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Abstract: Big Data applications frequently involve processing data streams encoded in semi-structured
data formats such as JSON, Protobuf, or Avro. A major challenge in accelerating data stream processing
on FPGAs is that the parsing of such data formats is usually highly complex. This is especially true
for JSON parsing on FPGAs, which lies in the focus of related work. The parsing of the binary
Avro format, on the other hand, is perfectly suited for being processed on FPGAs and can thus serve
as an enabler for data stream processing on FPGAs. In this realm, we present a methodology for
parsing, projection, and selection of Avro objects, which enforces an output format suitable for further
processing on the FPGA. Moreover, we provide a generator to automatically create accelerators
based on this methodology. The obtained accelerators can achieve significant speedups compared to
CPU-based parsers, and at the same time require only very few FPGA resources.
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1 Introduction

Many Big Data applications in areas such as the Internet of Things and Industry 4.0 are not
only confronted with large volumes of data generated at a high frequency but also place high
demands on the latency for analyzing this data. In this area, stream processing is becoming
increasingly important, which means that data is continuously processed and analyzed as
soon as it is generated or received. To meet the growing demands of stream processing
applications in terms of high throughput and low latency, FPGA accelerators have been
proposed as a solution in the past [MTA09; TM11]. Since stream applications typically run
for long periods, the relatively long synthesis times required to generate application-specific
accelerators are tolerable as they enable perfectly tailored and thus very resource- and
energy-efficient data processing.

For being able to build such FPGA accelerators, different approaches to compile queries
to FPGA primitives have been presented in the past [MTA09; MTA10; Sa12]. However,
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these approaches ignore the fact that the data arriving at the FPGA is usually formatted in
ways that are difficult to process directly on the FPGA or even by machines in general. As a
matter of fact, parsing such data may take most of the time when being processed on a CPU.
For example, in case of JSON, it has been shown that parsing may account for around 90%
of CPU time for some stream processing applications [Li17].

Offloading parsing to an FPGA would offer two major advantages. First, would relieve
the CPU from this time-consuming task so that it can be better utilized by other tasks
or workloads. Second, this would be particularly advantageous when FPGAs can directly
access the data stream, e.g., when attaching them to a network interface or in the form of
FPGA-based smart NICs, as additional data movements could be avoided. However, this
requires concepts to parse the serialized data format as a byte stream.

In this realm, two approaches to parsing JSON data on FPGAs have been presented
recently [Da22; Pe21]. However, the presented approaches only consider the acceleration
of the parsing process, thus supporting only traditional software-based data processing.
Consequently, they parse the received data into data structures that are tailored to be further
processed on a CPU. In contrast, the approach presented in this paper aims at enabling
complete data processing on FPGAs.

We specifically target parsing, selection, and projection of Avro objects which are widely
used in Apache-based computing infrastructures. The Avro format [Ap21] has a much
higher information density than semi-structured formats such as JSON. It is better tailored
to FPGA-based processing than to CPU-based processing, as techniques to increase the
performance of modern CPUs, like branch prediction, multi-level caches, and SIMD
instructions, are not of any benefit when parsing Avro data. In this paper, we present general
techniques for parsing data streams consisting of Avro objects on FPGAs. In addition,
we introduce a methodology to automatically generate hardware accelerators for parsing,
selection, and projection on FPGAs based on user-defined Avro schemas and queries. We
present a system architecture where accelerators generated with the methodology can be
loaded to parse data streams of Avro objects at line rate, for example, arriving at a network
interface. Thanks to a fixed data layout, the outgoing data stream can even be forwarded to
other FPGA accelerators and used to process further application steps. Moreover, due to
low resource consumption, sufficient resources are often remaining available on the FPGA
to build further accelerators for subsequent processing of the parsed, filtered, and projected
data stream.

The paper is organized as follows: First, in Sect. 1.1, we will give a brief overview of
common semi-structured data formats and justify our choice of Avro. In Sect. 2 we will
introduce our parser generator and describe how an accelerator can be created given a
schema and a path expression. In Sect. 3, the obtained accelerators are evaluated using the
Yahoo [Ch16] and RiotBench [SCS17] benchmarks. Finally, the paper closes in Sect. 4 with
a conclusion and an outlook for future work.
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1.1 Data Formats for Stream Processing

Despite the huge overheads that parsing semi-structured data formats imply, there are many
good reasons why these formats are nonetheless used universally today. These can be broken
down to being human readable, having a relatively small data footprint, the possibility
to enforce a fixed schema, and the possibility of extending the format while maintaining
forward and backward compatibility (schema evolution).

Semi-structured data formats can be roughly divided into storage formats and exchange
formats. Storage formats arrange objects in such a way that they can be quickly searched
for individual attributes, e.g., by using column-oriented formats. Examples are Apache
Parquet [Ap22b], Apache ORC [Ap13], and Google Dremel [Me10]. The exchange formats
on the other hand are easy to be serialized which makes it possible to write and process
objects continuously as a data stream. Examples are JSON [Br17], Apache Avro [Ap21],
and Google Protocol Buffers [Go22]. In the following overview, we focus on exchange
formats, as we aim to accelerate data stream applications.

JSON, CBOR & Protobuf Tab. 1 gives an overview of the most common exchange
formats. For each format, it rates the (a) readability by human and by machine and (b) the
data footprint. Here, also the footprint for encoding the same record is displayed. List. 1
shows this record formatted in JSON. Finally, the table rates (c) schema evolution and
(d) whether the format uses a schema. The most commonly used exchange format is the
text-formatted JSON [Br17], which particularly stands out due to its high human readability.
However, this in turn has a severe negative effect on its data footprint. In addition, JSON can
also be used to achieve a good backward and forward compatibility by simply adding new
attribute fields in newer versions. CBOR [BH20] is also a schema-less format where fields
are binary encoded, resulting in a smaller data footprint, while still allowing attributes to be
added or omitted as desired. Protobuf, on the other hand, relies on binary encoding and a
schema that can be extended without corrupting older parser versions. This is achieved by
assigning an index to all attributes in the schema so that the old parser versions can simply
ignore indexes they do not recognize.

Tab. 1: Overview of the strengths, weaknesses, and general properties of data formats discussed.

readability footprint (car ex. size) schema evolution schema used

human machine

JSON ++ - - - - (96B) ++ no
CBOR - - + - (50B) ++ no

Protobuf - ++ + (18B) ++ yes
Avro - ++ ++ (12B) + yes
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{
"id": 42,
"name": "Golf",
"engine": {
"serialNr": 1234,
"horsepower": 85.5

}
}

List. 1: Motivational JSON record.

{
"name": "car",
"type": "record",
"fields": [
{"name":"id", "type":"int"},
{"name":"name", "type":"string"},
{"name":"engine","type": {
"name": "engine",
"type": "record",
"fields": [
{"name":"serialNr", "type":"int"},
{"name":"horsepower","type":"float"}]

}}]}

List. 2: Avro schema for a car object.

Avro Avro [Ap21] is a binary schema-based data format. Unlike Protobuf, Avro does not
use indexes to identify fields and consequently requires even fewer bytes for encoding. The
type and order of the fields are defined solely by the schema used. Accordingly, the Avro
object encoding itself does not support schema evolution, as decoding always requires the
corresponding schema. Instead, Avro is usually used in combination with wrapper formats,
as presented in Sect. 1.1, to solve schema evolution at a higher protocol layer.

In the following, the Avro specification [Ap21] will be presented in more detail. Avro offers
a range of elementary and complex data types. As elementary data types, booleans, signed
integers (32-bit), signed longs (64-bit), floats (32-bit), doubles (64-bit), strings, and byte
sequences of fixed and variable length are available. Avro includes records, enums, arrays,
maps of key-value pairs, and union types as complex types. The Avro schema to be used is
specified in JSON. List. 2 shows the Avro schema that complies with the JSON record from
List. 1.

In terms of parsing speed, Avro outperforms all other formats. JSON is the most time-
consuming to parse due to its text-based format. Unlike Protobuf and Avro, both JSON
and CBOR cannot be parsed using finite state machines due to the arbitrarily deep nesting
of records, making parsing again more complex. Since no indexes or attribute names are
required for reading, parsing Avro has the advantage over Protobuf that only the sequence
of fields defined in the schema has to be processed. However, Avro parsing does neither
require complicated control flow nor flexible memory accesses and thus is not the field
for which modern general-purpose processors with their sophisticated branch prediction
and multi-level cache hierarchy have been optimized for. Nonetheless, a required simple
finite state machine can be easily mapped to FPGAs with very low resource requirements.
In this paper, we show in this paper how the generation of such logic circuits can be
performed completely automatically solely based on the specified schema and a query
defining projection and selection in a path expression.
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Avro Container- & Wire-Format The Avro format can be used both for storing data on
a hard drive and for transferring data over a network. In most cases, two wrapper formats
are used, which are tailored to the respective case. For the storage of Avro objects, there is
the Avro Object Container Format, which stores the used schema directly beside the data.
A particular advantage of this format is the partitioning of the objects into blocks, which
enables an efficient separation for parallel processing.

The wire format, on the other hand, is optimized for the transmission of data over a network.
The Avro object stream is organized in a series of buffers. Each buffer begins with a four-byte
length field that specifies the buffer length in bytes. The respective number of subsequent
bytes contain Avro objects. A message may contain multiple buffers. The end of a message
is indicated by a buffer of length zero, i.e., only a length field with value 0, and no buffer
data is transmitted. In contrast to the container format, the schema is not transmitted here.
Instead, the receiver must already be familiar with it, e.g., Apache Kafka uses a registry to
resolve schemas of incoming data.

1.2 Related Work

Extensive literature already exists for processing XML data on FPGAs [EI10; Mi09;
TWN12; WA11]. XML parsing on FPGAs has always been accompanied by path expressions
for projections to reduce the amount and complexity of the outstream data. As Koch et
al. [KSS08] have shown, projecting XML data can be solved most efficiently by transforming
the problem into a string matching problem. However, this makes it difficult to transfer
findings from XML parsing to parsers for binary encoded formats like Avro.

Recently, research attention has shifted to the JSON format which is predominant today.
However, research on JSON parsing on FPGAs is still scarce, and furthermore, there is
no solution for integrating FPGA parsers with existing accelerators for subsequent query
processing on the FPGA. Peltenburg et al. [Pe21] propose to speed up JSON parsing by
converting the input data to the columnar in-memory format Apache Arrow [Ap22a]. The
FPGA performs the parsing of the JSON data, converts the data to the Arrow format, and
then transmits it to the host memory. The authors implement their parser with a one-to-one
relation between fields in the schema and parser blocks, which hence expects the same
schema at all times. However, there is no fixed schema for JSON, so valid data in terms
of the JSON specification can cause the parser to enter an invalid state. PipeJSON [Da22]
follows a more flexible approach where the JSON data is converted into a tape structure,
similar to CPU-based parsers. This tape structure consists of a variable-length array of
64-bit values, which contains the decoded values as well as offsets for navigating through
the array structure (e.g., to the end of a record). While such flexible data structures can be
processed efficiently on the CPU, they are unsuitable for further processing on the FPGA.
Hahn et al. [Ha22; HWT22] present acceleration techniques for raw filtering of JSON data
on FPGAs. Raw filtering is a selection technique on the raw byte stream of serialized JSON
data. As such, it does not require to parse JSON records completely, but only to identify
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specific patterns according to the filter expression in the byte stream. However, since only
irrelevant JSON records are filtered out and the data is not completely parsed, it does not
directly enable any further processing of a given data stream on the FPGA.

2 Proposed Parsing Architecture

In this section, we present a technique for automatically generating hardware parser
accelerators for a given schema and query (specified by JSONPath [Gö07]). The schema
defines all elements that appear in each Avro object. JSONPath defines the selection criteria
and attributes to be projected per Avro object. The parser generator goes through three
phases. In the first phase, an object parser is created that can parse incoming Avro objects
(see Fig. 1 left). In the second phase, this object parser is then extended to a Parse, Project
& Select (PPS) module by augmenting logic for projection and selection (see Fig. 1 right).
During the third phase, this PPS module is then wrapped into an accelerator which can later
be deployed on the FPGA.

1. Phase: object parser generation

FSM

id : int

name : string

engine : record

FSM

serialNr : int

horsepower
: float

byte in

car : record
|-id : int
|-name : string
|-engine : record
| |-serialNr : int
| |-horsepower : float

Avro schema

2. Phase: Parse, Project & Select (PPS)Module generation

FSM

id : int

name : string

engine : record

FSM

serialNr : int

horsepower
: float

byte in

&

=

42

$[id=42].(id |
engine.horsepower)

JSONPath

Fig. 1: Overview of the first and second phase of the parser generation process.

In the first phase, the schema is interpreted and a corresponding object parser is generated.
For this purpose, the schema is traversed recursively. A parser block module is instantiated
for each field of the schema. A finite state machine coordinates which field in the schema,
respectively which parser block module is responsible for parsing the incoming byte at each
clock cycle.
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Example: Fig. 1 (left) schematically illustrates the parser structure generated for the
schema given in List. 2. It contains blocks for id, name, and engine, as well as an FSM that
coordinates the sequential parsing of the respective blocks. The latter is a complex (recursive)
type, which again consists of internal parser blocks as well as an FSM to hierarchically
coordinate the parsing procedure. Sect. 2.1 explains the details of parser block generation.

In the second phase (see Sect. 2.2), the PPS module is generated based on the object parser
from the first phase and the specified JSONPath query, which defines the attributes to be
projected and the selection criteria. First, all parser blocks are determined that provide the
attributes required for selection or projection and their output signals are connected to a
register stage (stage 1). The register stage also contains a valid bit which indicates whether
the object was read completely and that the data in the register represents a valid Avro
object. Subsequently, a further pipeline stage (stage 2) is generated containing the logic
for evaluating the selection expressions by comparisons on the values stored in the stage 1
register and combining the result with the valid bit of the stage 1 register.

Example: Fig. 1 (right) shows an example query with a selection on field id and projection
of attributes id and horsepower together with the generated parser accelerator. Only the
signals of the parser blocks responsible for parsing the respective attributes get connected
to the register stages. The selection logic for id == 42 is added between the register stages.

In the third phase (see Sect. 2.3), an accelerator is generated from the PPS module created
in the second phase, which can finally be deployed on the FPGA. One of the challenges
of parsing Avro data is that some of the elementary data types are encoded with variable
lengths. This makes it very difficult to parallelize generated hardware components to process
multiple bytes in one cycle since in order to interpret a byte, it must first be clear which field
in the schema it corresponds to. Therefore, we choose to process only one byte per cycle
with the introduced object parsers and PPS modules. During the third phase, however, we
again introduce parallelism by inserting multiple parallel PPS modules in the accelerator.
For this purpose, we exploit the properties of the wire format to split Avro objects among
parallel channels, while working with a higher word width.

2.1 Phase 1 – Object parser generation

Avro schemas are composed of different elementary and complex types. In the following,
we present parser blocks for each Avro type, excluding the null and array type. Parser blocks
can likewise be divided into elementary parser blocks (fixed, float, boolean, int, enum &
string) and complex parser blocks (record, map & union). Elementary parser blocks are
the basic blocks that interpret the input bytes to parse the desired fields. Complex parser
blocks, on the other hand, are composed of one or more parser blocks (both elementary
& complex) and do not interpret any input data but merely coordinate when which of the
contained blocks is active and when its output is valid.

An FPGA Avro Parser Generator for Accelerated Data Stream Processing 735



8 Tobias Hahn, Daniel Schüll, Stefan Wildermann, Jürgen Teich

All parser blocks follow the same interface as illustrated in Fig. 2. This consists of an
input in_byte, which contains the current input byte of the Avro object and is directly
connected across all parser blocks. The port in_valid controls which parser block is active.
The activated block accordingly interprets the obtained data on the port in_byte. If a parser
block finished reading an encoded field, the port out_valid is set to one. The signal out_value
remains still unconnected during the first phase and is subsequently connected to the register
stages during the second phase in case it is required for selection or projection. Next, the
details for generating parser blocks for covering all supported Avro types.

field name : block type
in valid

in byte[8]

out valid

out data[n]

Fig. 2: Interface of a parser block.

Fixed parser block (fixed) The fixed parser block reads a fixed amount of 𝑛 bytes,
which is statically defined by the given schema. The block is controlled based on a counter
which is initialized with 𝑛 − 1 and decremented in each clock cycle the signal in_valid is
one. Each input byte is written into a shift register of size 𝑛 − 1 bytes. When the counter
reaches zero, the complete field is available and a one is emitted on out_valid. The signal
out_value with 𝑛 bytes is then composed of the concatenation of the signal in_bytes and the
(𝑛 − 1) bytes in the shift register.

Float/double and Boolean parser block (float and boolean) In the Avro format, floating
point numbers are directly encoded in the IEEE 754 format. Accordingly, a float parser
block is just a special case of a fixed parser block of constant size 𝑛, which is 4 bytes for
floats (single precision) and 8 bytes for doubles (double precision). No further binary format
conversion is necessary by this parser block. The same applies to the boolean parser block,
which is always encoded using one byte and therefore implemented as fixed parser block
with a constant size of 1.

Int/long and enum type parser block (int and enum) Avro integers and longs are
encoded via the zigzag format, which allows for a small data footprint. The zigzag format is
a variable-length quantity code in which both small positive and negative numbers can be
encoded to fewer bytes. This is achieved by reserving the eighth bit of each byte to indicate
whether there are more bytes to follow, as can be seen in the example integer in Fig. 3. The
remaining parts carry payload bits. The task of the int parser block is to take the zigzag
formatted integer byte by byte and to decode it into the two’s complement.

For the sake of clarity, however, let’s first consider a zigzag-formatted number 𝑧 without
byte boundaries or continuation bits. The decoding of this zigzag encoded number 𝑧 into
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its corresponding two’s complement 𝑏 of constant size 𝑛 depends on whether a positive
or negative number is encountered. Accordingly, the first step is to extract the sign of
the number to be decoded, which is located in bit 0 of the least significant byte (𝑧[0]).
Subsequently, the decoding is done via

𝑏 =

{
𝑧 >> 1 if 𝑧[0] = 0 //positive
∼ (𝑧 >> 1) else //negative

where >> is a non-arithmetic right shift (i.e., 0 padding) and ∼ is a bitwise inversion.

0 z20 z19 z18 z17 z16 z15 z14 1 z13 z12 z11 z10 z9 z8 z7 1 z6 z5 z4 z3 z2 z1 z0

payload

signcontinuation

Fig. 3: Example of a 3 byte zigzag integer.

As the decoding is carried out byte by byte, the sign is extracted at the start of the first step
𝑘 = 0. If a 1 is observed, the six payload bits 𝑧6 to 𝑧1 of the first byte are inverted. The
result whether inverted or not is then written into the lowest 6 bits of the destination register
(𝑏0 . . . 𝑏5). Since the obtained number can be smaller than the bit width of 𝑏, all higher
bits (𝑏6 . . . 𝑏𝑛−1) must be initially set to 1 in case of a negative sign, resulting in a sign
extension. Each following byte 𝑘 > 0 is treated as follows: 1.) Invert the 7 payload bits in
case of a negative sign. 2.) Write the result into the next 7 bits of the destination register
(𝑏6+(𝑘−1)∗7 . . . 𝑏6+𝑘∗7−1). The 𝑏 register is then connected to out_data and, as soon as a
continuation bit is 0, the signal out_valid is set to 1.

The size of b, respectively of the signal out_data can be configured freely for the int parser
block. Although 4 bytes are always used for integers and 8 bytes for longs, integer parser
blocks are also used internally for parsing enums and metainformation fields of other types
(see string, maps, union parser blocks below), where smaller sizes may be sufficient. Thus
the parser blocks can be constructed as small as possible. An enum block is accordingly
implemented as an int block with a 𝑏 register size of 𝑛 equal to log2 (# enum elements) bits.

String parser block (string and count_byte) The string parser block consists of an int
parser block and a count_byte block which are processed one after the other as shown in
the flowchart in Fig. 4. As soon as the integer length field len is parsed, the received value
is used to initialize the count_byte block. This block is basically a counter that remains
active for len subsequent valid bytes, with the current input byte written to a shift register
(similar to the fixed parser block). The length of the shift register, and thus the maximum
readable string length, is set to 32 bytes by default but can be altered in the second phase by
specifying a maximum string length in the JSONPath.
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len : int data : count_byte

repeat for len

Fig. 4: FSM for the string parser block.

Record parser block (record) A record type contains multiple fields each being of a
specific Avro type. The record parser block, therefore, contains one parser block for each
field. Once in_valid is set to one, a controller consecutively activates the contained parser
blocks for evaluating the input bytes, as shown in Fig. 5. The signal out_valid is set to one
on completion of the last block.

field_0 : type_0 field_1 : type_1 . . . field_n : type_n

Fig. 5: FSM for the record<type_0, type_1, . . . , type_n> parser block.

Map parser blocks (map, key_value and string_matcher) The map type is encoded by
an int field obj_cnt, followed by as many key-value pairs as specified in the int field. Once
the obj_cnt field is parsed, it is used to initiate the loop counter to control the key_value
parse block, as illustrated in Fig. 6. The key_value parse block sequentially parses first a
key, which is encoded as a string, and then the respective value, which type is defined in
the schema. As long as the loop counter is greater than 0, the key_value parser block is
kept active, which repeats its internal parsing. The loop counter is decremented each time
the signal out_valid of the key_value parser block is one, i.e., after each parsed key-value
pair. The key_value parser block is a special case of a record parser block with only two
fields, where the first field is a string_matcher block. This is a special block that can test
whether the parsed string matches a given string from a dictionary. The rationale for this is
that a query may use values from a subset of keys for projection or selection. This means
that only key-value pairs with keys from this set have to be registered for the next pipeline
stage. Therefore, the second phase of parser generation will populate the string matcher
dictionary with each key string in this subset and augment the corresponding matching
logic. The string matcher will generate one signal per key in this set to indicate when the
respective key-value pair is currently parsed (see Sect. 2.2 for more details). According to
the Avro specification, the specified length of the map can also be negative. In this case, the
absolute value of the length does not indicate the number of objects, but the length of the
payload data in bytes. However, this behavior is not supported in our parser block but could
be added in the future by modifying the loop counter.

Union parser block (union) The Avro union type is a complex type. It is possible to
specify a list of several different types in the schema for a union field. The data contained
in that field of an Avro object can then be of one of these types. This is achieved in Avro
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obj_cnt : int

objects : key_value

key : string_matcher value : value_type

repeat for obj_cnt

Fig. 6: FSM for the map<key_type, value_type> parser block.

by encoding an int index before the payload to indicate which type should be used for
encoding the field. The index can then be used to select the desired type from the given
list of types during interpretation. Accordingly, the union parser block is composed of an
int block followed by all types specified in the schema, respectively their associated parser
blocks, as seen in Fig. 7. Once the parsing of the 𝑢𝑛𝑖𝑜𝑛_𝑖𝑛𝑑𝑒𝑥 int block is complete, only
the input of the respective type_⟨union_idx⟩ block is activated. The signals out_valid of
the parallel blocks can simply be combined via an or-reduction, as only one of the blocks
can become active anyway.

union_idx : int

field : type_0

field : type_1

. . .

field : type_n

select with
union_idx

Fig. 7: FSM for the union<type_0, type_1, . . . , type_n> parser block.

Object parser generation The parser generation consists of allocating parser blocks
according to the given schema and generating the control logic of the FSMs (one for
each complex parser block) to coordinate the parsing process. Each Avro schema can be
represented by a object parser tree 𝐺𝑂{𝑉𝑂, 𝐸𝑂} with vertices𝑉𝑂 and edges 𝐸𝑂. The leaves
are elementary types. Complex types have multiple children. The child nodes are ordered
in the order they appear in the given schema. In the object parser generation phase, the
respective Avro parser tree is first generated from the given schema. Then, this parser tree is
traversed depth-first in the given order. At each node, a parser block of the respective type is
generated. As an example, Fig. 8a specifies the Avro parser tree of the schema in List. 2.
Fig. 1 illustrates the parser structure generated for this example. The FSMs are initialized to
schedule the parser blocks in the specified order.
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2.2 Phase 2 – Selection and projection logic generation

The second step deals with creating the Parse, Project & Select (PPS) module based on the
object parser by adding the hardware for selection and projection, given by a JSONPath
expression. The JSONPath expression specifies all attributes that are relevant for projection
and selection. A dollar sign at the beginning represents the root (or start) of an Avro object.
Elements are separated by dots. If several attributes are required, they can be concatenated
with a |. In addition, the JSONPath expression contains the selection criterion consisting of
comparisons of attributes that can be combined via Boolean expressions. The JSONPath
expression spans a tree, which we denote by path tree 𝐺𝑃 (𝑉𝑃 , 𝐸𝑃) in the following, where
the root represents the start of the Avro object and the leaves the attributes of interest. Each
path in this tree also has a corresponding path in the object parser tree.

$ : record

id : int name : string engine : record

serialNr : int
horsepower
: float

(a) Object parser tree 𝐺𝑂 for the schema in List. 2.

$

—

id engine

horse-
power

(b) JSONPath tree 𝐺𝑃 for
$.(id | engine.horsepower).

Fig. 8: Tree structures for the path evaluation.

Extract attributes We first consider only the projection of fields and present the specifics
of selection further below. The extraction of the attributes relevant to a given query works
by recursively traversing every path in the JSON path tree and at the same time determining
the respective path in the parser tree. The algorithm works by starting from the roots of both
trees, 𝑣𝑜 ∈ 𝑉𝑂 and 𝑣𝑝 ∈ 𝑉𝑃 . Then, for each child 𝑣′𝑝 ∈ 𝑉𝑃 of the current path tree node 𝑣𝑝 ,
the corresponding child 𝑣′𝑜 ∈ 𝑉𝑂 of the current object parser tree node 𝑣𝑜 is determined.
The same procedure is repeated for the obtained pair (𝑣′𝑝 , 𝑣′𝑜) of child nodes. Once, the path
tree node 𝑣′𝑝 is a leaf in the path tree, the respective object parser tree node 𝑣′𝑜 represents
one attribute that is required by the query. Therefore, the signals valid_out and data_out of
the parser block that was previously generated for this object parser tree node 𝑣′𝑜 are then
connected with the first stage register.

Example: Take as an example the parser tree 𝐺𝑂 shown in Fig. 8a and the path tree 𝐺𝑃 of
the path expression $.(id | engine.horsepower) shown in Fig. 8b. For extracting all attributes
needed for selection and projection, we first consider the root nodes of both trees, that is,
the record parser block of the parser tree and the $ node of the path tree. Starting from
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the $ node, we next consider the children in the path tree. In Fig. 8b, this is the | node,
which in turn indicates that the path splits into two subpaths, each considering the respective
child node in the path tree and its associated parser block. Thus, in the first subpath, the id
: int parser block and the id node in the path tree are selected. Given that the id node is
a leaf node, the currently selected parser block (id : int) is marked for extraction so that
a later selection or projection can be performed. The same procedure is repeated in the
right subpath. However, in this case, the observed node in the path tree (engine) is not a
leaf node, which is why its child (horsepower) must be again taken into consideration. As
the currently selected parser block is of record type, the corresponding parser block to the
horsepower node can be selected (horsepower : float). At this point, the path node is a leaf
node as well, which means that the horsepower block is also marked for extraction. After
all paths have been traversed, the signals out_data of all parser blocks marked for extraction
are connected to the stage 1 registers, which are written with a one on the signal out_valid
of the selected block.

Attribute extraction works straightforward for elementary and record parser blocks. However,
map and union types have peculiarities as discussed in the following. While with a record
the children in the path tree correspond directly to the children in the parser block, the path
children of the map type correspond to its queried key strings (cf. Fig. 9). Accordingly,
no parser blocks are selected, but the string_matcher match dictionary is set up with the
searched key string. The resulting signal key_match is then used as a write condition for
writing out_data to the projection register in stage 1. Since several entries can be extracted
from a map, there is also the possibility to split the path into subpaths using | nodes, as can be
seen in Fig. 9b. In this case, a separate entry is created in the string_matcher dictionary for
each of the visited children (here "a" and "b"), each with its independent signal key_match.
The signal out_data of the value parser block is then connected to a separate stage 1 register
for each child and only written if the respective key_match is present.

m : map

key : string matcher value : int

(a) Object parser tree 𝐺𝑂 for the map type.

m

—

”a” ”b”

(b) JSONPath tree 𝐺𝑃 for
path .m.("a"|"b").

Fig. 9: Tree structures for the path evaluation of the map type.

Whereas with the maps type, the same parser block can be projected multiple times, the
union type contains multiple parallel parser blocks, one for each data type the field may
potentially take. During the projection and selection phase, it is therefore necessary to
decide which of the types and, with that, which of the parser blocks is relevant for the query
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and should therefore be connected with the stage 1 register. The selection of the target type
could be done at runtime or statically at design time. Since we want to enforce a fixed data
layout for further data processing on the FPGA, we have opted for static types. However,
since the JSONPath syntax does not provide for type casts or similar, we extended the
syntax accordingly. For this purpose, the expected type is specified after the attribute name
separated by two colons (e.g., for a union variable sensor which is to be mapped to the
int type, the syntax is $.sensor::union(int)). Assuming it is not statically known which
union type is to be expected, all possible types must be projected as separate fields, which
of course creates overheads, but still allows to preserve a fixed layout.

Apply selection logic Filter expressions start with a question mark and iterate over all
array entries which can be referenced via the @ symbol. To be able to perform selections
on the record scope, we have again extended the JSONPath notation lightly. Thereby, entire
records can be filtered by specifying the filter expression directly at the root of the record
(e.g., $[?(id=0)]). If the expression evaluates to false, the entire record is discarded in the
parser and not passed on for further processing. The resulting path tree 𝐺𝑃 is depicted in
Fig. 10.

$

|

id engine

horse-
power

[ ]

==

id 42

Fig. 10: Path tree 𝐺𝑃 with selection for JSONPath $[?(id=42)].(id | engine.horsepower).

The filter expression is always placed at the left child of the root node, so before traversing
the path, it is checked first whether there is a filter expression at this position. If this is
the case, the filter expression is evaluated first. When visiting the comparison node, the
corresponding compare logic is instantiated based on the data types of its children. Here, we
support direct comparisons of two strings, two booleans, or two enums and <, >, ≤, ≥, ==
comparisons of two integers or two floats. When referencing attributes, as is the case with
the id block in Fig. 10, the corresponding parser block is connected to a stage 1 register as
described in the previous paragraph. The register is then used as input for the comparison
logic, as shown in Fig. 1 and the result is connected to the valid flag of the stage 2 register.
The right subtree represents the projection paths and therefore is evaluated as described
before. The stage 1 registers of the attributes to be projected must then be connected to the
stage 2 registers.
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2.3 Phase 3 – Accelerator generation

In the third phase, additional logic is generated to obtain an accelerator module that can be
deployed on an FPGA. For communication with other accelerators or system interfaces, the
generated PPS module is connected to AXI interfaces. Furthermore, if the Avro objects are
embedded in a wrapper format, such as the container format or the wire format, its decoding
must be carried out. Furthermore, since the PPS module generated in the previous phase
can only process 1 byte per clock cycle, it is necessary to instantiate multiple PPS modules
to run parallel in order to achieve a high throughput.

Usually, we allocate 8 parallel PPS modules, each being fed by one channel. The wire
format introduced in Sect. 1.1 contains multiple subsequent buffers. Each buffer stores
one or multiple Avro objects. The buffers are assigned to the channels in a round-robin
fashion. As we instantiate 8 parallel channels, this scheme can saturate a 64-bit interface at
a throughput of 1 byte/cycle and channel.

However, this approach also results in limitations concerning the input data. If the objects
are required to be reassembled after processing in the same order they entered, each buffer
may only contain one Avro. Splitting individual Avro objects to the channels and assembling
from the parallel PPS modules has then to happen in the same round-robin fashion. For
larger objects, this is no problem, since the overhead of the buffer length field on the overall
data footprint can be neglected. Should this be a problem nevertheless, it could be solved by
modifying the Wire format: By splitting the 4 bytes of the length field into 3 bytes for the
buffer length and 1 byte for the number of records contained, the output stream could later
be reassembled based on the given number of records in each buffer and channel.

2.4 Automatic hardware generation

Automatic generation of hardware is typically done by emitting VHDL or Verilog code,
using template engines, or even worse, using a large number of print statements in the
generator. This results in extremely poor readability and maintainability of the generator
code. We therefore decided to generate all logic circuits using Python-based HDL called
Amaranth5. In Amaranth, hardware is described at the register transfer level as in VHDL or
Verilog, while allowing for modern language features of Python such as object orientation.
This is especially advantageous for the implementation of the parser blocks, since, for
example, all complex parser blocks can inherit from a class sequential_parser, which
already contains basic FSM logic for sequential activation of the instantiated parser blocks.
In addition, the interface for parser blocks introduced in Sect. 2.1 can be inherited by all
blocks via an abstract class, so instantiating parser blocks in other blocks (e.g., in the record
parser) can be easily implemented using attributes of the abstract class type. Moreover,
the object structure created in this way is perfectly suited for traversing the parser tree

5 Amaranth HDL: https://github.com/amaranth-lang/amaranth
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(see Sect. 2.2). The described hardware can then be finally output in Verilog, allowing the
generated modules to be used platform-independently. The Python-based HDL not only
allows us to create highly nested modules, but it is also possible to leverage well-established
Python modules for parsing the Avro schema and JSONPath expressions.

3 Evaluation

We selected two stream processing benchmarks to evaluate our approach and the generated
circuits. These are the Yahoo Streaming Benchmark [Ch16], which monitors advertising
campaigns, and the RIoTBench [SCS17], which includes various applications for the Internet
of Things. In both cases, we only consider the parsing stage, as well as subsequent projections
and selections for our evaluation. As both benchmarks originally expect JSON-formatted
data as input, an equivalent Avro schema had to be defined first. However, to define these
schemas, we first discuss the input data of both benchmarks. Following this, a path expression
is to be chosen based on the selection & projection applied in each benchmark.

Yahoo Streaming Benchmark The input JSON data of the Yahoo Streaming benchmark
consists of 7 string attributes. These are first three UUIDs (user_id, page_id & ad_id)
to identify the advertisement event, two type fields (ad_type & event_type), a timestamp
(event_time) and the IP address of the user (ip_address). We decided to encode the UUIDs
using the fixed type (16 Byte), the type fields (ad_type & event_type) using one enum in
each case, the timestamp using a long and the IP address using a string. During selection, it
is tested whether the event_type enum type is set to the "view" enum element6 Subsequently,
the attributes ad_id and event_time are projected in the benchmark, which results in the
following path expression: $[?event_type = ’view’].( ad_id | event_time ).

RIoTBench Similarly to the Yahoo Benchmark, the RIoTBench originally works with
JSON formatted data. The structure of the JSON data is based on the SenML format, which
is used as an exchange format for sensor measurements. The JSON records received in the
benchmark are encoded as a JSON record with initially two fields. This is first a timestamp
of the measurements and second an array which contains all measured values. The array is
in turn always comprised of 8 records. Each measurement records contain three fields, a
value field with the actual measured value, a field for the name of the measured value, and a
field for the physical unit. While the name and unit fields are encoded as a string, the value
field can be encoded either as an integer or as a float depending on the physical unit of the
sensor measurement.

We adapted the benchmark for Avro. The Avro schema first contains a long timestamp and a
field of type map (values), which contains the sensor measurements. We chose to use a map

6 In the original benchmark, this is a string comparison as the event_type attribute is formatted as a string.
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for the measurements instead of an array, as this makes it easier to extract its entries. A map
entry, respectively a sensor measurement, consists of the sensor name as key and union type
for its value. The union type, in turn, defines one type for each physical unit. Accordingly,
the correct value type (int or float) can be defined for each physical unit. In the SmartCity
query of the RIoTbench, five variables are initially projected after parsing. All five variables
are then used for a selection expression. The resulting path expression can be seen in List. 3.

$[?values.temperature::union(senml_fahrenheit) >= -12.5
& values.temperature::union(senml_fahrenheit) <= 43.1
& values.humidity::union(senml_percentage) >= 10.7
& values.humidity::union(senml_percentage) <= 95.2
& values.light::union(senml_percentage) >= 1345
& values.light::union(senml_percentage) <= 26282
& values.dust::union(senml_percentage) >= 186.61
& values.dust::union(senml_percentage) <= 5188.21
& values.airquality_raw::union(senml_percentage) >= 17
& values.airquality_raw::union(senml_percentage) <= 363]

.(values.temperature::union(senml_fahrenheit))
|(values.humidity::union(senml_percentage))
|(values.light::union(senml_percentage))
|(values.dust::union(senml_percentage))
|(values.airquality_raw::union(senml_percentage))

List. 3: Path expression for the RIoTBench SmartCity query.

System architecture The generated parser accelerators have been evaluated on a Xilinx
ZCU106 Zynq SoC. Fig. 11 depicts the architecture of our system, based on [Be19],
consisting of a tightly coupled ARM CPU and programmable logic (PL). The PL contains
several dynamically Reconfigurable Regions (RRs), which are connected to each other and
to various interfaces via a crossbar. In each of the RRs resides a DMA engine, managed by
the on-chip ARM CPU.

RR0
Avro Parser

DMA

RR1
(Join)

DMA

RR2
(Window)

DMA

RRn

DMA

. . .

Crossbar

10G network interface

DMA

PCIe

DMA

NVMe controller

DMA

ARM CPU

core0 core1

core2 core3

Programmable Logic (PL)

RAM

Zynq SoC

Fig. 11: FPGA-based system architecture for evaluation.
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In our experiments, 3.6 MB of Avro data from the Yahoo benchmark, as well as 1.5 MB
from the RiotBench, were preloaded into RAM and transferred to the parser accelerator
using DMA. The results containing the parsed Avro objects were again written back to
RAM via DMA. For the experiments, the entire system was clocked at 200 MHz, thus with
a word width of 64 bits, a throughput of 1.6 GB/s should ideally be achievable. In practice,
however, we only achieved a throughput of 1.45 GB/s, which was due to the CPU not being
able to schedule new DMA descriptors fast enough. In the future, this problem could be
solved by using more cores to schedule the DMAs, or even by adding a dedicated hardware
component for scheduling the DMAs. For us, however, the achieved throughput is sufficient
since it suffices to process the incoming data from a 10 GBit/s network interface at line rate.
Our system architecture can thus be used to process and accelerate further stages or even an
entire data stream processing application on the FPGA.

Example: Consider the Yahoo Benchmark again. First, a data stream of Avro objects
is received at the network interface. This stream is then forwarded as described to the
first Reconfigurable Region (RR) which contains our generated Avro parser accelerator,
directly performing the first three steps of the Yahoo benchmark (parse, project & select).
Then the stream of parsed, projected, and filtered Avro objects is passed to the next RR,
which performs a join against a document store in the Yahoo benchmark. The tuples of the
document store required for joining are also transferred via DMA from the NVMe controller
to the corresponding RR. The joined tuples are then passed again to another RR to aggregate
via a window function in the last step. The accelerators for processing joins and windows
can be generated as shown in past research [MTA09; MTA10; TM11]. The output stream of
the window is again to be stored in the document store and must be accordingly transferred
back to the NVMe controller.

Benchmark results Besides the above experiments, we determined the maximum achiev-
able clock frequency as well as the resource consumption of the generated accelerator engine
for both benchmarks. The results are depicted in Tab. 2. The number of LUTs required for
the more complex RIoTBench schema is slightly higher than for the Yahoo benchmark, but
remains low overall for both accelerators, thus allowing resources to be used for further query
processing, as described above. For the same reason, the maximum achieved clock frequency
is also higher for the Yahoo benchmark. If the two generated accelerators are operated at
their maximum clock rate, they can theoretically achieve throughputs of 3.4 GB/s (Yahoo)
and 2.8 GB/s (RIoTBench). Unlike JSON and CBOR, in Avro it is likely that decoded
objects have a larger data footprint at the output than at the input, making the output interface
potentially the bottleneck. However, since we perform additional selections and projections
in both evaluated benchmarks, the amount of data at the output is typically greatly reduced
compared to the input, so the input interface remains practically the bottleneck, meaning
that the given throughput numbers still correspond to the parsing speed.

Finally, the two parsing benchmarks were run with the C++ Apache Avro parser on an
Intel(R) Core(TM) i7-3770 CPU to obtain an x86 CPU baseline. With one thread, a
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throughput of 390 MB/s was achieved for the Yahoo benchmark and a throughput of
96 MB/s for the more complex schema of the RIoTBench. A speedup of up to 4 can be
achieved by parallelizing on multiple threads for exploiting the 8 hyperthreads provided
by the CPU. Here, the limited scaling results from additional overhead due to the memory
management for distribution of the data as well as the synchronization of the threads. Only
the parsing itself was measured in the CPU benchmarks. If selection and projections are
additionally performed and the results of the threads are merged, the throughput would even
be worse. In contrast, the proposed FPGA design could ideally achieve a speedup of 8.8 for
the Yahoo benchmark or 29.4 for the more complex RIoTBench given that the problems of
the DMA scheduling are resolved, while only requiring a minimal share of its resources.

Tab. 2: Resource consumption, clock frequency, and throughput results for two benchmarks.

benchmark Yahoo RIoTBench

resources (% of FPGA) LUTs 4,900 (2.1%) 6,691 (2.9%)
FFs 7,288 (1.6%) 7,173 (1.6%)

maximal clock frequency 430 MHz 359 MHz

throughput (speedup)
CPU single thread 390 MB/s (1) 96 MB/s (1)
CPU multi thread 1,405 MB/s (3.6) 380 MB/s (4.0)
FPGA theoretical 3,440 MB/s (8.8) 2,827 MB/s (29.4)

FPGA experimental 1,450 MB/s (3.7) 1,450 MB/s (15.1)

4 Conclusion & Future Work

Avro’s simple encoding can be interpreted using basic finite-state machines, making the
parsing process perfectly suited for acceleration in hardware using FPGAs. The accelerators
generated by the presented generator can achieve significant speedups compared to CPU-
based parsers, although only a minimal share of the FPGA resources is required. Moreover,
path expressions can be used to parse the received objects into a fixed data layout and reduce
the amount of output data to avoid unnecessary data movement. The enforced data layout is
then perfectly tailored to accelerate further steps of the given application on the available
FPGA resources.

Optimization potential for our approach arises from the fact that parser blocks must be
instantiated multiple times when the same Avro type occurs multiple times in the schema.
Furthermore, the generated parser is only able to parse the schema it was generated
with, making schema evolution only possible by creating and instantiating multiple parser
accelerators. In the future, we want to solve these two problems by coordinating the parser
blocks via an instruction set. The schema would then be translated into a program that would
control the sequence of parser blocks. Thus, different schemas and, accordingly, schema
evolution could be achieved simply by executing different programs.
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