𝑇𝑖
and 𝑇𝑗 : path conflicts and property conflicts. Path conflicts include at least one wn operation
that inserts or deletes a node and are denoted by wn-wn, wn-wp, and wp-wn. We encounter
a wn-wn conflict if one transaction adds/deletes a node while the other adds/deletes one
of its descendants, i.e., the label of one node is a prefix of the other. A wn-wp or wp-wn
conflict exists if one transaction deletes a node, while the other adds, changes, or deletes
any property on the same node. Property conflicts (wp-wp conflicts) occur when 𝑇𝑖 and 𝑇𝑗

simultaneously try to change the same property on the same node.

Definition 3 (Path Conflict) We have a path conflict between concurrent transactions 𝑇𝑖
and 𝑇𝑗 iff at least one of the following conflicts occurred:

1. wn-wp conflict: ∃𝑛, 𝑘 (wn(𝑛) ∈ Δ𝑇𝑖 ∧ wp(𝑛, 𝑘) ∈ Δ𝑇𝑗)

2. wp-wn conflict: ∃𝑛, 𝑘 (wp(𝑛, 𝑘) ∈ Δ𝑇𝑖 ∧ wn(𝑛) ∈ Δ𝑇𝑗)

3. wn-wn conflict: ∃𝑛, 𝑚(wn(𝑛) ∈ Δ𝑇𝑖∧wn(𝑚) ∈ Δ𝑇𝑗 ∧(prefix(𝑛, 𝑚)∨prefix(𝑚, 𝑛)))�

Definition 4 (Property Conflict) A property conflict, i.e., wp-wp conflict, exists between
concurrent transactions transactions 𝑇𝑖 and 𝑇𝑗 iff ∃𝑛, 𝑘 (wp(𝑛, 𝑘)∈Δ𝑇𝑖 ∧ wp(𝑛, 𝑘)∈Δ𝑇𝑗) �

Example 8 Assume that transactions𝑇4 and𝑇5 start concurrently in HDB𝐺3 (see Figure 3),
hence 𝐺3 becomes 𝑇4’s and 𝑇5’s base snapshot. 𝑇4 and 𝑇5 run into a path conflict (wn-wn),
since the former deletes a node under which the latter adds a child. The conflicting operations
in the write sets of 𝑇4 and 𝑇5, wn(/i/p/n/c/d) ∈ Δ𝑇4 and wn(/i/p/n/c/d/r) ∈ Δ𝑇5, are
highlighted in red in Figure 3. �

When a transaction 𝑇𝑗 attempts to commit, a verification phase checks whether 𝑇𝑗 conflicts
with a concurrent transaction. If a conflict is detected one of the involved transactions

78 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 9

content

. . . dow

tech

aapl msft

pub:now

retail

wmt

. . .

index

pub

now

content

dow

tech

msft

pub:now

content

. . . dow

tech

aapl msft

pub:now

retail

wmt

. . .

index

pub

now

content

dow

tech

msft

pub:now

content

. . . dow

tech

aapl msft

pub:now

retail

wmt

pub:now

. . .

index

pub

now

content

dow

tech

msft

pub:now

retail

wmt

pub:now

HDB 𝐺3, Index 𝐼3

HDB 𝐺4, Index 𝐼4 HDB 𝐺5, Index 𝐼5

Transaction 𝑇4
finishes publishing
webpage msft

Transaction 𝑇5
prepares wmt
for publishing

Δ𝑇4={wp(/c/d/t/m, pub) , wn(/i/p) , wn(/i/p/n) , wn(/i/p/n/c) , wn(/i/p/n/c/d) , wn(/i/p/n/c/d/t) ,
wn(/i/p/n/c/d/t/m) , wp(/i/p/n/c/d/t/m, pub) }

Δ𝑇5={wp(/c/d/r/w, pub) , wn(/i/p/n/c/d/r) , wn(/i/p/n/c/d/r/w) ,
wp(/i/p/n/c/d/r/w, pub) }

deleted nodes/properties created nodes/properties

Fig. 3: Transactions 𝑇4 and 𝑇5 conflict, because 𝑇4 deletes index node dow, while 𝑇5 adds child retail.

has to abort. Oak implements the first-committer-wins rule [Be95], which means that the
transaction that issues the commit first is allowed to commit, while the other is aborted (other
policies, such as timestamp-based priority to favor older transactions are also possible). In
our running example 𝑇4 commits first and therefore 𝑇5 must abort due to the conflict shown
above.

Clearly, if there is a conflict caused by operations in the database, one transaction has to
abort. Two different transactions concurrently changing the same node at the same time
are just not compatible. However, what is particularly interesting in Example 8 is that the
conflict is caused by operations updating the index. The operations updating the actual
database 𝐺3 are perfectly fine, as they update properties in two completely different nodes.
It turns out that if a conflict occurs only in the index, we sometimes have options to avoid
such an abort. We take a closer look at this in the following section.

5 The Robust Node Index (RNI)

Workload-Aware Contention-Management in Indexes for Hierarchical Data 79

10 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

5.1 Volatile Nodes

Path conflicts occur frequently in index hotspots where transactions insert and delete nodes
sharing a large number of ancestors. We call nodes that are repeatedly inserted and deleted
volatile. These are a main source for path conflicts in indexes. We propose the robust node
index (RNI) that detects and manages volatile index nodes. RNI suspends the deletion of a
volatile index node, as we expect the node to be inserted again soon. Not repeatedly deleting
and inserting a volatile node 𝑛 means that node-write operations on 𝑛, wn(𝑛), are avoided,
reducing contention and, consequently, the number of aborting transactions.

We define the volatility of a node 𝑛 as the number of times 𝑛 was inserted or deleted.
This corresponds to checking the number of wn(𝑛) operations that have been executed
(cf. Definition 2). In order to do so, we look at the recent transactional workload, which
is defined by a sliding window SW(𝐻, 𝐿) of length 𝐿 over history 𝐻. SW(𝐻, 𝐿) denotes
the set of transactions that committed over the last 𝐿 ≥ 0 time units. Let 𝑡now be the
current time and 𝑡 (𝑇) be the commit time of transaction 𝑇 , then SW(𝐻, 𝐿) = {𝑇𝑗 | 𝑡 (𝑇𝑗) ∈
(𝑡now − 𝐿, 𝑡now] ∧ 𝐺 𝑗 ∈ 𝐻}.

Definition 5 (Volatile Node) A node 𝑛 is volatile in history 𝐻 iff the number of transactions
in sliding window SW(𝐻, 𝐿) that executed a wn(𝑛) operation is at least equal to the
volatility threshold 𝜏, i.e.,

|{𝑇 | 𝑇 ∈ SW(𝐻, 𝐿) ∧ wn(𝑛) ∈ Δ𝑇}| ≥ 𝜏 �

Example 9 Consider index node 𝑛 = /i/p/n/c/d in index 𝐼3 in Figure 2. Assuming time
𝑡now = 11 and sliding window length 𝐿 = 10, Figure 4 shows the commit times 𝑡 (𝑇1), 𝑡 (𝑇2),
and 𝑡 (𝑇3) of the transactions we ran on our HDB. Since all commit times lie in the sliding
window, SW(𝐻1, 𝐿) = {𝑇1, 𝑇2, 𝑇3}. All these transactions either insert or delete 𝑛, thus
∀𝑇 ∈ SW(𝐻1, 𝐿) : wn(𝑛) ∈ Δ𝑇 and for a volatility threshold 𝜏 ≤ 3, node 𝑛 is volatile. �

1 2 3 4 5 6 7 8 9 10 11 𝑡

𝑇0 𝑇1 𝑇2 𝑇3

𝑡nowSliding Window length 𝐿 = 10

Fig. 4: Transactions 𝑇1 through 𝑇3 from Figure 2 are contained in the sliding window 𝑆𝑊 (𝐻1, 10).

RNI checks for volatile nodes during the pruning of nodes in the index. The deletion of
pair (𝑣, 𝑚) with path 𝑚 = /𝜆1/. . ./𝜆𝑥 and value 𝑣 from index 𝐼 is described in Algorithm 1.
RNI descends to index node 𝑛 = /index/𝑘/𝑣/𝜆1/. . ./𝜆𝑥 , deletes 𝑛’s property 𝑘 , and tries
to prune 𝑛. RNI only prunes a node if three conditions are satisfied: (a) it is (or has become)
a leaf, (b) it does not have property 𝑘 , and (c) it is not volatile.8

8 It also does not prune the topmost node, index.

80 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 11

Algorithm 1: Deletion in RNI
Input: Index 𝐼 , pair (𝑣, 𝑚) , and history 𝐻 . 𝑘 is a property, 𝑣 a value, and 𝑚 = /𝜆1/𝜆2/. . ./𝜆𝑥 a node.

1 𝑛← /index/𝑘/𝑣/𝜆1/𝜆2/. . ./𝜆𝑥

2 𝑛[𝑘] ← 𝜖

3 while 𝑛 ≠ /index ∧ isLeaf(𝑛) ∧ 𝑛 [𝑘] = 𝜖 ∧ ¬volatile(𝑛) do
4 𝑢 ← 𝑛

5 𝑛← parent of 𝑛
6 Delete node 𝑢

Example 10 RNI prunes node 𝑢1 = /i/p/n/c/d/t/m in response to transaction 𝑇4 deleting
property pub from node /c/d/t/m. The node can be deleted since 𝑢1 is not volatile. The
pruning propagates to 𝑢1’s parent node 𝑢2 = /i/p/n/c/d/t, which can also be pruned.
However, the parent of 𝑢2, 𝑢3 = /i/p/n/c/d, is not pruned and the deletion is not propagated
farther up the index, because 𝑢3 is volatile (cf. Example 9). Since /i/p/n/c/d is no longer
deleted by 𝑇4, 𝑇5’s insertion of a child node is not a conflict anymore. �

Currently, we have implemented the tracking of volatile nodes in a naive fashion, i.e., we
just count the number of insertions and deletions executed on each node. However, the
performance of volatility tracking can be improved considerably by employing algorithms
from stream processing for finding frequent items. For our purposes, we do not need exact
numbers, so an approximation is enough, which improves the performance even more. For
instance, Cormode and Hadjieleftheriou use a sketch algorithm for finding frequent items in
data streams [CH10].

5.2 Preventable Aborts

As we have seen in Example 10, we can avoid aborting a transaction when a path conflict
occurs in the index by not deleting volatile nodes. We now take a closer look at these
preventable aborts.

Definition 6 (Preventable Abort) Let 𝑇𝑗 be a transaction that is aborted due to a conflict
with transaction 𝑇𝑖 . 𝑇𝑗 ’s abort is preventable iff each conflict with 𝑇𝑖 is a path conflict in the
index. �

Lemma 1 Let 𝑇𝑖 and 𝑇𝑗 be two concurrent transactions. 𝑇𝑖’s and 𝑇𝑗 ’s write operations on
an existing node 𝑛 in a RNI index cannot cause a preventable abort if 𝑛 is volatile or has a
volatile descendant. �

Proof 𝑇𝑖 and 𝑇𝑗 can only cause a path conflict if both contain operations changing the same
property 𝑘 . If they change different properties, the index updates take place in completely

Workload-Aware Contention-Management in Indexes for Hierarchical Data 81

12 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

separate branches of 𝐼. Let node 𝑛 be a node in RNI 𝐼. Let 𝑑 be a volatile descendant of
𝑛 (recall that 𝑛 is a descendant of itself). Since 𝑑 is volatile, neither 𝑇𝑖 nor 𝑇𝑗 can prune
𝑑 or any of its ancestors, including 𝑛. Therefore wn(𝑛) ∉ Δ𝑇𝑖 and wn(𝑛) ∉ Δ𝑇𝑗 . As a
consequence, we can rule out any path conflict (i.e., wn-wn, wn-wp, and wp-wn conflicts).
The only possible conflict between 𝑇𝑖 and 𝑇𝑗 is a wp-wp property conflict on property 𝑘 .
However, this is a property conflict, i.e., wp(𝑛, 𝑘) ∈ Δ𝑇𝑖 and wp(𝑛, 𝑘) ∈ Δ𝑇𝑗 , for which an
abort is not preventable. �

5.3 Unproductive Nodes

While not deleting volatile nodes reduces the number of aborting transactions, this slows
down query evaluation, thus it is a trade-off. We call non-deleted volatile nodes unproductive,
as they have to be traversed during query evaluation, but do not contribute to the result set
of the query. A characteristic of an unproductive node in an RNI is that neither the node
itself nor any of its descendants have a value for a property.

Definition 7 (Unproductive Node) An index node 𝑛 is unproductive in tree 𝐺 iff no
descendant of 𝑛 has any property:

∀𝑑
(
(𝑑 ∈ 𝐺 ∧ prefix(𝑛, 𝑑)) ⇒ �𝑘 (𝑑 [𝑘] ≠ 𝜖)

)
�

Example 11 After running 𝑇4 in Example 10, the index node /i/p/n/c/d and its ancestors
are unproductive because they do not have any properties. Nevertheless, during query
evaluation, we still traverse these nodes. �

5.4 Parameterization

Volatility Threshold 𝜏 Let us consider two extreme values for 𝜏. With 𝜏 = ∞, RNI is
identical to a basic PP index as described in Section 3.2, since a node never becomes volatile.
With 𝜏 = 0, index nodes are never pruned and the performance of queries deteriorates,
because many nodes will be unproductive. Additionally, the index will keep growing,
meaning we also waste a lot of space. Our goal is to choose threshold 𝜏 that best balances
the number of path conflicts and query runtime to maximize the throughput.

This tradeoff is workload-dependent; a write-heavy workload calls for small values of 𝜏 to
reduce the number of aborts, while a read-heavy workload benefits from larger values of
𝜏 so that query performance does not suffer too much. In a balanced workload, moderate
values of 𝜏 are most promising. Nodes in mostly static subtrees with few updates and few
conflicts, which constitute the largest part of the index, are pruned and queries perform well.
Nodes in dynamic subtrees that are repeatedly inserted and deleted are already retained after
a small number of updates, minimizing the number of aborts. We investigate this tradeoff in
our experimental evaluation (Section 6).

82 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 13

Sliding Window Length 𝐿 Parameter 𝐿 determines how much of the recent workload
is used to determine whether a node is volatile. If we set 𝐿 = 0, the sliding window is
empty and a node cannot become volatile unless 𝜏 = 0. As we increase 𝐿, a node is more
likely to be classified as volatile, because we consider a larger portion of history 𝐻. The
sliding window length 𝐿 is naturally upper-bounded by the time frame that history 𝐻 covers.
For instance, Oak periodically runs a garbage collection to delete old snapshots in 𝐻 and
snapshots are retained for a minimum amount of time (the default is 24 hours). We choose
𝐿 = 24 hours to use all workload information that Oak provides.

6 Experimental Evaluation

Our experimental evaluation considers synthetic and real-world datasets (see Section 6.1)
as well as different workloads (see Section 6.2), i.e., read-heavy and write-heavy scenarios.
We organize the evaluation as follows:

1. In Section 6.3 we show how to calibrate RNI. We experimentally determine the
optimal threshold 𝜏 that balances query performance and number of aborts. We also
look at the impact of the length of the sliding window.

2. In Section 6.4, we compare RNI to an enhanced basic PP index running the
concurrency-control protocol MOCC [WK16] that was specifically designed to
reduce the number of aborts. We demonstrate that a basic PP index modified with
MOCC still suffers from many path conflicts and show that RNI provides a better
throughput.

3. Finally, in Section 6.5, we investigate an approach deferring node deletions to improve
concurrency during updates (proposed by Lomet et al. [Lo04, LS97]). However,
this only delays the conflicts: the deferred deletions often clash with regular user
transactions later on and RNI’s performance is still better.

6.1 Preliminaries

We use real-world and synthetic datasets in our experimental evaluation. The real-world
dataset is the Dell website9 and contains 12,244,893 nodes. A node has an average
(maximum) depth of 13.68 (24) and an average (maximum) fanout of 2.88 (1729). The
synthetic dataset is a binary tree of depth 19 and contains 220−1 ≈ 1M nodes. Using a
binary tree increases the likelihood of path conflicts, so this dataset simulates a kind of
worst-case scenario.
9 https://dell.com; Dell uses AEM [Ad23] as CMS and Oak as HDB for its website. The Dell dataset has been
extracted from a dump of Oak.

Workload-Aware Contention-Management in Indexes for Hierarchical Data 83

https://dell.com

14 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Each experiment was run for five minutes. At the beginning of an experiment, the index is
pre-populated with 10% of the nodes from the dataset. The experiments are conducted on
virtual machines, each having 8 CPU cores and 32GB of RAM. Unless stated otherwise, we
use 8 threads that run concurrent transactions.

6.2 Workloads

We use two types of transactions, writers and readers, that simulate the publishing of
webpages. Each writer picks a set of 50 content nodes, adds a property, and updates the
index accordingly. A subsequent writer removes this property from the same content nodes
and updates the index. A reader simulates the background process that looks for publishable
webpages by executing a PP query against the index. We use three variations of this workload
that differ in the ratio between writer and reader transactions (cf. Table 1).

Workload Abbrev. Writer:Reader Ratio
Write-Intensive WI 5:1
Balanced BA 1:1
Read-Intensive RI 1:5

Tab. 1: The three considered workloads.

Writers We generate the writer transactions to provoke preventable aborts. We do so
by splitting the database 𝐺 into the same number of partitions as concurrent transactions
(or threads) and assigning them to writers. Writers only randomly modify properties of
nodes in their partition, i.e., there are no conflicts in the database itself, we can only have
path conflicts in the index. The partitioning is done as follows. We assign each node 𝑛
a unique rank 𝑟, 1 ≤ 𝑟 ≤ 𝑁 , with 𝑁 being the number of nodes in the tree 𝐺. The rank
of each node is determined by an inverse level-order traversal of 𝐺, i.e., the first leaf has
rank 1 and the root has rank 𝑁 . A node with rank 𝑟 belongs to partition 𝑝 = 𝑟 mod 𝑃,
where 𝑃 is the number of partitions, thus each partition contains b𝑁/𝑃c nodes. When
determining the write set of a write transaction, the 𝑗-th node in a partition is picked
with a probability of Zipf (𝑗 , b𝑁/𝑃c, 𝑠𝑤), where 𝑠𝑤 is the skew (of the write transactions).
The Zipfian distribution Zipf (𝑗 , 𝐽, 𝑠) is equal to (𝑗 𝑠 ∑𝐽

𝑖=1
1
𝑖𝑠
)−1, where 𝐽 is the number of

elements, 𝑗 the position of an element (1 ≤ 𝑗 ≤ 𝐽), and 𝑠 the skew (𝑠 = 0 being the uniform
distribution). The default value of 𝑠𝑤 in our experiments is 1.

Readers A reader executes a single PP query 𝑄 = (𝑘, 𝑣, /𝜆1/. . ./𝜆𝑑). The root of the
traversed subtree is randomly chosen among all nodes at a certain depth 𝑑 (in our experiments
we choose 𝑑 = 8). For our synthetic dataset, which is a binary tree with depth 19, a PP
query with 𝑑 = 8 traverses a subtree with at most 219−8+1 = 4096 nodes. Let 𝑁𝑑 be the
number of nodes at depth 𝑑. The 𝑗-th node among all nodes at depth 𝑑 is picked with

84 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 15

probability Zipf (𝑗 , 𝑁𝑑 , 𝑠𝑟), where parameter 𝑠𝑟 is the reader skew. The default value of 𝑠𝑟
in our experiments is 1.

6.3 Calibration of RNI and Comparison with Basic PP Index

We begin with the calibration of the threshold 𝜏 and show how it affects the tradeoff between
contention (expressed as the number of preventable aborts) and the query performance
(expressed as the number of nodes read). The results of the experimental evaluation in
Figure 5 also serve as a comparison of RNI with a basic PP index. The measurements at the
far right-hand side of every diagram (𝜏 = 1000) represent the performance of a basic PP
index: all the curves flatten off at that point and continue on the same level for even larger
values of 𝜏.

6.3.1 Volatility Threshold 𝜏

Volatile Nodes The first column of diagrams in Figure 5 shows the percentage of index
nodes that are volatile, depending on the threshold 𝜏, at the end of an experimental run.
Clearly, the smaller 𝜏, the more volatile nodes there are. For 𝜏 = 1, between 40% and 70%
of all index nodes are volatile for the synthetic dataset, while the numbers are lower for the
Dell dataset at around 10% to 20% (this dataset is larger and, thus, each individual node is
inserted and deleted less frequently). Also, write intensive workloads have more volatile
nodes than read-intensive ones, as they contain more insert and delete operation. With
increasing 𝜏 the percentage of volatile nodes eventually reaches zero, which is equivalent to
a basic PP index: it has no volatile nodes.

Abort Ratio The second column of diagrams in Figure 5 illustrates the impact of 𝜏 on the
abort ratio of transactions. For small values of 𝜏, we can eliminate almost all preventable
aborts, as many nodes become volatile and path conflicts occur rarely. With increasing 𝜏,
the abort ratio increases. For write-intensive workloads, the abort ratio reaches 50%, while
for read-intensive workloads, this ratio is much lower, at about 10%, since read transactions
do not conflict with each other. In summary, this confirms that RNI is able to detect and
retain index nodes that are responsible for preventable aborts, which are detrimental to the
performance of a basic PP index.

Number of Read Nodes The third column of diagrams in Figure 5 shows the flip side:
while a small value of 𝜏 reduces the number of aborted transactions, the query performance
suffers, as many unproductive volatile nodes have to be traversed. For 𝜏 = 1, a PP query
visits two-and-a-half to four times as many nodes during query evaluation for the synthetic
dataset compared to the number of nodes for a large value of 𝜏. Due to the larger size of the

Workload-Aware Contention-Management in Indexes for Hierarchical Data 85

16 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

100 101 102 103
0

20

40

60 SYNTH

Threshold 𝜏

Vo
l.
N
od
es
[%
]

WI BA RI

100 101 102 103

0.1

0.3

0.5 SYNTH

Threshold 𝜏
A
bo
rt
R
at
io

100 101 102 103

500

1,000

1,500

2,000 SYNTH

Threshold 𝜏

Re
ad
N
od
es

100 101 102 103

2

4

6

8
SYNTH

Threshold 𝜏

Th
ro
ug
hp
ut

100 101 102 103
0

20

40

60 DELL

Threshold 𝜏

Vo
l.
N
od
es
[%
]

100 101 102 103

0.1

0.3

0.5 DELL

Threshold 𝜏

A
bo
rt
R
at
io

100 101 102 103

500

1,000

1,500

2,000 DELL

Threshold 𝜏

Re
ad
N
od
es

100 101 102 103

2

4

6

8
DELL

Threshold 𝜏

Th
ro
ug
hp
ut

Fig. 5: Threshold 𝜏 trades query performance and abort ratio to increase the throughput.

Dell dataset and (therefore) fewer volatile nodes, these numbers are smaller. For increasing
𝜏, the number of read nodes eventually levels off at just under 500, which is the number of
nodes that have to be accessed to answer a query in a basic PP index.

Throughput We report normalized values here to make the results comparable to those in
Sections 6.4 and 6.5. Normalizing means calculating the ratio between the serial execution
of the basic PP index (as a baseline) and the concurrent execution of RNI. The last
column of diagrams in Figure 5 shows the results for our experiments on throughput. As
already mentioned, RNI trades the reduction of contention against query performance.
However, the situation is not quite that simple. For write-intensive workloads, aborts are the
major performance bottleneck as opposed to query performance, so 𝜏 = 1 yields the best
throughput (recall that we run the experiments on an eight-core machine, so a throughput of
eight means perfect parallelization). We observe the most pronounced effect for balanced
workloads: here values of around 10 for 𝜏 feature the best performance, with smaller and
larger values showing significantly less performance. For read-intensive workloads, the
optimal throughput performance is not as distinctive as for balanced workloads. Moreover,
the optimal value for 𝜏 is shifted to the right, as query performance plays a more important
role. Nevertheless, by using an appropriate value of 𝜏, we can always achieve a better
performance with RNI compared to a basic PP index.

6.3.2 Sliding Window Length 𝐿

Finally, we look at the impact of the length 𝐿 of the sliding window. 𝐿 = 0 mirrors the case
𝜏 = ∞: in both cases no node can be become volatile, so a number greater than zero has to
be chosen to see any kind of effect. As we see in Figure 6, the measured numbers for the
throughput stabilize quickly.

86 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 17

0 100 200 300
0

2

4

6

8 SYNTH

Sliding Window Length 𝐿 [sec]

Th
ro
ug
hp
ut

WI BA RI

0 100 200 300
0

2

4

6

8 DELL

Sliding Window Length 𝐿 [sec]

Fig. 6: RPP’s throughput is insensitive to 𝐿 as long as 𝐿 > 0.

6.4 Comparison with MOCC

Next, we investigate whether a basic PP index running the MOCC protocol [WK16],
which we call MOCCPP, is able to compete with our approach RNI. We ran the MOCCPP
experiments in the in-memory system FOEDUS [Ki15], in which MOCC is natively
implemented. Table 2 illustrates the differences in terms of (normalized) throughput
between MOCCPP and RNI (the best result per dataset and approach is shown in boldface).
For RNI, we show two rows with results. The first row (optimized) uses the optimal value
of 𝜏 for each of the different workloads. In practice, it will be difficult to tune RNI for
every individual workload, so the second row (𝜏 = 10) shows the results for a configuration
employing a common value of 𝜏 = 10 for all the workloads.

workload SYNTH DELL
approach WI BA RI WI BA RI
MOCCPP 1.48 3.45 5.94 1.63 3.30 5.80
RNI (optimized) 4.69 4.00 4.48 7.51 6.39 7.42
RNI (𝜏 = 10) 4.15 4.00 3.74 6.73 6.31 7.07

Tab. 2: Comparison of normalized throughput between MOCCPP and RNI.

We make a couple of observations here. The higher the ratio of read transactions, the better
MOCCPP performs. This does not come as a surprise: for highly contentious workloads,
MOCC runs an optimistic concurrency protocol with a low overhead, i.e., no locks are used,
and during a validation phase transactions that are in conflict with other transactions have to
abort. In read-intensive workloads, conflicts rarely occur. However, when faced with heavy
contention, MOCC switches to a pessimistic lock-based protocol to avoid a large number of
transactions to abort during the validation phase. While this does bring down the number of
aborted transactions, it introduces an overhead in the form of lock management and in a
write-intensive workload with many conflicts, transactions have to wait for the release of
locks. In case of a deadlock, we may even have to abort transactions. The performance of
RNI is much more balanced across the different workloads: it can handle environments with
a lot of write conflicts much better than MOCCPP. In summary, there is only one scenario,
the read-intensive synthetic workload, for which MOCCPP performs better than RNI. In all
other cases, RNI outperforms MOCCPP.

Workload-Aware Contention-Management in Indexes for Hierarchical Data 87

18 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

6.4.1 MOCCRNI: Combining MOCC with RNI

Since RNI and MOCC use orthogonal principles, we can combine the two to obtain an even
better approach by running MOCC with volatile nodes. We call this protocol MOCCRNI.
Figure 7 shows the results for calibrating the parameter 𝜏 for MOCCRNI. Comparing these
results to the last two diagrams in the bottom row of Figure 5 (illustrating the tuning of RNI),
we see that the performance of MOCCRNI is worse than that of RNI for write-intensive
and balanced workloads (i.e., workloads with a higher proportion of write transactions).
In these cases, the advantage of using a small value of 𝜏 is offset by the overhead of using
a pessimistic locking protocol. Consequently, we should never use small values of 𝜏 for
MOCCRNI.

100 101 102 103 104 105 106

2

4

6

8
SYNTH

Threshold 𝜏

Th
ro
ug
hp
ut

WI BA RI

100 101 102 103 104 105 106

2

4

6

8
DELL

Threshold 𝜏

Fig. 7: Optimal thresholds 𝜏 for MOCCRNI.

6.4.2 Comparing MOCCRNI with MOCCPP

We now take a closer look at the performance of MOCCRNI versus that of MOCCPP. As
combining MOCC with volatile nodes aims at improving the performance of MOCC for
write-heavy scenarios, we focus on the WI and BA workloads.

First, we investigate how well MOCCPP and MOCCRNI handle skewed workloads with
hotspots, i.e., nodes that are accessed very frequently. The first two columns of Figure 8
depict the results for varying the skewedness (determined by the parameter 𝑠 of the Zipfian
distribution). In the first column, we alter the writer skew 𝑠𝑤 , in the second column the
reader skew 𝑠𝑟 . We can see clearly, that MOCCPP cannot cope with high writer skew at all.
As soon as 𝑠𝑤 increases beyond 0.5, the performance of MOCCPP deteriorates drastically.
Due to the high contention, MOCCPP switches to a pessimistic lock-based protocol. This
keeps transactions from aborting, but introduces waiting times for the release of locks,
because a lot of transactions want to access the same data items in a skewed workload.
The only case for which MOCCPP performs better is a uniformly distributed workload on
the synthetic dataset. However, this case is the least relevant one in practice: real-world
workloads are rarely uniformly distributed. The picture changes, when we look at the reader
skew 𝑠𝑟 (second column of Figure 8). MOCCRNI’s performance degrades slightly for a
higher reader skew, as the skewed read operations traverse unproductive nodes more often.
MOCCPP, on the other hand, shows constant performance for the synthetic dataset and even
profits a bit for the Dell dataset. Nevertheless, MOCCRNI maintains an edge over MOCCPP.

88 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

Workload-Aware Contention-Management in Indexes for Hierarchical Data 19

0 0.5 1 1.5 2
0
2
4
6
8
10

SYNTH

Writer Skew 𝑠𝑤

Th
ro
ug
hp
ut

MOCCPP (WI) MOCCPP (BA) MOCCRNI (WI) MOCCRNI (BA)

0 0.5 1 1.5 2
0
2
4
6
8
10

SYNTH

Reader Skew 𝑠𝑟

2 4 6 8 10 12 14 16
0
2
4
6
8
10

SYNTH

Number Threads

0 0.5 1 1.5 2
0
2
4
6
8
10

DELL

Writer Skew 𝑠𝑤

Th
ro
ug
hp
ut

0 0.5 1 1.5 2
0
2
4
6
8
10

DELL

Reader Skew 𝑠𝑟

2 4 6 8 10 12 14 16
0
2
4
6
8
10

DELL

Number Threads

Fig. 8: MOCCRNI has a higher throughput than MOCCPP.

Second, we illustrate how MOCCRNI and MOCCPP compare for different degrees of
concurrency (third column in Figure 8, 𝑠𝑤 and 𝑠𝑟 are set to the default value of 1). We
increase the number of transactions that are running concurrently to see how well the two
approaches can adapt to higher levels of concurrency. MOCCRNI scales much better, since
it avoids many path conflicts from the outset with the use of volatile nodes.

6.5 Comparison with Deferred Node Deletions

In the next set of experiments, we compare RNI with an approach that defers node deletions
as proposed by Lomet et al. [Lo04, LS97]. We implement deferred node deletions in PP as
follows. When a user transaction attempts to delete an index node, the indexed property is
removed (so that query results are correct) but the node deletion is deferred and the node
is added to a queue. A background process periodically polls this queue and attempts to
batch-prune the queued index nodes. If a background transaction fails due to a conflict, the
index nodes are re-enqueued. We call this approach DeferredPP. Table 3 shows a comparison
of the (normalized) throughput of DeferredPP with RNI. We conducted these experiments
in Oak.

workload SYNTH DELL
approach WI BA RI WI BA RI
DeferredPP 2.90 2.44 1.70 4.62 4.41 4.13
RNI (optimized) 4.69 4.00 4.48 7.51 6.39 7.42
RNI (𝜏 = 10) 4.15 4.00 3.74 6.73 6.31 7.07

Tab. 3: Comparison of normalized throughput between deferred node deletion and RNI.

The first interesting observation is that DeferredPP’s performance goes down with an
increasing ratio of read transactions. For read-intensive workloads, deferring the deletions
comes with a drawback. Essentially, the nodes scheduled for deletion are unproductive

Workload-Aware Contention-Management in Indexes for Hierarchical Data 89

20 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

nodes that have to be traversed by queries, driving down the query performance. The
more read transactions we have, the more pronounced this effect is. More generally, when
pruning a batch of nodes in background transactions, these transactions can clash with other
transactions running in the system. While we always roll back a background transaction in a
conflict (i.e., the regular transactions have precedence), this still consumes system resources
and further reduces the throughput. Thus, DeferredPP is worse than RNI for all workloads.
A scenario for which DeferredPP could potentially work is a system with write-intensive
workloads that experiences phases of calm with a light load, e.g. during the night, in which
the pruning takes place with a low probability of causing conflicts.

7 Conclusion

We investigated a problem that property-and-path (PP) indexes are faced with in hierarchical
databases: the occurrence of path conflicts in the index when nodes with the same property
(on different paths but with common ancestors in the database) are concurrently inserted
and deleted. While the operations in the database go ahead without any issues, due to the
propagation of deletes to ancestor nodes in the index, this causes a conflict and aborts the
whole transaction. However, these aborts are preventable by leaving volatile nodes, i.e.,
nodes that are frequently inserted and deleted, in the index.

We propose the robust node index (RNI) that detects volatile nodes and prevents path
conflicts due to the propagation of deletes. However, leaving volatile nodes in the index has
a cost attached to it. The index becomes larger than it has to be and traversing additional,
unproductive nodes during query evaluation has a negative impact on the performance. We
experimentally evaluated the tradeoff between reducing the number of aborts and increasing
query execution time and show how to tune RNI to maximize the throughput. This is done
by only keeping volatile nodes in the index if their volatility is above a threshold 𝜏, i.e., if a
node is inserted and deleted more than 𝜏 times during a certain timeframe. Comparisons
with other approaches, such as MOCC [WK16] and deferred delete [Lo04, LS97], confirm
that RNI is able to significantly reduce the abort ratio from around 50% to below 10% for
write-heavy workloads, thereby increasing the throughput up to a factor of five.

Bibliography
[Ad23] Adobe: , Adobe Experience Manager. https://www.adobe.com/marketing-cloud/

experience-manager.html, 2023. [Online; accessed January 2023].

[Ap17] Appuswamy, Raja; Anadiotis, Angelos; Porobic, Danica; Iman, Mustafa; Ailamaki,
Anastasia: Analyzing the Impact of System Architecture on the Scalability of OLTP
Engines for High-Contention Workloads. PVLDB, 11(2):121–134, 2017.

[Ap22] Apache: , Apache Jackrabbit Oak. https://jackrabbit.apache.org/oak/, 2022. [Online;
accessed January 2023, last updated November 2022].

90 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

https://www.adobe.com/marketing-cloud/experience-manager.html
https://www.adobe.com/marketing-cloud/experience-manager.html
https://jackrabbit.apache.org/oak/

Workload-Aware Contention-Management in Indexes for Hierarchical Data 21

[Be95] Berenson, Hal; Bernstein, Philip A.; Gray, Jim; Melton, Jim; O’Neil, Elizabeth J.; O’Neil,
Patrick E.: A Critique of ANSI SQL Isolation Levels. In: SIGMOD. 1995.

[Be11] Bernstein, Philip A.; Reid, Colin W.; Wu, Ming; Yuan, Xinhao: Optimistic Concurrency
Control by Melding Trees. PVLDB, 4(11), 2011.

[Be15] Bernstein, Philip A.; Das, Sudipto; Ding, Bailu; Pilman, Markus: Optimizing Optimistic
Concurrency Control for Tree-Structured, Log-Structured Databases. SIGMOD, 2015.

[CH10] Cormode, Graham; Hadjieleftheriou, Marios: Methods for finding frequent items in data
streams. The VLDB Journal, 19(1):3–20, 2010.

[CMS02] Chung, Chin-Wan; Min, Jun-Ki; Shim, Kyuseok: APEX: An adaptive path index for XML
data. In: SIGMOD. ACM, pp. 121–132, 2002.

[Co01] Cooper, Brian F.; Sample, Neal; Franklin, Michael J.; Hjaltason, Gísli R.; Shadmon,
Moshe: A Fast Index for Semistructured Data. In: VLDB. 2001.

[DR13] Diegues, Nuno Lourenco; Romano, Paolo: Bumper: Sheltering Transactions fromConflicts.
In: IEEE SRDS. 2013.

[Fi02] Fiebig, Thorsten; Helmer, Sven; Kanne, Carl-Christian; Moerkotte, Guido; Neumann,
Julia; Schiele, Robert; Westmann, Till: Anatomy of a native XML base management
system. VLDB J., 11(4):292–314, 2002.

[Fi13] Finis, Jan; Brunel, Robert; Kemper, Alfons; Neumann, Thomas; Färber, Franz; May,
Norman: DeltaNI: An Efficient Labeling Scheme for Versioned Hierarchical Data. In:
SIGMOD. pp. 905–916, 2013.

[Gr14] Graefe, Goetz; Halim, Felix; Idreos, Stratos; Kuno, Harumi A.; Manegold, Stefan; Seeger,
Bernhard: Transactional support for adaptive indexing. VLDB J., 23(2), 2014.

[GW97] Goldman, Roy; Widom, Jennifer: DataGuides: Enabling Query Formulation and Optimiza-
tion in Semistructured Databases. In: VLDB. 1997.

[Ha17] Harding, Rachael; Van Aken, Dana; Pavlo, Andrew; Stonebraker, Michael: An Evaluation
of Distributed Concurrency Control. PVLDB, 2017.

[HHL06] Haustein, Michael Peter; Härder, Theo; Luttenberger, Konstantin: Contest of XML Lock
Protocols. In: VLDB. 2006.

[HL11] Haw, Su-Cheng; Lee, Chien-Sing: Data storage practices and query processing in XML
databases: A survey. Knowledge-Based Systems, 24(8):1317–1340, 2011.

[Id11] Idreos, Stratos; Manegold, Stefan; Kuno, Harumi A.; Graefe, Goetz: Merging What’s
Cracked, Cracking What’s Merged: Adaptive Indexing in Main-Memory Column-Stores.
PVLDB, 4(9):585–597, 2011.

[JPA09] Johnson, Ryan; Pandis, Ippokratis; Ailamaki, Anastasia: Improving OLTP Scalability
using Speculative Lock Inheritance. PVLDB, 2(1):479–489, 2009.

[Ki15] Kimura, Hideaki: FOEDUS: OLTP Engine for a Thousand Cores and NVRAM. In:
SIGMOD. 2015.

[Lo04] Lomet, David B.: Simple, Robust and Highly Concurrent B-trees with Node Deletion. In:
ICDE. pp. 18–27, 2004.

Workload-Aware Contention-Management in Indexes for Hierarchical Data 91

22 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

[Lo15] Loro, Alessandra; Gruenheid, Anja; Kossmann, Donald; Profeta, Damien; Beaudequin,
Philippe: Indexing and Selecting Hierarchical Business Logic. PVLDB, 8(12):1656–1667,
2015.

[LS97] Lomet, David B.; Salzberg, Betty: Concurrency and Recovery for Index Trees. VLDB J.,
6(3):224–240, 1997.

[LY81] Lehman, Philip L.; Yao, s. Bing: Efficient Locking for Concurrent Operations on B-trees.
ACM TODS., 6(4):650–670, December 1981.

[Ma15] Mathis, Christian; Härder, Theo; Schmidt, Karsten; Bächle, Sebastian: XML indexing and
storage: fulfilling the wish list. Computer Science - R&D, 30(1), 2015.

[Ni06] Nicolaisen, Thomas Ferris: The Use of Open Source and Open Standards in Web Content
Management Systems. Master’s thesis, University of Oslo, Oslo, Norway, May 2006.

[RFA16] Ren, Kun; Faleiro, Jose M.; Abadi, Daniel J.: Design Principles for Scaling Multi-core
OLTP Under High Contention. In: SIGMOD. 2016.

[RTA14] Ren, Kun; Thomson, Alexander; Abadi, Daniel J.: An Evaluation of the Advantages and
Disadvantages of Deterministic Database Systems. PVLDB, 2014.

[Sh15] Shukla, Dharma; Thota, Shireesh; Raman, Karthik; Gajendran, Madhan; Shah, Ankur;
Ziuzin, Sergii; Sundaram, Krishnan; Guajardo, Miguel Gonzalez; Wawrzyniak, Anna;
Boshra, Samer; Ferreira, Renato; Nassar, Mohamed; Koltachev, Michael; Huang, Ji;
Sengupta, Sudipta; Levandoski, Justin J.; Lomet, David B.: Schema-Agnostic Indexing
with Azure DocumentDB. PVLDB, 2015.

[TA10] Thomson, Alexander; Abadi, Daniel J.: The Case for Determinism in Database Systems.
PVLDB, 2010.

[Th12] Thomson, Alexander; Diamond, Thaddeus; Weng, Shu-Chun; Ren, Kun; Shao, Philip;
Abadi, Daniel J.: Calvin: Fast Distributed Transactions for Partitioned Database Systems.
In: SIGMOD. 2012.

[Ti18] Tian, Boyu; Huang, Jiamin; Mozafari, Barzan; Schoenebeck, Grant: Contention-Aware
Lock Scheduling for Transactional Databases. PVLDB, 2018.

[TYJ09] Tzoumas, Kostas; Yiu, Man Lung; Jensen, Christian S.: Workload-Aware Indexing of
Continuously Moving Objects. PVLDB, 2009.

[WBH20] Wellenzohn, Kevin; Böhlen, Michael H.; Helmer, Sven: Dynamic Interleaving of Content
and Structure for Robust Indexing of Semi-Structured Hierarchical Data. Proc. VLDB
Endow., 13(10):1641–1653, 2020.

[WK16] Wang, Tianzheng; Kimura, Hideaki: Mostly-optimistic Concurrency Control for Highly
Contended Dynamic Workloads on a Thousand Cores. PVLDB, 10(2):49–60, 2016.

[YC16] Yan, Cong; Cheung, Alvin: Leveraging Lock Contention to Improve OLTP Application
Performance. PVLDB, 9(5):444–455, 2016.

[Yu16] Yuan, Yuan; Wang, Kaibo; Lee, Rubao; Ding, Xiaoning; Xing, Jing; Blanas, Spyros;
Zhang, Xiaodong: BCC: Reducing False Aborts in Optimistic Concurrency Control with
Low Cost for In-memory Databases. PVLDB, 9(6):504–515, 2016.

92 Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Marcel Reutegger

