
cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

JPTest - Grading Data Science Exercises in Jupyter Made
Short, Fast and Scalable

Eric Tröbs1, Stefan Hagedorn2, Kai-Uwe Sattler3

Abstract: Jupyter Notebook is not only a popular tool for publishing data science results, but can
also be used for the interactive explanation of teaching content as well as the supervised work on
exercises. In order to give students feedback on their solutions, it is necessary to check and evaluate the
submitted work. To exploit the possibilities of remote learning as well as to reduce the work needed to
evaluate submissions, we present a flexible and efficient framework. It enables automated checking of
notebooks for completeness and syntactic correctness as well as fine-grained evaluation of submitted
tasks. The framework comes with a high level of parallelization, isolation and a short and efficient
API.

Keywords: Jupyter; Teaching; Exercising; Unit-Testing; Automation

1 Motivation

Teaching programming languages, SQL or data science related concepts often involves
exercises in which students have to solve tasks by writing programs and queries on their own.
Often, these exercises need to be evaluated and graded by some faculty member. However,
with hundreds of students, the grading process quickly becomes a burden and often leads
to the fact that only a sample is checked or that the number of tasks for the students is
reduced. However, especially the latter is to the disadvantage for the students as they miss
the potential of exhaustive examples for practicing with valuable feedback.

Thus, in order to exploit the possibilities of online and remote learning as well as to reduce
the burden of manually coding related tasks, our goal is to provide an extensive framework
to distribute and evaluate programming tasks. Especially for data analytic tasks Jupyter
Notebooks4 have become very popular as they allow to mix formatted text with executable
code. Notebooks are also useful for teaching purposes as they allow to show descriptions
and tasks within the same file. In our case, the notebooks are used in the context of a data
science lecture which contains exercises after every chapter to repeat what has been learned.

In order to give students feedback on their solutions, it is necessary to check and evaluate
the submitted work. In our case, this is compounded by the fact that not all assignments
1 Technische Universität Ilmenau, Germany, Eric.Troebs@tu-ilmenau.de
2 Technische Universität Ilmenau, Germany, Stefan.Hagedorn@tu-ilmenau.de
3 Technische Universität Ilmenau, Germany, kus@tu-ilmenau.de
4 https://jupyter.org/

cba doi:10.18420/BTW2023-37

B. König-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 673

mailto:Eric.Troebs@tu-ilmenau.de
mailto:Stefan.Hagedorn@tu-ilmenau.de
mailto:kus@tu-ilmenau.de
https://jupyter.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-37

2 Eric Tröbs, Stefan Hagedorn, Kai-Uwe Sattler

are submitted at the same time and thus there is no practice effect on those who evaluate
solutions. At the same time, multiple attempts might be allowed and we use tasks that are
complicated to grade manually, for example, when a lot of if-statements need to be used.

In this paper, we present a flexible and efficient framework, called JPTest5, to automatically
evaluate and grade code from Jupyter notebooks. The main goal in developing JPTest was
therefore to automate the evaluation of coding tasks, while creating a tool that can also
check notebooks for completeness and syntax errors. The focus during development was on
fast execution through parallelization, isolated execution of student code and an efficient
interface. Most of our tasks can be evaluated by classical unit testing of single functions or
by comparing manipulated data sets with those of a sample solution. To shorten the process
with these task types, annotations exist to express recurring parts of the tests.

2 Related Work

Although the lockdown of schools and universities has drastically increased the need for
online learning formats, especially in computer science related lectures, various automated
solutions have been created and used for years. However, these are often self-implemented
solutions, that are not available to other groups or lack features important for grading. During
the peak of the lockdown-induced remote learning phase, the database community presented
some of their solutions and experiences with remote learning approaches in the Datenbank
Spektrum journal.

First among these is SQLValidator by Obionwu et al., where students can easily submit
queries to a prepared database and receive detailed feedback and explanations of mistakes
they encountered. SQLValidator also includes the possibility to create questionnaires and
test students automatically. Even though the authors report positive effects on their courses,
the software is limited to SQL [Obi+21].

The second example we would like to mention is a Data Engineering course for 10,000
participants by Alder et al. Based on the openHPI platform of the Hasso Plattner Institute
in Potsdam, a so-called Massive Open Online Course is offered, which includes lectures
supplemented by videos, homework and exams. According to the number of participants,
evaluation by hand is nearly impossible. Automated correction was made possible by the
use of multiple-choice and multiple-answer questions [Ald+20].

Beyond these teaching related approaches and because Jupyter is widely used not only for
prototyping and ad-hoc analytics, there also exist test frameworks for notebooks.

papermill6 is a project to parameterize notebooks. It works by evaluating tags and allows
modifying, storing, inspecting and running notebooks with different sets of parameters.
5 https://github.com/erictroebs/jptest
6 https://github.com/nteract/papermill

674 Eric Tröbs, Stefan Hagedorn, Kai-Uwe Sattler

https://github.com/erictroebs/jptest
https://github.com/nteract/papermill

JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable 3

Although not directly related to our work, it might be a valuable alternative to create similar
reports with different values from a single notebook file.

nbgrader7 is an integrated solution for grading Jupyter Notebooks. It can be fully operated
via a graphical interface and also allows mixing manually and automatically graded tasks.
It also allows generating student versions of an assignment. In contrast to nbgrader, JPTest
completely detaches tests from notebooks, allows runs to test syntax and completeness, and
does not require any plugins in Jupyter. In addition, JPTest allows more freedom in the
design of the test code, for example through setup and teardown methods.

3 System Description

JPTest is an unit testing framework for Jupyter Notebooks created with the needs of our data
science lecture in mind. It uses nbclient8 as a base for executing code in notebooks. nbclient
was originally created for running notebooks to get the output of the cells and process it, for
example, for conversion to other formats. As in Jupyter Notebook, a kernel is necessary for
the execution of each code cell. It is not strictly necessary to start a separate kernel for each
notebook. However, JPTest does just that. From the process that was started to execute the
tests, at least a single kernel is started for each test. Each kernel is executed in a separate
process so that proper multiprocessing is possible across all tasks, while the test process
acts as a coordinator. JPTest always runs on an in-memory copy of the notebook and does
not modify files, but tests and code in the notebook still have the possibility to do so.

In summary, there is a process in which the test code runs and from which kernels are
started. We refer to this coordinator as the test context. Since our tests contain parts of the
solution, it is important that they are managed and stored separately from the notebooks.
Each test has exactly one function, which is identified by an annotation. Multiple tests can
be collected in one or more files and run together, adding up the scores and collecting the
comments. On the other hand, a separate Python process exists for each kernel, which we
refer to both individually and as a set of all these processes as the notebook context. Figure 1
visualizes the relationship and communication structure between the created processes.

For communication between contexts the default implementation jupyter_client is used,
resulting in the use of ZeroMQ. Pickle is used to serialize the objects to be transferred,
which, in contrast to JSON for example, can also serialize more complex objects such as
NumPy Arrays or Pandas DataFrames. Code written for the test context relies heavily on
the asyncio framework to exploit this multiprocessing environment.

The easiest way to execute code in the notebook is via the cells property. It returns a list of all
cells present in the notebook and allows to filter and execute them one by one. The function
7 https://github.com/jupyter/nbgrader
8 https://github.com/jupyter/nbclient

JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable 675

https://github.com/jupyter/nbgrader
https://github.com/jupyter/nbclient

4 Eric Tröbs, Stefan Hagedorn, Kai-Uwe Sattler

n
o

teb
o

o
k

co
n

text
test

co
n

text

execu
te

cells
an

d
 o

th
er

co
d

e,
access

valu
es

an
d

fu
n

ctio
n

s

tests.py

user_submission.ipynb

JPTest

coordinator

notebook kernel for test 1

notebook kernel for test 2

…

create
p

ro
cesses

Fig. 1: The coordinator loads the tests and creates at least one kernel in a separate process for each
test. The kernel processes communicate only with the coordinator.

execute_cells represents a shortcut to select only code cells by tags prior to executing them
in their order of appearance.

Besides executing single cells, it is also possible to interact with objects and code in the
notebook context. The most important class in this regard is NotebookReference. References
returned, for example, by the ref and get functions, represent objects in the notebook
context and may be used for interaction in various ways. For example, they can be serialized
and transferred to the test context. However, it is also possible to create sub-references to
attributes or keys. References to functions can also be called, where the parameters can be
either other references or local variables. In the latter case, these are serialized and sent to
the notebook kernel before being called.

The result of almost all operations is delayed. This prevents the need for nesting of await
statements, what really enhances the readability, and improves the performance by less
inter-process communication. Only with a call to receive or execute the final statement is
built and executed in the notebook context, which can cause errors to occur later than their
actual call.

Furthermore, functions in the notebook context may be replaced with others, for example
to skip network requests and return a fixed response instead to speed them up. Even more
interesting is the monitoring of functions, where calls with their parameters and return
values are tracked. This makes it possible, for example, to determine whether a user’s
implementation is using recursion. The available context managers provide the option of
replacing functions only for specific statements.

It is also possible to inject own code from the test context into the notebook context. The
most simple way is to use a string that is inserted as a new cell at the end of the notebook and
executed in the notebook context. However, there are also two methods to inject functions:
The first transfers a function to the notebook context and returns a reference. This can be
called as described before or passed as a parameter to another function. The second copies
the body of a function into a new code cell and executes it. The header is used exclusively
in the test context. We use this functionality to write syntactically correct code with all the

676 Eric Tröbs, Stefan Hagedorn, Kai-Uwe Sattler

JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable 5

user_submission.ipynb

[]: # task-1

def fib(n):

if n <= 1:

return n

else:

return fib(n-1) + fib(n-2)

1

tests.py
from jptest2 import *1

2
@JPTest('Task 1', max_score=1)3
async def test_task1(nb: Notebook):4
 await nb.execute_cells('task-1')5

6
 fib_fun = nb.ref('fib')7
 yield (8
 await fib_fun(5).receive() == 5,9
 1,10
 'better luck next time',11
 'very good'12
)13

Fig. 2: Left: A student’s submitted fibonacci function. Right: A unit test that executes all cells with
the tag task-1, creates a reference to the fib function and awards one point if a call to this function
with the parameter 5 returns 5.

benefits of analysis within an IDE, although it is later only executed in the notebook context,
which is a massive advantage over writing code as a string. The parameters in the header
define the necessary variables that are present in the notebook through the execution of
previous cells.

To register tests different annotations are used. They are available to either prepare one
or two notebooks or to run specific cells and copy single variables into the test context.
A maximum number of points can be set as well as an execution timeout. This reduces
the writing of tests to as less code as possible. The assignment of points is done using the
yield keyword. The test function then works as a generator, where each returned value is
understood as a part of the score. The value consists of a tuple containing a condition, a
score to be awarded when it is met and optional comments on success or failure. Figure 2
shows a basic unit test which uses this concept.

Last but not least, it is possible to connect other kernels, but Python-specific features are
lost in this process. Currently SQLite and DuckDB are partly supported.

4 Best Practices

Regarding references, there is also a way to exchange values between notebooks. The
function store can be used to store values, but also references into notebooks. References
can also be used as parameters to call functions within the notebook. If the reference is from
the notebook where it should be used, this operation is trivial. If it is from another notebook,
it automatically is copied to the former. However, copying objects across notebooks should
be avoided where possible.

In general, the test context can become a bottleneck because it uses only one thread. To use
the performance of multiple cores, the notebooks should work as independently as possible
and the test context should only be used for coordination and evaluation. For example, when
we evaluate manipulated DataFrames, one notebook runs the student’s solution and one runs

JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable 677

6 Eric Tröbs, Stefan Hagedorn, Kai-Uwe Sattler

the sample solution. Both resulting DataFrames are copied to the test context and checked
there only for equality, so that the computationally intensive operations are outsourced.

In the case of data loading, we use setup functions to modify the data set before starting
the tests. Depending on the task, only a portion of all data is selected or the data set is
modified. This ensures that the student’s code actually solves the problem in general, rather
than exclusively providing the answer for the given data. A reduced data set can also speed
up the execution.

The simplest test possible is the one where no test file is provided. In this case JPTest loads
a default implementation that executes all cells once in the correct order, does not score
and passes exceptions. This can be used to check notebooks for syntax errors, determine if
libraries are missing within an image or if data sets have not been shipped.

Usually we use Docker to create a reproducible environment for our tests. All necessary
dependencies are installed in the image, while required data sets are mounted read-only.
By testing a notebook within the container after it has been modified, we can determine
whether the image does actually include all the required dependencies. In addition, the
containers operate without an internet connection, which creates an isolated environment
for each user’s notebook.

5 Demo Contents

We provide several Jupyter Notebooks and data sets to create and change unit tests using
a set of tasks from our data science lecture, which mainly relies on Python. This includes
submissions where functions are tested by simple unit tests as well as comparisons of objects
with the results from sample solutions. In addition, we show how data sets can be modified
before testing to reject hard-coded solutions and how function replacements can speed up
execution times. We also handle cases where values found experimentally by our students
have to be taken into account.

At the same time, using asyncio, the communication between tests and the concurrently
running notebooks will be explained further. Furthermore, we include test that make use
of the API to grade common tasks in just a few lines of code. As there is no way to avoid
explaining and using database systems in our lectures, we take a look at the use of external
services and how we try to replace them using embedded software.

Last but not least we show the use of the test framework with other kernels, so that SQL
statements, for example, can be graded directly.

Acknowledgements. This work was partially funded by the German Federal Ministry of
Education and Research under grant no. 16DHBKI085.

678 Eric Tröbs, Stefan Hagedorn, Kai-Uwe Sattler

JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable 7

References

[Ald+20] Nicolas Alder et al. “Ein Data Engineering Kurs für 10.000 Teilnehmer”. In:
Datenbank-Spektrum 21.1 (2020), pp. 5–9.

[Obi+21] Victor Obionwu et al. “SQLValidator - An Online Student Playground to Learn
SQL”. In: Datenbank-Spektrum 21.2 (2021), pp. 73–81.

JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable 679

